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1. Introduction 

This paper is concerned with approximation methods for handling the classical 
assignment problem. These methods permit solution of large scale assignment 
problems where exact methods are not  economically feasible because of the ex- 
tensive computation time requirements. Even though the development and 
analysis of these approximation methods are strongly directed toward digital 
computers, the methods are especially desirable for hand computation. 

The assignment problem is defined in Section 1, and the results of a solution- 
time study of an exact method, the Munkres algorithm, are described. In  the 
next section, three approximation methods are formulated. The results of an 
empirical investigation of error are given in Section 3. In  the next  section, the 
approximation methods are investigated analytically; the expected value and 
error bounds are established for the promising methods. In  Section 5, computer 
mechanizations of the approximation methods are given and evaluated with 
respect to certain (defined) basic operations. Timing comparisons are then made, 
with respect to a particular computer, UNIVAC I. A summary of findings is given 
in the last section. 

Definition of Assignment Problem. The statement of the assignment problem 
is as follows: There are n men and n jobs, with a cost c ,  for assigning man i 
to job j.  I t  is required to assign all men to jobs such that  one and only one man 
is assigned to each job and the total cost of the assignments is minimal. 

The problem phrased in a more general way is: Given a matrix (c , )  of real 
2 numbers, find a matrix (x , )  such that  ~=tc .~z ,  is minimal, with x ,  = x~j, 

~ , ~ l x ,  = 1, and ~ 7 = t x ,  = 1, for all i and j. The matrix (c , )  is termed the 
cost matrix; the matrix (x,~) is termed the solution matrix or the permutat ion 
matrix (also occasionally termed the assignment matrix) [1, 6]. 

At this point, i t  may be mentioned that  occasionally it  is desired to maximize 
~ , ~ j ~ c , x , ,  rather than to minimize it. A method yielding an optimal assign- 
ment for one always gives an optimal assignment for the other by  a simple trans- 
formation of the cost matrix (c,j). For example, if all c ,  lie in (a, b), the substi- 
tution (d , )  = (b -- c~j) suffices. 

Solution Techniques. Any exhaustive scheme of enumeration of all assign- 
ments to find the optimal solution is impractical. However, the assignment 
problem of order n can be expressed as a 2n X n ~ zero-sum two-person game, 

* Received April, 1961; revised February, 1962 This paper is based upon the author's 
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lems," June 1960, Univ. Pennsylvania, Moore School master's thesis. 
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which can be cast into a linear programming problem [12]; the general technique 
of the simplex metkod is then applicable [3, 6]. Many computer programs of the 
simplex method (and variants of it) exist for various computers [6]. Furthermore, 
there are a number of algorithms specifically directed at the solution of the 
assignment problem [1, 8, 9, 10, 11]. 

Since the assignment problem may be viewed as a special case of the general 
transportation (or distribution) problem [5, 7], methods suitable to that problem 
are quite applicable. There are methods designed to allow a "good initial start" 
for the simplex method operating upon a transportation problem [6]. (The 
purpose of this good initial start is to reduce the required number of iterations 
for an optimal solution.) 

Methods such as these have been independently formulated by the writer, and 
evaluated in this paper, as techniques for obtaining near-optimal solutions of the 
assignment problem. The approximation methods considered and defined in 
Section 2 are termed (1) the suboptimization method, (2) the row/column-scan 
method, and (3) the matrix-scan method. Definition of these methods is pre- 
ceded by the results of a timing study of an exact assignment algorithm. 

Solution-Time Study of ann Exact Method. A variant of Kuhn's method, de- 
veloped by James Munkres [13], was adjudged particularly suitable for com- 
puter mechanization and was programmed by the writer on UNIVAC I. This was 
done to provide a necessary subroutine for one of the approximation methods 
(the suboptimization method, defined in Section 2.1) and to supply a basis for 
evaluating the worth of the approximation methods. The program that was 
developed was designed to solve assignment problems up to order 12. With this 
limit, extreme computer efficiency is possible for UNIVAC I because of the 12-digit 
word size of this machine. This size was deemed sufficient to carry out any 
pertinent analysis on a computer-programmed assignment algorithm without 
falling victim to degenerate cases. 

The test cost matrices (for the timing study) were obtained by generating 
random numbers uniformly in the range (0, 1) and using these numbers as the 
matrix elements c,~. There is no loss of generality in this choice of range, for if 
the c,j are distributed lmiformly in the interval (a, b), then the linear transfor- 
mation c:j = (c, -- a) / (b -- a) produces a set of c',: which lie in the range (0, 1) 
and are also distributed uniformly. The assignment is independent of the trans- 
formation, since a linear transformation does not destroy the relative ordering 
of the possible solutions. 

The results of the timing study are tabulated below. (The time includes read- 
ing in the test matrix from tape.) The average sample size was approximately 
100 test matrices. One would expect, due to the difficulty in timing the com- 
puter runs, more experimental error for small n. 

n (size of matrix) 

t (mean time per run 
in seconds) 

3 4 5 6 7 8 9 10 11 12 
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Unfortunately, there exist qualitative differences (because of the word size 
and the internal memory size of UNIVAC I) among the ranges (2, 12), (13, 24), 
and (25, N), where N is arbitrarily large. 

For any computer, increasing the matrix size beyond certain critical points 
introduces radically new problems, primarily of storage, necessitating different 
programming techniques. However, with this restriction understood, an or- 
thogonal polynomial curve-fitting routine was employed to determine the form 
of a polynomial that would best fit the data gathered from the range (3, 12). 
This gave a cubic of the form 

t = 2.8837 -- 1.0511n + 0.1713n 2 + 0.0025n 3, t in seconds. 

This polynomial furnishes only a weak lower bound for the mean UNIVAC solu- 
tion time for matrices in the range (13, 24), and an even weaker lower bound for 
matrices of order greater than 24. 

2. Approximation Methods 

Approximation methods must require relatively few basic operations, thereby 
yielding fast solution times, and yet not present extremely inefficient assign- 
ments. Ideally, these techniques should be directed toward solution of large 
problems where exact solutions are too costly or unavailable. 

2.1. Suboptimization Method. This approach assumes the existence of an exact 
assignment algorithm that can accept an R × R  matrix. 

The given N X N  cost matrix is partitioned into S 2 R X R  (sufficiently small) 
submatrices. Each one of the R X R  submatrices is individually solved for the 
true optimal assignment value. The assignment value ~ c , x ,  associated with 
these R X R  submatrices is now considered to constitute the elements of an S X S  
matrix. This S × S  matrix is a "gross matrix" in the sense that each element 
represents a sub-block of assignments. 

The true optimal assignment for this new matrix is obtained, thereby desig- 
nating which (independent) sub-blocks of assignments are to be taken. Since the 
sub-blocks of assignments are independent in themselves, a feasible assignment 
for the N X N  matrix is determined. 

2.2. Row/Column-Scan Method. The row/column-scan algorithm requires two 
cycles through the matrix; each cycle produces a candidate assignment solution. 

On the first cycle, all the rows are sequentially examined and the minimal 
uncovered element in each row selected. The row is then assigned to the column of 
the selected element and the column covered, i.e. all of the elements in that 
column are covered. Each row and column are thus uniquely assigned to one 
another, thereby constituting an assignment solution. A value is computed for this 
candidate assignment solution by summing the values of all the selected elements. 

Next, on the second cycle, the columns of the original matrix are examined, 
and, as with the case of the rows, the minimal uncovered element in each column 
is selected and an assignment made. Again, as with the rows, none of the ele- 
ments is initially covered. Completion of the column-by-column examination 
results in a new candidate assignment solution. 
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An assignment value associated with this new solution is computed and com- 
pared with the value associated with the row-by-row assignment solution. The 
minimum value determines the choice of assignment solution. 

I t  may be desirable, especially for extremely high-order matrices that are tape 
limited, to mechanize the process by merely considering and operating upon 
"strings" of elements. A string may be either a row or a column of the matrix. 
Thus, there would be (for a matrix of order N) N strings for the rows and N 
strings for the columns. These 2N strings could be stored sequentially on tape 
and operated upon in two cycles, N subcycles in each cycle. 

Section 5 presents two detailed computer variants of this algorithm, including 
the minimum and maximum number of required operations per mechanization. 
The variants could be implemented in any one of the above ways without altering 
the given required number of operations. The optimal implementation is a func- 
tion of the particular computer available. 

2.3. Matrix-Scan Method. The smallest uncovered element in the entire 
matrix is selected and the column and row associated with it assigned to one 
another. (Initially, all of the entries in the matrix are uncovered.) After the 
assignment is made, the row and column are covered; i.e. the elements in the 
assigned row and column are covered. This has the effect of reducing the order 
of the matrix by one. 

The process is repeated until all of the rows have been assigned to columns. 
To produce a complete set of row-to-cohunn assignments (an assignment solu- 
tion) for a matrix of order N, N passes over the entire matrix are required. Sec- 
tion 5 presents two detailed computer variants of this algorithm, including the 
minimum and maximum number of required operations per mechanization. 

3. Empirical Error Investigations of Approximation Methods 

The value of each approximation method is dependent upon two factors: the 
time necessary for solution, given implicitly by the required number of basic 
operations, and the amount of error generated by the algorithm. 

To gain insight into the relative worth of the approximation methods, experi- 
ments were conducted on low order matrices (of order 12) for which the true 
minimal and maximal assignments could be found. 

The results of these empirical investigations indicated that the suboptimization 
method does not compete favorably with the other two approximation methods, 
even with respect to solution error. Since the solution-time cost is (by far) 
heaviest for the suboptimization method, and the resuIts so discouraging, there 
does not appear to be much profit in it. 

A total of 50 test matrices of order 12 was subdivided every possible way for 
the suboptimization method. The particular partition that gave the least error 
was a subdivision of four 6 X 6 submatrices. The average relative error with 
respect to a minimal solution for that partition was 47.1 percent. The greatest 
average relative error, 76.5 percents again with respect to a minimal solution, was 
generated with a partition of sixteen 3 X 3 submatrices. With respect to a 
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maximal solution, the corresponding average relative errors for the same parti- 
tions are 6.8 and 11.1 percent, respectively. 

The row/column-scan method and the matrix-scan method were applied to 
several test matrices. The average relative errors with respect to minimal solu- 
tions were approximately 29 and 14 percent, respectively. The average relative 
errors with respect to maximal solutions were approximately 4.2 and 2.6 percent, 
respectively. 

If the worst assignment for a minimal solution (corresponding to the maximal 
assignment) were selected for these test matrices, the relative error would be 
603 percent. Correspondingly, the worst assignment for a maximal solution 
(equivalent to the minimal assignment) yields a relative error of 87.8 percent. 

4. Analytical Investigations of Approximation Methods 

In this section, an expression for the expected value of an assignment solution, 
in terms of the order of the matrix, is derived for two approximation methods: 
the row/column-scan and matrix-scan algorithms. (For appropriate definitions, 
see [2] or [4].) Of particular interest and importance is the error involved in 
solving high order problems. 

Bounds are established for the absolute error of the expected solution values 
given by the row/column-scan and matrix-scan methods. In addition, bounds are 
found for the expected relative error of the maximal solution given by the above 
methods. The expected relative error is shown to vanish as the order of the matrix 
increases without bound. In the analysis, the elements in the matrices are inde- 
pendent and rectangularly distributed in [0, 1]. A generalization of results is then 
given for elements rectangularly distributed in [a, b], an arbitrary finite interval. 

4.1. Row/Column-Scan Method. For the remainder of this section, it is con- 
venient to consider the maximal assignment instead of the minimal assignment. 
Solving the maximal assignment problem for the matrix (d,)  = (1 -- c , )  is 
equivalent to solving the minimal assignment problem for the matrix (c ,) .  The 
(c,) and (d,)  matrices have the same assignment solution, and summation of 
the assigned elements in the (c,~) matrix yields the correct minimal assignment 
value. 

For a matrix of order n, there are n rows which must be assigned. Each row 
has a random variable associated with it: namely xk, the value of the selected 
element. The value of the total assignment is simply ~_~x~ .  

The expected value for the total maximal assignment given by a row-scan 
method, in which only the rows and not the columns are examined, is now derived. 

Let xk be the maximum (uncovered) element of the (n - k + 1)th row. Then, 
the random variable xk is the maximum of k random variables; namely, the con- 
tents of the surviving locations of the (n -- ]c + 1)th row. Denote these contents 
by11 ,12 ,  . - . , l k .  Thus, 

xk = max (11,1~, la,  - "  , lk). 

Let F~ (x) denote the cumulative distribution function of x~. Using the symbol 
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Pr  for mathematical probability, Fk (x) is computed as follows: 

Fk(x) = Pr  (x~ =< x) = Pr  [max (11,12,  . . .  , 1~) __< x] 

= Pr (11 =< x, 12 =< x, . . . ,  1~ =< x) 

= [Pr (11 =< x)]  [Pr (12 =< x)]  . . .  [Pr ( L  -<_ z)]  

= [El, (x)] [Fi~ (z)] . . .  [Fl~(x)]. 

N o w  

hence 

t 
l ,  for x ~ 1 

Fi , (x)  = x, for 0 < x  < 1 

(0, for x ~ 0, 

f l ,  for x >= 1 

Fk(x) ----~x, for 0 < x  < 1 

[ 0, for x_-<0. 

The associated density function, fk (x), is simply the derivative of Fk (x), 

I 0, for x >__ 1 

f ~ ( x )  = ~ } ~ x  k - l ,  for 0 < x < 1 
! 
L0, for x <= 0. 

Thus, the expected value of the random variable x~ is 

f f (z~> = ~ x A ( x )  d z  = z ( k x  ~-1) dx  - k + 1" 

The expected value of the total assignment, denoted by  M 1  ( n ) ,  is given by  
~ 1  (xk}. Since the mean of a sum of random variables equals the sum of their 
means, 

M I ( n )  = xk  = . 
k~1 k~1 h + i 

An easily evaluated lower bound for Mi (n) is 

Ml(n)  = ~ k ~ 1 f°+ldx 
k=1 h ~ i -- n -- k=l ~ -~---i > n -- ,i x -- n -- In (n q- I). 

The inequality holds for 

n+l dx_ _ k+l __dx > _ . 

~1 X k=l ~k X k=l k k -~ 1 k=1 h + 1 

The expected value of the minimal solution, ml (n), for the matrix (c,j) is now 
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obtained by means of the results for Mi (n). Let yk denote the minimum (un- 
covered) element of the (n - k ~ 1)th row of (c,,). Since d~ = 1 -- c , ,  it  
follows tha t  yk = 1 -- x~. Therefore, 

m l ( n )  = y k  = (1 -- xk) = n - -  - . 
k~l k-1 k=l k ~ 1 k=l k + 1 

An upper bound for m~ (n) is In (n + 1), for, as seen before, 

f ' + l  d_~ > ~ l 
i X k=ik JF 1 " 

The expression Mi gives the expected value for only the maximum row-scan 
solution. In the row/colunm-scan method there are two tentative assignment 
solutions, one for the rows and one for the columns. The better of the two is 
selected. The expression for the expected value of the maximum column-scan 
solution is also given by M i .  Since the better (in this case, larger) of the two 
solutions is selected, the expected value for the complete method should be 
greater than M~. However, that  expected value is not immediately apparent, as 
the distributions for the row-scaa and the column-scan assignments are not 
independent. 

Similarly, ml provides an upper bound for the expected minimal solution given 
by the row/column-scan method. Thus, the expected minimum row/column-scan 
solution is less than In (n W 1), and the expected maximum row/column-scan 
solution is greater than n -- In (n Jr 1). 

A bound is now found for the expected value of the relative error given by the 
maximal row-scan method. This value tends to zero as the order of the matrix 
increases. Let ~k=~ tk denote the true solution value. Then, the expected relative 
error is 

/ >=//  \ / k=i - -k - i  \ 1 ~ x k  \ 

xk \ Mi(n)  In (n + 1) 
--< ~ \ 1  ~in / /  = 1 -- n < n ' 

which goes to zero as n approaches infinity. This follows from the relations 

n >= ~]  t~ => xk, 
k=l k~l 

(which hold because of all entries lying between 0 and 1, and by the definition of 
true maximal solution), and from the relations 

/ - )  
k=llc ~ 1 > n - - l n  ( n +  1). 
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Furthermore,  the same bound of [In (n -t- 1)] /n holds for the relative error of 
the expected value of the row-scan method. This is so because both 

An upper bound for the absolute error for both the expected minimal and 
maximal solution values is now found. Let  e (n) and E (n) denote the expected 
value of the true minimal and maximal solutions, respectively. Since E (n) = 
n - e (n) and M1 (n) -- n - ml (n), the absolute error bound is 

] e ( n )  - -  m l ( n )  ] = ] E ( n )  - -  M s ( n )  ] _-< I n  - [n - -  In (n % 1)] I = In (n % 1). 

Again, the fact is stressed that  this upper bound for absolute error refers to 
only a row-scan or a column-scan solution. Thus, there may  be a significantly 
sharper bound for the absolute error of the expected solution given by  a com- 
plete row/cohimn-scan method. 

4.2. M a t r i x - S c a n  M e t h o d .  As with the case of the row/cohimn-scan method, 
it  is convenient to consider the maximal assignment solution instead of the 
minimal assignment method. 

In  the row/scan method, the column associated with the largest uncovered 
element of a row is covered; the members of other rows play no par t  in the choice 
of the largest element. In  the matrix-scan method, however, the row a n d  column 
of the largest uncovered element of the matrix are covered. Hence, the remaining 
elements, which are the candidates for a new choice, cannot be larger than the 
selected one, and thus are no longer rectangularly distributed in [0, 1]. 

Let  the expected value given by  the matrix-scan method be denoted by M2. 
Suppose the maximum value in the matrix is x, where 0 ~ x -_< 1. The remaining 
elements, after tha t  maximum element is selected, are then independently and 
rectangularly distributed in [0, x]. Therefore, the expected value of the matrix- 
scan method on an (n -- 1) X (n -- 1) minor (i.e. the resulting uncovered ele- 
ments) is x M s  ( n  - 1). This relation follows by  considering tha t  if every element 
of the (n -- 1) X (n -- 1) minor is divided by x, an (n -- 1) X (n - 1) matrix 
of elements in [0, 1] is obtained. Given that  the maximum value is x ,  

then [x -t- x M 2  (n -- 1)] is the expected value of the matrix-scan; the probability 
2 n2 1 tha t  x is the maximum is n x - d x .  So, taking the product  of the expected value 

(assuming x is the maximum) and the associated probability, and summing x 
over all possible values (i.e. integrating from 0 to 1), leads to the expression for 
the expected value of the matrix-scan method:  

f0 
1 - n s 

M s ( n )  = Ix + x M s ( n  - -  1)]n2x ~-1 d x  n2 +-----~ [1 + M 2 ( n  - -  1)]. 

A lower bound for M2 (n) is now found, using the recursion relation 

n 2 1 
M s ( n )  - - -  [ M : ( n  - -  1) --]- 1] - - -  [ U s ( n  - -  1) + 1]. 

1 n s -t- 1 1 ~ n ~  
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Since - -  

o r  

1 
1(1)  - ~ - ~ +  ~ . . . .  , then  

1]  [ M 2 ( n -  1) + 1] M2(n) > 1 - 

M2(n) -- M2(n -- 1) > 1 

and since M2(n - 1) =< n - 1, 

M2(n) - M 2 ( n -  1) > 1 

M 2 ( n -  1) 1 
n 2 n 2 ' 

n - - 1  1 1 
1 - -  - - .  

•2 n 2 n 

Taking the sum of both sides, with n going from 1 to T, gives the result 

,=1 [ M 2 ( n ) -  M 2 ( n -  1)] > ~.=i ( 1 -  ~ ) ,  

which is equal to 

Ms(T)  -- M2(0) > T -- ~ _1. 
n=l n 

Now, Ms(O) = O, and since I .y > ~r~=1 I/n -- In T, changing the dummy 
variable (substituting n for T) results in the following lower bound for M= (n) 

M2(n) > n - , r - l n n .  

An upper bound for Ms (n) is now found by taking one more term in the ex- 
pansion of 1/[1 + (l/n2)] and substituting in the reeursion expression for M2 (n), 
as follows: 

[ 1 l ] [ M = ( n - 1 ) + 1 ]  M2(n) < 1 - - ~ - ~  

I 1  11 = 1 + M 2 ( n - -  1) -- ~ - - ~  [Ms(n - -  1) + 1]. 

Thus, 

Ms(n) - - M s ( n  -- 1) < 1 -- 

1 Euler's constant, % is defined 

proaches ~ from below. 

1 1 M2(n -- 1) M s ( n - -  1) 
~ + n ~  n s + n~ 

( n - -  1) - -  7 - - 1 n ( n - -  1 ) . { _ n - -  1 
n 4 

1 1 
< 1 - ~  n4 ns 

< l _ l q _ 7  l n n  1 
~ + - ~ -  + n-~" 

a s v =  Lim [ ~ 1 ] E 1  where ~ -- In n ap- 
k = l  
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Taking the sum of both sides with n going from 1 to T gives the result 

,~=~ [ M s ( n ) -  M 2 ( n -  1)] < ~.=1 [ 1 -  ~ , l + 7 ~ + " ~ - + ~ i n n  1 ]  

o r  

M2(T) < T _ ~  1 ~ 1 ~ l n n  ~ 1 
.=1~ +7 ~ +  -~--+ ~. 

Thus, it  follows that  

1 " 1 " 1 I n  1 

k ~ l  ~ ~ k = l  k = l  

Furthermore, since 

Ml(n)  = n -- - n -- + 1 - -  > n -- 

the bound becomes 

1 V M,(n) < M l ( n ) + 7 ~ + ~  . + ~  1 
k ~ l  k ~ l  k=l  ~ "  

Thus, M~ (n) -- M1 (n) increases with n, but  since 7 ~ = I  (l/k2), ~ = i  (1/k~), 
and ~ = 1  (ln lc/k 2) are convergent (i.e. bounded by a constant),  

Ms(n) -- Ml(n) < c, 

where c is the constant given by the sum of the limits of ~ (1 /n3) ,  7~(1 /n2) ,  
and ~ In k/k 2. This sum may be crudely estimated by noting tha t  

2 

. = I ~  < . = i n  ~ -  6 

and 

Thus, 

f ~ l n x  l + l n n  ~ l n k  dx = 1 - -  > k2 x ~ n k=l 

2 2 
7r 7r 

c < 7 ~ - ] -  ~ + 1 < 3.6. 

Therefore, the expected values of the matrix-scan and the row-scan methods are 
of the same order of magnitude. 

Furthermore, since Ms (n) > n - ~ = 1  1/k > n -- ( lnn  + 7), it  follows, by 
the same reasoning used for the row-scan method, that  the bound on the ex- 
pected relative error (and the relative error of the expected value) in the matrix- 
scan method is ( lnn + 7)/n, which goes to 0 as n approaches infinity. 

Similarly, the bound on the absolute error of M2 (n) and m~ (n) is I n n  + 7. 
4.3. Generalization from [0, 1] to [a, b]. The previous analysis assumes all 

matrix elements to be rectangularly distributed in [0, 1]. The results are readily 
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extended to matrices with elements rectangularly distributed in [a, b], an arbi- 
t rary finite interval. By employing the linear transformation 

e,t -- a 
where e,j is in [a, b], c,: - b -- a ' 

and going through the appropriate manipulations, the following error bounds 
are obtained. 

The expected relative error of the maximal solution with the row-scan method 
is bounded by [(b - a) In (n + 1)]/nb, and the expected absolute error is 
bounded by (b - a) In (n + 1). Similarly, the expected relative error for the 
matrix-scan method is less than [ (b -- a) (In n + ~) ]/nb, and the expected abso- 
lute error is less than (b -- a) ( lnn  + ,y). 

5. Solution-Time Evaluation of Approximate Methods 

For the two approximation methods that  appear promising, there are two 
variant mechanizations. Flow charts are presented for the row-scan method and 
the matrix-scan method showing these candidate mechanizations. 

Certain "basic operations" are defined, and the rival mechanizations are then 
analyzed for each method in terms of these operations. Timing estimates are 
made for the methods with respect to a given computer, UNIVAC I. 

5.1. Row~Column-Scan Mechanizations. The procedures or steps which 
define the row/column-scan method for a minimal solution are: 

(1) Select, in each row, the minimum element whose column has not been assigned to 
any other (previous) row. 

(2) Assign the row to the column of the selected element. 
(3) Indicate that the column has been assigned. (Cover the column.) 
(4) After all rows have been processed, repeat the algorithm, treating the transpose of 

the matrix in similar fashion 
(5) Of the two tentative assignments--the first from the original matrix, the second from 

the transpose--choose the one that is smaller. 

The two variants differ in treatment of step (1). As the names of the mechani- 
zations suggest, one first tests for a prospective new "smallest" row element and 
then determines its availability, i.e. whether or not its column has been previ- 
ously assigned; in the other mechanization, the order of tests is reversed. The 
first is more favorable initially; the second shows to advantage in the terminal 
phase. However, in general it would be unwise to include controls to switch from 
one to another at  the "breakpoint." The controls would cost more in extra opera- 
tions than would be saved. 

The flow charts for the element-indicator and indicator-element mechaniza- 
tions are shown in Figure 1. 

5.2. Matrix-Scan Mechanization. The procedure or steps which define the 
matrix-scan method for a minimal solution are: 

(1) Select, in the  ma t r ix ,  the  m i n i m u m  element  t h a t  does n o t  have  i t s  row or  co lumn 
covered (i.e, whose row or column has not been previously assigned). 

(2) Assign the row of the selected element to its column. 
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c l e a r  F l a n d  F 2 a n d  s e t  j = I l e t  rain El : oO ~ s  column k ¢overed')~ 

I 
o % : ' ~ = ' :  . . . . . .  . 0  I . . . . . . .  ,k ,  m , ° . "  " 

I 

I ............ I ' ¢° ' column q 

1 ,I, 
mxn l n mo  r w (Set  co lumn q Ind ica to r )  Element l k - -mln  El 

r 

r o 
osed (Is i = 2 9) ~ with value F 2 

o ~ilr~o~,, co,, 

Tra~pose matrix by i n t e r c h a n g i n g  
c o w  a n d  column lndlce$, 1 e , 

('-1-i . . . . . . . . . .  ,,° 
transpose from tape without botherzng 
to znterchange row and column radices 

FIG 1. Row/column-scan method 

ELEMENT-INOICATOR 
MECHANIZATION I 

I 
b ° I 

I 
I ~° I 

(3) Indicate that the column and row are assigned. (Cover the row and column.) 
(4) Test for completion of n assignments (for a matrix of order n); if not completed, 

continue recursively. 

As with the row/column-scan method,  the two var iants  differ in step (1) ; the 
discussion given for tha t  method is also applicable here. 

The flow charts for the element-indicator and indicator-element mechaniza- 
tions are shown in Figure 2. 

5.3. Basic Computer Operations for the Approximation Methods. To evaluate 
the computat ion speed of the approximation methods (and their candidate 
computer  mechanizations),  i t  is expedient to define certain operations, especially 
significant for the approximation methods.  The techniques m a y  then be analyzed 
in terms of these operations, thereby providing a basis for comparisons. The 
operations are as follows: 

(1) Element comparison 
(2) Indicator (sentinel) test 
(3) Row-to-column assignment 
(4) Candidate element replacement 
(5) End-of-element-in-row/column test 
(6) End-of-row/column test 
(7) End-of-assignments test 
(8) Matrix transposition (or interchange of indices) 
(9) Solution-value comparison 
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Clear row and 
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value) mdlcators) 
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•i 
re al l  the row ( o r  c o l a m n ] ~ _ _ , . _ ~ . ~ L ~  
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k ~ q  ) 
Element j k ~ mln E1 
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I ~ o  I 
I I ...... . . . . . . . . .  +)_ 
] colum, k ~.d lc . to r ,  ] 

I I 
L I. + J 

FiG. 2. Matrix-scan method 

I t  is considered that some necessary operations not listed, such as advancing 
indices, clearing counters, resetting indices, presetting values, etc., are absorbed 
in the above operations. For example, summation of the selected elements to form 
the solution value is considered to be implicitly contained in the row-to-column 
assignment operation. Since the main purpose of the operations is to furnish a 
basis for comparison, no harm results from this artifice. 

5.4. Row~Column-Scan Operation Count. For the minimum operation case 
(the case requiring the lowest total of equi-weighted operations), consider that 
the elements of the matrix are monotonically increasing across each row and the 
last element of the j th  row is equal to or greater than the last element of the 
(j -4- 1)th row. Another minimum case is given by a matrix which has its main 
diagonal monotonically increasing, with the remaining set of elements mono- 
tonically increasing with respect to themselves. 

For the maximum operation case, consider that the elements of the matrix 
are monotonically strictly decreasing across each row, and that the last element 
of the j th  row is greater than the first element of the (j -4- 1)th row. 

The estimate of the "average" number of operations is given by the average 
of the minimum operation and maximum operation cases, and is taken as a 
figure-of-merit for the techniques. 

A summary of the operation counts for the variant mechanizations is given 
later (see Table 5). 
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T A B L E  1. O P E R A T I O N  C O U N T  A S S O C I A T E D  W I T H  R o w - S c A N  M E T H O D s  E L E M E N T - I N D I C A T O R  

M E C H A N I Z A T I O N  

Asstgr~ent  Element Colu~en-Indicator Row-Col. 
Number Comparison A s | l g m e n t  

t.tLn.Cale Hax.Cale 

l n 1 n I 

2 n 2 n l 

3 n 3 n 1 

n n n n 

TOTAL n 2 k~lk. n 2 

E l ~ e n t  Replacement grid o f  Elements End o f  Rows 

M. tn .Ca le  Va.x, C a n  
i 

1 n 

I (ao l )  

t 0 - 2 )  

l L 

i n  l~w Test: TeSt 

n 1 

n l 

n 1 

n 1 

2 
n n 

For the element-indicator mechanization, figures for the minimum and maxi- 
mum number of operations for one sweep (row-scan) through the matrix, show- 
ing operation counts of the individuM assignments, are listed in Table 1. 

The operation count for one sweep (row-scan) through the matrix is, for the 
minimum count case, 

n2+~k+n+n+~+n _ 5n2 + 7n 
k = l  2 

and for the maximum count case, 

n2+~+n+~k+n2+n _ 7n2 + 5n 
k = 1  2 

For a complete operation count for a row/column-scan, the following addi- 
tional operations must  be taken into account: end-of-assignment test; matrix 
transposition (interchange of indices) ; and solution-vMue comparison. 

The test for end-of-assignment in the row/column-scan method consists in 
determining if both the row and column scans have been completed. This opera- 
tion must  be done twice, once per sweep. The other two additional operations 
must  be done once. 

Thus, the complete operation count is, for the minimum count case, 

2 + 1 + 2 = 5n 2 + 7 n + 4  

and for the maximum count case, 

2 + 1 + 2 = 7n 2 +  5 n +  4. 

Therefore, the average of the minimum and maximum cases, or the figure-of- 
merit  for the element-indicator mechanization is 

(5n 2 + 7 n + 4 )  + (7n ~ + 5 n + 4 )  = 6n 2 + 6 n + 4 .  
2 
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I Number 

A P P R O X I M A T I O N  M E T H O D S  F O R  T H E  A S S I G N M E N T  P R O B L E M  433 

O P E R A T I O N  C O U N T  A S S O C I A T E D  W I T H  R o w - S c A N  M E T H O D ,  I N D I C A T O R - E L E M E N T  

M E C H A N I Z A T I O N  

Element Column-Indlcator  Row-Col. Element Replacement Knd of  Elemants  
Comparison Assignment  i n  Row Test  

~ n  Case Max Case Urn. Case I Max.Case 

n n n 1 1 u 

(n-l) n n l I (n-I) 

(n-2)  n i n I I ' ( n -2 )  

n I n n i I I 

° '  , ° 

End of Paws 
Test  

n 1 

n i 

n 1 

n l 

n 2 n 

For the indicator-element mechanization, the operation count (shown in 
Table 2) for one sweep (row-scan) through the matrix is, in the minimum count 
case, 

5n ~ + 7n k +n2 + n + n + n 2  + n - -  
k = l  2 

and, in the maximum count case, 

• k + n  2 + n +  ~ k  + n  2 + n = 3n ~ +  3n. 
k = l  k ~ l  

For a complete operation count for a row/column-scan, one must, as in the 
element-indicator technique, take into account additional operations. The same 
remarks made about these additionM operations also hold here. 

Thus, the complete operation count is, in the minimum count case, 

2 (  5n2 + 7n ) 
2 + 1 + 2  = 5n 2 +  7 n +  4, 

and in the maximum count case, 

2(3n 2 +  3 n +  1) + 2 = 6n 2 +  6n + 4 .  

Therefore, the figure-of-merit for the indicator-element mechanization is 

(5n 2 + 7 n + 4 )  + (6n 2 + 6n + 4 )  l l n  2 + 1 3 n +  8 
2 2 

5.5. Matrix-Scan Operation Count. The minimum and maximum cases for the 
matrix scan method are the same as for the row/column-scan method. 

For the element-indicator mechanization, the complete operation count 
(shown in Table 3) is, in the minimum count case, 

n~ + ~ k n  + ~ k  + n + n  + ~ k n  + n2 + n = 2n3 + Tn2 + 7n 
k = l  k=l k = l  
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and in the maximum count case, 

l l n  3 + 24n 2 + 13n + + + x k  + e 
k = l  k ~ l  k = l  k ~ l  6 

and the figure-of-merit is 

1 V2n3 + ~  7n2+27n + l l n J +  24n2+613nl.~ = 17n3+ 45n212 + 34n 

For the indicator-element mechanization, the complete operation count (shown 
in Table 4) is, for the minimum count case, 

+ ~ k  ~ + ~ k ~  + n  + ~  + ~ k ~  + ~  + ~  = 8n 3 + 21n ~ + 19n 

k ~ l  k = l  k = l  

and for the maximum count case, 

n~+ ~k' + ~kn+n+ ~k~+ ~kn+n2+n= 
k ~ l  k = l  k ~ l  k ~ l  

and the figure-of-merit is 
_118 n3 + 21n 2 +  
2 L 0 

5n 3 + 12n 2 + 7n 
3 

19n + 5n 3 + 12n 2 + 7n-] = 6n 3 + 15n 2 + l l n  
3 J 4 

T A B L E  3 OPERATION COUNT ASSOCIATED WITH MATRIX-ScAN METHOD, ELEMENT- 
INDICATOR MECHANIZATION 

XsSlg~enc Row Element Col~°Indlcator Row-Col El~ent Replacement End of El~ente EndTOftRove End of I 
N ~ b e r  I n d i c a t o r  C o m p a r i s o n  A s t i g ~ e n t  i ~  Row T e l t  e l  A l $ i g ~ t n t  

mn C a s e  P~x C a l a  m n  C e l t  Hax C a r e  J 
I n n 2 l n 2 l l n 2 n 2 n l 

2 n n 2 - n  2 n 2 - n  l 1 ( n - l )  2 n 2 - n  u l 

3 n n2-2n 3 n 2 - Z n  l l ( n ' 2 )  2 'a2-2n n l 

n n n n n l I l t~ n I 

TOTAL n 2 k n n kn ~ n ~ k 2 ~ kn  2 n 
k~ k k k=l kml 

T A B L E  4. OPERATION COUNT ASSOCIATED WITH MATRIx-ScAN METHOD, INDICATOR- 
ELEMENT MECHANIZATION 

~ l e l g ~ e n ¢  gov  I E l e m e n t  C o [ u c m - l n d i c a t o r  Row-Col EleJaen¢  R a p l a c ~ e n t  End o f  EleJDente  
Nucaber I n d i c a t o r ,  C o m p a r i a o n  ~ l /g r~en t  in  Roy T e a t  

Pin  CaJe ~ t a l e  ~ n  Cale ~ H~J¢ Case 

I n 

2 n 

3 n 

n fl 

TOTAL n 2 

n 2 

(n-l) 2 

( n - 2 )  2 

n 2 n 2 ! I I n 2 n 2 

n2*n n2 -n  ! I 1 ( n - i )  ~ n2 -n  

n2-2n nZ-2n I I l ( n - 2 )  ~ n2-2n 

1 

n 
k 2 

k -1  

n n i l  l L n 
! 

k - I  k - I  k - I  k - I  

End o f  Rowl End o f  
T e s t  A I s i g n ~ e n c  

n l 

n 1 

n I 

n 

n 2 
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5.6. Time Comparisons of the Approximation Melhods (with respect to UNIVAC 
I).  The computer computation times for the approximation methods are n o w  

presented as a function of the order of the assignment matrix. For the time com- 
parisons, the approximation methods were programmed in the UNIVAC I code 
and time estimates were then made based upon the coding. 

There are a number of iump discontinuities in the computation time of the 
approximation methods as the order of the problem increases. The input to the 
UNZVAC I computer must be in blocks of 60 words; thus, the input-time penalty 
increases according to the smallest integer equal to or greater than n~/60. There 
is a critical point where the size of a problem is such that the entire matrix cannot 

T A B L E  5. SUMMARY OF OPERATION COUNT 

Mlmmum I Maximum Method Mechanization Flgure-of-Merlt Operatzon Case I Operatmn Case 

Row-Scan 

Row-Scan 

Row/Column-Scan 

* Row/Column-Scan 

Matrlx-Scan 

Matt ux -Scan 

Element -Indicator 

Indicator-Element 

Element -Indicator 

Indicator-Element 

Elernent -Indicator 

Indicator-Element 

( 5 n  = + 7n)/2 

(5n = + 7n)/2 

5n = + 7n -b 4 

5n~4 - 7n+ 4 

( 2 n  = + 7n = + 7n}/2 

(8n a + 21n = + 19n)/6 

(7n = + 5n)/2 

3n a + 3n 

7n=+ 5n + 4 

6na+ 6n+ 4 

(lln 3 + 24n = + 13n)]6 

(5n ~ + 12n = + 7n)/3 

3n ~ + 3n 

(lln ~ + 13n}/4 

5 n  = ÷ 6n + 4 

(lln 2 + 13n+ 8)/2 

(17n 3 + 45n ~ + 34n)]12 

(6n a +ISn = + lln)/4 

* Recommended Techmque 

T A B L E  6. UNIVAC I T I M I N G  FOR OPERATIONS, ROW/COLUMN-SCAN METHOD,  INDICATOR- 

ELEMENT MECHANIZATION 

Operation 

E l e m e n t  C o m p a r i s o n  

Column Indlcator 

Row-Column Asszgnment 

Frequency 

( A v e r a g e )  

n ~ + n 

T i m e  ( m z l h s e c o n d s }  

p e r  Unit  O p e r a t i o n  
T o t a l  T i m e  

( m i l h s e c o n d s )  

2n  ~ ÷ 2 n  

2n a 2 4n ~ 

2n  31 6 2 n  

E l e m e n t  R e p l a c e m e n t  (n ~ + 3 n ) / 2  2 n a + 3n  

E n d  of  E l e m e n t s  m R o w  2n  ~ 2 4n  ~ 

E n d  of  R o w s  2n  5 10n 

E n d  of  A s s i g n m e n t  
( W a s  M a t r i x  T r a n s p o s e d ? )  2 2 4 

T r a n s p o s e  M a t r i x  
( I n t e r c h a n g e  I n d i c e s )  1 6 6 

S o l u h o n - V a l u e  C o m p a r m o n  1 3 3 

R e a d  a n d  W r i t e  (3 b l o c k s )  1 510  510  

I n i t i a h z e  1 8 8 

T o t a l :  l l n  ~ +  7 7 n +  531 
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be contained simultaneously in the memory. If this critical size is exceeded, the 
time requirements of the matrix-scan method increase to another order of 
magnitude. 

To avoid these problems, and to provide a simpler direct time comparison 
with the UNIVAC I program of an exact method (the Munkres algorithm) it is 
assumed that three UNIVAC blocks, or 180 words, are sufficient for input to the 
programs. Of course, for larger matrices, the input-time penalty could be ad- 
justed accordingly. 

For a matrix of order n, and with partitioning into pXp submatrices, the sub- 
optimization method requires the exact solution of q2 pXp matrices, and one 
q×q matrix. A weak lower bound on time required for each size matrix may be 
found by reference to the time equation of the Munkres algorithm in Section 1. 
For matrices in the range (2, 12), the time chart in Section 1 furnishes the 
(average) time actually consumed. An additional amount of time is consumed 
in the partitioning and forming of the q X q matrix. However, this time is negli- 
gible in comparison with the time consumed in solving the submatrices. 

Table 6 lists the basic operations (Section 5.3) with the associated frequency 
for the optimal mechanization of the row/column-scan method (indicator- 
element mechanization) and the time (in milliseconds) for UNIVAC I coding for 
each operation. The time for "initialization" (setting up of certain controls) is 
also given, along with the time for tape reading and tape writing (three blocks). 
As was previously mentioned, certain operations are absorbed in the basic opera- 

TABLE 7. UNIVAC I TIMING FOR OPERATIONS, MATRIX-SCAN METI:IOD, ELEMENT- 
INDICATOR MECHANIZATION 

Operation Frequency Time (milliseconds) Total Time 
(Average) per Unit Operation (milliseconds) 

Row Indicator n ~ 2 2n ~ 

E l e m e n t  C o m p a r i s o n  (n a + n ~ ) / 2  2 n 3 + n ~ 

Column Indmator (n 3 + 2n ~ + n)/4 2 na/2 + n ~ + n/2 

Row Column Assignment n 35 35n 

Element Replacement (2n s + 3n~+ 7n)]12 2 nS/3 + n~/2 + 7n/6 

E n d  of  E l e m e n t s  in  R o w  (n a + n a ) / 2  2 n s + n ~ 

End of Rows n a 6 6n a 

E n d  of  A s s i g n m e n t  n 2 2n  

R e a d  and  W r i t e  (3 b l o c k s )  1 510  510  

Initlahze i 7 7 

17n • 23n ~ 
T o t a l :  ~ + ~ + 232 n +  517 
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tions; summation of solution value, for example, is included in the row-column 
assignment operation. 

The expression for the time (average case), converted to give time in seconds, 
is for the row/column-scan method, 

tl = 0.011n 2 + 0.077n --b 0.531. 

For a 12 X 12 matrix, tl ~ 3 seconds. For the row-scan method, which requires 
approximately one-half the running time of the row/column-scan method, t2 ~ 1.8 
seconds. For the same size matrix, an exact method (the Munkres assignment 
program) took, on the average, 19.2 seconds. The corresponding time equation 
for the row-scan method is 

t~ = 0.0055n 2 + 0.0385n --k 0.518. 

Table 7 lists the basic operations and pertinent data for the matrix-scan method, 
element-indicator mechanization. As with the row/column-scan method, the 
time for "initialization" and tape reading and writing (three blocks) is also given. 

The expression for the time (average case), converted to time in seconds, is 

t~ = 0.00283n 3 -b 0.0115n ~ -t- 0.232n "-t- 0.517. 

For a 12 X 12 matrix, t3 ~ 9.8 seconds, a saving of 9.4 seconds over the Munkres 
assignment program. 

6. Summary of Findings 

Of the three approximation methods defined and examined in this paper, only 
two appear to be worthy candidates for solving assignment problems. These two 
are the matrix-scan method and the row/column-scan method. Of these, the 
row/column-scan method is recommended. 

However, it is possible that  the main error concern might be with the worst 
possible solution, rather than with the expected solution. In that  event, it  is 
conjectured that  the matrix-scan method would prove most satisfactory. 

The expected value of the matrix-scan and the row-scan methods is of the 
same order of magnitude. The difference is bounded by a constant less than 3.6. 

The upper bound on the absolute error of the expected value of the row-scan, 
or the column-scan, solution is In (n -b 1) ; for a maximal solution, the bound on 
the expected relative error, and on the relative error of the expected solution, is 
[ln (n --b 1)]/n. The corresponding bounds for the matrix-scan method for abso- 
lute error and relative error are ( lnn "k "r) and (ln n "k 7)/n, respectively. As 
yet, no expression has been found for the error generated by the combined-row/ 
column-scan method; a weak upper bound is the upper bound for the row-scan 
method. 

As regards solution time, the row/column-scan method is definitely superior; 
the matrix-scan method requires much more computation time. The operation- 
count difference of the two methods (the matrix-scan with the element-indicator 
mechanization and the row/column-scan with the indicator-element mechaniza- 
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tion), representing the operations saved (for the average of the most favorable 
and unfavorable cases) is 

17n 3 + 45n 2 "t- 34n l l n  2 W 13n -}- 8 17n 3 - 21n ~ - 44n - 48 
12 2 12 

Furthermore, if the matrix is so large that it cannot be contained simultane- 
ously in the computer, it is necessary, where the matrix-scan method is used, to 
read and reread into the computer segments of the matrix many times to obtain 
the solution. This necessity drastically increases the computation time. The row/ 
column-scan method does not require the entire matrix to be held simultaneously 
in the computer. Thus, larger matrices may be solved than with the matrix-scan 
method, without causing an order-of-magnitude jump in the computation time. 

If the time restriction is extremely critical, the row-scan method is suggested. 
With the indicator-element mechanization, the number of operations, for the 
average of the best and worst cases, for a problem of order n, is (11n 2 -t- 13n)/4. 

Of course, the ultimate in a rapid rough-and-dirty approximation method 
would be to select, for each assignment problem, a fixed set of elements (for ex- 
ample, the main diagonal). The only two operations that are required for each 
individual selection are: row-to-column assignments and end-of-assignment test. 
Thus, only 2n operations are required with this method for an n X n  matrix. The 
expected solution value for this rough-and-dirty method, assuming that the ele- 
ments in the matrix are rectangularly distributed between 0 and 1, is n/2.  Thus, 
the bound on the expected absolute error of the solution is n/2,  and the bound 
on the expected relative error (for a maximal solution) is 1/2. 
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