
On finding a maximum flow in a network with special structure

and some applications
1

Alexander V. Karzanov

1. In this paper we consider certain classes of integral flow networks. One class is
formed by so-called simple networks. Special cases are: networks used for solving the
problem on “set representatives” by P. Hall, networks constructed for finding minimum
cut sets (sets of nodes separating two distinguished nodes of a graph), and networks
for solving the problem on distinct common representatives [1].

Another class is formed by the unit-capacity networks (i.e. with all arc capacities
equal to one). In this class we will also consider the subclass formed by layered networks
(the definition will be given later).

In this paper we apply to these networks the algorithm of finding a maximum
flow due to E.A. Dinitz [2] and establish the running time bounds in these cases,
namely: Cp

√
n for simple networks, and Cpn2/3 for unit-capacity networks in a general

case, which will further be refined for layered networks (depending on their “lengths”).
Hereinafter n is the number of nodes, p is the number of arcs of a network, and C is a
constant (independent of n, m).

As an application, we give an algorithm of reducing a matrix to a block-
triangular form (with the maximum possible number of blocks) by use of independent
permutations on rows and columns. It is known that using such a form, one can
decrease the running time of solving systems of linear equations of large size which
are encountered in many problems in practice, see [3]. We will show that this task
is reduced to solving a certain “set representatives” problem and then the problem of
extracting the bi-components in a graph (the time bound for the former is Cp

√
n, and

for the latter is Cp, where p is the number of nonzero elements of a matrix). This is
especially efficient in the case of sparse matrices, i.e. when p = o(n2). Such matrices
are often reduced to the block-triangular form with many blocks.

2. Let s and t be distinguished nodes in an (un)directed graph G = (X, U). Following
terminology in [1], call a subset of nodes Z ⊂ X an s, t-separated set if in the subgraph
obtained from G by removing Z the node s cannot be connected to t by an (un)directed
path (note that if s is not connected by a path to t already in the graph G, then ∅ is
an s, t-separated set).

An undirected graph can be turned into a directed one by replacing each edge xy
by two arcs −→xy and −→yx. Then the separated sets are not changed. In what follows we
will deal with directed graphs only.

It is shown in [1] that the problem of finding a minimum (size) s, t-separated set
one can reduce to the problem of finding a maximum flow in a certain flow network

1Author’s translation (preserving the original style and notation as much as possible) from:

А.В. Карзанов, О нахождении максимального потока в сетях специального вида и некото-

рых приложениях, В кн.: Математические вопросы управления производством, Вып. 5, изд-

во МГУ, Москва, 1973, с. 81–94. (A.V. Karzanov, O nakhozhdenii maksimal’nogo potoka v

setyakh spetsial’nogo vida i nekotorykh prilozheniyakh, In: Matematicheskie Voprosy Upravleniya
Proizvodstvom (L.A. Lyusternik, ed.), Moscow State Univ. Press, Moscow, 1973, Issue 5, pp. 81–94,

in Russian.)

1

�Gs,t
2. The node set �X of �Gs,t consists of the elements: (a) s��, (b) t�, (c) x�, x�� for all

x ∈ X, x �= s, t. The arc set �U of �Gs,t consists of: (a) the arcs
−−→
x�x��, and (b) the arcs

−−→
x��y� for −→xy ∈ U . The arcs of the form

−−→
x�x�� are called split-node-arcs.

We assign the capacity c to be equal to 1 for each split-node-arc, and to be ∞ for
the other arcs.

Figure 1 illustrates the construction for an instance of Gs,t.

✉ ✉ ✉ ✉✲ ✲
��✒��✒

❅❅❘❅❅❘
✏✏✶✏✏✶

✏✏✮✏✏✮s x y t
u1

u2

u3

u4

u5

u6
✉ ✉ ✉ ✉ ✉ ✉✲ ✲ ✲ ✲ ✲

��✒��✒

❅❅❘❅❅❘

❅❅■❅❅■

s�� x� x�� y� y�� t�
u1

u2

u3

u4

u5

u6

Рис. 1:

Let us say that a network Γs,t = (Y, V) with integer capacities c is simple if for any
node y ∈ Y − {s, t}, at least one of the following takes place: (a) y has at most one
outgoing arc, and if −→yz is such an arc then c(−→yz) = 1; or (b) y has at most one incoming
arc, and if −→xy is such an arc then c(−→xy) = 1. Such arcs −→zy and −→xy are called critical.

It is easy to see that the network �Gs,t as above is simple and all split-node-arcs in
it are critical.

The problem on “set representatives”, besides the classical formulation, admits the
following three equivalent settings (cf. [1,4]):

A) In an n×n matrix M whose entries are 0 and 1, it is required to find a maximum
number of entries 1 with no two entries contained in the same row or in the same column
(the matrix form);

B) Given a bipartite (directed) graph G = (V �, V ��; U) with |V �| = |V ��|, find a
maximum matching (the graph form);

C) Let Qs,t = (Z, W) be a flow network in which Z − {s, t} is partitioned into two
disjoint subsets Z1 and Z2 such that s is connected by outgoing arcs to all nodes in Z1,
t is connected by incoming arcs going from all nodes in Z2, and the other arcs go from
Z1 to Z2. All arc capacities are ones. It is required to find a maximum flow in Qs,t (the
flow network form).

(The network Qs,t is simple since each node in Z1 has a unique incoming arc and
each node in Z2 has a unique outgoing arc.)

Let us say that the problem is perfectly solved if the number of found entries (resp.
the cardinality of a matching, the flow value) is equal to n. Otherwise we say that the
problem is imperfectly solved.

2A graph Gs,t = (X, U) is called a flow network if it there are given two distinguished nodes:

a source s and a sink t, and a nonnegative function c on U (of arc capacities). A flow in Gs,t

is a function f(u), u ∈ U , satisfying: (1) ∀u ∈ U : 0 ≤ f(u) ≤ c(u), and (2) ∀x ∈ X − {s, t}:�
−→xy∈U f(−→xy)−

�
−→zx∈U f(−→zx) = 0. The number

�
−→sy∈U f(−→sy)−

�
−→zs∈U f(−→zs) is called the value of f .

A maximum flow is a flow of the maximum possible value.

2

3. We start with briefly describing Dititz’s algorithm for finding a maximum flow in
an arbitrary flow network Gs,t = (X,U) by using shortest augmenting paths subgraphs
(or manuals, in terminology of [2]).

Let P be a flow in Gs,t. Construct the network Gs,t(P) with the same nodes. If the
flow in an arc −→xy of Gs,t is equal to q, then we define the capacity of −→xy in Gs,t(P) to be
c(−→xy)−q (operation I). We throughout assume that if the capacity of an arc of a graph
in question is equal to one, then this arc is automatically deleted from the graph. If
q > 0, then we add to Gs,t(P) the arc −→yx with the capacity c(−→yx) := q (operation II).
Thereby the graph may become a multigraph. We call the created arc −→yx reverse to the
“genuine” arc −→xy. In the network Gs,t(P) one extracts the subgraph S with the same
nodes whose arcs are precisely those contained in shortest paths from s to t; this S is
called the shortest augmenting paths subgraph in Gs,t(P), or the manual (translating
the Russian word справочная used in [2]). We seek for a flow ∆P in S such that
subtracting ∆P from the capacities in S (and then deleting the zero capacity arcs)
makes t disconnected from s; such a flow is called blocking. To find a blocking flow
takes Cpn time in general, where p := |U |. Next the flow ∆P is added “algebraically”
to P (i.e. to the flow q in a “genuine” arc one is added the new flow ∆q in it, and from
q one is subtracted the flow ∆q� in the reverse arc), after which the reverse arcs are
deleted and we repeat the procedure (with the new current flow in Gs,t). One proves
that the number of the number of iterations is at most n, whence the time bound of
the whole algorithm is Cpn2.

Next we show that a blocking flow in the shortest augmenting paths subgraph S of
a simple network Γs,t = (X, U) can be found in Cp time. Handling S according to [2]
consists in constructing a path from s to t (taking O(k) time, where k is the distance
(i.e. minimum number of edges of a path) from s to t in S), followed by pushing the
maximum flow along this path and making operation I (with deleting the saturated
arcs). Also one deletes the arcs no longer contained in paths of length k from s to
t (taking O(�) time, where � is the number of deleted arcs). Then one constructs a
new path from s to t in the current manual, and so on. Observe that: (a) if the path
(constructed at an iteration) contains a critical arc u, then u becomes saturated since
it has the minimum possible (nonzero) capacity equal to 1, and (b) if u = −→xy, x �= s, is
a non-critical arc contained in the path, then, by the definition of a simple network, the
critical arc entering x must belong to this path as well, and after deleting the latter arc,
the node x (and therefore −→xy) becomes unreachable from s. Hence the total number of
operations applied to an arbitrary arc in S is O(1), implying the time bound Cp.

Lemma 1. Let P be an integer flow in a simple network Gs,t. Then a path-
flow decomposition3 of P consists of paths from s to t, any two having no common
intermediate nodes.

Proof. It obviously follows from the definition of a simple network.

Lemma 2. Let Γs,t be a simple network, and P an integer flow in it. Then the
network Γs,t(P) is simple as well.

3A flow P1 is called a path-flow if the arcs where P1 is nonzero form a path from s to t, and the

value of P1 is equal to the minimum capacity of these arcs. A path-flow decomposition of a flow is its

representation as the sum of path-flows (which need not be unique in general), cf. [1].

3

Proof. For any x ∈ X − {s, t}, the following cases are possible:
1) P does not pass x (i.e. P is zero on the arcs incident to x). Then x and its

incident arcs preserve in Γs,t(P).
2) x satisfies condition (a) in the definition of simple networks, and P passes x.

Then P contains the critical arc of the form −→xy and, therefore, some arc −→zx (by the
integrality of P , −→zx is unique and the flow in it is equal to 1).

In Γs,t(P) there appears the new arc −→yx with c(−→yx) = 1 and the new arc −→xz with
c(−→xz) = 1. (See Fig. 2.) Therefore, x in Γs,t(P) continues to satisfy condition (a) in the
definition of simple networks.

�
�

� � � �
✻✻

�
�

�✒

✂
✂
✂
✂✂✍

❏
❏

❏❏ ❍❍❍❍

z

x

y

in Γs,t : �
�

� � � �
❄

�
�

�✒

✂
✂
✂
✂✂✍

❏
❏

❏❏ ❍❍❍❍

✰✰✰z

x

y

in Γs,t(P) :

Рис. 2:

3) P passes x, and x in Γs,t satisfies condition (b) in the definition of simple networks.
Similar to the previous case, one shows that condition (b) continues to hold for x in
Γs,t(P).

The lemma is proven.

Theorem 1. For a simple network Γs,t, the number of shortest augmenting paths
subgraphs constructed during the algorithm does not exceed 2

√
n.

Proof. Let k manuals S1, . . . , Sk have already been constructed during the
algorithm and a flow Mk has been found in Γs,t. Denote the maximum flow value
in Γs,t by m. Then the value of a maximum flow Mk in Γs,t(Mk) is equal to m− |Mk|,
where |M | denotes the value of a flow M . We establish a relation between the length
�(Sk+1) of the next manual Sk+1 and the value |Mk| (where the length �(Si) is the
distance from s to t in Γs,t(Mi−1), or in Si).

Let us refer to the set Or
k+1 of nodes in Γs,t(Mk) being at distance r from s as a

layer (then t lies in the layer O�(Sk+1)
k+1).

Lemma 3. |Mk| does not exceed the number of nodes in any layer Or
k+1, 1 ≤ r <

�(Sk+1).
Proof. By Lemma 2, the network Γs,t(Mk) is simple. Therefore, by Lemma 1, a

(unique) path-flow decomposition of the flow Mk in Γs,t(Mk) consists of paths without
common intermediate nodes. Since any path from s to t necessarily meets each layer
Or

k+1, 1 ≤ r < �(Sk+1), one has |Or
k+1| ≥ |Mk|, as required.

The inequalities |Or
k+1| ≥ |Mk|, 1 ≤ r < �(Sk+1), and

��(Sk+1)−1
r=1 |Or

k+1| < n imply

(�(Sk+1)− 1)|Mk| < n. (1)

Using this relation, we now easily obtain Theorem 1. Indeed, the lengths �(Si) form
a monotone increasing sequence, hence the number of manuals of length is at most

4

√
n does not exceed

√
n. And for the remaining manual Si, we obtain from (1) that

|M i| <
√

n. Obviously, the values |Mi| are monotone decreasing, hence the number of
the remaining manuals is less than

√
n. Thus, the total number of manuals does not

exceed 2
√

n, as required in the theorem.

Therefore, a maximum flow in a simple network can be found in Cp
√

n time. Note
that the time bound can be written more carefully as Cp min{2

√
n,m} (where m is

the maximum flow value).

A minimum separated set in a graph G (i.e. a subset of nodes whose removal makes
the graph disconnected) can be found in Cpp

√
n time, where p is the number of edges

of the complementary graph G (this can be done by finding a minimum x, y-separated
set for each pair x, y of nodes of G connected by an edge in G, since if x and y are not
adjacent in G, then no x, y-separated set exists). In a general case, with p = O(n2) and
p = O(n2), one obtains the bound Cn4.5.

Remark. In [6] the author proved that Dinitz’ algorithm applied to the problem on
“set representatives” has the time bound Cp

√
n (the proof there, based on similar ideas,

does not consider a general simple network). Also it is shown there that the running
time in the worst case is Cp

√
n as well. Hence our time bound for this algorithm applied

to simple networks is exact.

4. Let Gs,t be a network in which the capacities of all arcs are ones (a unit-capacity
network).

Let the distance from s to t in the network is equal to � > 2. For convenience we
also introduce the number �� := �− 2.

Denote by Oi the set of nodes at distance i from s, and let si := |Oi|, i = 1, . . . , ��+1.
Define s�i := (si + si+1)/2 and s� := min{s�i : i = 1, . . . , ��}.

The maximum flow value m in Gs,t satisfies

m < n/2, (2)

since m ≤ s1 and m ≤ s��+1; and satisfies

m ≤ s�2 (3)

since m < sisi+1 ≤ s�i
2, i = 1, . . . , ��.

Also
���

i=1 s�i = s1
2 + s2 + . . . + s�� +

s��+1

2 < n, whence

��s� < n. (4)

Combining (3) and (4), we obtain

m < n2/��2. (5)

Let in the process of finding a maximum flow in Gs,t there have already been
constructed �n2/3� shortest augmenting paths subgraphs. Then �(S�n2/3�+1) > n2/3, and
applying to Gs,t(M�n2/3�) inequality (5), we obtain that |M�n2/3�| < n2/n2(2/3) = n2/3.
This implies that the total number of manuals is less than 2n2/3, yielding time bound
Cpn2/3 for the unit-capacity networks.

5

Next, let us say that a network Gs,t is layered if all simple paths from s to t have one
and the same length �. W.l.o.g., one may assume that such a network is acyclic and that
s and t are unique zero indegree and unique zero outdegree nodes in it, respectively.

Lemma 3. For a layered network Gs,t, any chain4 of length r from s to t contains
r−�
2 backward arcs.

Proof. Consider an arbitrary chain from s. One easily shows by induction on its
length that if the chain terminates in a layer Oi, then the number of forward arcs is
greater by i than the number of backward arcs in it. When i = �, we obtain the required
assertion.

Let Gs,t be a layered unit-capacity network. A path-flow decomposition of a
maximum flow Mk in a network Gs,t(Mk) consists of paths of length at least �(Sk+1).
In each of these paths ξ, the reverse arcs (defined as in part 3) correspond to the
backward arcs of the chain in Gs,t related to ξ. Therefore, by Lemma 4, ξ contains at
least (�(Sk+1)− �)/2 reverse arcs. Since the number of such paths is equal to Mk and
the total number of reverse arcs in Gs,t(Mk) is equal to |Mk| �, we obtain

|Mk| (�(Sk+1)− �)/2 < |Mk| �,

or

(�(Sk+1)− �) |Mk| < 2�m. (6)

Let A be the set of manuals Si for which �(Si) − � ≤
√

2�m. Since �(S1) = �, we
have |A| ≤

√
2�m.

For the set B of remaining manuals Sk, one holds |Mk| <
√

2�m (by (6)), whence
|B| <

√
2�m. Therefore,

|A|+ |B| < 2
√

2�m.

Using (2) and (5), we obtain |A| + |B| < C
√

�n and |A| + |B| < C n√
�

(where C is a
constant). Also |A|+ |B| ≤ m < n2/��2.

Finally (combining the above bounds),

|A|+ |B| < C min{
√

�n,
n√
�
,

n2

�2
, n2/3}. (7)

Let us examine (7) in two extremal cases of layered unit-capacity networks.
1) If � = O(1), then |A|+ |B| < C

√
n, and the time bound is Cp

√
n.

2) If � = O(n), then |A|+ |B| = O(1), and the time bound is Cp.

5. A numerical matrix A = (aij) of size n × n is called block-triangular if there is a
tuple of natural numbers 0 < k1 < k2 < . . . < kr = n with r ≥ 2 such that for any
�, i, j with i < k� and j > k�, one holds aij = 0 (see Fig. 3). The number r is called
the length of the tuple (obviously, given a block-triangular matrix, it makes sense to
consider the tuple of maximum length, which is unique). A matrix A is called reducible

6

� � �
k1

k2

kr−1

k1 k2 kr−1

0
�

�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
��

�
�

Рис. 3:

(to the block-triangular form) if it can be turned into a block-triangular one by use of
some (independent) permutations of rows and columns.

Instead of A, one can consider the matrix M = (mij)n
n where mij = 1 if aij �= 0,

and mij = 0 if aij = 0 (M is called the sign-matrix of A).
Denote the set of rows of M by Φ, and the set of columns by X.
For Φ� ⊆ Φ, let D(Φ�) denote the set of columns having a nonzero entry in some

row from Φ�. If there exists Φ� ⊂ Φ such that |Φ�| > |D(Φ�)|, then the matrix M (as
well as A) is singular. In what follows we always consider matrices M not contained a
row subset Φ� with this property, and refer to such an M as consistent (in the Russian
original the term non-degenerate is used).

Let us say that a subset C ⊆ Φ is a quasi-block if |C| = |D(C)|. The sets ∅ and Φ
are regarded as non-proper quasi-blocks. Then the following takes place.

Lemma 5. If C1 and C2 are quasi-blocks, then C � := C1 ∩ C2 and C �� := C1 ∪ C2

are quasi-blocks as well, i.e. the set of quasi-blocks forms a lattice.5

Proof. It is easy to see that D(C �) ⊆ D(C1)∩D(C2). If |C �| < |D(C1)∩D(C2)|, then
|C ��| = |C1|+|C2|−|C �| > |D(C1)|+|D(C2)|−|D(C1)∩D(C2)| = |D(C1∪C2)| = |D(C ��)|,
i.e. the matrix M is non-consistent.

If |C �| > |D(C �)|, then M is non-consistent as well. Hence |C �| = |D(C �)| = |D(C1)∩
D(C2)| and |C ��| = |D(C ��)|, as required.

We call a subset B ⊂ Φ a block if each quasi-block either entirely contains B or is
disjoint from B, and B is inclusion-wise maximal under this property.

On the set of blocks one can introduce a comparison relation. We write B1 ≺ B2

if for any quasi-block C, B2 ⊆ C implies B1 ⊆ C. One easily proves that ≺ gives a
partial order on the set of blocks.

We say that a column x ∈ D(B) is proper for a block B if B� ≺ B implies x /∈ B�.
The set of proper columns for B is denoted by S(B).

Theorem 2. 1) For any block B, |B| = |S(B)|. 2) If a block �B is such that
D(�B) ∩ S(B) �= ∅, then B ≺ �B.

4A chain is an sequence x0, u0, x1, . . . , uq−1, xq where each ui is an arc connecting nodes xi and

xi+1. The number q is the length of the chain. An arc ui is called forward if ui = −−−−→xixi+1 and backward
if ui = ←−−−−xixi+1.

5This lemma can be obtained as a corollary from a theorem on the intersection and union of critical

sets in a bipartite graph, see [4].

7

Proof. Denote by C(B) the minimal quasi-block containing B. Then B� ⊂ C(B)
and B� �= B hold if and only if B� ≺ B (where B� is a block). Obviously, if B� ≺ B and
B�� ⊂ C(B�), then B�� ≺ B. Let C(B) := ∪(C(B�) : B� ≺ B). Then C(B) is the quasi-
block that is the union blocks smaller than B (by ≺). Therefore, B = C(B) − C(B).
This implies S(B) = D(C(B)) − D(C(B)) and |S(B)| = |D(C(B))| − |D(C(B))| =
|C(B)| − |C(B)| = |B|.

Next we prove the second assertion. Suppose B �≺ �B. Then B �⊂ C(�B). Take
C � := C(�B) ∪ C(B). Obviously, D(C � ∪ C(B)) − D(C �) ⊆ S(B). This inclusion is
strict since D(�B) ∩ S(B) �= ∅. But this leads to a contradiction with |S(B)| = |B| =
|C � ∪ C(B)| − |C �| = |D(C � ∪ C(B)| − |D(C �)|.

The theorem is proven.
Corollary. Let ξ be a linear extension of the partial order on the set B of blocks.

Then one can permute rows and columns of of M (or A) so as to obtain a block-
triangular matrix with the tuple length |B|.

Proof. The desired permutations can be constructed by induction. Let B1, . . . , Br

be the sequence of blocks in ξ. We dispose the minimal block B1 in ξ (containing |B1|
rows and columns) into the upper-left corner of the constructed matrix. Let i blocks
B1, . . . , Bi have been already disposed so that they occupy ki upper rows and the
columns of D(Bj), j = 1, . . . , i, becomes ki left columns. Take the next block Bi+1 and
permute its rows into the positions from ki +1 to ki + |Bi+1|. From Theorem 2 it follows
that S(Bi) ⊆ {xki+1, . . . , xn} and |S(Bi)| = |Bi|. Permute the columns in S(Bi) into
the positions from ki + 1 to ki + |Bi+1|.

Also it is easy to prove a converse assertion: let M be transformed by some
permutations into a block-triangular matrix with a tuple k1, . . . , kr of maximum length
r. Then the corresponding sets Bi of rows, i = 1, . . . , r, constitute blocks, and their
sequence (from the top to the bottom) gives a linear extension of the partial order on
the blocks.

Finally, we describe an algorithm of finding the blocks of a matrix M (when it is
irreducible, the algorithm outputs one “block” consisting of the entire Φ).

First we solve the problem on “set representatives” given by M . When M is
consistent, the problem is perfectly solved (and vice versa). In other words, in the
corresponding bipartite graph GM = (Φ, X; U) we construct a matching p from Φ to
X (regarding p as a bijective mapping).

Theorem 3. For any block B, p(B) = S(B).
Proof. For any quasi-block C, it is obvious that p(C) = D(C). Then B = C(B)−

C(B) and S(B) = D(C(B))−D(C(B)) imply p(B) = S(B).
Let us identify the nodes in each pair involved in p (and delete the loops appeared).

The obtained graph with n nodes is denoted by G�
M = (X �, U �). If a row ϕ and a

column x are identified, the corresponding node of G�
M is denoted by (ϕx).

Theorem 4. Let L1, . . . , Lk be the bi-components of G�
M , and H(G�

M) the
corresponding factor-graph.6 Then: 1) if Li is induced by nodes (ϕi1xp(i1)), . . . ,

6A bi-component in a digraph is a strongly connected component. The factor-graph is the acyclic

graph obtained by shrinking each bi-component and then identifying parallel arcs, see, e.g., [5].

8

(ϕirxp(ir)), then ϕi1 , . . . , ϕir form a block; and 2) H(G�
M) determines the partial order

on the blocks.
Proof. Let O = {Lα : α ∈ A} be a set of bi-components with the property of

“openness”: if Lα ∈ O and Lα� ≺ Lα, then Lα� ∈ O. In other words, the set X(O) =
{(ϕβxp(β)) : β ∈ B} of nodes contained in the bi-components in O has no outgoing
arc to X � − X(O). Then, obviously, the set {ϕβ : β ∈ B} is a quasi-block. It is easy
to see that a converse takes place as well: if C is a quasi-block, then the set XC :=
{(ϕp(ϕ)) : ϕ ∈ C} has no outgoing arcs to X � − XC , and therefore it generates an
“open” set of bi-components.

From this, in view of the fact that any bi-component can be represented as the
difference of two “open” sets, the first assertion in the theorem follows.

The second assertion follows from the observation that the above correspondence
maintains the structure of “open” sets (thinking of a quasi-block as forming an “open”
subset in the set of blocks).

The above theorems give rise to the following algorithm of transforming a matrix
A (or M) into a block-triangular one.

1) Solve the problem on “set representatives” for M . If it is not perfectly solved,
then M is not consistent, and the algorithm terminates.

2) In the graph GM = (Φ, X; U), identify the pairs of nodes in the obtained
matching, forming the graph G�

M .
3) Extract the bi-components in G�

M and construct the factor-graph H(G�
M).

4) Find a linear extension (Li1 , . . . , Lir) of the partial order on the bi-components
(or on the nodes of H(G�

M)).
5) Make a permutation of rows and columns of M according to this linear order

(where the rows and columns related to one and the same bi-component go in
succession, in an arbitrary order).

If the number of non-zero elements in A is p, then the time bounds are: Cp
√

n in
step 1; Cn in step 2; Cp in step 3, see [7] (also there is a simpler algorithm due
to Faradzhev [?] with the bound C(p + n log n)); Cn in step 5. Thus, the running
time is estimated by the time bound of the algorithm for solving the problem on “set
representatives”, i.e. by Cp

√
n. Note that for the correctness of our bounds one should

that the matrix A be given by a list of its nonzero entries (or that the graph GM be
given). Otherwise, one needs to spend Cn2 additional operations.

Remark. The above algorithm can be modified, preserving the same bound, for
finding the structure of critical sets in a bipartite graph with a positive deficit (cf. [4]),
or “blocks” of a degenerate matrix A.

References:
[1] L. Ford and D. Fulkerson, Flows in Networks, Mir, Moscow, 1966 (Russian

transl.).

[2] E.A. Dinic, An algorithm for solution of a problem of maximum flow in a network
with power estimation, Doklady Akademii Nauk SSSR, vol. 194, No. 4, 1970, in
Russian.

9

[3] E.B. Ershov, On finding and using structural features of matrices in problems of
planning, Ekonomika i Matematicheskie Metody, vol. 2, iss. 2, 1966, in Russian.

[4] O. Ore, Graph Theory, Nauka, Moscow, 1968 (Russian transl.).

[5] A.A.Zykov, Theory of Finite Graphs, vol. 1, Nauka, Novosibirsk, 1969, in Russian.

[6] A.V. Karzanov, Tochnaya otsenka algoritma nakhozhdeniya maksimal’nogo
potoka, primenennogo k zadache “o predstavitelyakh”, In: Voprosy Kibernetiki.
Trudy Seminara po Kombinatornoi Matematike (Moscow, 1971), Sovetskoe
Radio, Moscow, 1973, pp.66-70, in Russian.

[7] A.V. Karzanov, Ekonomnyi algoritm nakhozhdeniya bikomponent grafa, In:
Trudy 3-i Zimnei Shkoly po Matematicheskomu Programmirovaniyu i Smezhnym
Voprosam (Drogobych, 1970), Issue 2, Moscow Inst. for Construction Engineering
(MISI) Press, Moscow, 1970, pp.343-347, in Russian.

[8] I.A. Faradzhev, Efficient algorithms for solving certain problems on directed
graphs, Zhurnal Vichislitelnoi Matematiki i Matematichkoi Fiziki, vol. 10, No. 4,
1970, in Russian.

10

