AN O(r2”) ALGORITHM FOR EINDING
A MAXIMUM MATCHING IN A

GENERAL GRAPH

Thesis of the Degree of
DOCTOR OF PHILOSOPHY

by

ODED KARIV

Subrmitted to the Scientific Council of the Weizmann institute of Science

Rehovot March 1976




SYSTEM NO, Ny "or]
G 0438~




In the memory of my

friend MOSHE VITKIN
who fell during the

Yom Kippur war,






This work was carried out under the supervision of Professor
Shimon tven, in the Department of Applied Mathematics, The Weizmann
Institute of Science, Rehovot, Israel.

Acknowledgements

[ wish to express my gratitude to:

Prof. Shimon Even for introducing me to the subject, for helpful
guidance during the course of this work and for critical reading
of the manuscript.

Dr. Yehoshua Perl for helpful discussions.

Miss Sara Fliegelman for her devotion and patience while typing
the manuscript.

Mr. Yehuda Barbut for his dedicated work of drawing the figures.

Last, but not Teast, I wish to fhank my parents whose Tove and
support enabled this research.






CONTENTS

INTRODUCTION

A.
B.

Definitions

General Description

. Description of a Phase

. The Algorithm

. THE FIRST STAGE

. Notations

. The BFS Method

. The Data Structures

. Legality and Minimality

. The Performance of the j-th Substage
. The Algorithm

. The Correctness of the First Stage

. The Complexity of the First Stage and the Impiementation

of MERGE

. THE SECOND STAGE

. General Description
. The BASE of a Vertex
. The Reduced Graph

. The Data Structures
. The Algorithm

. The Complexity of the Second Stage

14~
14-
17-
19-
33-
39-
46-
49~

73-

13

79
16
19
33
39
45
48
73

79

a0-111

80-
85-

84
97

98-106

106-109

109-110

110-111

wl






3. THE

THIRD STAGE

A. General Description

B. The
C. The
0. The
E. The
F. The
G. The

4, THE

Parts of the Third Stage and the HLFS Method
Subroutine SRCHLOOP

Data Structures

Atgorithm

Correctness of the Third Stage

Complexity of the Third Stage

FOURTH STAGE

A. General Description

B. The
C. The

Algorithm

Correctness and the Complexity of the Fourth Stage

5. IMPLEMENTATION OF THE ALGORITHM AND SPACE REQUIREMENTS

A. Direct Implementation

B. Minimum-Space Implementation

APPENDIX A = Proof of Theorem 1.4(b)

APPENDIX B - Implementation 4 for Subroutine MERGE

APPENDIX € - PL/1 Program

References

Page

112-147
112-113
113-117
117-131
131-134
134-137
137-144
144-147

148-153
148-151
151-152
153

154-167
154-163

163-167

168-193

184201

202.208

210-211






Fig.
Fig.
Fig.
Fig.

A4
A5
A6
A7

Page

177
181
185
190







Abstract. An efficient algorithm for finding a maximum matching
in an arbitrary graph is presented. The algorithm is based on the
result of Hopcroft and Karp, i.e., it is performed in phases where in
each phase a maximal set of disjoint minimum legal augmenting paths
is found and a process of augmentation is carried out along these
paths. Each phase is performed in four stages: In the first stage
minimum legal augmenting paths are found by using Breadth First Search.
In the second stage the irrelevant vertices and edges are removed and
the original graph is shrunk. During the third stage, a maximal set of
disjoint arbitrary legal augmenting paths is found in the recduced graph,
and a process of augmentation is performed on these paths in the
fourth stage. The complexity of this algorithm is 0(n®"°) . Other
implementations of the data structures lead to complexities O(m/n 1g n)
or O{m/M 1g 1g n) [where n and m are the number of vertices and
edges of the graph, respectivelyl, or to complexity O(m/h + n1’5+E)

[where e s an arbitrary positive value].



INTRODUCTION

Let G(V,E) be an arbitrary undirected graph, whose set of
vertices is V , the set of the edges is E ,»and n and m are the
cardinalities of V and E respectively. A matching M in G, is
a subset of the edges of G such that no two edges of M have a
common vertex. The problem of finding a maximum matching in a graph
means finding a matching M whose number of edges is maximum. This
problem was discussed in detail by J. Edmonds (1], who investigated
the properties of graphs which determine the maximum matching and
described an efficient algorithm for finding a maximum matching in an
arbitrary graph. The complexity of his algorithm is 0(n*) . C.
Witzgall and C.T. Zahn (2] suggested an improved version of Edmonds'
algorithm, but it still had the complexity O(n") . H. Gabow [3] gave
an implementation of Edmonds' algorithm which works in 0{n®) steps.
Other authors who solved the problem by 0(n®) algorithms are

Balinski [8], Kameda and Munro[9] and Lawler [10].

This work presents an algorithm which finds a maximum matching
in general graphs by using at most O(nz‘s) steps. Some other
implementations of the q§ta structures Tlead to algorithms of
complexity O{mvh 1g 1g n) and O(m¢ﬁ¥n1‘5+€) (where £ s an
arbitrary positive value). A review of the O(nz's) algorithm has

been published in [11]



A, Definitions

Let G be an arbitrary graph, and let M be a matching of this
graph. In the f0110w1ng,.we refer to the edges of the graph as if they
are directed (i.e., XY is distinct from YX ). The following

terminology is used:

A Matched [free] edge - an edge which belongs [does not belong]

to the matching M .

An exposed vertex - a vertex which is not incident to any edge

of M.

A matched vertex R - a vertex R which is incident to an edge

of M (the other end of this edge is denoted by MATE(R) }.

A path of G - a sequence of edges of the graph, such that every
two consecutive edges have a common vertex. Generally {when
it causes no confusion), we denote a path by the concatena-

tion of its vertices.

An alternating path - a path whose edges are alternatingly matched

and free. In particular: An alternating path leading to a
{matched) vertex R - ah alternating path whose first vertex
is exposed, the last one is R , and the adge of the path

which meets R 1is matched,



An_augmenting path - an alternating path whose first and last

vertices are exposed.

The length of an alternating path - the number of the free edges
of the path.

A loop - an alternating path where each of its vertices meets
exactly two of its edges. If the toop contains an odd number
of edges (i.e., if it contains k matched edges and k+l
free edges), then we call it an odd Toop; we refer to the
(unique) vertex of an odd Toop in which two free edges of
the Toop are adjacent, as the base of the toop. If the Toop

contains an even number of edges, then we call it an even

loop (see Fig. 0.1).

An illegal alternating path - an alternating path which contains

a loop.

B. General Description

ATl the algorithms known to us to find a maximum matching are

based on Berge's theorem [4] which states that:

A given matching in a graph, is not maximum if and only if there
exists in the graph a Tegal augmenting path (which connects two exposed

verticrs).




A. Definitions

Let G be an arbitrary graph, and let M be a matching of this
graph. In the following, we refer to the edges of the graph as if they
are directed (i.e., XY is distinct from YX ). The following

terminology is used:

A Matched [free] edge - an edge which belongs [does not belong]

to the matching M .,

An exposed vertex - a vertex which is not incident to any edge

of M.,

A matched vertex R - a vertex R which is incident to an edge

of M (the other end of this edge is denoted by MATE{R) }.

A path of G - a sequence of edges of the graph, such that every
two consecutive edges have a common vertex. Generally (when
it causes no confusion), we denote a path by the concatena-

tion of its vertices.

An alternating path - a path whose edges are alternatingly matched

and free. In particular: An alternating path leading to a
(matched) vertex R - an alternating path whose first vertex
is exposed, the last one is R, and the edge of the path

which meets R is matched.



An'augmenting path - an alternating path whose first and last

vertices are exposed,

The Tength of an alternating path - the number of the free edges
of the path.

A loop ~ an alternating path where each of its vertices meets
exactly two of its edges. If the Toop contains an odd number
of edges (i.e., if it contains k matched edges and k+1
free edges), then we call it an odd loop; we refer to the
(unique) vertex of an odd Toop in which two free edges of
the Toop are adjacent, as the base of the Toop. If the loap

contains an even number of edges, then we call it an even

loop (see Fig. 0.1).

An_illegal alternating path - an alternating path which contains

a Toop,

B. General Description

A1l the algerithms known to us to find a maximum matching are

based on Berge's theorem [4] which states that:-

A given matching in a graph, is not maximum if and only if there
exists in the graph a leqal augmenting path (which comnects two exposed

verticrs).,



If such a path exists, then by converting each of its free edges
into matched and vice versa, we improve the matching (i.e., construct
a new matching whose cardinality s greater by one). This process is

called an augmentation.

A phase, J.E. Hopcroft and R.M. Karp [5] showed that if an
algorithm for censtructing a maximum matching is carried out in phases,
when in each phase the augmentation is simultaneously performed on a
maximal set of legal augmenting paths, where these paths are of
minimum tength and their vertices are disjoint - then the number of
phases is at most /n . Thus, if we could find‘a maximal set of

disjoint minimum legal augmenting paths in 0(n?} steps - then we

would have an 0(n®®) algorithm for constructing a maximum matching
in a graph. For the case of bipartite graphs, Hopcroft and Karp
succeeded to build an algorithm which performs each phase in 0(m)
steps, and thus achieved an algorithm which finds a maximum matching

in  O(m/m) steps. Yet, the conétruction of such an algorithm for the
case of general graphs still remained an open question. In this work

we describe an algorithm which performs each phase in 0(n?) steps.
Some other versions of this algorithm has the complexities O(m 1g n) ,
0(m 1g 1g n) "and 0(m+n' ™€) (where e s an arbitrary positive

value),

Difficulties, methods and techniques. The augmenting paths which

have to be found in each phase must be disjoint, minimum and legal.

The fact that these fhree requirements must be fulfilled simulta-

neousty causes some problems and difficulties: Generally, in order to



construct disjoint paths in a graph we use the Depth First Search
(DFS) method. On the other hand, in order to find minimum paths, we
perform a Breadth First Search (BFS) on the graph, However, the most
problematic requirement is the legality, i.e., the requirement that
the augmenting paths will not contain 1oops, Indeed, the reguirement
of minimality excludes the possibility that the augmenting path
contains an even loop. For, if an augmenting path p contains an even
Toop (see Fig. 0.1(a)), then by removing this loop from the path we
receive a shorter augmenting path p' (Fig. 0.1(b}). Yet, it is
definitely possible that a minimum augmenting path contains an odd
Toop (see Fig. 0.1{c)) .

p

T = e e e oy

ABA,
A

(b)

“wany matched edge
free edge

augmentiing paths

P ,
e fength Il ; contains an even loop

. length 6, the even loop has been removed
——-= contains an odd loop

Fig. 0.1 - Loops




[Notice that the case of an odd loop is impossible in bipartite
graphs. Therefore no problems of legality arise in the algorithms for
bipartite graphs, and the requirement of legality may be omitted. And
indeed, each phase in Hopcroft and Karp's algorithm is carried out by
performing on the bipartite graph at first a Breadth First Search in
order to find all the minimum augmenting paths which exist in the
graph, and then a Depth First Search in order to choose out of those

paths a maximal set of disjoint paths].

Edmonds [1] overcbmes the difficulty of the odd loops by
"shrinking” all the loops which are discovered during the performance
of his algorithm. Witzgall and Zahn [2], as well as Gabow {3], store
these Toops in a special data structures. Our algorithm uses in fact
all methods and techniques which are used by the other authors: We
search the graph according to the BFS method, in order to find
minimum alternating paths in the graph. These paths are recorded and
stored in data structures which are generalizations of the data
structures of Gabow. Some of the odd loops which are found during the
search of the graph are shrunk in a process which resembles the
biossoms' shrinking of Edmonds. We search the reduced graph (which is
received by the shrinking process) according to a certain version of
the DFS method, in order to find a maximal set of disjoint augmenting
paths. However, all these techniques are used according to a very
strict and well-defined system, which assures a maximal efficiancy in
each stage of the algorithm. Thus, the search of the graph is
simultaneously performed from all the exposed vertices of the graph;

the data structure which is used to record and store the alternating



paths, also serves to test their legality and to find alternative

paths in case the present paths are found to be iliegal; the

shrinking process is not performed on every odd loop which is found

in the graph, but only on those Toops which disturb the construction
of minimum legal augmenting paths. These methodsenable to complete the
performance of an entire phase of the algorithm in no more than 0(n?)

steps.

€. Description of a Phase

The representation of exposed vertices (notations). In order to

have throughout the algorithm a uniform treatment of both the exposed
and the matched vertices, it is convenient to replace every exposed
vertex A by a matched edge A1A2 , Such that the vertex Al meets
all the (free) edges which are incident to A , while A2 meets no
free edges. We shall refer to the vertex Al {AZ] as a l-exposed

vertex [2-exposed vertex]. By this notation, all the vertices of the

graph are matched*. Using this notation, the following definitions

have to be reformulated:

An alternating path leading to a vertex R - an alternating path

which goes from a l-exposed vertex to the vertex R , such that its

Clearly, this notation does not change the order of magnitude of the
graph. Thus, in the following, we assume that the number of vertices
n inciudes the Z-exposed vertices, and the number of edqes m

includes the matched edges A A
R S



first edge (which is incident to the l-exposed vertex) is free, and

its last edge (which meets R ) is matched.

An augmenting path. An alternating path leading to a 2-exposed

vertex (namely, an alternating path which goes from a l-exposed vertex

to a 2-exposed vertex, such that its first edge is free).

Throughout the algorithm, we also use the term of "level" which

is defined as follows:

The (well-defined) level of a vertex R - The length of a minimum

(legal) alternating path leading to R [See also Section A of Chapter
1]. Clearly, if R 1is a 2-exposed veritex, then the {well-definad)
level of R 1is the length of a minimum legal augmenting path leading

to R .

The initialization of the algorithm. Our algorithm is

initialized by defining an arkitrary matching in the graph. [Usually
this is the empty matching; namely, all the vertices of the input
graph are considered to be l-exposed, and all the matched edges are
of the form AIA2 where Al and AZ are l-exposed and Z-exposed
vertices respectively]l. For each vertex R of the graph we define a
variable MATE{R} which points to the mate of R , according to the
initial matching. A1l the l-exposed vertices are contained in a Tist
which is called LIST(0) {see Section A of Chapter 1). We also
assume that for each vertex of the graph we have the list of all the

edges which are incident to it [for a detailed description see Chapter

51,



10

The structure of a phase. The algorithm which is presented in

this dissertation works in phases, accordiné to the results of
Hopcroft and Karp [5]. In each phase, we try to find in the graph a
maximal set of disjoint minimum legal augmenting paths. If no such
augmenting path is found, the present matching is maximum and the
atgorithm is terminated. Else, an augmentation of the present matching
is carried out by converting each free edge on these paths into a
matched edge and vice versa. The 2-exposed vertices at the ends of
these paths are removed from the graph, and their MATEs are deleted
from LIST(0) . By the result of Hopcroft and Karp, this process can

be repeated at most /h times before maximum matching is reached.
Each phase consists of four stages:

In the first stage the graph is searched according to the BFS
method, where the search is simultaneously begun from all the 1-expo-
sed vertices of the graph. For each vertex of the graph we try to
find a minimum lega? alternating path leading to it, and thus to
determine its well-defined level. These alternating paths are
recorded and stored in special data structures which enable to verify
the legality of the path and to build alternative alternating paths
if the present paths are found to be illegal. These data structures
also enable a simple restoration of the alternating paths. If a
minimum Tegal alternating path which is leading to a 2-exposed vertex
A2 s found in the graph, then (by the definition) this path is a
minimum legal augmenting path, and the Tevel r of the 2-exposed

vertex Az is the length of the minimum legal augmenting paths which




11

exist in the graph, In this case the first stage is terminated and we
proceed to the second stage. If no legal alternating path which is
leading to a 2-exposed vertex is found throughout the search of the
graph, then the present matching is maximum and the whole algorithm
is terminated. The complexity of the first stage is 0(n?) . Other
implementations of the data structures lead to complexities of

1+g) a

O(m 1g n) , O(m 1g Tg n}) or O(m+ n

In the second stage we use the levels which were defined for the
vertices in the first stage, in order to remove from the graph alil
the vertices and edges which are not lying on minimum legal augmenting
paths (of length r ), and to shrink into their bases all the odd
loops which are lying on illegal augmenting paths of iength less than

r . The resulting graph, which is called the reduced graph, has the

property that any arbitrary legal augmenting path of this graph,
corresponds to a minimum legal augmenting path in the original graph.
Moreover, each maximal set of disjoint arbitrary legal augmenting
path in the reddced graph corresponds to a maximal set of disjoint
minimum Tegal augmenting paths of the originai graph. The complexity

of the second stage is 0O{m} .

The properties of the reduced graph are utilized in the third
stage where a maximal set of disjoint arbitrary legal augmenting paths
is found in the reduced graph. The renouncement of the minimality
makes it possible to accomplish this task by performing a certain
version of the Depth First Search method on the graph, where no edge

of the reduced graph is searched more than cnce in each direction.



The compiexity of this stage is O(nﬁ

) or O(mr+nrlg 1g nr)
(depending on the exact implementation of the data structures), where
n, and m. are the numbers of vertices and edges of the reduced
graph respectively.

In the fourth stage, the augmenting paths which have been found
in the reduced graph during the third stage are retraced. By restoring
the paths of the original graph which correspond to these paths of the
reduced graph, we get a maximal set of disjoint minimum legal augmen-
ting paths in the original graph. A process of augmentation is
performed on these paths, and the matching is improved. The 2-exposed
vertices at the ends of these paths are removed from the graph, and
their MATEs are deleted from the list LIST(0) . The performance of
the present ﬁhase is terminated, and we return to the first stage, to

start a new one. The complexity of the fourth stage is 0(n} .

B. The Algorithm

According to the above discussion, a summary description of the

atgorithm will be the following:

0. Initialization: Input the graph. Define an arbitrary matching.
Replace every exposed vertex by a matched edge A1Az where
A1 is a l-exposed vertex and Az is 2-exposed. Insert all
the l-exposed vertices into LIST(Q) . For each vertex R
assign the appropriate value of MATE(R) according to the
initial matching {(in particular: MATE(A1)+A2 ; MATE(A2)<—A1 ).

[see Chapter 5].



13

. Perform the First Stage {see Chapter 1]. If the algorithm is

terminated go to 5. Else go to 2,

. Perform the Second Stage [see Chapter 2].

. Perform the Third Stage {see Chapter 3].

. Perform the Fourth Stage [see Chapter 4]. Return to 1.

. Print the variables MATEs (which give the maximum matching)
and the Tist LIST(0} (which gives the list of the exposed

vertices).

A PL1 program which is based on this algorithm is described in

Appendix C.




14

1. THE FIRST STAGE

The goal of the first stage is to find for each vertex R a
shortest legal alternating path leading to it from a l-exbosed vertex.
The Tength of this minimum path is defined as the level of the vertex
R . Therefore, the level of a 2-exposed vertex is the length of a legal
minimum augmenting path 1eading to it. Thus, by finding at the end
of the first stage a 2-exposed vertex of minimum level r , we also
know the Tength of.the minimum legal augmenting paths in the graph,

and the vertices which are lying on these paths.
A. Notations

The basic operation of the first stage is the search through the
free edges: During the performance of the first stage, each free edge
of the graph is searched at most once in each direction. The order by
which these edges are searched is determined by the Breadth First
Search (BFS) method, which will be explained later (Section B). By
using the edges which have already been searched, we try to construct

certain alternating paths in the graph.

Levels and alternating paths. Let p(0+R) denote the shortest
alternating path leading to R which has been constructed until now
and has not yet been found to be illegal, and let &(R) denote its

Tength. If we can prove that p{0+R} is both minimum and 1ega],,fhen

we refer to p(0-R)} as the well-defined al-path leading to R , and




15

we refer to 2&{R) as the well-defined level of R . In this case R

is called a well-defined vertex. If the minimality or the Tegality

of p(0~R) have not been verified yet, we refer to p(0+R) and to

2(R) as the potential al-path and the potential level of R

respectively.

Let T be a vertex lying on p(0>R) . By p(T+R)} we denote
the segment from 7 to R on the al-path p(0+R) . While referring
to this segment in the reverse direction (from R to T)'we use the
notation p(T<R) . (Notice that p(T<R) is not necessari]y the same
as p(R>T) . For example, if T 1is lying on p{0>R) while R is
not lying on p(0+T) , then p(T+R) is defined while p(R*T) does
not exist at all. See Fig. 1.1).

Let R be a vertex and let ST be a free edge which is lying
on p(0~R) such that .p(0+R)=p(0+S)+p(T+R) . Then p(0+S) is called
a head of p(0+R) (see Fig. 1.1).

tet TV be a matched edge which is lying on p(0+R) such that
on this path V 1is cleser than T to R . We say that V is

f-iying on p(0+R) (see Fig. 1.1).

In the beginning of the first stage all the l-exposed vertices
have a (well-defined) Tevel 0 . It is convenient to assume that all
the other vertices have an initial dummy {potential) Tevel [%j+1
(since no alternating path of length greater than [%1 can exist 1in
the graph, this notation causes no confusion). A LIST(i) which

contains all the vertices whose level is i , is defined for each of



16

—  free edge
i~  matched edge
---= glternating path

(0) Vv is f-lying on p{0+R)} .

(1) S 1is f-lying on p(0+R) and p(0=S) is a head of p{0~R) .

(2} @ 1is f-lying on p(0+R) but p(0+Q) 1is not a head of p{0+R} .
(3) T 1is lying but not f-lying on p{0+R) [p{T+R) exists].

{4) R is not lying on p(0-T) [p(R+T) does not exist I.

Fig, 1.1 - Notations

the possible values of the Tevels: 1=0,1,--=,L21,L%]+1*. Thus, in

the beginning of the first stage LIST(0) contains all the 1-exposed
vertices, LIST([%J+1) contains all the other vertices, and all the

other LISTs are empty.

Let ST be an edge. We define the sum 2(S)+&(T) as the Tevel

of the edge ST and we denote it by &(ST) .

* LIST(0) has a]feady been defined during the initialization of the

algorithm - see Sections C and D of the Introduction.



17

B. The BFS Method

The first stage of the algorithm is performed in substages. The
goal of the j-th substage is to find all vertices of well-defined

Tevel j . Each substage consists of two parts: SEARCH and UPDATE.

During the SEARCH part we search exactly through all the free
edges XY which are incident at the vertices X whose (well-defined)
Tevel is  j-1 . These edges are searched in the direction from X
to Y* » and attempts are made to construct new alternating paths in

the graph by concaternating these edges to the al-paths p{0-+X) .

Assume that by this process a new alternating path Teading to
the vertex R has been found: We first fest the legality of this
path in a way which will be explained later (Section D). If in this
test the alternating path is not found to be iTlegal, then it is
recorded in a special data structure which is related to the vertex
R (notice that this alternating path may still be found illegal in
Tater tests). Then we check whether this alternating path can define
for R a lower level than the present %(R), and if the answer is
positive we assign this path as the new al-path p(0+R} which is
leading to R, and we define its tength as the new &(R) . In
particular, if in the j-th éubstage 2(R)=3, then (as we shall see,

Corollary 1.2) the al-path p{(0+R) and the Teve] L(R) are in

* By saying "XY is searched" we shall always mean "XY is searched

in the divection from X to Y" .



18

fact well-defined (i.e., no more tests are needed to verify their
legality, and since we are in the j-th substage, there is also no

doubt about their minimality).

Thus, in the beginning of the UPDATE part we declare all
vertices whose Tevel is j , to be weil-defined. These declarations
cause changes in some of the data structures of the graph, and these
data structures must therefore be updated. The updating is done by
transferring the information which is related to the vertices which
are declared to be well-defined to the data structures of some other
vertices whose levels are still potential. Assume that during the
updating process an information is transferred to the data structure
related to some vertex R2 . This additional information enables us
to try to Tower the level of R2 . This information also enables us
to test the Tegality of the present al-path p(04R2) . Moreover, in
case p(O+R2) fails this test,we also use the information related
to R2 in order to define for R2 the least level and a shortest
al-path p(O+R2) which presently pass the legality test. The details
of all these operations will be described after the data structures

are defined and explained {Sections D and E}.
The first stage is terminated in one of the following two ways:

(1) If during the r-th substage we find at the first time that
some 2-exposed vertices have (well-defined) level r , then legal

augmenting paths of (minimum) Tength r have been found in the




19

graph. We shall prove (Corollary 1.4) that all vertices whose present
levels are greater than r ({and therefore are stil] potential),can
not be lying on minimum legal augmenting paths and thus are not
relevant for the presnet phase. Therefore we do not proceed to the
next substages to find the well-defined levels of these vertices,

but we terminate the performance of the first stage and proceed to

the second stage.

(i1} If the [gﬂ-th substage is terminated and no 2-exposed
vertex has been declared to be well-defined, then no legai augmenting
path exists in the graph. The present matching is maximum and the

whole algorithm is terminated.

C. The Pata Structures

Assume that during the first stage we construct an alternating
path p1 of Tength 21 " lTeading to vertex R . If £1<2(R) {where
2(R} 1is the present level of R), then the new path P, replaces
the present al-path p(0+R) and the level of R 1is updated; i.e.,
we assign: p(O+R}+~pl; Q(R)+£1 . However, we want to keep the
information about the old path p{0~R) which may still be useful
for the construction of other alternating paths, If Rlzﬂ(R) , then
although the present level and al-path of R are not changed, we
sti11 want to keep the information about the new alternating path
pl » because this information may also be used later to construct

other alternating paths. Thus, & data structure which enables an



20

efficient treatment of alternating paths in the graph is required.

For these purposes (efficient recording and tracing of al-paths)
we attach to each vertex a variable called LINK and we define the
concept of a "bridge" {to be explained). For the purpose of storing
and restoring these LINKs we attach to each vertex a Tist called
CHAIN. The Tist of vertices whose CHAINs contain information about
a]fernating paths Teading to the vertex R 1is accumulated in a.set
called T(R) . The data structure T(R} is also used for the purpose
of testing and verifying the legality of the al-paths. (The minima-
1ity of these paths is assured by the BFS method). We now describe

these data structures.

LINK. In order to efficiently record and retrace the al-paths,

we use a data structure suggested by Gabow [3]: To each vertex Z
of the graph, a variable called "“LINK" 1is attached. IT £(2)=[gj+l
(i.e., if every al-path leading to 7 , considered so far, has been
found to be illegal), then LINK(Z)=0 . Else, LINK(Z) recursively
describes the present al-path p(0+Z) . A LINK which defines a

well-defined (potential) al-path is called a well-defined (potential)

LINK. There are two types of LINKs: 1-1ink and 2-1ink . The 1-1ink
points to another vertex (LINK(Z)=X) , while the 2-Tink pointSto a
free edge (LINK(Z)=PQ) .

1-link, A 1-1ink of a vertex Z 1is a link which points to

another vertex X such that the following conditions are satisfied:

(i} The free edge XY (where Y=MATE(Z)) has already been



21

searched (thus, by the BFS method X is already well-defined).

(11) When the assignment LINK(Z)<X is performed, both Y and
Z have the initial dummy level tgj+l (thus, LINK(Y)=LINK(Z)=0) .

The aT-path p{(0+Z) which is defined by LINK(Z)=X 1is described

by the following concatenation:
p(0+Z} = p(0+X)=YeZ . (1.1}

Clearly (1.1} defines an alternating path leading to Z (see Fig.
1.2).

— free edge
“ matched edge
== @l-path

Fig, 1.2 - 1-Tlink

Let YZ be a matched edge such that both Y and 7 have the
initial level [§}+1 . In the algorithm we perform the 1-link assign-
ment immediately when it becomes possible, i.e., when the first free
edge XY is searched. If XY 1is searched during the j-th substage,
then (by the BFS method) X must have a (well-defined) tevel j-1



22

and thus the length of the al-path as defined by (1.1) is Jj .
Therefore we assign: LINK(Z)<X , 2(Z)«j . We shall prove (Theorem
1.1} that this assignment defines a well-defined level and LINK
for Z . Thus:

(a) [By the algorithm:] The first of Y and Z to get a

LINK other than 0 1Js given a I-link,
{b) tBy Theorem 1.1:1 A 1-1ink is always well-defined.

(c) [By condition (ii) of the definition:] If Z has a l-1ink
then Y cannot have a 1-Tink too. Thus, either LINK(Y)=0 (and
£(Y)=[%j+1) , 0r Y has a 2-Tink.

It is convenient to assume that all the l-exposed vertices have

a 1-1ink to a dummy vertex DUM (this notation causes no confusion).

Bridge. Let ST be a free edge. If LINK(MATE(T))=S then ST
is lying on the al-path p{0+MATE(T)) . If LINK(MATE(S))=T then ST
(or rather TS) is Tying on the al-path p(O-MATE(S)) . Hence, if the
edge ST has already been searched and neither LINK{MATE(T))=S

nor LINK(MATE(S))=T then ST is neither lying on p(O-MATE(T)) nmor

on p(0-+MATE(S)) but it connects and bridges these two al-paths. In

this case we call ST- a bridge (see Fig. 1.3).

*
If this condition is omitted, then each free edge would be defined
as a bridge in the beginning of the first stage, and the concept

of a bridge would not necessarily be permanent.



23

~--of @0 al-path leading to a vertex which
has a 1-link

free edge

bridge

matched edge

]

\ Ay
A AY
N \\
A
S N\-- S Noeae ————
TENESWE e IR
Ny T =T S T
A
N
A
N

Fig. 1.3 ~ Bridges

If ST 1is a bridge, then by the definition it has been searched
from S to T, and thus, according to the BFS method, S must
already be well-defined. If T 1s also well-defined, then we refer

to ST as a well-defined bridge. If the level of T is still

potential, we call ST a potential bridge.

It will be shown (Lemma 1.1) that once ST 1s searched and
found to be a bridge it will remain a bridge throughout the remainder
of the first stage (although a potential bridge may of course become
well-defined)., Thus, when ST 1s searched, we can decide whether it
is a bridge or not. Clearly, if ST is a bridge, then,if and when

TS is searched, it becomes a (well-defined) bridge too.



24

2-1ink. A 2-link of a vertex R is a 1ink which points to a

bridge ST where the following conditions‘hold:
(1) ST is a well-defined bridge.
(ii) MATE(R) has a 1-link.
(i1i) p(0-MATE(R)) 1s a head of p{0+T) .
(iv) A1 the vertices on P(MATE(R}>T) are well-defined.

In this case, the al-path p(0+R) which is defined by

LINK(R)=ST 9s described by the following concatenation:
p(0+R) = p(0=S8)-p(ReT) . (1.2)

Clearly, (1.2) defines an alternating path leading to R (see
Fig. 1.4},

alternating path
free edge
bridge

matched edge

S

Fig. 1.4 - 2-1ink




25

If p(0-MATE(R)) 1is a head of p(0>T) , then the number of free
edges on p(MATE(R)>T) is: L(T)-%(MATE(R)) . Using this number, it
is easy to see that if LINK(R)=ST then:

L{R) = 2(ST) + 1 - 2(MATE(R)) . (1.3)

Thus, in order to define a minimal level for R, a bridge ST
of minimum Tevel must be found (notice that MATE(R) has a 1-link
and therefore &(MATE(R)) is already well-defined and cannot be

changed},

Notice that in opposite to the case of a 1-Tink, generally
neither tﬁe minimality nor the Tegality of an al-path p(0+R) which
is defined through a 2-Tink are verified, unless a further check is
carried out. For example, if R is lying on p{0+S) , then the al-
path p(0+R) as defined by (1.2) contains an odd Toop and is there-

fore illegal (see Fig. 1.5).

-~ al- path
—= free edge
=== bridge

“Am=~ Mmatched edge




26

The minimality is not verified because %(R) depends on A(ST)
and according to the BFS method it may happen that although
2(S. T )<(ST) , yet 2(S )<e(S ) and therefore the bridge S T
11 2 2 2 1 2z 2
is searched and assigned as LINK(R) before the bridge SlT1 is
searched., Clearly, the assignment LINK{R)+-82T2 does not define a

minimum Tevel for R .

Thus, an al-path which is defined by a 2-link is always

considered a potential al-path until its minimality and legality are

verified. The 2-1ink considered in these circumstances is a potential

LINK.

The legality of an al-path p(0+R) which is defined by a 2-Tink
is verified by a "legality test", which is performed on LINK(R)
(this test is described in Section D). If LINK(R) fails the legality
test {(i.e., if p{(0~+R) s found to be illegal), then the bridge
which is presently assigned as LINK(R) , must be replaced by another
bridge which can be assigned as LINK(R) and has not fai]ed the
legality test so far. The minimality of p(C+R) is verified by using
the following procedure: Each time a new assignment LINK(R)<ST
becomes possible according to the definition, we check whether this
assignment defines for R a level which is lower than the present
2{(R) , and if the answer is positive we perform these changes on
LINK(R) and &(R) . Also, each time the present LINK(R} is found
to be illegal, we choose a bridge of-minimal level among the bridges
which can be assigned as LINK(R) and presently pass the legality

test, and we assign this bridge as the new LINK(R) .



27

Therefore a 1ist of all the bridges which can presently be
assigned as LINK(R) s required. For this purpose we use two data
structures: The bridges of the graph are stored in disjoint lists
calTed "CHAINs" , and the 1ist of all CHAINs whose bridges can be

assigned as LINK(R} 1is accumulated in a set called T(R) .

CHAIN. For each vertex in the graph a separate 1ist called
CHAIN 1is defined: Let T be a vertex, then CHAIN(T)} s an ordered

1ist of bridges of the form SiT which is constructed as follows:

In the beginning of the first stage all the CHAINs are empty .
Each time a free edge ST is searched and found to be a oridge
(either potential or well-defined), it is attached to the end of the
list CHAIN(T)* . Thus the bridges of CHAIN(T) are arranged in the
same order by which they have been searched. Therefore a bridge SET
precedes another bridge SjT in  CHAIN(T)} only if SiT has been
searched before SjT . By the BFS method this implies that
R(Si}sz(sj) , Or £(51T)s2(SjT) . Thus, the bridges of CHAIN(T} are
arranged in nondecreasing order of their levels, and in particular,

the first bridge has always a minimum level in CHAIN(T) .

Each time an assignment LINK{R)=ST fails the legality test,
ST 1is deieted from CHAIN(T) . It will be proven {Theorem 1.4} that
a bridge which has been failed the iegality test cannot define a

iegal Tevel for any of the vertices whose levels are still pctentiai.,

. _
In fact, if ST 1s a well-defined bridge, it is inserted into

CHAIN(T) only if it presently paéses the legality test.

i



28

Thus, the deletion of ST from CHAIN(T) 1in this case is safe.

Since each bridge S.T of CHAIN{T} has already been searched,
S_i must be well-defined. Therefore SiT is a well-defined bridge
if and only if T has a well-defined level. It follows that either

all the bridges of CHAIN(T) are well-defined, or none.

Therefore, by the definition of the 2-link, we see that if one
bridge STT of CHAIN(T) can be assigned as LINK{R) , then all the
bridges of CHAIN(T) can be assigned as LINK(R} . (Notice that
Fquation (1.3) and the construction of CHAIN(T) 1impiy that out of
all the bridges of CHAIN(T) , the first bridge defines for R a

minimal level).

The Tist of all the CHAINs whose bridges can be assigned as

LINK(R)Y s accumulated in a data structure called T(R) .

T(R). Let R be a vertex such that MATE(R} has a 1-Tink
(i.e., if LINK(R)#0 then R has a 2-1ink). Assume that LINK(R)
is still not well-defined; then we want to have a set T(R) which
includes exactly all the CHAINs whose bridges can be assigned as

LINK(R) .

For this purpose we attach to each vertex T in the graph a

variable called TAIL(T) which is defined as foTlows*:

*
TAIL{T) 1n our algorithm is a generalization of TOP{LINK(T)) fin
Gabow's algorithm [3]. In fact, this variable is not essential for

the performance of the algorithm, and it is introduced only to




29

(a} If T is not yet well-defined then TAIL(T)=MATE(T) .

{b) If T 1s well-defined, then TAIL(T) 1is the vertex closest

to T on p(0+T) whose LINK 1is still potential.

Using the variable TAIL we now attach to each vertex R a

set T(R) of vertices, which is defined as follows:
T(R) 1is the set of all vertices T such that TAIL(T)=R .

Clearly all the sets T(R) are disjoint and their union contains all

vertices of the graph.

We now prove that if MATE(R) has a 1-1ink and R is not well-
defined, then T{R} is exactly the set of all the vertices, such
that the bridges of their CHAINs can presently be assigned as
LINK(R) .

First we prove the following lemma:

lemma 1.0, If Z s f-lying on p(0+T) (where T#Z) , then Z
is well-defined.
[Thus, if T 1is well-defined, TAIL(T) {s lying but not f-lying on
p(0->T)1.

Proof of the lemma. Consider the sequence of vertices

TI’T2’°'°’Tk which is defined as follows:

enable a better understanding of the sets T(R) .



30

WOAF LINK(T, ;) = W
T =7 T, = { LINK(T, ) = DUM

0 1
1<igk poif LINK(Ti_l) PQ

By the definition of 1-link and 2-1link, for each 1 , lgizgk ,
Ti is well-defined, and p(0+T1) is a head of p(O+T1_1) . There-

fore, for each 1 , Ixgigk , p(O+Ti) is a head of p{0G+T) .

Let Z be a vertex which is f-lying on p{(0+T) , and Tet j be
the greatest index such that Tj#Z , and on p{C-T) , Tj is lying
between Z and T . Clearly O<jck and Z is f-lying on .p(0+Tj) .
Assume that Tj has a 1-1ink, then Tj+1=LINK(Tj) . IF Tj+1#2 .
then Tj+1 contradicts the choice of Tj . Thus, Tj+1=Z , and
therefore Z is well-defined. Assume that Tj has a 2-1link,
LINK(Tj)=PQ , then T

=p | If Z=Tj+ then Z 1is well-defined;

J+l 1
else, by the choice of Tj » Z 1is lying on p(MATE(Tj+1)+Tj) , and

thus, by the definition of a 2-Tink, Z {is well-defined.
Q.E.D.
Theorem 1.0
(a) If MATE{R) 1is not well-defined, then T(R)={MATE(R)} .

(b) If MATE{R) 1is well-defined but R 1is not well-defined
yet (thus MATE(R} has a 1-Tink), then TeT(R} if and only if
p(0+MATE(R)) is a head of p{0-T) and all the vertices on
P(MATE(R)>T) are well-defined.

(c) If both MATE(R) and R are well-defined, then T(R)=0 .



Proof.

(a) If MATE(R} 1is not well-defined, then by the definition
TAIL(MATE(R)}=R and thus MATE(R)ET(R) . Assume that T(R} contains

a vertex V , where V#MATE(R) . Then TAIL(V)=R , and by the
definition R 1{s the vertex closest to V on p(0+V} whose LINK

is still potential. Since V#R (for, by the definition TAIL{V)#V)
then by Lemma 1.0, R cannot be f-lying on p(0+V} and thus MATE(R)
is f-lying on p{0~V) . But since MATE(R) is not well~defined and
on p(0+V) it is closer than R to V , the assumption R=TAIL(V)
is contradicted. Thus, T(R)={MATE(R)} .

(b) (i) [If]. Assume that p(0-MATE(R)) is a head of p{0~T)
and all the vertices on p(MATE(R)+T) are well-defined. Since R is
not well-defined, it is the vertex closest to T on p{0~+T} whose

LINK s still potential. Thus, TAIL(T)=R and TET(R) .

{i1) [Only if]. Assume that T€T(R) , thus R 1is the vertex
closest to T on p(0+T) whose LINK is stil] potential. Since
T#R  (for, by the definition TAIL{T)#T) , then by Lemma 1.0 R is
not f-lying on p(0-T) . Thus, MATE(R) is f-lying on p(0+T) , and
therefore, by the choice of R , all the vertices on p(MATE(R)-T)
are well-defined. We still have to prove that p{0-MATE(R)) 1s a
head of p(0~T) . This claim is trivial if T=MATE(R) . Assume that
TZMATE(R) and let W be the vertex closest to R on p(MATE(R)}~>T)
such that p{0+W} 1is a head of p(0+T).. If WEMATE(R) , then W
musf have a 2-Tink (otherwise LINK{W) would contradict the choice

of W ). Let LINK(W)=PQ, then p(0+P) is a head of p(0-W) and



32

thus a head of p(Q-+T) . Hencé, by the choice of W , R cannot be
lying on p{0+P) , but must be lying on p{(WQ) . But in this case,
according to the definition of 2-link, R must be well-defined - and
this is a contradiction. Thus, W=MATE(R) , and p(0>MATE(R)) s
therefore a head of p(0+T) .

(c) If both MATE{R) and R are well-defined, then for no
vertex T , TAIL(T)=R . Thus T{(R)=@ .
Q.E.D.

Corollary 1.0

If MATE(R) has a 1-link and R is not well-defined
vet, then T{(R) 1is exactly the set of all the vertices such that the

bridges of their CHAINs can presently be assigned as LINK(R) .

Proof. (i) If ST 1is a bridge in CHAIN(T) which can be
assigned as LINK(R} , then by the definition of 2-1ink, p{(0-MATE(R))
is a head of p{0+T) and all the vertices on p(MATE(R)+T)} are well-
defined. Thus, by case {(b) of Theorem 1.0 TeT(R)} .

(11) If TeT(R) then by case (b) of Theorem 1.0 p{0+MATE(R))
is a head of p(0+T) and all the vertices on p(MATE(R)>T) are well-
defined. In particular, T 1is well-defined, and thus each bridge ST
in  CHAIN(T} 1is a well-defined bridge. Therefore, by the 2-link

definition, ST can be assigned as LINK(R) .
g.E.D.

Therefore, if MATE(R) has a 1-link and R is still not well-
defined, then the set {ST|ST€CHAIN(T),T€T(R)} is exactly the set




33

of alt bridges which can presently be assigned as LINK{R) , and have
not yet failed the legality test. Thus, in order to find a minimal 2-
link for R , we have to find a bridge of minimum level in this sat,
[In fact, by the construction of the CHAINs , it is sufficient to
find a bridge of minimum Tevel in the subset {STIST 1is first in

CHAIN(T),T€T(R)}.]

According to the definition, changes of the variables TAILs
and the sets T(R) occur if and only if a vertex R1 which has a
2-1ink is declared to be well-defined. [By Theorem 1.3, in this case
all the vertices of T(Rl) are transferred to another set T(Rz) .
and the set T(Rl) becomes empty; also, the set T(MATE(Rl)) , which
incTudes only the vertex R1 » becomes empty, and R1 is inserted
into another set T(Ra).]. Thus, at the end of the SEARCH part of
the j-th substage, when the vertices of level J are decalred to be
well-defined, the appropriate sets T(R) must be updated. The up-
dating process, which is performed during the UPDATE part of the

J-th substage, is described in Section E.

D. tegality and Minimality

since a 1-link is always well-defined (Theorem 1.1} we discuss

here only the case of a 2-link.

Legality. In Section G we prove the following theorem (Theorem
1.4):

(a) Let LINK(R)=ST . If SeT(R) , then the 2-link LINK(R}=ST



34

is illegal, and the bridge ST cannot be used Tater to define a

legal 2-Tink for any other vertex whose LINK is still potential.

(b} Let R be a vertex stuch that at the end of the SEARCH part
of the j-th substage R 1is not yet declared to be well-defined. Let
ST be a bridge which can be assigned as LINK(R) such that this
assignment defines for R a level < j . If LINK(R}=ST 1s illegal,
then SeT(R} .

Since the relation SET(R} means that the bridges of CHAIN(S)
fand in particular, the bridge TS] can be assigned as LINK(R) , we
can roughly reformulate Theorem 1.4 as follows: "The assignment
LINK(R)=ST is illegal if and only if TS can also be assigned as
LINK(R)". Clearly, if the assignment LINK(R)=ST defines for R a
Tevel J , then (according to Equation (1.3)), the same level {s
defined for R also by the assignment LINK(R)=TS . It follows by
the BFS method and by the definition of T(R) , that if LINK(R)=ST
is illegal, then during the SEARCH part of the j-th substage both

S and T belong to the set T{R) , [part (b) of the theorem].

‘Therefore we define the legality test of a bridge ST to be:
"Do S and T belong to the same set T(R) ?" If the answer to this
question is positive, then (by part {(a} of Theorem 1.4), ST cannot
be used to define a legal LINK for any of the other vertices whose
LINK is still potential, and therefore ST 1is no more useful and
can safely be deleted from its CHAIN . Thus, each time a well-

defined bridge is searched, it is inserted into the appropriate CHAIN




*
only if it passes the legality test . Also, each time the present
LINK{R) fails the legality test and thus is found to be illegal, we
assign some other bridge as the nev LINK{R) only if it presently

passes the Tegality test,

Apparently, according to part (b} of Theorem 1.4, if LINK(R)=ST
defines for R a level j , it suffices to test the legality of ST
at the end of the SEARCH part of the j-th substage (just before R
is declared to be well-defined). However, due to complexity
considerations which wi]i be eaxplained in Section H, it is more
convenient to test the legality of ST Jjust before the assignment
LINK(R)<ST s performed, and to repeat this test each time T(R} is
changed. If LINK{R} fails one of these tests it is replaced by
another bridge which presently passes the test and can be assigned as
LINK(R} (if no such a bridge exists, we assign LINK(R}«0 }. This
procedure assures us that the present LINK(R) passes the legality
test. Therefore, if at the end of the SEARCH part of the j-th sub-
stage the present LINK(R) defines for R a level j , then (by
part (b) of Theorem 1.4) LINK(R) 1is legal and no further testsof

the legality are required,

The Tegality test is useless for a potential bridge: If ST 1is a
potential bridge, then T 1s not well-defined and thus
TAIL{T)=MATE(T) , or T(MATE(T})={T} . Since S$#T , S cannot
belong to the same set as T , and therefore a potential bridge

always passes the legality test.



Minimality. In order to verify the minimality of &(R) , we use
a procedurelwhich assures that the present LINK(R) defines for R
the minimum legal level which has become possible so far. By this
procedure the minimality of the al-path which is defined by LINK(R)
is checked each time one of the following two cases happens:

(i) A new assignment LINK(R)«ST becomes possible by the
definition,

{ii) The present LINK(R} 1is found to be illegal and another

bridge is assigned as LINK(R)

We now discuss these two cases:

(i) Since a 2-link can be assigned to R , MATE(R) must have a
1-1ink and is therefore well-defined. According to Corollary 1.0 of
Section C, the set {S'T'[S'T'€CHAIN(T'),T'€T(R)} contains exactly
all bridges which can presently be assigned as LINK(R} , and have not
yet failed the Tegality test. Thus, a new assignment LINK{R)<«ST
becomes possible by the definition, if and only if the bridge ST is
inserted into the set {S'T'|S'T'€CHAIN(T'),T'€T(R)} . This event can
happen in one of the following two ways: Either ST is a new well-
defined bridge which is searched, passes the legality test and is
inserted into CHAIN(T) , or the set T(R) 1is changed and the vertex
T becomes a member of it. Thus, in order to verify the minimality of

L(R) , we have to keep the following two rules:

(a) Each time a well-defined bridge ST is inserted into
CHAIN(T) , we check by Eq. {(1.3) whether the assignment LINK{R)<ST
can iower the present (R} , and we perform these changes on

LINK(R) and 2(R) 1in case the answer is positive.



37

(b) Each time the set T(R) is changed, we find in the set
{S'T"|S'T'€CHAIN(T' ), T'€T(R)} a bridge of minimal level which
presently passes the ]ega]ityrtest, and we assign this bridge as
LINK(R) (if no such a bridge exists, we assign LINK(R)«0 ,

)|z

(1) Each time the present LINK(R) s found to be illegal,
another bridge is assigned as LINK(R) . In order to verify the
minimality of the al-path which is defined by the new LINK(R) , we
have to make sure that the new LINK(R) has a minimal Jevel amecng
the bridges which can presently be assigned as LINK(R) and pass
the legality test. Notice that according to the procedure of verifying
the Tegality, we perform a legality test on the present LINK(R) only
when the set T(R) 1s changed. Therefore case (1) is covered by rule

(b) of case {(i).

In section G, throughout the proving of Theorem 1.5, we show
that the following claim is true: "If there exists in the graph a
Tegal alternating path of length j which is leading to R , then at
the end of the SEARCH part of the j-th substage, the set
{S'T"|S'T'€CHAIN(T' ), T'€T{R)} contains at least one bridge which can
define for R a legal level < j *. This claim implies that if at the
end of the SEARCH part of the j-th substage A4(R)=j , then it is
minimum. {For, assume that there exists in the graph a legal alter-
nating path of length i , i<j , which is leading to R ., Then at the
end of the SEARCH part of the i-th substage the set

{S'T'"IS'T'€CHAIN(T"),T'€T(R)} contains a bridge SOT0 which defines



3é L

for R a legal level <1 ..According to our procedure we would find
this bridge and would assign for R a legal level &(R) where
2(R)gi<j —in contradiction to the fact that &(R)=j ). Thus, if

in the j-th substage 2(R)=j , then &(R} 1is minimum, and no further

verifications are needed.

The combined procedure. Both the procedure for verifying the

Tegality and the procedure for verifying the minimality, require
tests which are performed exactly each time a new well-defined bridge
is searched and each time a set T(R) is changed. Moreover, if
2(R)=j , then according to both procedures no tests are required
after the SEARCH part of the j-th substage. Thus, we can combine
these two procedures into one procedure which simultaneously verifies
both the legality and the minimality of 2(R) . This procedure has

three rules:

(a) Each time a well-defined bridge ST is searched and passes
the legality test, attach it to the end of CHAIN(T) ; let R<TAIL(T);
by using Eq. (1.3) check whethér the assignment LINK{R)}<ST can
lower the present &(R) , and if the answer is positive, perform these

changes on LINK(R) and 2(R) .

(b) Each time a set T(R) is changed, check the set
{ST|STECHAIN(T),TeT(R) ,SET(R)} ; if this set is empty, then assign:
LINK(R)<G , R(R)+[%]+1 ; else, Tet ST be a bridge of minimm
level in this set, and assign: LINK(R)«-S(}T0 .

R(R)+£(SOTG)+1-2(MATE(R)) .




39

(c) If at the end of the SEARCH part of the j-th substage
2(R}=j , then 2(R) , LINK(R) and p(0+R) are well-defined.

E. The Performance of the j-th Substage

The SEARCH part. During the SEARCH part of the j-th sub-

stage, all the free edges that are incident at vertices whose (well-

“defined) Tevel is j-1 are searched, Let X be a vertex of {well~
defined) Tevel j-1, XY be a free edge, and Z=MATE(Y) . The edge
XY 1is searched from X to Y , and an attempt s made to concate-
nate Y and Z to p(0+X) . Four different cases may arise (see

Fig. 1.6):

(a) Both Y and Z are not well-defined (Fig. 1.6(a)). Thus,
both vertices must have the dummy level [gj+1 . In this case the
conditions for the 1-1ink assignment are satisfied, and therefore
we assign: LINK(Z)<X ; £(Z)«j . The al-path p(0+Z) (which is
constructed by concatenating Y and Z to p(C+X) ) is minimum and
legal (Theorem 1.1), and therefore 7 is declared to be well-defined.

(By Theorem 1.3, no set T(R) is changed by this declaration).

(b) Y is not well-defined, while 7 is well-defined (Fig.
1.6 (b)). Thus, Z must have a 1-link. Since LINK(Z)#X (for, Z
has a l-link before XY {s searched), and LINK{MATE(X))#Y {for, Y
has no well-defined level, and thus YX has not been searched yet),
then XY 1is a bridge. Since Y has no well-defined level, XY is a

potential bridge, and thus it cannot yet be used as a 2-link; we



40

1 1
MATE(XY ,/ p(0-=X)
3v o xE
U020 MaTE (X))
I 1
1p(0+Y)
z 1
case (a) case (b) case (¢)
wawvey matched edge --~-= al-path
—  free edge —XWW X is a well- defined vertex
==== bridge =02 (ot level j=1)

Fig. 1.6 - The SEARCH part of the j-th substage

-attach XY to the end of CHAIN(Y) without testing its legality.

(c) Y is well-defined and LINK(MATE(X))}=Y (Fig. 1.6{(c)).

Clearly XY s not a bridge, and we cannot perform the assignment

LINK(Z)«X either. Thus, nothing is done.

(d) Y is well-defined and LINK{MATE{X)}#Y . In this case XY




4]

is a bridge (for, LINK(Z)#X ). Since Y is we1];defined, XY s a
well-defined bridge, and thus we perform on it the legality test. If
it fails the test - nothing is done. Else, we attach XY to the end
of CHAIN(Y) . Let R be TAIL(Y) (thus, R 1s the vertex closest
to Y on p(0+Y) whose LINK is still potential). We check whether
the assignment LINK(R)}«XY 1lowers %(R) , and perform these changes

on LINK(R) and 2(R) in case the answer is positive (Fig. 1.6{d)).

Thus, at the end of the SEARCH part of the j-th substage,
exactly those vertices whose Tevels are less than j , and those

vertices with a 1-1ink and level J , are declared to be well-defined,

The UPDATE part. During the UPDATE part of the J-th substage

we search through the vertices which have a 2-1ink and (potential)
Tevel j . We declare these vertices to be well-defined and perform
the changes which are required by these declarations on the variables

TAIL and the sets T(R) .

First, we search through the vertices which have a (potential)
level j and we look for a 2-exposed vertex. If such a vertex exists,
then a minimum Tegal augmenting path of Tength j is found in the
graph. By Corollary 1.4 there is no need to find the well-defined
Tevels of the vertices whose present levels are still potential (i.e.,
are greater than j ). Thus, we proceed to the second stage of the

algorithm.

Assume that no 2-exposed vertex of Tevel j exists in the

graph, and let R be a vertex such that LINK(R)=ST and &(R)=j .



Clearly MATE(R) has a (well-defined) 1-1ink. Therefore, (according

to case (c} of Theorem 1.0 in Section C), after R 1is declared to be
well-defined, T{R) becomes empty. Let V be a vertex such that
hefore R 1is declared to be well-defined VET(R) (i.e.,

TAIL(V)=R ). According to case {b) of Theorem 1.0 in Section C,
p{C->MATE(R)) 1is a head of p(0+V) and all the vertices on
p(MATE(R)»V) are well-defined. After R 1is declared to be well-

defined, TAIL(V) 1is changed. It is not difficult to see that the
new TAIL(V) is the same as the new TAIL(MATE(R}) . Thus, let R

be TAIL{MATE(R)) after R 1is declared to be well-defined ([by 2
Theorem 1.3 R2=TAIL(LINK(MATE(R))) ; see Fig. 1.71. Then, all the
vertices which have been in T{R} before R 1is declared to be well-
defined, must be transferred to the set T(Rz) ; namely:

T(R2)+T(R2)UT(R) » T(R)<§ .

Since T(Rz) is changed, (then by the discussion of Section D),
we now search the set {S'T'|S'T'€CHAIN(T‘),T'ET{RZ),S'ﬁT(RZ)} for
a bridge Ssz of minimum Tevel., If the set is empty, then we assign
LINK(R )<0 , 2(R )+[%J+1 . Else, we assign: LINK(R }«S T
2 2 2 2 2
2(R )«2(S T )+1-2(MATE(R )) .
2 2 2 2

The declaration of R as well-defined changes T(MATE(R)) too:
Before R 1s declared we]l;defined, T{MATE(R}) contains exactly
the vertex R (case (a) of Theorem 1.0 in Section C). Thus,
TAIL(R)=MATE(R) . After R 1is declared to be well-defined, TAIL(R)
becomes a vertex R3 which is the vertex closest to R on p(0-R)

whose LINK is still potentiai. [In Theorem 1.3 we show that



sbeasqgns y3-T aya Jo 2ued jjygan oul - /1 "BL

S £ € g
ﬁmn:.mn..in:.zw = Aw_v._. Amn...an...zwnﬁmv._.
£ Z
g = (M)L oy = (ML {43 ° 83} = (MNIVHD
1 z z = . 1 z z 1
{LFveopfeca® S s J°eee M} = ( Y)L {Afeee FPe== M} = { U)L 3 = (MPINIT
g = (d)L {Lf=cA®ee=m} = (W)L 1S = (4)NIT
paurdap-fiam st (Y )INIT LeLjuazod si {H)ANTT
a
¥SJISA PBUILSP -|IBM D SI A VWA—
abpiuq _ 3
abpa 254} A w
abps pauojpw hd "
7\
N
— . /0/ _
Nm N>> S \Q//m.a. MW_
EEEEE - e— —— — — — - — = 4 .&Itulllil!llllll./.&&ll['ll«

{(S=0)d (Em~0)d




_,_4@

R3=TAIL(S) , where LINK(R)=ST! . Thus, when R 1is declared to be
well-defined, we have to perform the operations:

T(R3)+T(R3)UT(MATE(R)) » T(MATE(R))<§ .

Again, since T(RS) is changed, we have to look in the set
{S'T'[S' T'ECHAIN(T" ) ,T'€T(R ),S'€T(R )} for a bridge ST of
minimum Tevel. If this set is empty, we assign: LINK(R3)+D R

n .o
R(Ra)*m-jﬂ . Else, we assign: LINK(R3)+SST3 .
2(R3)+£(53T3)+1-2(MATE(R N .

Subroutine MERGE. We define a subroutine MERGE(RZ,R) which

performs the following operations:
(a)  T(R)<T(R JUT(R) 5 T(R)+f .

(b) Find in {S‘T'[S'T'ECHAIN(T'),T'ET(Rz),S'iT(RZ)} a bridge
Ssz of minimum Tevel. If the set is empty, then assign:
n, .
LINK(R2)+O , £(R2)+L?]+I . Else, assign: LINK(R2}<—SZT2 .
(R (S T )+1-2(MATE(R )) .
4 2 2 2

Since, (by the construction) the first bridge in CHAIN(T') has
always a minimum Tevel in the CHAIN , we may replace operation (b)

in MERGE by the following rule:

(b') Find in {S'T'[S'T' is first in CHAIN(T‘),T'ET(RZ)} a
bridge Ssz of minimum Tevel. If the set is empty, then assign:
n .
LINK(R2)+0 R 2(R2)+[?1+1 . Else, perform the legality test on Ssz
If SZET(RZ) then delete Ssz from CHAIN(TQ) and repeat (b').

Else, assign: LINK(R )<S T , &(R )«2(S T )+1-2{MATE(R }) .
2 2 2 2 2 2 2




45

Using the subroutine MERGE , we can describe the performance of

the UPDATE part of the j-th substage as follows:

(i) If there is in the graph a 2-exposed vertex whose level is
J » then assign r<j [r is the length of a minimum legal augmenting

path in the graph]l and proceed to the second stage.

(i1) Else, for each vertex R , such that LINK(R)=ST and
2(R)=j , do the following operations: Declare R to be well-defined;
call the subroutine MERGE(RZ,R) [where R2 is the vertex such that
LINK(MATE(R))ET(RZ) 1; Call the subroutine MERGE(R ,MATE(R}) [where

R3 is the vertex such that SET(RS) 1.

In the description of MERGE we ignored the variable TAIL . In
fact this variable is not essential for the performance of the
algorithm (this variable was introduced only to enable a better
understanding of the sets T(R) ). Some implementations of MERGE
use this variable and it is updated when the operation
T(R2)+T(R2)UT(R) is performed, Other implementations replace
TAIL{V) by the instruction "Find the vertex R such that VET(R) "
which is performed only when it is really required. Since different
implementations of MERGE and different structures of T(R) 1lead to
different complexities of the algorithm, we shall discuss this subject
in Section H: "The Complexity of the First Stage and the Implementa-

tion of MERGE ",




46

F. The Algorithm

0. [Initializationl.

{a} For i=1,2,°--,{g} assign: LIST(i}<@ .

(b) For each vertex R assign: CHAIN(R)<@ ; T(R)<{MATE(R)} .

(c) For each l-exposed vertex B [B belongs to LIST(O)I ,
assign: 2{B)«0 ; LINK{B)<«DUM .

(d) For each vertex R which is not l-exposed, insert R

into LIST([g—jﬂ) and assign: LINK(R}+0 ; 2(R)+[-S-J+1 .
(e) j=1 .

SUBSTAGE :
SEARCH:

1. [Search through vertices.l If LIST(j-1} contains no vertex
which has not yet been searched, then go to UPDATE ; else let

X be a vertex which has not yet been searched.

2. [Search through edges.] If all the free edges XY have
already been searched then return to SEARCH ; else, let XY

be a free edge which has not yet been searched.

3. Let Z<MATE(Y) . If &(Y)<j or Y has a l-link, then [V

is well-defined] go to 6.

4. 1Y s not well-defined.] If LINK(Z)#0 then [XY is a




(potential) bridge]l go to 5; else, assign [a i-link assign-

ment] : LINK{Z}<X ; &(Z)«j [Z 1is declared to be well-

defined] ; delete Z from LIST([51+1) and insert Z into

LIST(3) ; return to 2.

. [XY 1is a (potential) bridge,] Attach XY to the end of

CHAIN{Y) and return to 2.

6. [Y is well-defined.] If LINK(MATE(X))=Y then [XY 1is not
a bridge] return to 2; else [XY 1is a well-defined bridgel,
find the vertex R such that YET(R) . If XET(R) then
[XY closes a Toopl return to 2.

7. [XY dis a {well-defined) bridge which presently does not
close a Toop.] Attach XY to the end of CHAIN(Y)} . Assign:
£1+£(XY)+1—£(MATE(R)) . If RIZQ(R) then [XY does not
define for R a lower Tevel- than the present &(R) 1 return
to 2.

8. [A 2-Tink assignment.] Delete R from LIST(z(R)) ; insert
R into LIST{2 ) ; assign: K(R)+R1 ; LINK(R)<XY ; return to

1
2.
UPDATE:
9. [Search through LIST(j) 1.

(a) If LIST(j} contains a 2-exposed vertex, then assign:

r<j and proceed to the second stage [r 1is the length




of a minimum legal augmenting path in the graphl.

{b) If LIST(j) contains no vertex which has a 2-1ink, then
go to END OF SUBSTAGE .

16. If LIST(J) contains no vertex which has a 2-link and has
not yet been declared to be well-defined, then go to END
OF SUBSTAGE . Else, let R Ee a vertex such that R has
a 2-1ink and R has not yet been declared to be well-defined.

Let ST+LINK(R) .

11. [R s declared to be well-defined.] Find the vertex R2
such that LINK(MATE(R))ET(RZ) . Find the vertex Ra such
that Se&T(R )

3
12. Ca11* MERGE(RZ,R) ; call MERGE(Ra,MATE(R)) ; return to 10.
END OF SUBSTAGE.

13, If j<tg—J then assign: j<j+1 and go to SUBSTAGE .

14. [The present matching is maximum.] PRINT the variables
MATE [which give the matching] and the list LIST(0) [which

gives the exposed vertices]. HALT .

*
For the implementation of MERGE , see Section H: "The Complexity
of the First Stage and the Implementation of MERGE".



49

G. The Correctness of the First Stage

In this section we prove that the algorithm of the first stage,
as described in Section F, is correct; i.e., that the goals of the
first stage are achieved by this algorithm. In other words, we prove

the following main theorem:
Main Theorem.

If during the performance of the algorithm we reach
SUBSTAGE for the j-th time, then for each i<j , LIST(i)
contains exactly the vertiﬁes of legal level i , and for each
RELIST(7) , LINK(R) defines a legal minimum al-path of Tength
i, leading to R .

The inductive hypothesis. The main theorem is proved by

induction on J . In the inductive hypothesis we also assume that

each time SUBSTAGE 1is reached, the sets T(R} as constructed by

the algorithm, are the same as implied by the definition.

Proof of the Main Theorem,

(a) The inductive hypothesis holds for j=1 (by step 0 of the
algorithm).

{b) The inductive step for j 1is proved by the following

sequence of Temmas and theorems.



Theorem 1.1,

A 1-Tink assignment is well-defined.

Proof. A 1-Tink assignment is performed in step 4, which is
reached from step 3 in case Y is not well-defined (Y has no 1-
link and  &{Y)zj ), and.onTy in case LINK(Z)=0 . Clearly Y cannot
have a 2-Tink (otherwise 7 must have a 1-1ink} and therefore
LINK(Y)=0 . Thus the 1-Tink assignment in step 4 of the algorithm is
in accordance with the definition. By the inductive hypothesis X
has a well-defined level j-1 , and p{0~X) 1is a legal al-path of
length j-1 . Assume that the matched edge YZ s lying on p(0=X)} :
If 7 is f-lying on p(0+X) then the segment §(0+Z) of the al-
path p{0~+X) 1is a legal alternating path of length less than j-1
which is leading to Z , and thus (by the inductive hypothesis}, Z
must have a well~defined level less than J=1 , and LINK(Z}#0 . A
similar contradiction is achieved if we assume that VY is f-1ying
on p(0+X) . Thus, the edge YZ is disjoint from p{0+X) , and
therefore the al-path p{0+X):Y-Z (which is defined by LINK{Z)=X )}
is legal. Since the length of this path is j , it is alsc a minimum
al-path leading to Z (otherwise, by the inductive hypothesis,
LINK(Z) would not be 0 ). Thus, LINK(Z)=X and (Z)=j are well-
defined.

Q.E.D.
Lemma 1.1.

(a) If a free edge ST is searched and found to be a bridge,




51

then it will remain a bridge throughout the remainder of the first

stage.

(b) If, when ST is searched, it is not found to be a bridge,

then it will never become a bridge.

Proof. (a) Assume that ST is searched and found to be a bridge.
When ST s searched, at least one of the vertices T and MATE{T)
must have a LINK other than 0 (otherwise, we would reach step 4
of the algorithm and would assign LINK(MATE(T})<«S . In this case ST
would not be a bridge). Therefore, when ST is searched, either T
or MATE(T) wust have a l-link, which (by Theorem 1.1) is well-
defined and therefore is never changed, If T has a 1-Tink, then
MATE(T) will never have a 1-link too, and thus LINK(MATE(T))=S
will never hold. If MATE(T) has a 1-1ink, then since presently
LINK{MATE(T))#S , this will remain true throughout the remainder of
the first stage. Thus, if ST is found to be a bridge, then
LINK(MATE(T))=S will never hold.

Since 'ST is searched, S must have a well-defined LINK . If
S has a 1-Tink, then MATE{S} will never have a l-Tink too, and thus
LINK(MATE(S))=T will never hold. If S has a 2-iink, then MATE(S)
has a 1-link which (by Theorem 1.1) is well-defined and therefore is
never changed. Since presently LINK(MATE(S))#T , this will remain
true throughout the remainder of the first stage. Thus, if ST s

found to be a bridge, then LINK(MATE(S))=T will never hold,

Therefore, if ST 1is searched and found to be a bridge, then




ST will vemain a bridge throughout the remainder of the first stage.

(b) Assume that ST s searched and is not found to be a bridge.
Then either LINK(MATE(T))=S or LINK(MATE(S))=T . Since by Theorem
1.1 a 1-link is weli-defined and is never changed, ST will never

become a bridge.
Q.E.D.
Theovem 1.2.

For each Y , CHAIN(Y) contains exactly all bridges of the form
XY except those which have failed the legality tesi. These bridges

are listed in nondecreasing order of their levels.

Proof. (a) New bridges are inserted into CHAIN(Y) only in
step 5 and step 7 of the algorithm. Step 5 is reached when XY is
being searched and LINK(Z)#0 (where Z=MATE(Y) }. Clearly in this
case LINK(Z)#X . Also, when step 5 is reached, 2(Y)3j (by step 3)
and therefore the edge YX has not been searched yet, and thus
LINK(MATE(X))#Y . Therefore, when step 5 is reached, XY 1is found to
be a bridge, and by Lemma 1.1 it will remain a bridge throughout the
first stage. Step 7 is reached when 2(Y)<j or Y has a l-link
(step 3) and when LINK(MATE(X))#Y (step 6). If Y has a 1l-link,
then Z will never have a 1-link and thus LINK(Z)#X . If Y has
no 1-Tink, then &{Y)<j and thus Y must have a 2-link. This
implies that when XY 1is searched, Z ailready have a 1-1ink and

thus LINK(Z}#X . Since by step 6 LINK(MATE(X))#Y , then XY is



53

found to be’a bridge, and by Lemma 1.1 it will remain a bridge
throughout the first stage. Thus, CHAIN(Y) contains only bridges of
the form XY .

{b) Assume that XY is searched (step 2 of the algorithm). If
we do not reach step & or step 7 of the algorithm, then either we
assign LINK(Z)«X (in step 4) or we find that LINK(MATE(X))=Y , or
we find that X and Y belong to the same set T(R} (in step 6).
In the first two cases XY 1is not a bridge and therefore (by Lemma
1.1) it will never become one. In the third case XY 1is a bridge
which fails the Tegality test. Thus, in step 5 and 7 we insert into
CHAIN(Y) all the bridges of the form XY , except those which have
failed the legality test in step 6.

{c) A bridge XY is deleted from CHAIN(Y) if and only if it
fails the legality test during the performance of subroutiee MERGE
(see Section E). Therefore, CHAIN(Y) contains exactly all bridges

of the form XY which have not failed the legality test.

(d) Each time a new bridge is inserted into CHAIN(Y) (step 5
and step 7), it is attached to the end of CHAIN . Therefore, the
bridges of CHAIN(Y} are listed according to the order by which they
have been searched., Thus, a bridge XiY precedes another bridge XjY
in  CHAIN(Y) only if X;Y has been searched before XjY , 1.e.,
only if R(Xi)sﬁ(xj) or ﬁ(XiY)sl(XjY) . Clearly, the deletions of
bridges from CHAIN(Y) do not disturb this order.

Q.E.D.




Theorem 1.3.

For each vertex E , the set T(E) as constructed by the

algorithm, is in agreement with the definition of T(E) .

Proof. According to the inductive hypothesis, when SUBSTAGE
is reached in the beginning of the j-th substage, the sets T(E) are
in agreement with the definition. Throughout the j-th substage,
changes of the sets T(E) occur only in subroutine MERGE which is
activated in step 12 of the algorithm. Thus, we have to prove the

following two claims:

(i) The changes of the sets T(E) as implied by the activation
of subroutine MERGE in step 12 of the algorithm are in accordance

with the definition.

(11) A11 the changes of the sets T(E) which are forced by the
definition, are correctly performed by subroutine MERGE in step 12

of the algorithm.

Proof of Claim {i). Step 12 in the algorithm is reached

immediately after R is declared to be well-defined. During step 12,

subroutine MERGE 1is activated twice.

Consider first the call of MERGE(RZ,R) , Wwhere R2 is the

vertex such that LINK(MATE(R)}ET(Rz) (i.e., TAIL(LINK(MATE(R)))=R2 ):

During the performance of MERGE{RZ,R) two changes are made on the
sets T(E} : T(R2)+T(R2)UT(R) and T(R}«@ . Let V be a vertex such

that before R has been declared to be well-defined, VeET(R) , T.e.,



55

TAIL{V)=R (see Fig. 1.7}. Assume that V 1is not well-defined, then
by the definition of TAIL , V=MATE(R) - which is a contradiction
(for MATE(R) has a 1-link and therefore is well-defined). Thus, V
is well-defined, and R 1s the vertex closest to V on p(0+V)
whose LINK 1is still potential. Denote E1+LINK(MATE(R)) , then E1
is well-defined {by the definition of 1-link), and thus R2 (where
R2=TAIL(E1) ) is the vertex closest to E1 on p(O+E1) whose LINK
is sti11.potential. Since p(0+V)=p(O+E1)~p(R+V) , then after R s
declared to be well-defined R2 is the vertex closest to V on
p(0+V¥) whose LINK is still potential. Therefore, after R is
declared to be well~defined, TAIL(V)=R2 and thus the merging
T(R2}+T(R2)UT(R) is correct. Clearily, (by case {c} of Theorem 1.0 in

Section C), the assignment T(R)«@ 1is correct too.

Consider the call of MERGE(RE,MATE(R)) , where R3 is the vertex
such that SET(Rs) (i.e., TAIL(S)=R3 ), and LINK(R}=ST (see Fig.
1.7): According to case (a) of Theorem 1.0 in Section C, before R is
declared to be well-defined, T{MATE(R)}={R} , i.e., TAIL(R)=MATE(R) .
After R 1is declared to be well-defined, TAIL{R) 1is the vertex
closest to R on p(0+R) whese LINK ds still potential. Since
LINK(R)=ST , then p(0+R)=p(0-S)+p(R<T) and all the vertices on
p(R«T) are well-defined. Thus, after R 1is declared to be well-
defined, TAIL{R} 1is the vertex closest to S on p(0+S) whose
LINK is still potential, namely TAIL(R)=TAIL(S) , i.e., TAIL(R)=R3
Therefore the operation 'T(R3)+T(R3)UT(MATE(R)) is correct. Clearly,

(by case (c) of Theorem 1.0 in Section C), the assignment

T{(MATE(R))«@ is correct too.




56

Proof of Claim (ii). Assume that according to the definition,

the set T(E} must be changed.

(a) Assume that before the change has occurred, MATE{E) was not
well-defined. Then by case (a) of Theorem 1.0 in Section C, before the
change has occurred T(E)={MATE{E)} . The only change that can happen
in this case is that the LINK of MATE(E) is declared to be well-

defined.

Assume that MATE(E) has a 1-1ink. Then, by case (b) of Theorem
1.0 in Section €, after MATE(E) 1is declared to be well-defined, a
vertex V belongs to T(E) if and only if p(C-MATE(E}) is a head
of p(0+V) and all the vertices on p(MATE(E)>V) are well-defined.
Since we are in the j-th substage, MATE(E) has a well-defined Tevel
j . Thus, if V#MATE(E) then V must have a well-defined level
greater than j - and this is impossible during the j-th substage.
Thus, the only vertex in T(E) fis MATE(E) , and therefore no change
has to be made. And indeed nothing is done in this case in the

algorithm.

Assume that MATE(E) has a 2-1ink. Then, by case (¢) of Theorem
1.0, after MATE(E) is declared to be well-defined T(E) becomes
empty. And indeed, when MATE(E) is declared to be well-defined,

subroutine MERGE(RS,E) is called, and T(E)<@ is performed.

(b) Assume that before the change has occurred, MATE(E) was
well-defined but E was still potential. Then two changes of T(E)

can happen: E becomes well-defined or, by the definition, a new




57

vertex Y must be inserted intoe T(E) .

If E becomes well-defined, then, by case (c) of Theorem 1.0,
T(E) becomes empty. And indeed, when E 1s declared to be well-
defined, subroutine MERGE(R ,E) is called, and T{E}«§# is

performed.

Assume that, by the definition, a new vertex V must be
inserted into T(E} , and let R be the vertex such that before the
change has occurred VET(R)} (i.e., TAIL(V)=R }. If, before the
change has occurred, V was not well-defined, then R=MATE(V) , and
a change of T(R) can take place only if the 2-1ink of V is
declared to be well-defined (see case (a) of this proof). And indeed,
in this case we call MERGE(RS,R) , which transfers V¥ into the
correct set T(E) [as we have already shown in the proof of Claim
(i)1. 1f, before the change has occurred, V was well-defined, then
R was the vertex closest to V on p(0+V) whose LINK was still
potential, and the change has occurred by declaring the 2-link of R
to be well-defined. And indeed, in this case we call MERGE(RZ,R)
which transfers the vertices of T(R) into the correct set T(E)

[as we have already shown in the proof of Claim (i)].

{c) Assume that both MATE(E) and E are weil-defined. Then
(by case {c) of Theorem 1.0 in Section C} T(E)=@ , and no change can

occur,

Q.E.D.



Corollary 1.1.

The 2-1ink assignments in the algorithm are in accordance with

the definition of 2-T1ink.

Proof. The 2-1ink assignments are performed in the algorithm
in step 8 and during the performance of subroutine MERGE . In both
cases the assignments are of the form LINK(R)<ST , where TET(R) ,
and STECHAIN(T) . By Corollary 1.0 in Section C, all the bridges of
the set {S'T'{S'T'€CHAIN(T'),T'€T(R)} can be assigned as LINK(R)
according to the definition of 2-1ink. By Theorem 1.3 the set T{(R)
as constructad by the algorithm is in agreement with the definition
of T(R) . Therefore the assignment LINK(R)+ST 1is im accordance

with the definition.

Q.E.D.
Theorem 1.4,

{(a) Let LINK(R)=ST . If SeT(R) , then the 2-link LINK(R)=ST
is illegal, and the bridge ST cannot be used later to define a

Tegal 2-Tink for any other vertex whose LINK is still potential,

(b) Let R be a vertex such that at the end of the SEARCH part
of the j-th substage R s not yet daclared to be well-defined. Let
ST be a bridge which can b2 assigned as LINK(R) such that this
assignment defines for R a Tevel < j . If LINK(R)=ST is illegal,
then SeT(R) .

Proof. (a) Assume that LINK{R}=ST and SET{R} . By case (b)

of Theorem 1.0 in Section C, p{0-MATE(R)) s a head of iS5} . On




59

the other hand, the al-path which is defined by LINK(R}=ST is
p(0+R)=p(0+S)*p{R<T) , and thus p(0+S} is a head of p(0-R) .
Therefore, p(0+MATE(R)) 1is a head of p{(0+R) , which means that

p(0~R) contains an odd loop and is therefore illegal.

Since LINK(R)=ST , by the definition of 2-link p(0~MATE(R))
is a head of p(C+T) and all the vertices on p(MATE(R)-T} are weil-
defined. Assume that ST can be used later to define a 2-1ink for a
vertex E whose LINK 1is still potential. By the definition of 2-
1ink, for this to happen, p{0-MATE(E)) must be a head of p(0=T) .
Thus, either p(0-MATE(E)) is a head of p(O+MATE(R)} or vice versa.
Since presently E is.not well-defined while ail vertices on
p(MATE(R)>T) are well-defined, p(0~MATE(E)}) is a head of
p(0>MATE(R)} . On the other hand p(0>MATE(R)) is a head of p(0+S)
(as implied by SET(R) ). Therefore, p{0~MATE(E)) 1is a head of
p(0>S) . If we assign LINK(E)<ST , then p(0+S) becomes a head of
p(0~E) . In this case, p{0+MATE(E)) becomes a head of p(0-+E) and
thus the assignment LINK(E)«ST is iilegal.

Q.E.D.

(b) The proof of part {b) of Theorem 1.4 1is described in
Appendix A.

Corollary 1.2.

If at the end of the SEARCH part of the j-th substage

(R)=j , then R 1is a vertex of minimum legal level j .




60

proof. If R has a l-1ink, then {by Theorem 1.1) R is well-

defined, i.e., has a minimum legal level J .

Assume that R has a 2-1ink. Consider the last time T(R) has
been changed before the j-th substage. A change of T(R) may occur
only during the performance of subroutine MERGE . When this happens
we also find a bridge SUTQ of minimum level in the set
{S'T'|S‘T‘€CHAIN(T‘),T‘ET(R),S'ﬁT(R)} , and we assign this bridge as
LINK(R) .

If at the end of the SEARCH part of the j-th substage still
LINI((R)=SQT'J , then SO£T(R)- (for, T(R} has not been changed since
SDTO was assigned as LINK(R)). Therefore, by Theorem 1.4 LINK(R)
is legal. If at the end of the SEARCH part of the j-th substage
LINK(R)#SGT0 , then the present LINK(R) was assigned in step 8 of
the algorithm. Let LINK(R}=ST . Since step 8 could be reached from
steps 6 and 7 only in case SET(R) , and since T{R) has not been
changed after ST was assigned as LINK(R) - by Theorem 1.4, LINK(R)

is legal.

Thus, in either case, LINK(R) is legal. If R has a legal
level less than j , then by the inductive nypothesis 2(R}<j . Hence

2(R)=j implies that Jj 1is the minimum legal level of R .

Q.t.D.



61

Theorem 1.5,

If there exists in the graph a legal alternating path of length
J which is leading to R , then at the end of the SEARCH part of
the j-th substage 2(R)<j .

Proof. Let P be & legal alternating path of length j which
is Teading from a l-exposed vertex A1 to the vertex R . Clearly
all vertices which are f-lying on P, (except R ) have levels Tess
than j , and therefore (by the inductive hypothesis) are already
well-defined in the beginning of the j-th substage. lLet W=MATE(R} ,
and tet U be the vertex which precedes W on P, (thus, U is
f-lying on P, and Uk 1is a free edge on pll). Since R{U)<j , the
edge UW has been searched before the end of the SEARCH part of the
J-th substage. If when UW 1s searched W has no weli-defined level,
then either R has a l-Tink, or {according to step 4 of the
algorithm), it is given a l-link. In botﬂ cases, at the end of the
SEARCH part of the j-th substage, R has a well-defined level not
greater than j , and thus the theorem holds. Therefore, assume that
when UW 1is searched W 1is already well-defined. Thus, at the end
of the SEARCH part of the j-th substage, W has a l-link while R
is not yet well-defined. It follows that MATE(R)ET(R) , i.e.,

T(R)#0 .

Claim 1. If at the end of the SEARCH part of the j-th sub-
stage, the set {S'T'[S'T'eCHAIN(T")},T'€T(R),S'¢T(R)} contains at

least one bridge SOT0 which can define for R a Tevel not greater



62

than j , then &{R)<J .

Proof of Claim 1. Consider the last time T(R) has been

changed before the j-th substage. Such a change may occur onty during
a performance of the subroutine MERGE . By the definition of MERGE,
after T(R) 1s changed we find a bridge SZTZ of minimum Tevel

in the set {S'T'|S'T'€CHAIN(T'),T'€T(R),S'¢T(R)} , and we assign:
,LINK(R)+52T2 . 2(R)+£2 (where Q2=E(52T2)+1-2(MATE(R)) y. After this
assignment of &(R) is performed, &(R) can be changed only by step
8 of the algorithm, in which case it becomes lower. Therefore, if
ﬁzij , then at the end of the SEARCH part of the j-th substage

2{R}<j .

Assume that £2>j . At the end of the SEARCK part-of the j-th
substage TOET(R) and SOQT(R) . If SOT0 is searched before the
assignment 2(R)+22 is performed ,then, when this assignment is
performed , SDTB is already contained in the set
{S'T"|S'T'€CHAIN(T'),T'€T(R),S'€T(R)} , and thus we would assign
LINK(R)<—SOT0 , 2{R)«<j —in contradiction to the assumption that
£2>j . Therefore, SOT0 is searched after the last change of T(R}
occurs. It follows that when SOTu is searched, TD is already
contained in T{R) and thus by step 8 of the algorithm we assign:
LINK(R)<—SOT0 , 2(R)«j . Since any further assignment of &(R) by
step 8 can only Tower &(R) , it follows that at the end of the SEARCH

part of the j-th substage 2(R)sj .

Q.E.D.




63

Claim 2. Let Y7 be a matched [free] edge on p1 » Such that at
the end of the SEARCH part of the j-th substage Y and Z are
already well-defined and YE€T(R) . Then either &(R)<j , or
LY)+2(Z)-2(W)<d  [R{Y)+2(Z)+1-2(W)<j] , where W=MATE(R) .

Proof of Claim 2. Denote by V-—i»vz the segment of p  from
1 1
¥V to V2 . Denote by V;—5+V the segment of p(0>Y) from V to
1 2 1

V . Let [V—V | be the Tength of a segment YV .
2 1 2 b3 2

Let B1 be the l-exposed vertex from which p{0+Y} starts (thus,
p(0+Y) s B{—3+Y ). By case (b} of Theorem 1.0 in Section C, B{-3+w
is a head of B;~5+Y . Denote by Vl this vertex of Y and Z which
is f-lying on p1 , and let V2 be the other vertex. Clearly
IQ(VI)SIA;—1+VIL LIf v;—i+w and B;—5+W are disjoint {except for
the vertex W ), then B;—£+w-l+v2 is a legal alternating path leading
to V., and thus g,(vz)gjsl--z-gw|+|w—1»v2|=2(w)+[ww¥-»v2| . Therefore:
L(Y)+2(Z)-2(W) = £(V1)+2(V2)—2(w)s|Al—l-»Vll+|v-2-—5-»w| = |A1—%-R| = j
(if YZ s é free edge:
2(Y)+2(Z)+1-£(W)<|A;—-L>Vl|+1+[V2—~5»w1={A1——1—>RI=j]. Assume that vz—%w
and s;—i+w are not disjoint, and Tet L be the first vertex which
is f-Tying on B;~5+w and is common to vg—i+w . if L is not
f-lying on v;—i+w , then B;~3+L—5+V2 is a Tegal alternating path’
leading to V2 » and thus:
Q(Vz)s[Bi—z—»LHIL-—l—»VZ|<|Bl—~2-+w[+{w—3—>\!2[=5L(N)+|W—3-+V2I , and again
we get 4(Y)+R(Z)-2(W)<j [if YZ ds a free edge:
2Y)+e(Z)+1-2(W)<j 1.




64

Assume that L is f-lyign on v2—1+w , then 81—2+L—1-+R is a
legal alternating path Teading to R . If V1=Y {(i.e., if Y is

f-lying on p ) then:
|B 2oL+ L—sR| <| B Y[+ YRl < | A Y[+ V-] = [A=SR] = j .

Thus, there existsa legal alternating path leading to R of length

iess than Jj , and therefore, by the inductive hypothesis 2(R}<j .

Assume that V1=Z (i.e., Z 1is f-lying on P, y. If
[W-2Y|<|W2+Y|  then z(v)=|Bl-—z-+wi>v|<|81—?—+w|+|wi-+y| = L(W)+| U=y |
Since z(z)s[Al—-}—»zl it follows that
z(v)+z(z)-z(w)g|A1—l+z]+{v—1+w| = IAl—-l—»Rl =j, [if YZI 1is a free
edge: z(¥)+g(2)+1-z(w)s|A1——1-+z|+1+|Yi»w|={A1—1>R|=:; 1. If

|W-2Y|>[W=Y| then:

1B L]+ LoR] <[ B =W+ Y ] < [B e fu 2ov] = B o] = a(Y)
Since Y is well-defined, &(Y)<j . It follows that Bl-3->L—i+R is
a legal alternating path of length less than j which is leading to

R . and thus, by the inductive nypothesis, &(R)<j .
Q.E.D.

Claim 3. Let YZ be a matched edge on P, such that at the
end of the SEARCH part of the j-th substage Y and Z are already
well-defined and YeT(R) while Z¢T(R} . Then &(R)<j .

Proof of Claim 3. Assume that 2{R}zj , then by Claim 2

2(Y)+2(Z)-2(W)<j . Since at the end of the SEARCH part of the j-th

substage both Y and Z are well-defined, one of them has a 2-1ink




68

to a bridge SOT0

Assume that SOT0=LINK(Y) . By the definition of 2-link, all thé
vertices on p(T0+Y) are well-defined. Therefore, at the end of the
SEARCH part of the j-th substage, both T0 and MATE(TD) are well-
defined, and thus E(Te)sj . By the algorithm, vertices of 2-1ink and
level Jj are declared to be well-defined only during the UPDATE
part of the j-th substage, and thus if 2(T0)=j then T0 must have a
1-1ink. However, in this case, MATE(TD) has a 2-1ink and
R(MATE(TO))zj , and thus MATE(TO} cannot be well-defined—in
contradiction to the requirement that all vertices on p(T0+Y) are
welli-defined. Hence 2(T0)<j , and TOS0 has been searched and
inserted into CHAIN(SO) before the end of the SEARCH part of the
j-th substage. Since LINK(Y)=SOT0 . p(O+SO) is a head of p(0>Y)
and all the vertices on p(SU+Y) are well-defined - and thus YET(R)
implies that SOET(R) . On the other hand (by LINK(Y)=SGTU ), p(Q»Z)
is a head of p(0+TD) , and all the vertices on p{Z+TO) are well-
defined. Therefore, Tn and Z belong to the same set T(R'} , and
in particular TeﬁT(R) . It follows that at the end of the SEARCH
part of the j-th substage, the bridge TOSD belongs to the set
{S'T'|S'T'€CHAIN(T"),T'€T(R),S'€T(R)}

By Eq. {1.3}, 2(Y)=£(SDTU)+1-£(Z) , and thus
28 T Y1=2(Y)+2(Z) . Therefore, the bridge TUS0 can define for R
00
a level £ where: il = R(SGT0)+1-£(N) = o(Y)+&(Z)-2(W)gj . Hence,

by Claim 1, 2(R)<j .

Assume that SGT0=LINK(Z) . Since E(SO)<2(Z)sj , the bridge



66

S T has been searched and inserted into CHAIN(TD) before the end
[

of the SEARCH part of the j-th substage. Since LINK(Z)=SOT0 .
p(0+50) is a head of p(0-Z) and all the vertices on p(SU+Z) are
well-defined. Therefore SD and Z belong to the same set T(R') ,
and in particular SOQT(R) . On the other hand, since p{0~+Y) is a
head of p(0+T0) and all vertices on p(Y+TO) are well-defined, the
relation YET(R) implies that TDET(R) . Thus, at the end of the
SEARCH part of the j-th substage the bridge SUT0 belongs to the

set {S'T'[S'T'eCHAIN(T'),T'€T(R),S"¢T(R)} , and it can be assigned as
LINK(R) . By E£q. (1.3), this assignment defines for R a level 21

where; 21=2(50T0)+1—£(W)=2(Y)+£(Z)nﬁ(W)sj . Hence, by Claim 1,
2{R)<] .

Q.E.D.

Proof of Theorem 1.5. Llet Q be the vertex closest to A on
1

p1 » such that Q@ 1is not f-lying on pl » and at the end of the

SEARCH part of the j-th substage QeT(R) (such a vertex exists -

e.g. MATE(R) }. Clearly § is well-defined, and thus Q#MATE(AI)
(for, if MATE(AI) is already well-defined, then the algorithm would
be terminated in step 9(a) before the j-th substage begins). tet P

be the vertex which precedes Q on pi (i.e., P is f-lying on p1 )
and PQ is a free edge on p1 }. Since A;—3+P is a legal alternating
path of length less than j which is leading to P , then by the
inductive hypothesis P is well-defined and &(P)<j . Therefore PQ
has been searched before the end of-the SEARCH part of the j-th sub-

stage.



67

Assume that at the end of the SEARCH part of the j-th substage
PET(R) . By the definition of T(R} , MATE(P} is already well-defined
and by the choice of Q, MATE(P)¢T(R) . Therefore by Claim 3, &(R)<j .

Assume that at the end of the SEARCH part of the j-th substage,
PéT(R) . If LINK(MATE(P))=Q , then MATE(P} is well-defined and
belongs to the same set as Q , i.e., MATE(P)ET(R) . Thus, by Claim
3, %(R)<j . If LINK{MATE(Q))=P , then MATE(Q) 1is well-defined and
belongs to the same set T(R'} as P, i.e., MATE(Q)¢T(R) . Again,
by Claim 3, £(R)<ji . If LINK(MATE{P))#Q and LINK(MATE(Q))#P , then
PQ 1is a bridge. Since PQ has been searched before the end of the
SEARCH part of the j-th substage and P¢T(R) while QET(R) , it
follows that PQ belongs to the set
{S'T"|S'T*ECHAIN(T' ) ,T'€T(R),S'¢T(R)} . Thus, PQ can define for R
a Tegal Tevel 21 , where (by Eq. (1.3)) £1=£(P)+£(Q)+l—£(w) . By
Claim 2, either &(R)<j or lej , where the latter case implies (by

Claim 1) that &(R)<j .
0.E.D.

Corollary 1.3

At the end of the SEARCH part of the j-th substage, for each

igj , LIST(i) contains exactly all vertices of minimum legal level

i

Proof. If 1i<j , then by the inductive hypothesis, in the

beginning bf the j-th substage, LIST(i) contains exactly all vertices



of minimum legal level i . During the SEARCH part of the algorithm,
a vertex R can be deleted from LIST(i} only in step 8, when a new
2-link XY 1is assigned to R . For this to happen, Y must belong

to T(R) . However, by the definition of T(R) and by Theorem 1.3,

if R has a 2-link, and it belongs to LIST(i) (where 1i<j ), then
T(R)=@ . Thus, during the SEARCH part no vertex R is deleted from
LIST(1) .

Assume that during the SEARCE part of the j-th substage a vertex
R is inserted into LIST(i) (where i<j ). This can happen if a level
i 1is defined for R . Clearly this Tevel is illegal, and thus by
Thoerem 1.1 this level cannot be defined by a 1-1ink. Assume that the
fevel 1 s defined for R by a 2-link XY . Since no changes of
the set T(R) occur during the SEARCH part of the algorithm, it
follows by Theorem 1.4 that XeT(R) . However, in this case, by step
& of the algorithm, the assignment LINK(R)<XY cannot be performed,
and thus the Tevel 1 is not defined for R and R is not inserted

into LIST(i} .

Thus, if 1i<j , no changes of LIST(i) occur during the SEARCH
part of the j-th substage, and at the end of this part LIST(i)

contains exactly all vertices of minimum legal level i .

Consider now LIST(j) : Corollary 1.2 implies that at the end of
SEARCH part of the j-th substage, all the vertices which are contained in
LIST(j) are vertices of minimum legal level j . On the other hand,

if a vertex R has a minimum legal Tevel j , then by Theorem 1.5,




at the end of the SEARCH part of the j-th substage 2(R)=j and thus

RELIST(3) . Therefore, at the end of the SEARCH part of the j-th
substage LIST(Jj) contains exactly all vertices of minimum legal

ltevel j .

Q.E.D.

Theorem 1.6

At the end of the j-th substage, for each i<j , LIST(i) contains

exactly all vertices of minimum Tegal Tevel 1

Proof. By Corollary 1.3, at the end of the SEARCH part of the
j-th substage, for each i<j , LIST(i) contains exactly all vertices
of minimum lagal level { . Throughout the UPDATE part, changes of
LIST(i) can occur only if during am activation of MERGE(RZ,R)
lor MERGE(Ra,MATE(R)) 1, the level of R2 [or RE] is changed as
the result of the operation T(R2)+T(R2)UT(R) Lor
T(R3)+T(R3)UT(MATE(R))]. By the definition of MERGE , in this case
R lor R ] has a 2-Tink and T(R)#8 (TR )#B] . However, if i<j ,
then for each vertex R in LIST(i) sucn tnat R has a 2-link,
T{(R)=¢ . It follows that changes of LIST(i) (i<j) can happen during
the UPDATE part of the j-th substage only if a vertex of higher

Tevel is inserted into LIST(i} or if a vertex is deleted from

LIST(]) .

Let igj , and assume that during the UPDATE »part of the i-th
substage a new vertex R2 is inserted into LIST(i) by MERGE(RE,R)

such that LTNK/R }=ST . Before MERGE is cailea, ~



belongs to the set T{R) where &(R)=j, and thus ST can be assigned
as LINK(R) . However, by the definition of R2 , if ST defines for
R2 a2 level 1 , then it defines for R a Jevel less than i , which
is {by Corollary 1.3) illegal. Therefore, by Theorem 1.4, at the end
of the SEARCH part of the j-th substage S€T(R) , and thus after

the operation T(R2)+T(R2)UT(R) is performed, SET(RZ) . It follows
that ST fails the legality test which is performed on it during the
performance of MERGE(RZ,R) , and thus it cannot be assigned as

LINK(R ) . Therefore, no vertex R2 is inserted into LIST(i) by

2

MERGE(RZ,R) .

Assume that a vertex R3 is inserted into LIST(i) by
MERGE(Rg,MATE(R)) . By the definition, T(MATE(R))={R} , and thus the
level 1 is defined for R3 by a bridge of the form ER . By Eq.
(1.3), 1=R(R )=t(R)+e(E)*L-2(MATE(R )) . bhen the bridge ER is
searched, MATE(R) already has a 1-1ink {for otherwise we would
assign LINK(MATE(R))<E and ER would not be a bridge), and thus
2(E)+124(MATE(R}) . Therefore i:R(Ra)zﬂ(R)+R(MATE(R))-Q(MATE(RB)) .
On the other hand, by step 11 of the algorithm, LINK(R)=ST where
SET(RE) . Thus (by Eq. (1.3)): 2(R)+2(MATE(R)}=2{(ST)+1 . It follows
that 1aR(ST)+l—£(MATE(R3)) . Since at the end of the SEARCH part
TET(R) , it follows that at the end of the SEARCH part of the j-th
substage, the bridge TS belongs to the set
{S'T'|S'T‘€CHAIN(T‘),T'ET(R3),S'€T(R3)} and it can define for R3 a
level not greater than i . Therefore by Claim 1 of Theorem 1.5, at
the end of the SEARCH part 2(R )i —in contradiction to our

3

assumption on R . Therefore, no vertex R is inserted into

2




71

LIST(i) by MERGE(R .MATE(R)) .

Hence, no vertex is inserted into LIST(i) during the UPDATE

part of the j-th substage.

Assume that a vertex R2 is deleted from LIST(j) during the
performance of MERGE(RZ,R) in the UPDATE part. Let ST=LINK(R2)
when MERGE 1s called. Thus (by Corollary 1.0 in Section C) TET(RZ) .
Since after the performance of T(R2)+T(R2)UT(R) ST fails the
legality test, when MERGE 1is called SeT(R) . Therefore, at the end
of the SEARCH part TS can define for R a Tegal level Rl , and
since R(R)=j , glzj . On the other hand, by the definition of MERGE .
LINK(MATE(R))ET(RZ) and thus (by case (b) of Theorem 1.0 in Section
), p(O+MATE(R2)) is a nead of p(O>LINK(MATE(R)) ). It follows
that p(O+MATE(R2)) is a head of p(0-MATE{R)) and thus (since

RZ#R } o, 2(MATE(R))>R(MATE(R2)) . Therefore (by Eq. {(1.3)):
2R,) = L(ST)+1-2(MATE(R )) > 2(ST)+1-4(MATE(R)) = Baj

This inequality contradicts the fact that Q(R2)=j . Hence, no vertex

can be deleted from LIST(j) during the performance of MERGE(RZ,R) .

Assume that a vertex R3 is deleted from LIST(j) during the
performance of MERGE(Ra,MATE(R)) . Let ST=LINK(R3) when
MERGE{Rs,MATE(R)) is called. Since after the performance of
T(R3)+T(R3}UT(MATE(R)) , ST fails the legality test, when MERGE is
called SeT{MATE(R)) . However, when MERGE is calied,
T(MATE(R))={R} , and thus S=R . Therefore, the assigrment

LINK(R3)=ST defines for R3 a level greater than 2{R) , i.e.,




72

greater than Jj . This contradicts the fact that E(R3)=j . Hence
no vertex can be deleted from LIST(j} during the performance of

MERGE(Ra,MATE(R)) .

Therefore no change can be performed on LIST(j) during the
UPDATE part of the j-th substage and thus, at the end of the j-th
substage LIST(j} contains exactly all vertices of minimum legal

level J .
Q.E.D.

Theorem 1.6 proves the inductive hypothesis for Jj , and thus

the proof of the Main Theorem is completed.

Corollary 1.4,

If the first stage is terminated in step 9{a) of the algorithm,
then all the vertices whose present levels are greater than r , are
not Tying on any minimum legal augmenting path in the graph, and
therefore can be ignored throughout the remainder of the present

phase (i.e., during the second, third and fourth stages).

Proof. Let R be a vertex such that when the first stage is
terminated 2&{R)>r . If R s lying on a minimum legal augmenting
path p(A-B) then it is either f-lying on p{A>B) or f-lying on
p{A<+B) . Assume that R 1is f-lying on p{A=B) [p(A<B)] , then the
path p(A+R) [p(R«B)] 1is a legal alternating path leading to R
whose length is not greater than r . Thus, by Theorem 1.5, at the

end of the SEARCH part of the r-th substage, &4(R)<r . This is a




contradiction to the fact that &(R)> . Hence R is not 1ying on

any minimum legal augmenting path in the graph, and therefore can be

ignored throughout the remainder of the present phase,

Q.E.D.

Corollary 1.5,

If the first stage is terminated in step 14 of the algorithm,

then the present matching is maximum.

Proof, If the present matching is not maximum, then there must
exist in the graph a minimum legal augmenting path p{A>B) . Clearly
the length r of this path can not exceed [%1 . Therefore, by
Theorem 1.5, at the end of the SEARCH part of the r-th substage
2(B)=r , and thus the algorithm would be terminated in step 9(a).
This contradiction proves that there is no legal augmenting path in

the graph, and thus the present matching is maximum.

Q.E.D.

H. The Complexity of the First Stage and the Implementation of MERGE

We consider separately the complexities of the SEARCH part and
of the UPDATE part in the algorithm.

Throughout the whole performance of the first stage, each free
edge of the graph is searched (during the SEARCH part) at most once

in each direction. A constant number of operations are performed per




each such a search. Thus, the complexity of the SEARCH part is at

most O{(m) {where m is the number of edges in the graph).

During the first stage, subroutine MERGE is called exactly
twice per each vertex whose 2-link is declared to be well-defined.
Since there are at most {%ﬁ vertices which have a 2-1link, sub-
routine MERGE 1is calied at most n times throughout the whole

first stage.

In this section we show three implementations of subroutine
MERGE : The first implementation leads to a total complexity of
0{n?) for the first stage. The second implementation Teads to a
complexity of 0O{(m 1g n) for the first stage. The third impiemen-
tation leads to a complexity of O(m 1g Tg n} for the first stage.
Another implementation, which leads to a complexity of O(m+n1+€)
(where € s an arbitrary positive value), is described in Appendix
B. Since the complexity of the first stage determines the complexity
of the whole phase, those implementations lead to matching algorithms
of complexities D(nz's) , O(m/n 1g n) , O(mvn 1g 1g n} and

O(mvﬁ4n1'5+E) respectively.

The first two 1mp1émentations are simpler than the other two.
While the first is efficient in the case of dense graphs, the second
implementation is most efficient in the case of sparse graphs (e.g.

planar graphs).

Implementation 1. In this implementation each set T(R) is

represented by a simple list. Two variables are used to describe




75

this 1ist: FRST(R) points to the first vertex in the Tist T(R)

(if T{R)=p then FRST(R)=0 ); NEXT(V) (where VET(R) ) points to
the vertex which follows V in T(R) (if V 1is the last vertex in
T(R) , then NEXT(V)=0 ). We also use in this implementation the
variable TAIL which is attached to each vertex V of the graph and
points to the set T(R) which contains V : TAIL{V)=R & VeT(R) . In
the beginning of the first stage we assign for each vertex R of the
graph: TAIL(R)<MATE(R) , FRST(R)<MATE(R) , NEXT(R)«<0 . The variables
TAIL , FRST and NEXT are changed only when the sets T(R') are

changed, i.e., during the performance of subroutine MERGE.

The algorithm of the subroutine MERGE(RZ,R) goes as follows:
{Merge T(Rz) and T(R}]
1. For each vertex V of T(R) assign: TAIL(V)+R2

2. Let V1 be the last vertex of T(Rz) » then assign:
NEXT(V1)+FRST(R) .

3. Assign FRST(R)«Q .

4, Delete Rz from LIST(E(RZ)) . Assign: 2(R2}+l_2J+1 ’

LINK(R2)+O . Let T+FRST(R2) .
[Search through the vertices of T(Rz}]

5. If CHAIN(T)=@ then go to 8, Else let ST be the first
bridge of CHAIN(T) .



6. If TAIL(S)=R2 then delete ST from CHAIN(T) and

return to 5.

7. If R(Rz)>2(ST)+1—£(MATE(R2)) , then assign:

£(R2)+2(ST)+1—£(MATE(R2)) ) LINK(R2)+ST .

8. If NEXT{T)#0 then assign: T<NEXT(T) and return to 5.

9. Insert R2 into LIST(Q(RZ)) }

One can see that this algorithm implements subroutine MERGE as

it is defined by rules (a) and (b') in Section E.

By Theorem 1.4, the bridges which are removed from the CHAINs
in step 6 of the algorithm are no more useful and their deletion is

safe.

Except for the deletion of bridges in steps 5-6, a constant
humber of operations is performed per each vertex of T(RZ)UT(R) in
every call of MERGE . Thus, except for steps 5-6,the complexity of
each performance of MERGE 1is O(n) and the total complexity of
activating subroutine MERGE during the first stage is therefore
0{n?) . Since the number of bridges is less.than m (the number of
edges in the graph), steps 5-6 can be performed not more than m
times throughout the whole first stage. Thus, the complexity of steps

5-6 is  0O(m) .

Therefore, the total complexity of the first stage in the case

of Implementation 1 is 0{(n?) .




77

Implementation 2. In Implementation 2, each set T(R) is

represented by a 2-3 tree [6]. Since the number of vertices in a set

T{R) 1is at most n , the depth of the tree cannot exceed 1gn ,

For each vertex V of the graph we attach a variable called
VALUE which is defined as follows: If V 1is not well-defined yet,
or if CHAIN(V) 1is empty, then VALUE(V)=n ; else VALUE(Y)=2{UV) ,
where UY 1s the first bridge in CHAIN(V} . Thus, in the beginning
of the first stage we assign for each vertex V : VALUE(V)=n ,
VALUE(V} s changed only in one of the following three cases: When
CHAIN(V)=@ and a well-defined bridge is inserted into CHAIN(V)
{step 7 of the algorithm); when CHAIN(V)#@ and V has a 2-Tink which
is declared to be well-defined (step 1l of the algorithm); when
the first bridge of CHAIN(V) s deleted from the CHAIN (during
the performance of subroutine MERGE ). Clearly the operations which
may be required in steps 7 and 11 of the algorithm have no influence

on its complexity.

The algorithm of the subroutine MERGE(RZ,R) in this
implemeﬂtation,‘goes as follows (the underlined instructions are the

instructions on 2-3 tree as defined in [61):
1. MERGE T(R2)+T(R2)UT(R) .
2. Delete R2 from LIST(E(Rz)) .

3. Find in T(R ) a vertex T of MINIMUM VALUE .

[\~]

4. 1f VALUE{T)=n then assign: Q(RZ)«{%EH , LINK(R )0 and




78

go to 7. Else, let ST be the first bridge in CHAIN(T) .

5. FIND the vertex R1 such that SET(RI) L If R1=R2 then
DELETE T from T(Rz) , Delete ST from CHAIN{(T) and

update VALUE(T) . INSERT T into T(Rz) . Return to 3.

6. [SET(RZ) .1 Assign: £(R2)+2(ST)+1-2(MATE(R2)) s LINK(R2)+ST .

7. Insert R2 into LIST(Q(RZ)) .

Cleariy the implementation of MERGE by this algorithm is in

accordance with the definition of MERGE .

Throughout the whoie activation of subroutine MERGE 1in the
first stage, each of the instructions MINIMUM (step 3), FIND ,
DELETE and INSERT (step 5) is required at most mtn times (once
per each deletion of a bridge ST from CHAIN(T) and once for each
call of MERGE ). The instruction MERGE (step 1) is required at
most n times (once per eachcallof subroutine MERGE ). Since the
complexity of each of those instructions is 0(1g n) , the total

complexity of this algorithm is OQ(m 1g n} .

Thus, Implementation 2 determines for the first stage complexity

0(m 1g n) .

Implementation 3. Implementation 3 is in fact similar to

Inplementation 2, except that the representation of the sets T(R)
by 2-3 trees is replaced by the data structure which was suggested

by van Emde Boas {71. According to his algorithm, each of the




79

instructions MINIMUM , FIND , DELETE , INSERT and MERGE has

complexity O0(1g 1g n} . Therefore the total complexity of the first

stage in this implementation is O(m 1g 1g n} .



2. THE SECOND STAGE

A. General Description

The final goal of every phase of the algorithm is to find a
maximal set of disjoint minimum legal augmenting paths in the graph.
In the second stage of the phase, we reduce the original graph by

removing those edges which are not lying on any minimum legal aug-

menting paths, and by shrinking some of the edges which are Tying on
illegal augmenting paths. The result of this process is a reduced

graph which has the following property:

Every maximal set of disjoint arbitrary legal augmenting paths
in the reduced graph corresponds to a maximal set of disjoint

minimum Tegal augmenting paths in the original graph.

Thus, instead of Tooking for a maximal set of disjoint minimum N
augmenting paths in the original graph, it is sufficient to look for é
a maximal set of disjoint arbitrary (legal) augmenting path in the
reduced graph. Clearly, the renocuncement of the minimality require-

ment makes the search of a maximal set of disjoint paths, simpler,

The irrelevant vertices and edges. In the beginning of the

second stage we know the length r of the minimum legal augmenting
pathsin the graph {(step 9(a) of the algorithm of the first stage).
For each 1 , isr , we also know the set LIST(i} of all the
vertices whose Tevels are 1 , and by using the variables LINK we

can retrace minimum legal al-paths leading to these vertices {Main



81

Theorem of Chapter 1}, The other vertices (whose levels are greater
than v ), cannot be lying on any minimum legal augmenting path in
the graph, and therefore can be ignored throughout the remainder of

the present phase (Corollary 1.4 of Chapter 1).

Let XY be a free [matched] edge, and let p{AsB) be a legal
augmenting path which is passing through XY (such that X is f-lying
on p{A+B} ). The augmenting path p{A+B) consists in fact of two |
legal alternating paths, p(A+X) which is leading to X and p(Y<B)
which is leading to Y (see Fig. 2.1). Since by the definition
[*

2(X)<|p(A+X) and 2(Y)s{p(Y«B)| , it follows that

LX) +e{Y)+1g|p(A>B)! T[or, if XY 1is matched, 2(X)+2(Y)<|p(A>B)| 1.

Define:
— free edge
anana, Maiched edge
A X Y B
meww-m—-uw - e ARAA P A
+\ 0/5'-

L(X) = [p(0=X}| < [p{A=X)]
2(Y) = |p{0+Y)| < [p(Y<B)|
d(XY) = 2(X)+2(Y)+1 < |p(A>B}|

Fig. 2.1 - d{XY)

* .
"nlA+X) is the lengtn of the alternating path p(A-X) .



2{XY)+1 if XY is free
4(xY) ={ (2.1)
L{XY) if XY is matched

Then, the length of a legal augmenting path which is passing through
XY must be at least d{(XY) . It follows that if d{(XY)>r then XY
is not lying on any minimum legal augmenting path in the graph and
therefore can be jgnored throughout the remainder of the present
phase. In particular, if XY 1is a matched edge, then neither X

nor Y can be lying on a minimum legal augmenting path and thus

these vertices can be ignored too.

Small loop. Let XY be an edge (free or matched), such that
d(XY)<r . Since the length of the augmenting path p{0=X)-p(0«Y) is
d(XY) (i.e., less than r ), this path cannot be legal, but must
contain an odd loop (see Fig. 2.2). Such a Toop, which is formed by
an augmenting path whose length is less than vy , is called a small
loop. An edge XY 1is lying on a small Toop if and only if d{XY)<r .
A vertex Y is lying on a small loop if and only if the matched
edge YZ (where Z=MATE(Y) ) is lying on a small Toop, i.e., if and
only if d{YZ)<r . However, Y can simultanecusly be lying on some
different small loops (e.g., in Fig. 2.2, Y 1is lying on the two

small loops which are formed by the edges XY and ZU ).

Let Y be a vertex and Tet N be the last vertex on p{0-Y)
such that N is not lying on a small Toop. Then N is f-lying on
p(0+Y) and the matched edge MN (where M=MATE(N) ) satisfies

d(MN)zr . In Section B we define N as BASE(Y) , and we prove that




N=BASE(Y)= —A— v - == At p (O X )
=BASE(Y|)=
= BASE(Y,)

R Y Y Y Y P(O"’““'Y)
i fipme e e o o ety Py
e e —V VS - PX

Fig. 2.2 - d{X¥)<r

if a minimum legal augmenting path is passing through Y then it
must also pass througit N . Thus, if two vertices Y1 and Y2 have
the same BASE , then there exist no two disjoint minimum legal
augmenting paths pl and p2 » such that pl is paﬁsing through

Y1 and p2 is passing through Y2 . Therefore, for the purpose of
finding a maximal set of disjoint minimum legal augmenting path in
the graph, we may think of Yl and Y2 as if they are identical
with their BASE .

Thus, the basic idea of the second stage is to remove from the

graph all the vertices and edges which are not iying on a minimum




legal augmenting path (f.e., all edges XY such that d(XY)>r ),

and for every vertex Y which is lying on a small loop to identify
Y with its BASE . The self-loops which are created by this process
are removed from the graph, and if parallel edges are created, all
of them but one are deleted, The graph & which is formed as the

result of this process is called the reduced graph. In Section C we

prove that B has the property that every maximal set of (arbitrary)
disjoint legal augmenting paths in & corresponds to a maximal set

of disjoint minimum Tegal augmenting paths in the original graph G .

[Notice that the process of identifying every vertex Y which
is lying on a small loop with its BASE is in fact a process of
shrinking the small loops, and is therefore similar to the process of
blossoms' shrinking which is performed by Edmonds [1}. However, there
are two principal distinctions between these two processes: While
Edmonds shrinks every loop when it is discovered, we shrink only
those loops which cause troubles, namely the small loops. Also, in
Edmonds' algorithm the shrinking is performed immediately when the
loop is discovered and separately for each loop, and thus a vertex
which is lying on some loops may participate in many shrinks., In our
algorithm each vertex and each edge is shrunk only once and there-
fore our bookkeeping is simpler and the complexity of the algorithm

is Tower].



85

B. The BASE of a Vertex

Let Y be a vertex and let Z=MATE(Y) . Define:

Y if d{YZ)zr
BASE{Y) =< BASE(Y) if d(YZ)<r and LINK{Y)=V (2.2)
BASE(S) if d{(YZ)<r and LINK(Y)=ST

The following Lemma 2.1 also proves that for each Y , BASE(Y)

is properly defined,
Lemma 2.1

Let N=BASE(Y) and M=MATE(N) . Then N is the last vertex on
p(0+Y) such that d(MN)zr .

Proof. Let Z=MATE(Y) . The lemma is trivial if d{YZ)zr . Thus,
assume that d{YZ)<r . Let A1 be the l-exposed vertex from which
p(0~Y) starts, and let AZ be the 2-exposed vertex such that
A2=MATE(A1} . By the definition £(A1)=0 while by the algorithm of the
first stage E(Az)zr. Thus , AZA1 is a matched edge on p(0+Y} such
that d(AzAl);r . Let M1N1 be the last matched edge on p(0+Y)
such that d(M1N1)>r , and N1 is f-lying on p{0>Y) . We have to

show that N1=BASE(Y) .

Consider the seguence of vertices YO,Y .... which is defined
1

as follows:



v oif LINK(Y1FI)=V

S if LINK(Y =5T

21 i-1)

Clearly, for each izl , p(0+Yi) is a head of p(0+Yi_1) and
thus a head of p(0+Y) .

Let j be the greatest index such that N1 is lyingland thus
f-lyingjon p(0+Yj) . Assume that YJ.#N1 . Then Yj cannot have a
1-Tink (for otherwise LINK(Yj) would contradict the choice of Yj ).
Thus, Yj has a 2-1ink. Let ST=LINK(Yj) , then S=Yj+1 . By the
choice of Yj . N1 is not lying on p(0»$) , but it is lying on
p(T+Yj) . Denote by d1 the number of free edges on p(S+Yj)
between S and N1 and by d2 the number of free deges on the
segment p(Ml+Yj) . Since p(0-»S) 1is a head of p(O+Yj) R
!L(Yj)=£(s)+dl+d2 . For the same reason: R(Nl)s2(5)+d1 . Since
LINK(Yj)=ST s p(O+MATE(Yj)) is a nead of p(0+T} and thus
Q(MI}SQ(MATE(Yj)}+d2 . Therefore:

r < d(M1N1) R(Ml) + E(Nl) < 4(S) + d + d2 + R(MATE(Yj})

z(Yj) + £(MATE(Yj))
in contradiction to the choice of M1N1 . Hence YJ.=N1 .

By the choice of N1 and Yj , for each 1 , 0gigj-1 ., there
exists: BASE(Y1)=BASE(Y1+1} . Therefore, BASE(Y)=BASE(YJ)=BASE(N1) .
However, by the definition, BASE(N1)=N1 and thus BASE(Y)=N1

{.E.D.



Corollary 2.1

Let N=BASE(Y) and M=MATE(N) . Then p(0>N) 1is the jongest
head of p(0+Y) such that d(MN)sr .

Lemma 2.2

Let YZ be a matched edge such that d(YZ)<r . Then for each
edge ST on p{BASE(Y)>Y) , d(ST)<r .

Proof. By Lemma 2.1, the claim is true in case ST 1s a matched
edge. Thus, let ST be a free edge, and without loss of generality

assume that S s f-lying on p(0>Y) .

Consider the sequence of vertices YU,YI,“-,Yk which is defined

as follows:

VOAFLINK(Y; )=V

1)

leick U Ff LINK(Y. . )=UNW

Clearly for each 1 , I<isk , p(O+Y1) is a head of p(0+Y1_1} ,
and thus a head of p{(0+Y) .

For each 1 , O<gigk , Tet Zi=MATE(Yi) . Let j be the least
index such that ST s lying on p(Yj+Y) .If Yj=LINK(Yj_1) then

LY

J._1)=JL(YJ.)+1 . On the other hand, in this case the choice of Yj

implies that Yj=5 . Zj_1=T . Thus, by Lemma 2.1:

d(ST}

1t
P
—
w
—
+
=
—_—
_'
—
+
—
]

L(Y.) + &(Z.

J J-l) *1

) + R(Zj_l) = d(Yj-le-l) <ro.




If YFLINK(Y, ;) . then LINK(Y

J._l)=\r“'].|r|( . Denote by d1 the

number of free edges on p(Yj+Yj_1) between Yj and S, and by c!2
the number of free edges on the segment p(T+Yj_1) . Since . p(0+Yj)

is a head of p(O+Yj_1) s Q(Y._1)=2(Yj)+dl+d2+l . For the same reason:

J
z(S)gR(Yde1 . Since LINK(YJ_1)=YJN . p(G+Zj_1) is a head of

p{0-W) and thus: E(T)sﬁ(lj_ )+d2 . Therefore:

1

d(ST) = &(S) + »{T) + 1 < JL(YJ.) + sa(zj_l) td +d +1

Ay + 2(z

j-l) j-l) = d(Yj_lzj_l) <r.,

Q.E.D.

Corellary 2.2

Let YZ be a matched edge such that d(YZ)<r . Let N=BASE(Y)
and M=MATE(N) . Then N has a 1-link and L(M)>&(N) .

Proof. Let N=BASE(Y) , M=MATE(N) and P be the vertex which
follows N on p{N+¥) . By Lemma 2.1: red{MN)=(M)+2(N) . By Lemma
2.2: d(PN}=2(P)+L{N)+1<r . Thus, 2(P)+1<a(M) . If L(N)=&(M) , then
when the edge PN is searched (during substage 2(P)+1 of the first
stage), neither M nor N are already well-defined. In this case,
by the algorithm of the first stage (step 4) we assign: LINK(M)<«P ,

L(M}<2(P)+1 , in contradiction to &(M)}>2(P)+1 . Thus, &(M)>2(N)

and N must have a 1-1ink.

Q.E.D.




89

Lemma 2.3

Let ST be a bridge such that d(ST)<r . Let N=BASE(T) and
M=MATE(N) . If &(T)<(M) then p(0+N) 1is a head of p(0-S) .

Proof. Let 21=£(S)+2(T)+1~£(N) . Since by Corollary 2.1,
p{0>N) 1is a head of p(0+T) , 2{T)=2(N) . Thus, 2122{8)+1 . On the
other hand, by Lemma 2.1 d(MN)»r , and thus:

21 = d(ST) - &(N) <r - 2(N) < d(MN) - &(N) = (M) .

Therefore, &{S)+1<2(M) , and in the first stage the bridge ST has

been searched before the beginning of the &(M)-th substage.

Let W be the vertex such that in the beginning of the &(M)-th
substage TeT(W) . Since &{T)<2(M) , T 1is already well-defined and
thus W 1is the last vertex on p(0=+T) such that W s not yet well-
defined. Hence, W s Tying on p{MT) . Since both p{0+K} and
p(O0-MATE(W)) are headsof p(0-T) , it follows that p(0>N) is a head
of p(0~MATE(W)} . We show that in the beginning of the Z(M)-th
substage SET{W} . This relation implies that p(0~MATE(W)) is a head
of p(0+S) and thus p(0+N) 1is a head of p(0~S) .

[¥f ST has failed the legality test before the 2(M)-th substage
then at that point both S and T were contained in the same set
T(R'} and thus, in the beginning of the A(M)-th substage §
belongs to the same set as T, j.e., SET{(W) . If ST has not failed
the legality test, then ST belongs to the set

CTUTUIS'TUECHAIN(T' ), T'€T(W)} , and thus by Corollary 1.0 ST can be



90

assigned as LINK(W) . Denote by dI the number of free deges on the
segment p{W-T) , then the assignment LINK(W)=ST defines for W a
Tevel 22 , where £2=52,{S)+1+d1 . However, since W 1is lying on
p{M=T) dlsz(T)—z(N) and thus 22s£1<2(M) . If the assignment
LINK(W)=ST 1is legal, then by the Main Theorem of Chapter 1, in the
beginning of the 2&(M)-th substage W must be already well-defined
in contradiction to the choice of W . Thus, the assignment

LINK(W)=ST s illegal, and therefore by Theorem 1.4, SET{W) .
Q.E£.D,
Lemma 2.4

Let YZ be a matched edge such that d{YZ)<r . Let N=BASE(Y)
and M=MATE(N) . Then &{Y)<a(M) .

Proof. Let Y be a vertex of least Tevel for which the Temma
does not hold, i.e., &(Y)z2(M) . If &(Z)»2(Y} , then by Corollary
2.2, (Z¥s2(Y)x2{M)>&(N) , and thus d(MN)<d(YZ)<r , in contradiction
to Lemma 2.1. Therefore &(Y}>o(Z) , i.e., Y has a 2-Tink:

LINK(Y)}=TS .

By the definition BASE(Y)=BASE(T) and thus (Corollary 2.1),
p(0-N) dis a head of p(0=T) . If T=N then by Corollary 2.2
2(T)<a(M) . If T#N then by Lemma 2.1, A&(T)}+&(MATE(T))<r and thus,
by our assumption on Y , L(T}<&(M) . Therefore, in either case

LTYI<e(M) .

By Lemma 2.2, d(ST)«<r . Hence, Lemma 2.3 implies that p{0O=N)



91

is a head of p(0-S) . However, since LINK(Y)=TS , p(0~Z) too is a
head of p(0+S) . Clearly, p{0+Z) cannot be a head of p(0>N)

(for, p(0>N) dis a head of p(0=Y) ) and thus p(0+-N) 1is a head of
p(CG+Z) . Therefore, &(Z)3%(N) . Since we assume that 2{Y)ze{M) , it
follows that d(MN)<d(YZ)}<r , in contradiction to Lemma 2.1. Hence
L{Y)<e(M) .

Q.E.D.
Lemma 2.5
Let XY be an edge such that d{XY)<r . Then BASE(X)=BASE(Y) .

Proof. (&) If XY is a bridge: Let Nl=BASE(X) . M1=MATE(NI) s
N =BASE(Y) , M =MATE(N ) , and Z=MATE(Y) . If d(YZ)sr then
Y=N2 , Z=M2 and there exists: 2(X)+1=d(XY)-2{Y)<d(YZ)-2(Y)=2{Z) .
If we assume that 2(Z)<2(Y} , then, when the edge XY has been
searched during substage 2(X)+1 of the first stage, neither Y nor
L were well-defined, and thus, by the algorithm of the first stage
(step 4) we would assign LINK(Z)<X , 2(Z)<2{X)+1 - in contradiction
to the facts that YZ 1is a bridge and 2(Z)>2(X)+1 . Therefore
2(M2)=2(Z)>2(Y) . If d{YZ)<r , then by Lemma 2.4 E(M2)>£(Y) . Thus,
in either case, 2(M2)>£(Y) . Therefore, by Lemma 2.3 p(0+N2) is a
head of p(0+X) . Since by Corollary 2.1 p(O+N1) is the longest head of
p(0>X) such that d(NlMl)zr , 1t follows that p(O#NZ) is a head of
p(O+N1) . However, by a similar argument p(0+NI) is a head of

p(O-+N ) . Hence N =N .
. 2 1 2

Q.E.D.



92

(b) If XY 1is a matched edge: Without loss of generality assume
that Y has a 2-link: LINK{Y)=ST . By the definition
BASE(Y)=BASE(S) . By Ea. (1.3), d(ST):Q(S)+£(T)+1=£(X)+2(Y)=d(XY)<r
and thus, by part (a) of this lemma, BASE(S)=BASE{T) . Therefore,
BASE(Y)=BASE(T) . Since LINK(Y)=ST , p(0+X) 1is a head of p{0=T) .
On the other hand, since BASE(Y)=BASE(S) , it follows by Lemma 2.1
that for every matched edge UV on the segment p(Y«<T) there exists
d(U¥Y<r . Therefore, by Lemma 2.1 BASE(T)=BASE(X) , and thus
BASE(Y)=BASE(X) .

Q.E.D.

(¢) If XY 1is a free edge but not a bridge: Without Toss of
generality assume that LINK{MATE(Y))=X . Let Z=MATE(Y) , then
2{Z)=2(X)+1 . Therefore d(YZ)=a (Y +2(Z)=2(X)+2(Y)+1=d(XY)<r , and
thus by part (b) of this lemma, BASE(Y)=BASE(Z) . On the cther hand,
by the definition, BASE(Z}=BASE(X) . Therefore BASE({X)=BASE(Y) .

Q.E.D.

Corollary 2.3

Let V be a vertex on p{BASE(Y)=Y) . Then BASE(V)=BASE(Y) .

Proof. Let Z=MATE{Y) . The claim is trivial if d(YZ)zr .
Assume that d{YZ)<r and let V be the vertex closest to Y on
5(BASE(Y)+Y) for which the lemma does not hold, Let W be the
vartex which follows V on 3(BASE(Y)-=Y} , then by our assumption
BASE(W)=BASE{Y} . On the other hand, by Lemma 2.2, d(¥W}<r , and
thus by Lemma 2.5 BASE(W)=BASE(Y) . Therefore BASE(V)=BASE(Y) .

Q.E.D.



Theorem 2.1

Ltet p be a minimum Tegal augmenting path which is passing
through a vertex V . Then p 1is also passing through BASE{V) , énd
for each vertex V' which is lyingon p between V and BASE(V) ,
there exists: BASE(V')=BASE(Y) .

Proof. Let p(A+B) (where A is a l-exposed vertex and B is
a 2-exposed vertex} be a minimum legal augmenting path which is
passing through V . Let N=BASE(V) . If N=V then the theorem is

trivial. Therefore assume that N#V .

Let V1*3+V2 denote the segment from V. to V_ on the
augmenting path p{A+B) . Let Y be the first vertex on p(A+B) such
that for each vertex V' on Y—=V there exists: BASE(V')=N . We
assume that Y#N [otherwise, throughout the proof of Theorem 2.1, one
has to replace p{(A+B) by p(A<B) . In this case Y is defined to be
the first vertex on p(A<B} , such that for each vertex V' on
Y-V there exists: BASE(V')=N . Clearly by this definition V#N ].
Let Z=MATE(Y) . Since Y#N , by the definition d(YZ)<r , and thus ,
by Lemma 2.5, BASE(Z)=N . Let X be the vertex which precedes Y on
p(A+B) , then XY 1is a free edge [see Fig. 2.31, and since BASE{X)#N ,
d(XY)sr . Let S be the first vertex on Y--B such that BASE(S)#N ,
and let T be the vertex which precedes S on Y -2wB . Thus,
BAS&(T)=N » and by Lemma 2.5 d(ST)»r . Clearly V is lying on
YT, Also, for each vertex V' which is lying on Y—=T there
exists: BASE(V')=N . We shall show that T=N and by this we shal]

prove the theorem,



94

Assume that T#N and let U=MATE(T) , then by the definition
d{UT)<r , and by Lemma 2.5 BASE(U}=N . Therefore U#S , and ST is

a free edge [see Fig. 2.3].

Since the augmenting path p{(A»B) is Tegal and minimum, its
length is r , and thus: [A——X|+|X==Y|[+|Y-=B|=r . On the other
hand, 2(X)+&(Y)+1=d(XY)zr . Since, by the definition, 2{X)s|A=+X| ,
(Y)<]Y—==B| , it follows that &(X}=|A--X| , &(Y)=|¥-2sB| . By

similar arguments, £(S)=|S—==B| , 2(T)=|A2sT| .

* ]
ws_,_w /
ey d
1%** ,/
N
_w,__../:%/ W -+ e P(A=8)
”C_.;.

MAe— 4 4 + bttty P(N=Y)

APy o AR p(0—-R)
Fig. 2.3
Let W be the first vertex which is f-lying on T-—Y such

that IB-l*W|=£(N) . Let R=MATE(W) , and let d1 be the number of

free edges on the segment T-—W (if W=U then d =0 , else d >0 ).
1 1



95

Then: ;z,(w)=|B—1—>w1=|B—1~fs1+}s—?-fr!+|T—1—»~w|=£(s)+1+d1 . On the other
hand ; 2(N)+£{R)=d(WR)<r<d(ST)=R{S)+£(T)+1 . Thevefore:
2(R)+d1<2(T) . Clearly, this implies that R#T and U#W .

Let v1~5+v2 denote the segment from V1 to V2 on the al-
path p(0+R) . Let C be the l-exposed vertex from which p(0+R)
starts. If we assume that p(0-R) and R-=T are disjoint {except
for the vertex R) , then the alternating path CZ+R-—T is a legal
al-path of length !L(R}+d1 (i.e., less than &(T} } which is leading
to T - in contradiction to the definition of &(T) . Thus p(0=+R)
and R—=T are not disjoint. Let P be the last vertex which is f~
lying on R—==T and is common to p{0+R) , and let OQ=MATE(P) . If
we assume that Q is not f-lying on p{0+R) , then P is f-lying on
p(0+R) , and |C-2+Pi<|C-5R| . Clearly IP—1—-+T|<dl . Thus, in this
case, C—5+P—L+T is a legal alternating path of length less than
&{T) which is leading to T - in contradiction to the definition of
2(T) . Therefore, Q 1is f-Tying on p(0+R) and thus &{Q)<&(R} ,
[see Fig. 2.3].

let K be the first vertex which is f-lying on T2 such
that 2(K)<2{R) ({such a vertex exists, e.g. Q ]. Let ‘Jl—i-»V2
denote the segment from Vl to V2 on the al-path p{0>K) . Let D
be the l-exposed vertex from which p(0+K) starts, By the choice of
W, 2(K)<|B==K| . If we assume that p(0+K) and K==W are dis-
joint {except for the vertex K ), then the alternating path
D-+K-+W 1is a legal al-path which is leading to W , such that its

Tength is: 2(K)+|K=W]<[B-K|+| K==W [=|B '=t{W) - in contradi-



96

ction to the definition of &(W) . Thus p(0+Kk) and K-=W are not

disjoint.

Let L be the first vertex which is f-lying on p(0-K} and is

comnon to T——W [see Fig. 2.4). Thus, &(L)<t(K)<t(R) .

W R K~~~ L u T
oy PSP i + o v e x e b "‘““‘"\MNémAMM“— ...... ey PP AP\,
case (a) "= D
ns,
W R K .77 7~ u T
__.-Nw____.............n_MN\A__ ...... _(\NA_.—MMM.,W
case (b} el D
~ =y,
W R VR uoT
[V Y. V.V p—— _,m __wvA._ ........ PR Y VYV Ya—
case {c) “w D
"
W R 27T K u T
S——YY V' YE— W ...... __QMAbmm A AA o
~
case (d) “\QM — A s et (A = B)
—A— e —apy D {O=K)
Fig. 2.4

Assume that L 1is f-lying on T . Clearly L cannot be lying on
T-5K [case (a) in Fig. 2.4], for in this case L contradicis the

choice of K. Thus, L s f-lying on K-—W [case {c) in Fig. 2.4].




97T

However, in this case the alternating path DLl is a legal al-
path leading to W , such that its Tength is: L{L)+|L-2+W] <

<R{K)H K2W|<|B 2oK] +] K=W| ={ B 2+! =2 (W) - in contradiction to the
definition of &{W) . Therefore L is not f-lying on T ol [cases
(b) and (d) in Fig. 2.4]. However, in this case, the alternating path
DAL LT is a legal al-path leading to T such that its length is:
52,(].)+|L—1-+T|<£(R)+|R—1-+Ti=£{R)+d1<JL(T) - in contradiction to the
definition of &(T) .

Therefore, our assumption that T#N {s false, i.e., T=N and

the theorem holds.
Q.E.D.

Corollary 2.4

Let Y be a vertex, N=BASE(Y} and M=MATE(N) . If d(MN)>r

then no minimum Tegal augmenting path is passing through ¥ .

Proof. Since d(MN)>r , no minimum legal augmenting path is
passing through N , and thus, by Theorem 2.1, no such path can pass

through Y .

Q.E.D.

Hence, if Y 1is a vertex such that d(MN)>r (where

N=BASE(Y) , M=MATE(N) }, then Y 1is irrelevant for the present phase

and therefore can be ignored.



€. The Reduced Graph

Let YV be the set of vertices of the original graph 6 , and

Tet E be the set of its edges.

The reduced graph & is the graph whose set of vertices ¥ and

set of edges T are defined as follows:
V= {N | NV , BASE(N)=N , d(N,MATE(N))=r} (2.3}

E={NN | N ,N2€V . NI#N2 , and there exists in E at Teast
12 1
one edge XY such that BASE(X)=NI . BASE(‘()=N2 , d{XY)=r}

[ The reduced graph & can be derived from the original graph G by

the following process:

(i) Remove from G all vertices which, by Corollary 2.4, are
not relevant to the present phase, and remove all edges of G which
are incident to these vartices. Remove all edges XY of G such

that d(XY)>r

(11) Shrink all other vertices of G into their BASEs . Delete
from the graph all the self-loops which are created by this process,

and if parallel edges are created delete all of them but one.

The following sequence of lemmas and theorems proves that the
reduced graph G has the following property: Every maximal set of
disjoint arbitrary legal augmenting paths in 8 correspond to a

maximai set of disjoint minimum Jegal augmenting paths in & .



99

Lemma 2.6

The set of the matched edges in G 1is exactly the set of the
matched edges YZ of G , such that d{YZ)=r .

Proof. (a) Let MN be a matched edge in G , i.e., M=MATE(N) .
Clearly M and N are also MATEs in G , and thus MN is a matched
edge of G . Since M and N are vertices of G , by definition (2.3)
of the reduced graph, d(MN)=r .

(b) Let YZ be a matched edge of G such that d(YZ)=r . Then,
by the definition of BASE , BASE(Y)=Y and BASE{Z)=Z . Thus, by
definition (2.3),both Y and Z belong to V and the edge YZ
belongs to E .

Q.E.D.

Corpllary 2.5

The set of the l-exposed [2-exposed] vertices in & fis exactly
the set of the l-exposed [2-exposed] vertices of & which lie at the

ends of minimum legal augmenting paths.

Probf. Let Al be a l-exposed vertex and let A2 be a 2-

1

exposed vertex such that A =MATE{A ) . Since (A )=0 , then
)

d(AWA1)=r if and only if &(A )=r , i.e., if and only if AZ is

<

lying at the end of a minimum legal augmenting path p(Bl+A2) in @ .
Clearly, in this case, A 1is lying at the end of the legal augmenting
H

path p(A ~2 : (where B =MATE{B ) }.

2 1

[
)




100

Definition. Llet XY be an edge in G such that: Nl=BASE(X) ,
N =BASE{Y) , d{XY)=r and NLNZ is an edge of & . Then XY is
2

called a source of NlN2 . [Notice that NIN2 may have some sources].
Lemma 2.7

let NN be an edge of G and let XY be its source in G .
1 2

NN isa free edge in G if and only if XY is a free edge in G .

Proof. By the definition of source, N1=BASE(X) . and thus by
Coroilary 2.1 p(O+N1} is a head of p(0+X) . Therefore £(N1}SR(X) .
Similarly R(NZ)QR(Y) . By the definition of source, d{X¥)=r . If
XY 1is a free edge in G then: 2(N1)+2(N2)<2(X)+R(Y}+1=d(XY)=r .
and thus, by definition (2.3), NN cannot be matched in B If

XY is matched in G , then by Lemma 2.6, NIN2 is matched in G .
Q.E.D.
Lemma 2.8

Let NIN2 be a free edge in & and XY be its source. Then
the segment p(N1+X)-p(N2+Y) is an alternating path in & which

contains & free edges and £-1 matched edges, where £=r-£(N1N2) .

Proof. By Corollary 2.1 p(O+Nl) is a head of p(C+X} . There-
fore, the segment p(N1+X} is an alternating path of length
R(X)—E(Nl) whose first edge is free, while its Tast edge is matched.
By similar considerations p{NéeY) is an alternating path of length

Q(Y)-Q(NZ) , such that the edge which is incident to Y is matched



101

while the edge which is incident to Nz is free. The segment
p(Nl+X)~p(N2+Y) consistsof the two segments p(N1+X) and p(N2+Y)
joined by the free edge XY . Therefore the segment p(N1+X)-p(N2+Y)
is an alternating path of length % , whose first and last edges are
free, i.e., it contains £ free edges and 2-1 matched edges. By

the definition of source d(XY)=r . Therefore:

x>
[

(X -RN)) + (-RIN D) + 1= 2(X) + 2(Y) + 1 = &N )

I

d(Xy) - R(NINZ} =P - R(NENZ) .
Q.E.D.

Definition. Let 7 be an augmenting path in G , and let p(m)
be the path in G which is received from © by replacing each free

edge NlN2 on T by the segment p(N1+x)-p(N2+Y) where XY 15 a

source of NIN2 . Then the path p(m) 1is called a source of (the

augmenting path) n . [Since each free edge NlN2 of B may have

some sources in G , there may be some paths in G which are sources

of the same augmenting path = in T 1.
Lemma 2.9,

Let w(A+B}) be a legal augmenting path in & which leads from
l-exposed vertex A to the 2-exposed vertex B , and let p{m) be
its source. Then p(m) 1is a Tegal augmenting path in G , which

leads from A to B .

Proof. By Lemma 2.8, each segment p(NY+X)-p(N2+Y} (where



N1N2 is a free edge of 7 , and XY Tfs source} is an alternating path
in G whose first and last edges are free. Therefore by replacing each
free edge NlN2 of 7 by a segment p(NlﬁX)-p(Nz+Y) we receive

an alternating path which connects A and B - i.e., an augmenting

path wiich leads from A to B . By Corollary 2.3, the BASE of all
vertices on p(N1+X) is the vertex Nl . Hence, every two segments

p(N:=X.)  and p(Njexj) on p(m) are disjoint. Since each of these

segments is legal, it follows that p(m) is a legal augmenting path.
Q.E.D.
Lemma Z.10

Let N be a vertex which is f-lying on a Tegal augmenting path
m(A+B) in G . Then the length of the segment of p(w) from A to
N s  &{N} .

Proof. By the definition the lemma holds if N=A . Assume that
N1 is the first vertex which is f-lying on w(A+B) , for which the
Temma does not hold. Let M1=MATE(N1} , and et N2 be the vertex
which precedes M1 on mw{AB) {thus N2 is f-lying on w(A=B) ).
The segment of p(m) from A to N1 consists of the segment from
A to N2 and the segment from N2 to N1 . By the choice of Nl .
the Tength of the seogment from A to N2 is R(Nz} . The length of
the segment from N2 to Nl is the number of free edges on the
segment p(Ml+X)~p(N2+Y) (where XY s a source of MENZ) , and
thus, by Lemma 2.8 it is equal to r-Q(MlNz) . Therafore, the length

of the segment on p{(m) from A to N s Q(N2)+r—R(M1N2)=r-£(M1) .



103

However, by Lemma 2.6, r—R(Ml)=2{Nl) . Thus, the lemma holds for

N too.
1

Q.E.D.

Corollary 2.6

let 7 be a legal augmenting path in G . Then p(m) Js a

minimum legal augmenting path in G .

Proof. Let w(A*B) be a legal augmenting path in T , which
leads from the l-exposed vertex A to the 2-exposed vertex B . By
Lemma 2.9 p(m) 1is a legal augmenting path in G . By Lemma 2.10
its tength is 2(B) , i.e., by Corollary 2.5, is equal to r .
Therefore p{m) is minimum in G .

Q.£.D.
Theorem 2,2

Let {ﬁl,---,ﬂk} be a set of disjoint legal augmenting paths
in G . Then {p(ﬁl),--~,p(ﬂk)} is a set of disjoint legal minimum

augmenting pathsin G .

Proof. Let Vi be a vertex on p(wi) and Vj be a vertex on

p(ﬂj) . By the construction of p(m,) V

p(N1+Xi) such that Ni=BASE(Xi) and N, 1is lyingon m. . By

j is lying on a segment

Corollary 2.3, BASE(Vi)=N- .

i By similar arguments, BASE(Vj)=N-

J

where Nj is lying on LR Since m and T oare disjoint,

Ni#Nj and thus Vifvj . Therefare pt”i) and p(wj) are disjoint.

0.E.D.



104

Definition. Let p{A>B) be a minimum legal augmenting path in
G . By Ty we denote the path which is derived from p(A*B) by the
following process: Let N1 and N2 be two vertices on p(A+B) such
that N1=BASE(N1) , N2=BASE(N2) . If there exists no other vertex N3
on p(A*B} between N1 and N2 such that N3=BASE(N3) , then

replace the segment of p(A>B) from N1 to N2 , by the edge NIN2 .

[The following theorem proves that ﬂp is a path of _ﬁ LIt
also shows that ﬁp is in fact the path which fs derived from
p(A+B) during the process of shrinking G into %, namely, ﬂp is
derived from p{A*B) by shrinking each vertex on p(A*B) into its

BASE 1.
Theorem 2.3

Let b(A+B) be a minimum legal augmenting path in G . Then

is a legal augmenting path in & which leads from A to B .

_ Proof. Denote by Vf—i+vz the segment from V = to V, on the
path p(A~B) . Let NI be a vertex on p(A*B) such that
N1=BASE{NE) , and M1=MATE(N1) . By the definition of BASE ,
d(MlNl)er and thus BASE(MI}:M1 . Therefore, if N1 is lying on

T then MATE(Nl) is also Tying on m

p P

Nle be'ongs o ﬂp . In particular the l-exposed vertex A and the

, and the {matched) edge

Z-exposed vertax B belong to qp .

Let % and N ba fwn vertices on ofA»B:  uch that
: 2

N1=BASE(N_3 , N?=BASE(N *, and there axists no athar vertex N on
: 2 Z 3



105

Ni-—£->N2 such that N3=BASE(N3) . If NI#MATE(NZ} then the first

edge of Nl—i-*N2 is free (for otherwise, MATE(NI) would contradict
the assumption on N1~—1~+N2 ). Similarly, the last edge of N ST

1 2
is free. Therefore, by replacing the segment N1—1—+N2 of p(A+B) by

the (free) edge NIN2 , the fESu1t1ng path is also alternating.

Thus, ﬁp is an alternating path which leads from A to B

i.e,, it is an augmenting path. Since all the vertices of “p are

5

alsec vertices of p(A+B) and their order on ﬁp is the same as on

p{A>B} , it follows that T is a legal augmenting path.

Let NlN2 be an edge of w_ . If NIN2 is a matched edge, then

Y
NIN2 is also an edge of p(A*B) and thus (since p{A+B) is a
minimum legal augmenting path) d(NlNz)ér . On the other hand, since
N1=BASE(N1) , N2=BASE(N2) , 1t follows by the definition of BASE
that N N is an edge of B . If NN is a free edge, then let X
be the Tast vertex on N1—3+N2 such that BASE(X)=N£ and let Y be
the vertex which follows X on N —>N . Let N =BASE(Y) , then by
Theorem 2.1 Ns is lying on p(A*B) and all vertices on N3—1+Y
have N3 as their BASE . Thus, if NS%N2 then N3 is lying on
N1~i-+N2 and N3=BASE(N3) - in contradiction to the assumption on
N1~1+N2 . Therefore N3=N2 , namely BASE(Y)=N2 . Since XY s lying
on a minimum legal augmenting path, d(XY)<r . On the other hand, if
d{XY)<r then by Lemma 2.5 N =t . Thus, d(XY)=r , and by the

1 2
definition of T , NINZ is a (free) edge of G .

Thus , " is a legal augmenting path in T .




106

Theorem 2.4

Let {ﬂl,ﬂz,---,wk} be a maximal set of (arbitrary) disjoint
legal augmenting paths in & . Then {p(ﬂl),p(ﬁz),--o,p(ﬂk}} is a

maximal set of disjoint minimum legal augmenting paths in G .

Proof. By Theorem 2.2 {p(ﬂl},p(ﬂz),°--,p(ﬂk)} is a set of
disjoint legal minimum augmenting paths in G . Assume that it is not
maximal, then there exists a minimum legal augmenting path p in G
which is disjoint from each of the augmenting paths
{p(ﬂl),p(ﬂz),---,p(ﬁk)} . However, by the definition, all the vertices
of an augmenting path w. in B are also vertices of its source

1
p(ﬂi) in G . Also, all the vertices of the augmenting path ©_ in

p
G are also vertices of the augmenting path p in G from which ﬁp
is derived. Therefore, the fact that p is disjoint from each of the
augmenting paths {p(ﬂl),p(ﬂz),°v-,p(ﬂk)} in G, implies that L is
disjoint to each of the augmenting paths {ﬂl,ﬂz,“",ﬂk} in § - in
contradiction to the maximality of the set {ﬁl,nz,o--,wk} . There-

fore _{p(ﬁl),p(ﬂz),“'°,p(ﬂk)} is a maximal set of disjoint minimum

legal augmenting paths in G ,

Q.E.D.

D. The Data Structures

Let n. be the number of vertices of the reduced graph G , and
let m,. be the number of its edges. During the performance of the

second stage we use the following data structures:



107

BASE(Y) . BASE(Y) 1is the variable which is defined by
definition {2.2} in Section B for each vertex VY of the original

graph G .

VLIST . VLIST 1s a 1ist which contains @xactly all the N,
vertices of the reduced graph § . These vertices are arranged in

non-decreasing order of their levels.

BSLIST(N). For each vertex N of the reduced graph G ,
BSLIST{N) is the list of all vertices Y of the original graph such
that BASE(Y}=N . The Tist BSLIST(N) is defined only when N is

found to be a vertex of the reduced graph.

ELIST{N) . For each vertex N of the reduced graph G ,
ELIST{N} 1is the Tist of all vertices M such that NM is a free
edge of the reduced graph. The list ELIST{(N) 1is defined only when
N is found to be a vertex of the reduced graph. The vertices of

ELIST(N) are arranged in non-increasing order of their levels.

SOURCE(NlNz) . For each free edge NlN2 of the reduced graph,
SOURCE(NINZ) is a free edge XY of the original graph G , such

that XY is a source of NlN2

The second stage is performed in two parts:

In the first part, the vertices of the original graph are
searched according to non«decreasing order of their Tevels. (In order
to perform this search we use the LIST(3)'s which were computed

during the first stage of the algorithm). For each vertex Y of the



108

original graph, we find BASE(Y) according to definition (2.2).
Since when BASE(Y) 1s computed, all BASEs of the vertices whose
Tevels are less than 2(Y) are already known, this computation can
be done in one step only. Letl N=BASE(Y) and let M=MATE(N) . If
d(MN)=r , then N is a vertex of the reduced graph. In this case,

if Y=N then Y is attached at the end of VLIST and we define the
lists: BSLIST(Y)«{Y} , ELIST(Y)«§ . If Y#N , then Y 1is inserted
into BSLIST(N) . Thus, at the end of the first part of the second
stage, all vertices of G are listed in VLIST in non-decreasing
order of their levels, and for each vertex N of T y BSLIST(N)

contains exactly all vertices of G whose BASEs are N .

In the second part of the second stage, the edges of the original
graph are searched in the following order: The vertices of the
reduced graph are searched according to the list VLIST ({i.e.,
according to the order of their levels). For each vertex N of the
reduced graph the Tist BSLIST(N) is searched. Let Y be a vertex
of BSLIST(N) , then all free edges XY of the original graph are
searched. Let M=BASE(X) . If by (2.3) MN is an edge of the reduced
graph and XY- is its source, then we check whether N is already
contained in ELIST(M) , and if the answer is negative, we insert N
as the jirgg;vertex of ELIST(M) and assign: SOURCE(MN)<XY (notice
that by the construction of ELIST(M) , in order to know whether N
is already contained in ELIST(M) , 1f is sufficient to check whether
N is the first vertex of ELIST(M) ). Thus, at the end of the second
part of the second stage, all the free edges of & which are inecident

to M are listed in ELIST(M) 1in non-increasing order of their



109

levels, and for each free edge MN of T , SOURCE(MN} 1is one of its

sources in G,

E. The Algorithm

0.

[Initialization.] Assign: VLIST<§ ; j<0 .

~

FIND VERTICES OF G :

1.

[Search LIST(j) .] If all the vertices of LIST(j) have already
been searched then go to 4. Else, let Y be a vertex in

LIST(j) which has not been searched yet.

. [Find BASE(Y) .1 Let Z<MATE(Y) . If L(Y)+2(Z)>r then

assign: BASE(Y)<Y and return to 1 [Y 1is not a vertex of
the reduced graphl. If &(Y)+&(Z)=r , then assign: BASE{Y}<+Y
and go to 3. [Y s a vertex of the reduced graphl. If
LY)+2{Z)<r and Y has a i—link, then assign:
BASE(Y)<BASE(LINK(Y)) , insert Y {nto BSLIST({BASE(Y)) and
return to 1. If 2(Y)+&(Z)<r and Y has a 2-1ink, then let
STALINK(Y) , assign: BASE{Y}<BASE(S) , insert Y into
BSLIST(BASE(Y}) and return to 1.

[Y 1is a vertex of the reduced graph.] Attach Y to the end
of VLIST . Define: BSLIST(Y)«{Y¥} , ELIST(Y)+§ . Return to 1.

. If J=r go to 5. [A11 vertices of B are listed in VLIST

in non-decreasing order of their levels]. Else, assign:

J<j+1 and return to 1.




110

FIND EDGES OF G :

5. [Search the vertices of VLIST .1 If all the vertices of
VLIST have already been searched, then proceed to the third
stage [for each vertex M of VLIST , all the edges MN of
the reduced graph are listed in ELIST(M) in non-increasing
order of their levels]. Else, let N be the first vertex of
VLIST which has not been searched yet.

6. [Search the vertices of BSLIST(N) .1 If all the vertices of
BSLIST{N) have already been searched, then return to 5. Else
let Y be a vertex of BSLIST(N) which has not been searched
yet.

7. {Search the free edges XY in G .] If all the free edges
of G which are incident to Y have already been searched,
then return to 6. Else, let XY be a free edge of G which
nas not been searched yet.

8. If L(X)+2(Y)+1#r then return to 7 [XY 1is not a source of
any free edge of G 1. Else Tet MeBASE(X). If {M)+R(MATE(M))>r
[M does not belong to %1, then return to 7. Else, if M=N then
return to 7 [XY is reduced to a seif-loop in Gl. Else, if the
first vertex of ELIST(M) s N, return to 7 [MN is already
contained in ELIST{M)I. &lse, insert N as the first vertex

of ELIST(M), assign: SOURCE{MN)«XY and return to 7.

F. The Complexity of the Second Stage

During the first part of the algorithm of the second stage

{steps 1-4), we search the vertices of the original graph G . For



111

each vertex of G , a constant number of cperatinns are performed.

Thus, the complexity of the first part is 0(n) .

During the second part of the algorithm (steps 5-8), we search
the {free) edges of the original graph & . For every free edge of
G , a constant number of operations are performed. Thus, the

complexity- of the second part is 0O(m) .

Therefore, the complexity of the second stage is O(m) .



112

3. THE THIRD STAGE

A. General Description

The goal of the third stage is to find a maximal set of dis-
Joint Tegal augmenting paths in the reduced graph. In order to
achieve this goal we perform a process which is similar to the
process done during the first stage of the algorithm: The free edges
of the reduced graph are searched, and by using these edges we try
to build alternating paths which are leading to the vertices of the
reduced graph. We also use the same technique which is used in the
first stage in order to record these al-paths, namely the 1-link and
2-link. [In order to distinguish between the LINKs of the first
stage and those of the third stage, we call the latter RLINKs . The
al-path in the reduced graph which is Teading to a vertex N is

denoted by pP(0-N) 1.

However, while in the first stage we want to find minimum Tegal
alternating paths, and for that purpose we search the free edges of
the graph according to the BFS method, our goal during the third
stage is to find disjoint legal augmenting paths in the graph.
Apparently, the nafural method by which the edges of the graph should
be searched in order to build disjoint paths is the Depth First
Search  {DFS) method. However, by using this method, the problem
of verifying the Tegality of the al-paths arises : The legatity

test of the first stage is based on the fact that if the assignment



113

LINK(R)=ST which defines for R a level 3 is illegal, then in
the j-th substage bath § and T belong to T(R) {Theorem 1.4).
In other words, because of the BFS method which is used in the
first stage, every odd loop in the graph is searched at the same
time in both directions, and thus, the base of the loop is reached
in the same substage from both directions of the loop - a property
which makes possible the identification of an illegal path. Cleariy,
this is not the siﬁuation in the DFS wmethod. Thus, the DFS method
must be amended in order to enable both the construction of dis-

Joint al-paths and the verifications of their legality

Our solution to this problem is a composition. of some version
of the DF5 method together with the method which is used by
Gabow's algorithm [3]. The version of the DFS method {which is calied
the Highest Level First Search - HLFS - method) assures that the
al-paths which are found are disjoint. The method of Gabow assures

that these al-paths are legal.

B. The Parts of the Third Stage and the HLFS Method

The Label LIFE . In the third stage we attach to each vertex

N of the reduced graph a Tabel called LIFE(N) . In the beginning
of the third stage, the LIFEs of all the vertices are egual to
n+i . During the third stage the two vertices N and MATE(N)}

have always the same value of the label LIFE ,

The algorithm of the third stage is performed in parts, where



114

in the i-th part we try to find a legal augmenting path which
connects the i-th l-exposed vertex to some 2-exposed vertex, such
that this path is disjoint from the augmenting paths which may have
been found in previous parts. This is done by starting from the
i-th l-exposed vertex and performing a search through free edges
whose vertices have LIFE equal to n+l . Using the edges which
are searched during the i-th part, we try to build alternating paths
leading from the i-th l-exposed vertex to vertices whose LIFE are
ntl . If such a path which js leading to a vertex N is found, we
assign: LIFE(N)«i , LIFE(MATE(N))«i . [The al-path itself is
denoted by P(i+N) 1. Thus, the meaning of LIFE(N)=i is that we
have built an alternating path leading from the i-th l-exposed
vertex to efther N or MATE(N) . We shall prove {Theorem 3.1)
that there existsin the graph no Tegal augmenting path which passes
through a vertex whose LIFE s i and is disjoint to all the
augmenting paths which may have been found during the performance
of the first i parts of the third stage. In other words, the
vertices whose LIFE s 1§ , may be ignored in latter parts.
Therefore, if a vertex N 9s reached during the search of the i-th
part, it does not participate in the searches which are performed
in the following parts. [t follows that once LIFE(N) is assigned a
value other than n+l , it is not changed any more, and thus, the
paths which are found during the performance of the i-th part of
the third stage are disjoint from the paths which are found during

the performance of the other parts.

[Notice that since in the third stage we are not locking for



115

minimum augmenting paths, no levels are defined for the vertices
(although, we use the levels which have been defined during the
First stage in order to perform the HLFS method). In fact, the
role which the labels LIFE have in the third stage is very similar
to the role which the levels have in the first stage; namely,
LIFE(N} [2(R)] identifies the part [substage] during which the
vertex N [R] has been reached, and it is used to assure that the
al-paths which are found by the algorithm are really disjoint

[minimum].

The HLFS Method. The order by which the free edges are

searched during the i-th part is determined by the following rule

of the HLFS method: Let P be a vertex of highest level such that
LIFE(P)=1 , RLINK{P}#0 , and not all the free edges which are
incident to P have already been searched. Then, search a free edge

PN which have not yet been searched.

[Notice that in order to find the vertex P we use the levels
which were defined in the first stage. Since by Lemma 2.10 the Tevel
of a vertex P 1in the reduced graph is in fact the place of P on
a minimum legal augmenting path in the original graph, we can think
of the HLFS wmethod as some kind of Depth First Search on minimum

Tegal augmenting paths in the original graphl.

Let PN be a free edge which is searched during the i-th part
according to the HLFS method, and let M=MATE(N) . If LIFE(N)<i ,
then nothing is done, and we proceed to perform the next search

according to the HLFS method.




116

Otherwise,(if LIFE{(N) 1is not less than i }, then one of the

following three cases may happen:

(&) RLINK(N)=0 and RLINK(M)=0 . In this case both M and
N has not been reached so far during the search of the third stage,
and thus LIFE(M)=LIFE{N)=n+1 . Therefore we assign LIFE(M)<«i ,
LIFE(N)<«i . Similarly to the algorithm of the first stage, we also
assign for M a 1-link which points to the vertex P : RLINK(M)<P .
This assignment defines the al-path P(i=M) through the following
concatenation: 3(1+M)¥E(1+P)-N-M . Like in the first stage, this

al-path is legal, and thus no further tests are required,

(b} RLINK(N)=0 but RLINK(M)#0 . In this case, we have
already built an al-path E(1+M)a which is leading from the i-th
1-exposed vertex to M, and thus, LIFE(M)=LIFE(N}=1i . Nothing is
done in this case, and we proceed to perform the next search

according to the HLFS method.

{c) RLINK(N)#Q . In this case, an al-path pP(i=N) which is
leading to N has already been found in the graph. If PN is a bridge
thenthe possibility of assigning a 2-1ink which points to this
bridge has to be checked. However, since both D(i»P) and pP{i+N)
emerge from the same 1-exposed vertex, a 2-Tink which points to the
bridge PN may define an illegal al-path, and thus a furthe} test
must be carried out. For this purpose we cail the subroutine
SRCHLOOP(P,N) which searches the al-paths p{i=P) and P(i+N)
and finds all the vertices R which are lying on these paths such

that RLINK(R)=0 , and the assignment RLINK(R)«MNP (or RLINK{R}=PN }



117

defines a legal al-path P(i=R) leading to R . This subroutine
(which is a slight improvement of Gabow's subroutine PAIR-LINK [3])

is described in Section C.

The i-th part of the third stage is terminated in one of the

following two ways:

(a} When a legal augmenting path which is Teading from the
i-th l-exposed vertex to some 2-exposed vertex is found in the
graph. Since the LIFEs of all the vertices on this augmenting
path are equal to 1 , this path is disjoint from all other augmen-

ting paths which may have been found in previous parts.

(b) When there exists in the graph no free edge which has to
be searched according to the HLFS method, i.e., when all the free
edges which are incident to vertices whose LIFE is 1 have already
been searched. Theorem 3.1 implies that in this case there exists
no legal augmenting path which connects the i-th i-exposed vertex
to some 2-exposed vertex in the graph, such that this path is
disjoint from all the augmenting paths which may havé been found so

far.

C. The Subroutine SRCHLOOP

During the performance of the i-th part, the subroutine
SRCHLOOP{P,N) 1s called each time when a bridge PN is searched
and both P and N have RLINKs other than © ; namely, when

both al-path P(i»P) and TP(i»N) have already been built in the



118

graph. Since both al-paths emerge from the same l-exposed vertex,

any al-path which is defined by a 2-link to the bridge NP [or to

the bridge PN] must he suspected of being illegal. The task of

subroutine SRCHLOOP(P,N) s to find those vertices R which are
lying on B(i+P) [or on P(i+N) 1, such that RLINK(R)=0 and the
assignment RLINK(R)«NP [or RLINK{R)<PN ] defines a legal al-path
P(i+R) leading to R . If SRCHLOOP(P,N) finds such a vertex R ,

it also performs the assignment RLINK(R)<NP [or RLINK(R)<«PN 1.

[Notice that since SRCHLOOP(P,N) performs only legal assign-
ments of the form RLINK(R)«NP and RLINK{R}<PN , there exist no
potential RLINKs throughout the performance of the third stage,
and thus ail the RLINKs and the al-paths which are defined by

them are well-defined].

The subroutine SRCHLOOP can be implemented by the subroutine
PAIR-LINK which is described in Gabow's algorithm [3]. However, by
using the properties of the HLFS method we can slightly improve
and simplify the subroutine suggested by Gabow (though these

modifications do not reduce the comp]exitylof the subroutine).

Before we describe the subroutine SRCHLOOP s W& prove some

of 1ts properties which are derived from the HLFS method.

Lemma 3.1

Let Nle be a free edge in the reduced graph and
N2=MATE(M2) . Then 2(N1)<£(N ) .

2



119

Proof. Let XY=SOURCE(N1M2) (see the algorithm of the
second stage). Since in the original graph p(0+N1) is a head of
p{0+X) , Q(Nl)sl(x) . Similarly R(Mz)sE(Y) . On the other hand,
by Lemma 2.7, XY {is a free edge of the original graph, and by the
definition of source, d(XY)=r . Also, by Lemma 2.6, d(N2M2)=r .

Therefore:
%(N1)+2(M2) € L(X)+R(Y) < d(XY) = p = d(NzMz) = £(N2)+£(M2) .

Thus, 2(N1)<£(Né) .
Q.E.D.,

Corollary 3.1

Let w be an alternating path in the reduced graph which is
leading from M to P (i.e., M 1is incident to a free edge of
m , while P is incident to a matched edge of = ). Then
L(M)<2(P) . [Notice that w is not necessarily a legal alternating
pathl.

Definitions., Let P be a vertex of the reduced graph, such
that LIFE{P)=i , or LIFE(P)=n+l ., During the i-th part of the
third stage, if RLINK(P)=0 then P s called passive; if
RLINK(P)#0 and not all the free edges PN have already been
searched then P s called active; ¥ RLINK(P)#0 , and all the

free edges PN have already been searched then P is called dead.



120

lemma 3.2

If M s f-lying on Pp(i+P) and P s not passive, then M
is not passive. In particular, if MATE(M) is passive then Pp(i+M)

is a head of p(i=P) .

Proof. Let S be the first vertex on p(MP) such that
p(i+$) is a head of P(i~P) and S is not passive. If S=M then
the Temma holds for M . Assume that S#M . S cannot have a 1-Tink
(for, if RLINK{S)=R , then R contradicts the choice of S }. Thus,
let RW=RLINK{S) . If M 1s lying on p(i>R) then (by the definition
of 2-1ink) R contradicts the choice of S . Thus, M is lying on
P(W+S) , and by the definition of 2-1ink, both M and MATE(M) are
not passive. Therefore, M 9is not passive, and in particular, if
MATE(M) is passive, then S=M , i.e., P(i+M) is a nead of p(i+P) .

Q.E.D.

Corollary 3.2

If SRCHLOOP(P,N) 1is called before SRCHLOOP{N,P) , then all
the assignments of the forms RLINK(R)«NP and RLINK(R)<PN are
performed by SRCHLOOP{P,N) .

Proof. When SRCHLOOP(P,N) 1is called, both P and N are
not passive. Let M be a vertex which is f-lying on p{(i+P) for on
p(i»N) I and let R=MATE(M) . By Lemma 3.2 M 1is not passive.
Therefore, if R s passive, then M has a 1-1ink, and by Lemma 3.2
P{i>M) s a head of B(i»P) . It follows by the definition of 2-
link that the bridge NP [or the bridge PN ] can be assigned as
RLINK(R) . Hence, by the definition of SRCHLOOP , if this assign-
ment is legal, it is performed by SRCHLOOP(P,N) .

Q.E.D.



121

Lemma 3.3

If M is dead while MATE(M) 1{s still passive, then MATE(M)

will remain passive.

Proof. Let M be the first vertex which becomes dead, for
which the Temma does not hold. Since M has a l-link, our
assumption implies that after M becomes dead, MATE(M) is given
a 2-1ink to some bridge PQ . By the definition of a 2-link pB(i-M)
is a head of P(i~»Q) and thus (by Corollary 3.1) 2(M)<z(Q) .

Assume that when M becomes dead, Q is still passive, Let
S be the first vertex on p(MQ) such that P(i»S) s a head of
3(1+Q) and when M becomes dead S 1is still passive. If S has
a 1-link then let R=RLINK(S) , W=MATE(S) . Since B(i-R) 1is a
head of P(i+Q) , then by the choice of § » when M becomes dead
R is not passive. Also, by Corollary 3.1 &(M)<2(R) (where the
equation holds only if R=M } and thus,by the HLFS method, R
becomes dead before M . It follows that RW is searched before M
becomes dead, and thus the assignment RLINK(S)<R is performed

before M becomes dead - in contradiction to the assumption on § ,

If S has a 2-Tink, then let RW=RLINK(S} . Both p(i-M)
and P(i»R) are heads of B(isS) . Since S is Tying on D{¥:Q) ,
then by the definition of 2-1ink RLINK(S) must be (well-)
defined before the assignment RLINK{MATE(M)}PQ is performed.
Therefore, the assignment RLINK(S}«WR is performed when

MATE(M) s still passive and thus PpP(i+R) cannot be a head



122

of P{i+M) , but P(i-M) 1is a head of B(i>R) . By the choice of

S , when M becomes dead R is not passive. Since by Corollary 3.1
2(R)=2(M) (and thé equation holds only if R=M ), then by the

HLFS method RW 1is searched before M becomes dead. Assume that
when RW is searched W 1is still passive: Since by Corollary 3.1
A(MATE(W))>2(R) , then by the HLFS method MATE(W) 1is not active
when RW is searched. If when RW 1is searched MATE(W} 1is passive,
then we would assign RLINK(MATE(W))«R and RW would not be a
bridge. If when RW 1is searched, MATE(W) is dead, then by our
choice of M, W would remain passive - in contradiction to the

fact that RW s a bridge and RLINK(S)=RW . Therefore, the
assumption that W 1is passive when RW 1is searched is false. It
follows that when RW 1is searched, SRCHLOOP(R,W) is called. There-
fore, by Corollary 3.2, the assignment RLINK(S)«RW is performed

before ™ becomes dead - in contradiction to the assumption on S .,

Hence, when M becomes dead Q 1is not passive. Since
2(Q)>2(M) , 0 becomes dead before M, i.e., the edge QP s
searched before M becomes dead. Assume that when QP is searched
P is still passive. By Corollary 3.1, &(MATE{P))>2(Q) , and thus
by the HLFS method MATE{P} 1is not active when QP is searched.
If MATE(P) 1s passive when QP 1is searched, then we would assign
RLINK(MATE(P})<Q - in contradiction to the fact that QP is a
bridge. If MATE(P} 1is dead when QP is searched, then by the
choice of M, Q would remain passive - in contradiction to the
assumption that RLINK(MATE(M))=PQ . Thus when QP 1is searched, P

is not passive, and therefore SRCHLOOP(Q,P) 1is called. By Corollary




123

3.2 it follows that the assignment RLINK{M)<PQG 1is performed before
M becomes dead - in contradiction to the fact that when M becomés

dead, MATE(M) 1is still passive,

Therefore, there exists no vertex M which contradicts the

Temma.

Q.E.D.

Coroliary 3.3

If the subroutine SRCHLOOP(P,N) performs an assignment of the
form RLINK(R)«PN or RLINK(R}«NP , then 2(P)2&(N) , and when
© SRCHLOOP(P,N) is called both P and N are active.

Proof. By the definition, when SRCHLOOP(P,N) 1is called P
is active and N 1is not passive. Assume that N is dead, then the
bridge NP has been searched before SRCHLOOP(P,N) is called. If,
when NP is searched P is not passive, then SRCHLOOP(N,P) would
be called, and by Corollary 3.2, it would perform the assignment
RLINK(R)<PN [or RLINK(R)«NP 1 - in contradiction to the fact that
this assignment is performed by SRCHLOOP{P,N) . Thus, when NP s
searched, P 1is still passive. By Corollary 3.1, &(MATE(P))>2(N) ,
and thus by the HLFS method when NP is searched MATE(P) is not
active. If, when NP is searched, MATE(P) 1is passive, we would
assign RLINK(MATE(P))«N - in contradiction to the fact that NP is
a bridge. If, when NP is searched, MATE(P) is dead, then by
Lemma 3.3 P would remain passive - in contradiction to the

assumption that RLINK(R)=PN [or RLINK(R)=NP ].



124

Therefore, when SRCHLOOP(P,N) is called, N s not dead but
is active. By the HLFS method L{PIz=2(N) .

Q.E.D.
Lemma 3.4

Let M be a vertex which is f-lying on P(i+P) where P is

active. If MATE(M) 1s passive, then M is active,

Proof. By Lemma 3.2 M cannot be passive. Assume that M is
dead. By Corollary 3.1 and the HLFES wethod, when M becomes dead
P is not yet active, i.e., it is passive, Let S be the first
vertex on P(M+P) such that B(i=S) is a head of p(i+P) and when
M becomes dead S s stil} passive. If S has a 1-Tink, then let
R=RLINK(S) and W=MATE(S) . By the choice of S, when M becomes dead R
is not passive. By Corollary 3.1 2(M)<L(R) (and the equation holds
only if R=M }. Therefore, by the HLFS method, R becomes dead
before M, and thus RW s searched and the assignment RLINK(S)}<R
is performed before M becomes dead - in contradiction to the
assumption on S . If S has a 2-link, then let RW=RLINK(S) . By
Lemma 3.2, when P s active, S 1is already not passive. It follows
that when the assignment RLINK(S)<RW 1s performed, MATE(M) s
still passive. Therefore by the definition of 2-1ink M is not on
P(WS) but R s lying on p(MP) . Thus, by the choice of S ,
when M becomes dead R is not passive. Therefore, by Corollary
3.1 and the HLFS method RW 1is searched before M becomes dead.

Assume that when RW is searched W is still passive. Since by



125

Lemma 3.1 A&(MATE(W))>2(R) , when RW is searched MATE(W) s not
active. If MATE(W) 1s passive, we would assign RLINK{MATE(W) )+R
- in contradiction to the fact that RW is a bridge. If, when RW

is searched, MATE(W) 1is already dead, then by Lemma 3.3 W would

remain dead - in contradiction to the assumption that RLINK(S)=RW .
Thus, when RW 1is searched, W is not pass{ve. Therefore, when RW
1s searched, SRCHLOOP(R,W) 1s called, and by Corollary 3.2 the
assignment RLINK(S)<RW 1is performed - in contradiction to the

assumption that when M becomes dead S 1is still passive.
Thus, when P s active, M wmust be active too.

Q.E.D.

Lemma 3.5

Assume that the procedure of the third stage is not in
SRCHLOOP and let M be an active vertex such that MATE(M) 1s
still passive. If P s an active vertex such that L{P}z2(M)} , then

p(i-M) dis a head of p(i+P) . (If 2(P)=n(M) then P=M ).

Proof. Let P be the first vertex which becomes active and
contradicts the lemma. We first show that when RLINK(P) is assigned,
P satisfies the lemma: Assume that P has a 1-]1ink R=RLINK(P) and
Tet W=MATE(P) . When RW 1is searched, there exists in the graph no
active vertex of level higher than %(R) . Therefore, by the choice
of P , for every active vertex M whose MATE s passive, p(i+M)

is a head of DB(i>R)} and thus a head of pP(i+P) .



126

Assume that P has a 2-Tink RW=RLINK(P) . If the assignment
RLINK{P)«RW s performed by SRCHLOOP(R,W) , then by the HLFS
method, when this subroutine is called, there exists in the graph
no active vertex of level higher than &(R) . Therefore, by the
choice of P , for every active vertex M such that when
SRCHLOOP(R,W) 1is called MATE(M) is passive, P(i+M) is a head of
P(i+R) and thus a head of P(i+P) .

If the assignment RLINK(P)<RW 4is performed by SRCHLOOP(W,R) ,
then by Corollary 3.3 when this subroutine is called R is active.
Thus, by the choice of P , for every active vertex M such that
2{M}<2(R) and when SRCHLOOP(W,R} is called MATE(M) is passive,
P(i+M} is a head of P(i#R) and thus a head of pP(i+P) . Consider
now an active vertex M such that R{M)}>2(R) and when SRCHLOOP(W,R)
is called MATE(M) s passive. By the HLFS method #&(M)<a(W) , and
thus by the choice of P , P(i-M) 1is a head of P(i+W) . Let S be
the first vertex which is f-lying on p{i-W} and is common to
B(i-R) . By Corollary 3.1 2(S)<t{W)<e(MATE(R)) . If S is not f-
lying on P(i=R) then by Corollary 3.1 &(MATE(R)}<(S) - in
contradiction to the inequality 2(S)<¢(MATE(R)) . Thus, S is f-
lying on p(i+R} and 2(S)<i(R) . Since P(i+M) 1is a head of
B(i~W) and 2(M)>2(R) , it follows that M is f-Tying on p(SW)
and MgS . Therefore, the assignment RLINK(MATE(M)}«RW 1is Tegal and
it is performed by SRCHLOOP(W,R) . It follows that if M 1is an
active vertex such that i(M)>2(R) and when SRCHLOOP{W,R) is called
MATE(M) 1is passive, then when the performance of SRCHLOGP(W,R) is

terminated, MATE(M) 1is no more passive.




127

Thus, when the activation of the subroutine SRCHLOOP which
performs the assignment RLINK(P)«RW 1s terminated, P satisfies
the lemma for every active vertex M such that when SRCHLOOP was
called MATE(M) was passive. Since no passive vertex M whose
MATE ds passive becomes active during the performance of SRCHLOOP ,
this implies that when the performance of SRCHLOOP 1is terminated
P satisfies the lemma for every active vertex M whose MATE fs

passive,

let M be a vertex whose MATE 1is passive, such that M
becomes active while P 1is active., Since MATE(M) 1is passive, M
has a l-1ink RLINK(M)=Q . When the assigmment RLINK(M)+Q 1is
performed, there exists in the graph no active vertex of Tevel higher
than 2(Q) . In particular, AL(P)<2(Q) and thus 2(P}<&(M) . There-
fore M s not relevant to the lemma. It follows that the lemma

holds for P ,
Q.E.D.

Corollary 3.4

{a) SRCHLOOP(P,N) does not perform any assignment of the form
RLINK{R)«PN .

{b) SRCHLOOP(P,N) performs an assignment of the form
RLINK(R}«NP only if 2(P)=22(MATE(R))>%(N) .

Proof. Assume that SRCHLOOP(P,N) performs an assignment of

the form RLINK(R)«NP or RLINK(R)<PN . By the definition of 2-l1ink




128

MATE(R) is f-lying on p(i-P)} or on p(i+N) respectively. Since

by Corollary 3.3 when SRCHLOOP(P.N) is called both P and N are
active, it follows by Lemma 3.4 that MATE(R) s active too. Also

by Corollary 3.3 &(P)»%{N) . Therefore, if L{MATE(R}) <&{N) , tﬁen by
Lemma 3.5, P{i+MATE(R)) is a nead of both 3(i+P) and p(i-N) , and
thus the assignment RLINK(R)+NP or RLINK(R)+PN  is illegal and

is not performed by SRCHLOOP .

Hence, SRCHLOOP(P,N) performs assignments of the forms
RLINK(R)«NP and RLINK(R)<PN only if &(MATE(R))>&{N} .

{a) If RLINK(R)=PN , then MATE(R) is f-Tying on p(i-N) , and
thus by Corollary 3.1 &(N)>2(MATE(R)) . Therefore SRCHLOOP(P ,N)

does not perform any assignment of the form RLINK(R)<PN .

(b) If RLINK(R)=NP , then MATE(R) 1is f-lying on p(i+P) , and
thus by Coroltary 3.1 2(P)32{MATE(R)) . Therefore SRCHLOOP( P ,N)
performs an assignment of the form RLINK(R)<NP only if
L(P}=2(MATE(R) )>2{N) .

Q.E.D.

Coro]Targ 3.5

‘Assume that the subroutine SRCHLOOP(P,N) 1is called, where
LP)>4(N) . Let Q be the passive vertex closest to N on p(i+N)

and let M=MATE(Q) [see Fig. 3.11. Then

(a) E(i+M) is a commcn head of both E(1+N) and S(T*P) i




129

{b) SRCHLOOP(P,N} performs an assignment of the form
RLINK(R)«NP if and only if R is a passive vertex on pP(MP) .

Proof. (a) When SRCHLOOP(P,N) 1is called P is active and N
is not passive. We first show that the condition &{P)>2(N) implies
that N 1s active too: Assume that N is dead. Therefore the bridge
NP has been searched before SRCHLOOP(P,N) 1is called. By the HLFS
method, when NP is searched, P is not yet active, and thus it is
passive. Since by Lemma 3.1 R2(MATE(P})>%(N) , when NP is searched
MATE(P) 1s not active. If, when NP 1is searched, MATE(P) s
passive, then we would assign RLINK{MATE(P)})«~-N - in contradiction
to the fact that NP is a bridge. If, when NP s searched, MATE(P)
is dead, then by Lemma 3.3, P would remain passive - in contradic-
tion to the fact that when SRCHLOOP(P,N) is called, P 1is active.
Thus, when SRCHLOOP s éal]ed N s active, and by Lemma 3.4 M
is active too. On the other hand, M 1is f-lying on p(i+N) and thus,
by Corollary 3.1, &(M)<a{N)<&(P) . Therefore by Lemma 3.5 pP(i~M)

is a common head of P(i-N) and of pB(i+P) (see Fig. 3.1).

(b) If SRCHLOOP(P,N) performs an assignment of the form
RLINK(R)«NP , then R 1s a passive vertex on B(i=P) . Since P(i-+M)
is a head of both P(i+N) and B(i+P) , R cannot be lying on B(i-+M)
(for, otherwise the assignment RLINK(R)«NP 1is illegal). Thus R s
lying on pP{M+P) .

Let R be the passive vertex closest to P on P(M+P) (see

Fig. 3.1). By Lemma 3.2 ,  B(i-MATE(R)) is a head of F(i-P} and



130

by Lemma 3.4 MATE(R) 1is active and thus has a 1-link. Therefore, by
the definition of 2-Tink, NP can be assigned as RLINK(R) . Let §
be the first vertex which is f-lying on p(i+P) , and is common to
P(i=N) . By the proof of Lemma 3.5 S is f-iying on p(i+N) , and
thus  2(S)<2(N) . If R 1is not lying on P(S*P) , then by Corollary
3.1 R(MATE(R))<2{S)<&(N)<t{P) , and thus, by Lemma 3.5,

P(i-MATE(R)) s a common head of P(i»P) and pP(i+N)} . However, this
impiies that P(i-MATE(R)) 1is a head of P(i+M) - in contradiction
to the fact that R is lying on P{M*P) . Therefore, R 1is lying on
P{S»P) and the assignment RLINK(R)«NP 1is Tegal and is performed by
SRCHLOOP(P ,N) .

Let R' be a vertex on P(M*P) , such that after RLINK(R) is
defined, R' is the passive vertex closest to P . Clearly, after

RLINK(R) s defined, SRCHLOOP(P,N} performs the assignment

Pl=N) _

i Q M S N
YA o e AP PP ¢+ P
R passive R active T i
P,V,We RT(R) P,V,W,E ¢ RT(R) v/

E ¢ RT(R) RNeRT@ % o o f'/
R ¢ RT (W) RT(R)=0 ety 7
N ¢ RT(Q) RT(W)=0 pli~P)

Fig. 3.1 - Subroutine SRCHLOOP(P,N)




131

RLINK(R')«NP . Thus, for each passive vertex R' on B{M+P) , the
assignment RLINK(R'}+NP is pérformed by SRCHLOOP{P,N) .

Q.E.D.

Coroilaries 3.4 and 3.5 enable us to formulate the performance

of subroutine SRCHLOOP(P,N) as follows:

{a) If &(N)32(P) then return [by Corollary 3.4];

(b) Find the passive vertex Q which is the closest to N on
P(i+N) ;

(c} Find the passive vertex R which is the closest to P on
P(i~P) . If R=Q then return [by Corollary 3.5];

(d) Assign: RLINK(R)«NP and return to {(c) [by Corollary 3.5].

D. The Data Structures

The main procedure. In order to perform the search of the free

edges as required by the HLFS method, we use the Tists VLIST and
ELIST(N) which were defined in the second stage of the algorithm
[recall that VLIST 1is a list of the vertices of the reduced graph,
where these vertices are arranged in nondecreasing order of their
levels. For each vertex N of the reduced graph, ELIST(N) is the
1ist of all vertices' M such that NM s a free edge of the reduced

graphl.

In order to handle the bookkeeping which is required by the




132

HLFS method, we define a data structure ACTLIST which contains all
the active vertices arranged according to their levels. The purpose
of ACTLIST 1s to enable us to find an active vertex of highest
Tevel, as it is required by the rule of the HLFS method. There are
some possible structures by which ACTLIST can be implemented. Since
different structures determine different compiexities for the third
stage, we shall discuss this subject in Section G: "The Complexity of

the Third Stage®.

For the purpose of performing the third stage by parts, we use

the label LIFE , as it is explajned in Section B.

The subroutine SRCHLOOP. For each vertex N of the reduced

graph, we define the variable TOP(N) as follows :

If N 95 passive then TOP(N)=MATE(N) ; else, TOP{N) is the

passive vertex which is the closest to N on p(i=N} .

Similarly to the first stage, we define for each vertex Q of

the reduced graph a set RT(Q} as follows:

RT(Q) = {N|TOP(N)=Q} .

TOP(N) 1in our algorithm is in fact identical to TOP(LINK(N)) 1n
Gabow's algorithm [3]. Like the variable TAIL 1in the first stage,
TOP is not used by all the implementations of the third stage,

and it is introduced here in order to enable a better understanding

of the sets RT(Q) .




133

The variables TOP and the sets RT are changed only when a
passive vertex R becomes active, i.e., when RLINK{(R) is defined.
Howaver, it is not difficult to see that an assignment of a 1-Tink
does not change any set RT . On the other hand, an assignment of a
2-Tink, RLINK{R)«NP , changes exactly the TOPs of all vertices V

such that VERT(R) , and clearly it also changes TOP(R) .

Let V be a vertex which belongs to RT(R) before R becomes

active and Tet W=MATE(R) . By Lemma 3.2 p(i-W) s a head of P(i+V} .

On the other hand, W has a 1-link E=RLINK(W)} , and thus
pli+V}=p(i-E)-p{R+V) (see Fig. 3.1). It follows that after R
becomes active, the new TOP(V) 1is the same as TOP(E) . Therefore,
if EeRT(R'} [i.e., if TOP{E)=R'] , then after R becomes active
VERT(R') . Namely, the assignment RLINK(R)<NP implies the following
change: RT{R"')<RT(R'} u RT(R) , RT{(R)<@ .

Consider now TOP(R) : By the definition of TOP , before R
becomes active, TOP(R)=W . On the other hand, by the definition of
2-1ink, after the assignment RLINK(R)«NP is performed,
P(i=R)=P(i+N)*P(R«P) and all the vertices on P(R«P) are not
passive, Thus, after R becomes active, the new TOP(R} 1s the same
as TOP(N) . Therefore, if NeRT{Q) [i.e., if TOP(N)=Q 1, then the
assignment RLINK(R)«NP implies tihe following change:

RT(Q)<RT{Q} U RT(W) , RT(W)<@ .

Using the definitions of the sets RT , we can now formulate the

performance of the subroutine SRCHLOOP(P,N) as follows:

B¢

he

[

¢

-



If Jj=r then [M 1is a 2-exposed vertex and pP(i+M) is an

augmenting path; the i-th part is successfully terminated] )
assign i<i+l and return to PART . Else, assign P<M and t
go to 3.

6. [N s not passive.] If RLINK(MATE(P))=N then [PN is not s
a bridge] return to 3. If 2(P)<2(N) then return to 3
[aTthough PN 1is a bridge, SRCHLOOP(P ,N) performs nothingl. Y
ETse {2(P)>2(N)] call SRCHLOOP(P,N) . Return to 3. o

7. [Find an active vertex of highest level.]l If ACTLIST=p ;kl
then [there are no active vertices in the graph. The i-th "
part is terminated unsuccessfully without finding any legal ;)
augmenting path] assign i«i+1 and return to PART . Else ~¢
find in ACTLIST a vertex P of maximal level . If R
LIFE(P)<i then [P has remained in ACTLIST from some s

previous part] de1ete* P from ACTLIST and repeat 7. Else,
[P s an active vertex of highest Tevel in the graphl,

assign j«2(P) and go to 3.

The Subroutine SRCHLOOP(P,N)

*
1. FIND the vertex Q such that NeERT(Q) .

FIND" the vertex R such that PERT(R)

2. If R=Q then return.

*
The exact implementation of these instructions is discussed in

Section G.



133

The variables TOP and the sets RT are changed only when a
passive vertex R becomes active, i.e., when RLINK(R) s defined.
However, it is not difficult to see that an assignment of a 1-link
does not change any set RT . On the other hand, an assignment of a
2-Tink, RLINK(R)+NP , changes exactly the TOPs of all vertices V

such that VERT(R) , and clearly it also changes TOP(R) .

Let V be a vertex which belongs to RT(R) before R becomes
active and let W=MATE(R) . By Lemma 3.2 p(i-W) is a head of P(i+V) .
On the other hand, W has a 1-Tink E=RLINK(W) , and thus
p{iV)=p(i+E)*p(R+V) (see Fig. 3.1). It follows that after R
becomes active, the new TOP(V) 1is the same as TOP(E) . Therefore,
if EERT(R') [(i.e., if TOP(E)=R'] , then after R becomes active
VERT(R') . Namely, the assignment RLINK(R)«NP implies the following
change: RT{R')«RT(R') u RT(R) , RT(R)<§ .

Consider now TOP(R) : By the definition of TOP , before R
becomes active, TOP(R)=W . On the other hand, by the definition of
2-Tink, after the assignment RLINK(R)«NP 1is performed,
P(i+R)=p{i+N)*DP(R<P) and all the vertices on P(R<P) are not
passive. Thus, after R becomes active, the new TOP(R) is the same
as TOP(N) . Therefore, if NERT(Q) [i.e., if TOP{N)=Q I, then the
assignment RLINK(R)<NP implies the following change:

RT(Q)«RT(Q) u RT(W) , RT(W)<@ .

Using the definitions of the sets RT , we can now formulate the

performance of the subroutine SRCHLOOP(P,N) as follows:



(a)
(b)
{c)

(h)

The
FIND and

134

If 2(P)<&(N) then return;

FIND the vertex Q such that NERT(Q) [i.e., find TOP(N)];
FIND the vertex R such that PeERT(R) [i.e., find TOP(P)I;
If R=Q then return;

Assign: RLINK(R)<NP ;

Let WeMATE(R) . Perform the UNION : RT(Q)+RT(Q)URT(W) ;
RT(W)<p ;

Let E+RLINK(W) . FIND the vertex R' such that EERT(R")
[i.e., find TOP(E) ]. Perform the UNION :

RT(R')«RT(R' JURT(R) ; RT(R)«@ ;

Assign ReR' and return to (d).

description of SRCHLOOP(P,N) includes the instructions

UNION. The exact performance of these instructions depends

on the implementation of the sets RT . Since different implementa-

tions lead to different complexities of the third stage, we shall

discuss this subject in Section G: "The Complexity of the Third

Stage",

E. The Algorithm

The

Main Procedure

0.

[Initialization.]

{a) For each vertex N of the reduced graph, assign:
LIFE(N}«n+1 ; RLINK(N)<Q ; RT{N)}<{MATE(N)} .

{b) Assign: ACTLIST«@ .

(¢) i<l .




PART:

135

. [Start the i-th part.] Assign: P<VLIST(i) . If 2(P)#0

then proceed to the fourth stage [all the l-exposed vertices
of the reduced graph have already been searched]. If
LIFE(P)<n+1 then assign i<i+l and return to PART [we
have already found an augmenting path which passes through

the i-th l-exposed vertex],

. [Start the search] Assign: RLINK{P)<DUM, j«0 [j is the

highest level of an active vertex]. Insert* P into ACTLIST
and assign: LIFE(P)«i; LIFE(MATE(P))=i [P becomes active].

. [Search from vertex P .] If all the edges of ELIST(P) have

already been searched, then delete* P from ACTLIST , and
go to 7 [P becomes deadl. Else, let PN be an edge in

ELIST(P) which has not been searched yet.

. [Search the edge PN .1 If LIFE(N)<i then return to 3

[N is not relevant to the i-th part]. If RLINK(N)#0 then
go to 6. Else, let MeMATE(N) .

. [N is passive.] If RLINK(M)#0 then return to 3. Else,

assign [a 1-1ink assignment]: LIFE(M}«i ; LIFE(N)<i ;
RLINK(M)+P . Insert” M into ACTLIST and assign: jei(M)

[M becomes an active vertex of highest level in the graphl.

*
The exact implementation of these instructions is discussed in

Section G.




136

If J=r then [M is a 2-exposed vertex and p(i»M) is an
augmenting path; the i-th part is successfully terminated]
assign i<i+l and return to PART . Else, assign P«M and

go to 3.

6. [N 1is not passive.] If RLINK(MATE(P))=N then [PN 1is not
a bridgel return to 3, If &(P)<2(N) then return to 3
lalthough PN is a bridge, SRCHLOOP(P,N) performs nothing].

ETse [&(P)>2(N)1 call SRCHLOOP(P,N) . Return to 3.

7. [Find an active vertex of highest level.]l If ACTLIST=@
then [there are no active vertices in the graph. The i-th
part is terminated unsuccessfully without finding any fegal
augmenting path] assign i«i+1 and return to PART . Else
find in ACTLIST a vertex P of maximal level . IF
LIFE(P)<i then [P has remained in ACTLIST from some
previous part] delete” P from ACTLIST and repeat 7. Else,
[P s an active vertex of highest level in the graphi,

assign j<2(P) and go to 3.

The Subroutine SRCHLOOP(P,N)

*
1. FIND the vertex Q such that NeRT(Q)} .
FIND* the vertex R such that PeRT(R)

2. If R=Q then return.

*
The exact implementation of these instructions is discussed in

Section G.



137

3. Assign: RLINK(R)<NP . Insert’ R into ACTLIST .

4. Let WeMATE(R) . Perform the UNION : RT(Q)<RT(Q) U RT(W) ;
RT{W)<@ .

5. Let E<RLINK(W) . FIND® the vertex R' such that EERT(R') .
Perform the UNION™ : RT(R')<RT(R') U RT(R) ; RT(R)<f .

6. If R'#Q then assign: R«R' and return to 3.

7. [R is the vertex of highest level which has become active
during the present activation of SRCHLOOP .} If 2(R)<]
then return. Else [R is an active vertex of highest level

in the graph] assign: Jj<&(R) ; P<R and return.

F. The Correctness of the Third Stage

The goal of the third stage is to find a maximal set of disjoint
Tegal augmenting paths in the reduced graph. Throughout the perfor-
mance of the third stage we construct alternating paths leading to
the vertices of the reduced graph. These paths are defined by 1-Tinks
and 2-links. Clearly, the al-paths which are defined by the 1-1inks
are legal. The discussion of Section C assures that the al-paths
which are defined by the 2-links are legal too. Therefore, the
augmenting paths which we find in the graph are legal. The fact that
these paths are disjoint is verified by using the label LIFE as it

is explained in Section B.

®
The exact implementation of these instructions is discussed in

Section G.



138

In this section we prove that the set of the (disjoint and legal)
augmenting paths which we find during the performance of the third
stage is maximal (and thus compiete the proof of the corvectness of
the third stage). For this purpose, it is sufficient to show that if
R is a vertex such that LIFE(R)=1 , then there exists in the graph
no legal augmenting path which passes through R and is disjoint
from all the augmenting paths which may have been found during the
first 1 parts (Theorem 3.1). This theorem is proved by the following

sequence of lemmas:
Lemma 3.6

Let LIFE(M)=i . If at the end of the i-th part M ds still-
active while MATE(M) is passive, then a Tegal augmenting path which

passes through M has been found in the i-th part.

Proof. Since at the end of the i-th part MEACTLIST , the i-th
part cannot be terminated in step 7 of the algorithm. It follows that
the i-th part is terminated in step 5 of the algorithm, where a legal
augmenting path leading to a 2-exposed vertex 8 15 found in the
graph. Since B 1is an active vertex and 2(M)sr=2(8) , Lemma 3.5

impiies that p(i+M) is a head of pB(i~B) .
Q.E.D.
Lemma 3.7

Let M be a vertex such that LIFE(M}=i , If at the end of the

i-th part M 1is dead while MATE(M) s passive, then there exists




139

in the graph no Tegal augmenting path which passes through M and is

disjoint from all the vertices whose LIFEs are less than i .

Proof. Assume that the lemma does not hold: Let = be a legal
augmenting path which does not pass through any vertex whose LIFE
is less than 1 , and Tet M be the first vertex of w which becomes
dead such that LIFE(M)=i and MATE(M) is passive. Let R be a
vertex of highest Tevel on 7 such that P(i-M) is a head of
P(i+R) . By Lemma 3.2, when M becomes active R is still passive.
Thus, by Lemma 3.3, when M becomes active, MATE(R) is not dead.
Assume that when M becomes active, MATE(R) is active. Since M
has a 1-link, it follows by the HLFS wmethod that when M becomes
active, 2(MATE(R))<&(M) , and thus by Lemma 3.5 D(i-MATE{R}) is a
head of P(i+M) - in contradiction to the fact that P(i+M) is a
head of P(i+R) . Therefore, when M becomes active MATE(R) is

still passive.

By Lemma 3.4, at the end of the i-th part, R 1is not active,
and therefore R cannot be a 2-exposed vertex {for, otherwise the
i-th part would be terminated in step 5 of the algorithm, when R
becomes active). Hence, there exists on = a free edge RW . If when
M becomes active W {is already dead, then the edge WR has been
searched before M becomes active, i.e., when R and MATE(R) were
still passive. However, in this case we would assign
RLINK(MATE(R) )«<W ~ in contradiction to the fact that when M becomes
active MATE(R} 1is still passive. Thus, when M becomes active, W

is not dead. Assume that when M becomes active, W is active. Since




140

M has a 1-Tink, it follows by the HLFS method that L(W)<e{M) and
thus by Lemma 3.5 B(i+W) is a head of F(i-M) . Therefore, B(i-+¥)
is a head of T(i»R) and &{W)<2&(R) . Since at the end of the i-th
part R s dead, it follows that the edge RW is searched during
the i-th part and the subroutine SRCHLOOP(R,W) s called. However,
Corollary 3.5 implies that in this case the assignment
RLINK(MATE(M))<WR 1is performed - in contradiction to the fact that
at the end of the i-th part MATE(M) is passive. Therefore, when M

becomes active W is neither dead nor active, namely it is passive.

Let S=MATE(W) . By Lemma 3.1 2($)>2(R) and thus 2(S)>2(M)
If while M is active, S s active too {or S becomes active),
then by Lemma 3.5 P(i+M) s a head of P(i+S) - in contradiction to
the choice of R . On the other hand, the choice of M implies that
when M becomes active S is not dead. Therefore, when M becomes
active, S s passive, and it is still passive when M becomes dead.
On the other hand, since RW 1is searched before M becomes dead, it
follows that when M becomes dead W is not passive (for otherwise
we would assign RLINK(S)<R }. Therefore, W becomes active when M
is active. However, since W nas a l=-1ink, it follows by the HLFS
method that 2(W)>2(M) and thus W becomes dead before M - in

contradiction to the choice of M .
Thus, the lemma is correct.

Q.E.D.



141
Lemma 3.8

Let R and M be two active vertices such that

g(R)zs&(M)z[Q . Then M 1is lying on p(i=R) .

Proof. Let R be the first vertex which becomes active for
witich the lemma does not hold. First we show that when R becomes
active, it is in accord with the lemma: If R has a 1-link,
RLINK{R)=S , then by the HLFS method, when R becomes active there
exists no active vertex of level higher than 2(S).Therefore, for each
active vertex M, &(M)<2(S) , and by the choice of R,if R(M)z{ﬁ]

2
then M is lying on p(i»S) and thus on p(i=R) .

Assume that R has a 2-Tink, RLINK{(R}=NP ., By Corollary 3.5,
the assignment RLINK(R)«NP 1s performed by SRCHLOOP(P,N) , and
by the HLFS method, when SRCHLOOP(P,N) 1is called there existsno
active vertex of level higher than 2(P).Thus, for each active vertex
M, 2(M)<2(P} and by the choice of R ; if Q(M)z{gl then M s
lying on p(i»P) . If M is a vertex which becomes active during
the performance of SRCHLOOP(P,N) , then by Corollary 3.5 M s
lying on p(i=+P) . Therefore, when SRCHLOOP(P,N) s terminated,
every active vertex M such that R(M)z[%} is lying on E(E+P} .
If M is lying on piR*P) then M 1is also lying on p(i+R) .
Assume that M. is not lying on p(R+P) : If M 1is f-lying on
P(i«<P) (but is not lying on P(R«P) ) then by Corollary 3.1
L{M)>2{R) and thus M is not relevant to the lemma. If M is f-
lying on 2(i»P} (but is not lying on P{R+P} } then by Corollary

3.1 R(M)<2{MATE(R)) . However, since &(R)+2{MATE(R)}=r while



R(R)z[g—'] , it follows that z(MATE(R))s[g] , and thus z(M)Jg]

and again M is not relevant to the lemma.

Therefore, when R becomes active it is in accord with the
lemma, Let M be a vertex which becomes active when R is active,
such that z(R)zx(M);(g] . By the HLFS method, M cannot have a
1-Tink and thus when M becomes active MATE(M) s not passive. By
Lemma 3.3 it follows that when M becomes active MATE(M) s still
active. Since &(M)+2(MATE{M))=r , it follows that
E(MATE(M))s[glsl(R) and thus by Lemma 3.5 MATE(M} 1is lying on
P(i~R) . Therefore, M is lying on pP{i-R) .

Q.E.D.

Corollary 3.6

Let M be a vertex such that ULIFE(M)=1 and l(M);[%J . If at
the end of the i-th part M is active, then a legal augmenting path

which passes through M has been found in the i-th part.

Proof. Since at the end of the i-th part M€EACTLIST , the i-th
part cannot be terminated in step 7 of the algorithm. Therefore, the
i-th part is terminated in step 5 of the algorithm, where a legal
augmenting path leading to a 2-exposed vertex R s found. Since
R is an active vertex and l(R}=ra£(M)z(§l , Lemma 3.8 implies that

M 1is lying on this augmenting path.

Q.E.D.




143

Theorem 3.1

Let R be a vertex such that LIFE(R)=i . Then there exists
in the graph no legal sugmenting path which passes through R and
is disjoint from all the augmenting paths which may have been found

during the first i parts.

Proof. Let 1 be the first part for which the theorem does
not hold, and let R be a vertex of highest level such that
LIFE(R)=1 and R does not satisfy the theorem; namely, there
exists a legal augmenting path m which passes through R and is
disjoint from all the augmenting paths which may have been found during
the first 1 parts. If at the end of the i-th part R is passive,
then by Lemma 3.7 MATE(R) cannot be dead and by Lemma 3.6 MATE(R)
is not active. On the other hand, since LIFE(R)=1 , both R and
MATE(R) cannot be passive. Therefore, at the end of the i-th part
R is not passive. Since both R and MATE(R) do not satisfy the
theorem, then by the choice of R, L(R)22(MATE(R)) and thus
R(R)z{gl . Therefore, by Coroilary 3.6, at the end of the i-th part
R is not active. It follows that at the end of the i-th part R

is dead.

Clearly R 1is not a 2-exposed vertex. Thus, there exists on
T a free edge RW . Let S=MATE(W) , then by Lemma 3.1 2(S)>&(R) .
Since at the end of the i-th part R 1is dead, the edge RW has
been searched during the i-th part. On the other hand, by the choice

of i , LIFE(S} 1is not less than i . Therefore, at the end of the



144

i-th part LIFE(S)=1 - in contradiction to the choice of R .
Hence, the theorem is correct.

Q.E.D.

G. The Complexity of the Third Stage

Let n. be the number of vertices of the reduced graph and Tet

m,. be the number of its edges (clearly, n.n mrsm). Except for
the operations on ACTLIST and the operations on the sets RT » @
constant number of operations are performed by the algorithm of the
third stage per each vertex and each free edge of the reduced graph.
Therefore, except for the operations on ACTLIST and on the sets

RT , the complexity of the third stage is O(mr) .

The operations on ACTLIST . The following operations are

performed on ACTLIST :

(a) Each time a vertex becomes active, it is inserted into
ACTLIST (steps 2 and 5 of the main procedure, and step 3
of subroutine SRCHLOOP };

(b) Each time a vertex becomes dead, it is deleted from
ACTLIST (steps 3 and 7 of the main procedure);

(c) Each time a vertex is deleted from ACTLIST , we have to

find in ACTLIST a vertex of maximal level.

Thus, throughout the whole performance of the third stage, each



145

of the instructions: "insert", “delete" and "find maximum" may be

performed on ACTLIST at most N, times.
There are some structures by which ACTLIST can be implemented:

(i) The simplest implementation is to represent ACTLIST as a
simple 1ist. In this case, each of the instructions "insert" and
“delete" is performed in one step while “find maximum" is performed
in (at most) n. steps. This implementation determines a total

‘complexity of O(ni) for the operations on ACLIST .

(i1) A more efficient implementation is to represent ACTLIST
by some variation of a binary tree {e.g., by a 2-3 tree, see {6]}). In
this case, each of the instructions "“insert", "delete" and “"find
maximum" is performed in 0(1g nr) steps, and thus the total comp-

lexity of the operations on ACTLIST s O(nr 1g nr)* .

(ii1) By using the data structure which was suggested by Van Emde
Boas {71, each of the operations "insert"”, "delete" and “find maximum®
can be performed in 0(1g ig nr) steps, and thus the total complexity

is O(nr 1g 1g nr) .

Since the levels of the vertices are not greater than r , by using
a slightly more complicated data structure, we can Tower the comp-
lexity of each operation to be O0(1g r) , and thus achieve a total

complexity O(nr g r) .




iso

The operations on the sets RT . The operations on the sets RT

are performed by the subroutine SRCHLOOP .
The following operations are required:

(a) FIND the vertex R such that PERT(R) : Two Such operations
are required (in step 1) per each activation of SRCHLOOP',
and one operation is required (in step 5) per each vertex of
the reduced graph which is given a 2-Tink;

(b) Perform the UNION of the sets RT(R) and RT(R') : Two such
operations are performed {in steps 4 and 5) per each vertex

of the reduced graph which is given a 2-11ink.

The subroutine SRCHLOOP may be activated at most once per each
free edge of the reduced graph. Also, at most l;EJ vertices of the
reduced graph can be given a 2-1ink. Therefore, the.instruction FIND
May be required at most mr+i;£J times throughout the whole perfor-
mance of the third stage, while the instruction UNION may be required

at most nr times.

There are some possibilities to implement FIND and UNION :

(1) The simplest implementation is to represent each set RT by
a simple Tist, and to attach the variable TOP , Which is defined in
Section D, to each vertex of the reduced graph. In this 1mp1émentation
the instruction "FIND the vertex R such that PERT{R)" is replaced
by the assignment R<TOP(P) , which is performed in one step. The
instruction "perform the UNION of the sets RT(R) and RT(R')" is




147

performed by concatenating the two iists which represent these sets

and by updating the TOPs of the vertices which belong to these sets.
Thus, the instruction UNION isatmost performed in  n. steps. The
total complexity of the operations on the sets RT , as determined by

this implementation, is therefore O(ni),

(i1} Since the sets RT are disjoint, we can use the various .
disjoint-set union algorithms which are described in [61. In parti-
cular, 1t can be proven that if we use the fast disjoint-set union
algorithm, then the total complexity of the operations on the sets
RT s U(mr+nrg(nr)) , where g{(n) is the reciprocal Ackerman
function, which can be considered as constant for all "practicat”

values of n .

The total complexity of the third stage. The above discussion

implies that if we use the simpliest implementations for the operations
on ACTLIST and on the sets RT , then the total compelxity of the
third stage is O(nﬁ) . By using more sophisticated implementations

we can achieve a complexity of O(mr+nr 1g 1g nr) ;



4. THE FOURTH STAGE

A. General Description

In the fourth stage, the augmenting paths of the reduced graph
which have been found during the third stage are retraced, and their
sources in the original graph are restored (see the definitions of the
second stage). The matching is improved by converting each free edge
on these paths into a matched one and vice versa. The 2-exposed
vertices at the ends of those augmenting paths, are removed from the

graph,

The variable NEWMATE(R) . In order to record the restored

augmenting paths and to perform the augmentation of the matching, we
define for each vertex R of the original graph a variable

NEWMATE(R) , as foliows:

(1) In the beginning of the fourth stage, assign for each vertex

R : NEWMATE(R)«MATE(R) .

{i1) Let R be a vertex which is not 2-exposed, such that R s
found to be lying on an augmenting path p which is restored during
the fourth stage. Let RW be the free edge on p which is incident
to R . Then assign: NEWMATE({R)<W .



149

At the end of the fourth stage, for every vertex R (except for
the 2-exposed vertices at the ends of the restored paths,which
are removed from the graph) NEWMATE(R) s the new MATE of R .
Therefore, for each vertex R of the graph we assign:

MATE(R)«NEWMATE(R) .

The procedure PATH{M,P) . In order to perform the assignments

to the variables NEWMATE as required by rule (ii) of the definition,

we define a {recursive) procedure PATH{M,P) as follows:

let M and P be vertices of the original graph such that
p(0+M) is a head of p{0+P) . For each free edge RW which is lying
on p{M+P) , PATH(M,P) performs the assignments: NEWMATE(R)<«W ,
NEWMATE(W}<R .

[The formal definition of PATH(M,P) 1is described in Section B. ]

The procedure RPATH(M,P) . Let M and P be vertices of the

reduced graph such that P(i-M) is a head of P{i+P) . In order to
get the source in the original graph of the segment P(M+P) , one has
to replace each free edge RW of P(M+P) by the segment
p(R+X)+p(W<Y) where XY=SOURCE(RW) ({see the algorithm of the second
stage). Thus, in order to retrace the augmenting paths which have been
found during the third stage, and to restore their sources in the

original graph, we define a (recursive)procedure RPATH{M,P) as

follows:



156

The vectors MATE , LEV , LINK . Three other vectors are reguired

throughout the whole algorithm: MATE(-n:n) , LEV(-n:n) and
LINK(-n:n} : MATE(i) points to the vertex which is the mate of
vertex 1, LEV(i) contains the level of vertex 1 and LINK({)
gives the Yink of vertex 1 as follows: If vertex i has a 2-link
to edge number k , then LINK(i)=k . If vertex i has a 1-1ink to
vertex iI , then LINK(7)-3-m 1is the number of the edge which goes
from il to MATE(i) f[thus, i has a 1-link if and only if
LINK(i)>m]. If vertex i has no link then LINK(i)=0 .

The initialization of the algorithm. The algorithm is

inttialized by assigning for each i , i=leeen : MATE(§)=-1 ,
MATE(-1)=1. At this point we also build the 1ist LIST(0} which

contains all the vertices 1 , where j=l-esn .

The first stage. For the implementation of the first stage we

need the following vectors (all these vectors can be released at the

end of the first stage):

FCHN(-n:n) , LCHN{-n:n) , NXCHN(-m:m) : These vectors describe
the CHAINs : FCHN(i} 1is the number of the first edge (bridge) of
CHAIN(1) ; LCHN(i) 1is the number of the last edge of CHAIN(i) ;

(if CHAIN(i) s empty then FCHN(i)=0 , LCHN(i)=0 ;) NXCHN(k) 1s
the number of the edge which follows edge number k in CHAIN(E{-k))
{if edge number k does not belong to CHAIN(E(-k)} , or if it is
the last edge in this CHAIN , then NXCHN(k)=0)

TAIL(-n:n) , NEXT(-n:n) : these vectors represent the set T(R)



157

(see Implementation 1 in Section H of Chapter 1). If vertex aumber i
beiongs to the set T(il) , then TAIL(1‘)=1‘1 and MNEXT(i) 1is the
number of the vertex which follows 1 in T(il) (if 1 s the last

vertex of T(il} then NEXT(i)=0 ). The first vertex of T(il} is

always MATE(TI) , and thus it requires no special space.

For the implementation of subroutine MERGE we use Implementa-

tion 1 of Section H in Chapter 1.

The reduced graph. The reduced graph is represented by the

vectors ER(-m:m} , NXTER{-m:m) and ELIST(n) in the same manner

the original graph is represented by the vectors E(-m:m) , NXTE{-m:m)
and V(n)} . However, in order to preserve this representation, step 8
in the algorithm of the second stage must be slightly changed such
that the insertion of an edge into the adjacency lists is performed
as follows: Let 1112 be an edge of the reduced graph such that

11<12 : Both edges 1112 and 1211 are inserted into the adjacency
lists of the reduced grapn only when the edge 1112 is searched (from
il to 12 ). Obviously, this rule fuifils the requirement that when
an edge YX , which is a source of the edge 11i2 , is searched in the
original graph (step 8 in the algorithm of the second stage), then the
edges iliz and 1211 are already contained in the adjacency Tists of

the reduced graph if and only if the first vertex of the list

ELIST(iz) is il (see the discussion of Section D in Chapter 2).

Thus, in this implementation, the insertion of the k-th edge into
the adjacency lists of the reduced graph (step 8 in the algorithm of

the second stage) is performed as follows {we assume that an edge YX




of the original graph is being searched, where il=BASE(Y) )i

8. If 4(X)+a(Y)+1#r then return to 7. Else, let 12+8ASE(X) .
If 24 )+(MATE(12))>P return to 7. If ilziz then return to
2
7. If ELIST(i )#0 and ER(-ELIST({

i ))=i then return to 7.
2 2 1
Else, [record the edge 1112 as the k-th edge of the reduced
graph], assign: ER(k)<i , ER(-k)+1‘2 ; [insert the edge izil

1 .

as the first edge of the adjacency 1ist of vertex 12] assign:
NXTER(—k)+ELIST(i2) . ELIST(T2)+—k ; [insert the edge iliz as
the first edge of the adjacency list of vertex il] assign:
NXTER(k)+ELIST(11) . ELIST(il)+k ; Assign: SOURCE(k)=YX and

return to 7.

The vectors ELIST and NXTER are required for the performance
of the second and the third stages of the algorithm. The vector ER

is required also during the performance of the fourth stage.

The vector SOURCE . Since we apply the same representation to

both the original graph and the reduced graph, it suffices to use a
vector of m entries in order to implement the variables SQURCE .
Thus, if SOURCE(k')=k (where k' and k are free edges of the
reduced and the original graphs respectively), then SOURCE{~k')=-k .
The vector SOURCE is required throughout the performance of the

second, third and fourth stages of the algorithm.

The vectors VLIST , BASE, BSLIST . By Corollary 2.5, the

z-exposed vertices which belong to the reduced graph are exactly the
mates of the l-exposed vertices which belong to this graph. Since no

free edges meet the 2-exposed vertices, it is convenfemt to save space



159

in the memory by ignoring the Z-exposed vertices throughout the
performance of the second stage. Namely, the list VLIST of the
vertices of the reduced graph does not contain the Z=axposed vertices,
and thus it can be implemented by a vector VLIST of n entries
{instead of a vector of 2n entries): VLIST(i) contains the i-th
vertex of the reduced graph (where the vertices of the reduced graph
are listed in non-decreasfng order of their levels). The vector VLIST
s required throughout the second, third and fourth stages of the

algorithm.

Since the 2-exposed vertices of the original graph are not
searched in this implementation, no BASEs are defiend for them,
(Since no free edges meet these vertices, no problems arise during
the performance of step 8 in the algorithm of the second stage). Thus,

the vector BASE requires only n entries.

The 1ist BSLIST(Q) , of all the vertices of the original graph
whose BASEs are Q , is implemented by a vector BSLIST(n) as
follows: For each vertex Y of the original graph, BSLIST(Y) points
to the vertex which follows Y 1in the list BSLIST(Q) . (If Y is
the last vertex of the list BSLIST(Q) then BSLIST(Y)=Q0 ). The first
vertex of the 1ist BSLIST(Q) s always the vertex Q itself, and
thus it requires no special space. Since no BASEs are defined for the
2-exposed vertices, they require no entries of BSLIST , and thus

BSLIST 1is implemented by a vector of length n .,

Both vectors BASE and BSLIST can be released at the end of

the second stage.




160

The third stage. Five new vectors are used during the third

stage: LIFE(-n:n) , RLINK(-n:n) , TOP(-n:n) , RINXT(-n:n} and
ACTLIST(2n) .

LIFE{-n:n) and RLINK(-n:n) are the variables which are defined
in Chapter 3. RLINK(i) represents the RLINK of vertex 1 in the
same manner LINK(i) vrepresents its LINK . Namely: if vertex 1 has
a 2-1ink to the edge k then RLINK(i)=k ; if vertex i has a 1-Tink
to the vertex 11 then RLINK(i)-3em is the number of the edge which
goes from 11 to MATE(i) . The vectors LIFE and RLINK are required

also throughout the performance of the fourth stage.

TOP(-n:n) and RTNXT(-n:n) represent the sets RT in the same
way as the vectors TAIL and NEXT represent the sets T(R) . Namely:
if a vertex 1 belongs to the set RT(il) then TOP(i)=1’1 and
RTNXT(i) points to the vertex which follows i in RT(il) . The first
vertex of RT(il) is always MATE(il} , and thus it requires no
special space. The vectors TOP and RTNXT are released at the end

of the third stage.

Since the vectors ELIST and NXTER are not required during the
fourth stage, we use these vectors to handle the search of the edges
throughout the third stage as follows: Assume that by the HLFS method
we have to search an edge which emerges from the vertex P : We search
the edge which ELIST(P) points to . However, we also assign a new
value to ELIST(P) : ELIST(P)<NXTER(k) , where k 1is the edge which
is now being searched. This assignment assures that the next search

from the vertex P would be along the edge NXTER(k) .




161

The Tist ACTLIST . The 1ist ACTLIST 1is implemented by a vector

ACTLIST(2n) , and by an index NACT which gives the number of the
vertices which are contained in ACTLIST (see implementation (i) in
Section G of Chapter 3). These vertices are stored in the locations
i=1,2,°°¢ ,NACT of the vector ACTLIST . When a new vertex is inserted
into ACTLIST , we increase NACT by 1 (NACT<NACT+1) , and locate the
new vertex in ACTLIST(NACT). In particular, when the i-th PART of
the third stage is initialized, we insert the i-th vertex of VLIST
into ACTLIST{1) and assign NACT«l . Thus, throughout the i-th PART
of the third stage, ACTLIST contains only vertices whose LIFES are
i . In order to delete a vertex U from ACTLIST we decrease NACT

by one (NACT<NACT-1) , and search ACTLIST : if the vertex U 1is
found in the first NACT locations of ACTLIST , then it is replaced
by the vertex which is located in ACTLIST{NACT+1) . During this search
we also find a vertex of highest Tevel in ACTLIST {(as required by
step 7 of the algorithm of the third stage). The vertex ACTLIST(2n)

is released at the end of the third stage.

The subroutine SRCHLOOP . The subroutine SRCHLOOP is performed

according to implementation (i) of Section G 1in Chapter 3: The
instruction "FIND the veriex R such that PeRT(R)" is simply perfor-
med by ReTOP(P) . The instruction "UNION RT(Q)+RT(Q)URT(W)" is per-
formed by a subroutine UNION(Q,W) , which updates the TOPs of all
the vertices R in RT(W) and concatenates the Tist of RT{W) to the
1ist of RT(Q) (by the assignment RTNXT(S)«MATE(YW) , where S 1is the

last vertex of RT(Q) }.



162

The fourth stage. For the implementation of the fourth stage only

one new vector has to be allocated: NEWMATE(n) . For vertex number i
(i>0) , the entry NEWMATE(i) gives the value of the variable

NEWMATE(i) as defined in Section A of Chapter 4, Since this variable
is useless for the Z-exposed vertices, no space is allocated for these

vertices, and the length of the vector NEWMATE 1is therefore n .

Since in our implementation the Z-exposed vertices are not listed
in VYLIST , step 1 in the algorithm of the fourth stage is performed
by searching the l-exposed vertices which are contained in VLIST and

referring to their mates.

Let P be a 2-exposed vertex. Since the matched edge (P,MATE(P))
is not contained in the 1ist E(-m:m) of the edges of the graph, there
is no need to remove this edge from this list in step 5 of the

algorithm of the fourth stage.

The subroutines RPATH and PATH . Each of the recursive sub-

routines RPATH and PATH may be activated recursively at most [51
times (no more than the number of free edges on one augmenting path).
If in each call we store d variables, then the total space which is
required for the implementation of each of these subroutines is
(d+1)-£§1 words (one word is required per each call in order to store
the return address). In a direct implementation of the algorithms of
Chapter 4, 6 variables (A,P,R,W,X,Y) are stored per each call of
subroutine RPATH(A,P} , and 4 variables (A,P,R,W) are stored per
each call of subroutine PATH(A,P} . Thus, RPATH(A,P) reguires 3.5n

words while PATH(A,P) needs only 2.5n words.




163

The output. The output of the maximum matching which is achieved
by the algorithm, is received at the end of the algorithm by printing
the vector MATE(1l:n) .

B. Minimum-Space Implementation

In this section we outline an implementation of the algorithm
which requires minimum space (4m+8n words, including 2m+n words

for storing the graph itself).

The representation of the graph. In this implementation, the

graph is represented by two vectors, E(2m) and V(n} , which give

the adjacency lists of the vertices as follows: The vertices which are
adjacent to the vertex 1 are continuously listed in vertex E , where
this 1ist starts in entry V(i) of vector E (and ends in entry

V(i+1)-1 ).

The representation of the exposed vertices. In this implementa-

tion we do not apply the concept of l-exposed and 2-exposed vertices.
We use a vector MATE(n) 1in order to describe the mates of the
vertices, where a vertex i of the graph is exposed if and only if
MATE({)=0 . Thus, each time we reach a vertex 1 during the perfor-
mance of the algorithm, we first have to check whether this vertex is
expaosed or not (namely, whether MATE(i)=0 }, and to perform the
appropriate operations in case the answer is positive. The levels, tne
Tinks and all other variables are defined for the exposed vertices as

if they are Z-exposed,



164

The Jevels and the links. The levels of the vertices are given by

a vector LEV(n} .

The 1links are represented by two vectors TINK1{(n) and LINKZ(n)
as follows: If.a vertex 1 has no link, then LINKI(i)=0 , LINK2{i)}=0 .
If a vertex 1 has a 1-link to the vertex 11 , then LINKl(i)=1’1 )
LINK2(1)=0 . If a vertex 1 has a 2-link to an edge 1112 ., then
LINK1(1)=1‘l while LINK2{i) gives the place of vertex 12 in the

adjacency list of vertex 11 (namely: E(V(il)-1-+LINK2(1))=1'2 ).

The Tists LIST(j} . In this implementation we do not use the

lists LIST(j) . Each time we have to search through vertices of Tevel

i (j»0) 1in the graph (e.g. steps 1, 9 and 10 in the algorithm of

the first stage , and step 1 in the algorithm of the second stage), we
simply search through all the vertices of the graph and look for vertices
of level j . Each time we have to search through vertices of level

0, we search through all the vertices of the graph and look for

vertices whose MATEs are O ,

Clearly all these searches can be performed in 0(n?) steps

{per each phase of the algorithm).

The sets T(R) and RT(R) . These sets are represented only by

the variables TAIL and TOP respectively (namely, during the first
stage we allocate a vector TAIL(n) while during the third stage we
allocate a vector TOP(n) ). When a search through the vertices of one
of these sets is required (e.g. during the performance of subroutine

MERGE in the first stage or during the performance of UNION in the



165

third stage) we simply search through all the vertices of the graph
and check the values of their TAILs or TOPs . Since each of the
subroutines MERGE and UNION is not called more than 0O(n) times
throughout the performance of one phase, the complexity of these

operations is 0(n?)} (per one phase) .

The CHAINs . The CHAINs are implemented in the same way as in
the Direct Implementation (see Section A of this chapter)., Namely,

three vectors are ailocated: FCHN{(n} , LCHN(n} and NXCHN(2m) .

The second and the third stages. The second and the third stages

of the algorithm are performed as a one stage: First we perform the
first part (FIND VERTICES) of the second stage: We do not refer in
this implementation to the list VLIST but we define the variables
BASE and construct the lists BSLIST . These lists are implemented by a
vector BSLIST(n) in the same way as it is implemented in the Direct

Implementation of Section A,

Then we start to perform the third stage, where the search of the
edges (step 3 in the algorithm of the third stage) is done according
to the second part (FIND EDGES) of the second stage. Namely: In order
to search a free edge of the reduced graph which emerges from a vertex
P of the reduced graph, we search a free edge which is incident to
P in the original graph, and find (by step 8 in the algorithm of the
second stage) whether this edge is a source of an edge in the reduced
graph. If the answer is positive, we perform step 4 in the algorithm

of the third stage. If all the free edges which are incident to P in



166

the original graph have already been searched, then we delete P from
the Tist ACTLIST and we insert into this list the vertex Y which
follows P in the 1ist BSLIST(P) . The performance of the.algorithm
goes on as usual, but in the remainder of this stage we refer to Y

as if its level is &(P) (the level of P ) .

In this implementation, we do not define the variabies SOURCE .
The 1ist ACTLIST and the variables LIFE are implemented in one
vector, ACTLIFE(n) , as follows: The vertex 1 (of the original
graph) is active if and onTy if ACTLIFE(i)>0 . The value of LIFE{i)

is equal to the absolute value of ACTLIFE(i)

The fourth stage. In the fourth stage we search through the

exposed vertices of the graph. For each such a vertex P we check
whether RLINK{P}=0 , If the answer is negative we call the subroutine
RPATH(A,P) . Notice that in fact, the identity of vertex A is
irrelevant to the performance of subroutine RPATH(A,P) (the check
whether A=P can be replaced by another appropriate check), and thus

the variablaes LIFE are not reguired during the fourth stage.

In order to find the source in the original graph of a free edge
in the reduced graph we perform again the search through the free edges
of the original graph as described in steps 6-8 of the algorithm of
the second stage. For this purpose we need the vectors BASE and
BSLIST during the fourth stage. Notice that after we find the
source of an edge RW 1in the reduced graph, we do not need any more
the levels of the vertices which are lying betwean R and N on the

augmenting path of the original grpah . Thus, we can use the space




167

of the vector LEY in order to store in it the variables NEWMATE .

It is not difficult to see thal the subroutines RPATH(M,P) and
PATH(M,P) can be implemented in such a way that only two words are
required per each call of these subroutines: One word to store the
vertex P and the other word to store the return address. Since each
of these subroutines may be activated recursively at most [21 times,

the space regquired for the implementation of each of these subroutines

is n words of the memory.

The space requirements. The following vectors are required

throughout the whole performance of the algorithm: E(2m) , V(n} ,
MATE(n) , LINK1(n) , LINK2{n) and LEV(n) (the latter is used during

the fourth stage also for storing the variables NEWMATE ).

Apart from these vectors , the following vectors are required

for the performance of the different stages:

For the first stage : TAIL(n) , FCHN(n) , LCHN(n) , NXCHN(2m} .
For the second and third stages : BASE(n) , BSLIST(n} , TOP(n) ,
ACTLIFE(n) , RLINK1(n) , RLINKZ(n)
For the fourth stage : BASE(n} , BSLIST(n) , RLINK1(n} , RLINK2(n)
and 2n words for the implementation of

subroutines RPATH and PATH .

Thus, in this implementation the first stage of the algorithm
requires 4mt8n words of the memory, while the other stages raquires

2m+lin  words.




168

APPENDIX A

In this appendix we prove part (b) of Theorem 1.4 in Chapter 1.

Theorem 1.4 (part (b))

Let R be a vertex such that at the end of the SEARCH part of
the j-th substage R is not yet declared to be well-defined. Let ST
be a bridge which can be assigned as LINK(R) such that this assfgn-
ment defines for R a Tevel <j . If LINK(R)=ST is illegal, then
SET(R) .

Proof

Motations, Since ST can be assigned as LINK(R) , ST must be
a well-defined bridge. Denote by P, the al-path p(0+S) and let A
be the l-exposed vertex from which pl starts. Denote by P, the al-
path p(0-T) and let B bhe the 1-exposed vertex from which- P,

starts.

Let P and Q be two vertices on p1 . By the notation P -1qQ
we mean: the segment of the al-path pl from P to Q . Assume that
Q 1is also lying on p2 and let R be another vertex on P, - By
the notation P~5+Q—5+R we mean: the al-path which is described by
the concatenation of P~i»Q and Q—5+R (ctearly vertex 0 appears
in P50 2R only once). If P2+Q and Q4R are disjoint
{except for the vertex Q ) then P-1+Q2+R s Tegal and we denote

it by the notation:




169

2

{legal} = P—Q *-R

The length of the alternating path P—3+Q—5+R is denoted by

In the figures we denote a matched edge by asmwwwa and a free

adge by . The alternating path p1 is denoted by

AN + =+ A=, WHiTE p2 is dengted by ——tpapnm— == — —AAAA— .

Tntroduction. Recall that by the inductive hypothesis and the
algorithm, in the beginning of the j-th substage the vertices which
are declared to be well-defined are exactly the vertices of Tevels
less than j . Clearly no higher levels are defined to these vertices
during the SEARCH part. On the other hand, by step 4 of the algorithm
and by Theovem 1.1, the only vertices which are declared to be well-
defined during the SEARCH part of the j-th substage are vertices of
1-1ink and level j . Therefore, if at the end of the SEARCH part of
the j-th substage a vertex V is well-defined then either &{V)<j or

¥ has a 1-Tink and &(V)=] .

Since at the end of the SEARCH part of the j-th substage ST
can be assigned as LINK(R) , both S and T must be well-defined.
Also, By Corollary 1.0 (in Section C of Chapter 1), TeT(R) , and

thus R is the last vertex on p{0+T) which is not yet well-defined.

Since T 1is well-defined, &(T)<j . If &(T)=j then T must
have a 1-link and thus &(MATE(T))»2{T)=j , i.e., MATE(T) 1is not
yet well-defined. Tais implies that MATE(T)=R . In this case the
al-path which is defined by LINK(R)=ST is p(0+R)=p{0+8)«T+R . This

al-path is illegal if and only if the matched edge TR is lying on



170

p(0»S) . However, if T 1is f-lying on p(0+>S) , then &(S}>2(T)=j ,
in contradiction to the fact that S 1is well-defined. If R 1is f-
lying on p(0~S} then A-2+R is a Tegal al-path of length less than
J » and thus by the inductive hypothesis R must be well-defined.
Thus, &(T)#J but &(T)<j . Since LINK(R)=ST defines for R a

Tevel not greater than j , 2(S)<j . Therefore £($),2(T)<j .

Let zl be the level which is defined for R by the assign-
ment LINK(R)=ST . Since the al-path which is defined by LINK{R)=ST
is illegal, p(0~S) and p(R+T} [or in the present notation A-+S
and R—-=T] must have a common vertex. Let M be the first vertex

which is f-lying on p1 and is common to p{R+T) .
(1) If M s not f-l1ying on P, (Fig., A.1) then:
{legal} = [A-=M-5R] < [AFaMLosT 2o 20| = 2 <
1

A-LM-Z5R s therefore a
legal al-path of length Tless
than j which is leading to
R . Therefore, by the inductive &RQHz
hypothesis R must be well- K
defined - which is a contra-
diction, Thus, M is f-lying

on p .
2

(2) Let M' be the Ffirst
vertex which is f-lying on

p{R>T) and is common to p . - Fig. A.l
i



171

By a similar proof, M' is f-lying on P,
(3) Assume that MgM' (Fig. A.2).

If [A2eM|<|B=+M'-2+M] then A->M-2-T 1is a Tegal alterna-
ting path which is leading to T and is shorter than £(T) . Since

T 1is already well-defined this is a contradiction,
If |A->M|3|B-*>M'-*>M| , then we have to consider two subcases:

(3.a) If B-2+R and
M'22S  are not disjoint, 8
then let L be the first ‘EL{H‘ /
vertex which is f-lying . M PR
on B-2+R and is common “T“Af"
to M =S .

X"
If L dis not f-lying é

:

on M'-%S  then:

g™

v
5

{legal} = |B-2>L-toM' 23R = T

. : Fig. A.2
= |B=L! + |[L—=W'|+]M' -ZsR]| <
< |A-E+M'|+;M4~L+L|+|r«1'-3=->R|<LA—1—>rvi 15T ZoR| = 2o

This inequality is in contradiction to the inductive hypothesis.
If L is f-lying on M'—=S then:

{legal} = |B-EsL-2o5| < [B2+L-2R-ZM| + IMLsS| < |A+MIo8] = &(S)




172

in contradiction to the fact that S s already well-defined.
(3.b) Thus, B->+R and M'——$S are disjoint. Therefore:
{legal} = |BZoM -35S| < [B-M -2oM1s5| < [A-DM-25] = 2(S)
in contradiction to the fact that S 1is already well-defined.
{4} Therefore M=M' .
The above proof also impiies that:
(4.a) IA-2M| = |B-2oM]
(4.b) B-2+R and M-S are disjoint.

(5) Let N=MATE(M) . Since N 1is lying on R-==T then by the
definition of LINK(R)=ST either N=R or N 1is well-defined. We

consider separately the following two cases:

Case A. 2(N)>&(S),&{T} . [2(N) 1s greater than both 2(S) and
2(T)T .

Case B. If &{N)>2{S) then &(N)<a(T) [i.e., &(N) 1is not
greater than both 2(S) and 2(T)7 .

We shall prove that Case A implies that S€T(R) while Case B

leads to a contradiction.

Case A, Since 2{S}<t{N} and 2(S)<j , it follows by the
inductive hypothesis that at the end of the &(S)-th substage N is

not yet well-defined,




173

Consider the sequence of vertices on P, which is defined as

follows:

P if LINK{P; ,)=P

i-1
Pif LINK(P,_;)=PQ

Clearly, at the end of the &(S)-th substage all the vertices
of this sequence are well-defined and for each izl p(0+Pi) is a

head of p(0+P1_1) . Thus, for each i , p(O+P1) is a head of p(0=S) .

Let k be the greatest index such that Pk is lying on M-S
Assume that Pk#M . Clearly Pk cannot have a 1-link (otherwise
LINK(Pk) would contradict the choice of Pk ). Thus, let LINK(Pk)=PQ .
8y the choice of Pk » P is not lying on M-S . It follows that N
is lying on p(Pk+Q) and therefore N 1is lying on p(Pk+Q) too.

But according to the 2-Tink definition, this impiies that N is well-

defined which is a contradiction.
Therefore Pk=M and thus p{0+M) is a head of p(0>5) .

By a similar proof, p(0-M) is a head of p(0=T) . On the other
hand, ST can be assigned as LINK(R) , thus p{(0-+MATE(R)) must too
be a head of p(0-T) . Since {(by its choice) M is lying on p{R+T) ,
it follows that p(0+MATE(R)) 1is & head of p(0-M) , and therefore

is also a head of p(0+S) .

Let W be the vertex such that in the beginning of the j-th
substage SET(W) . Since during the SEARCH part of the algorithm
the sets T{(R') are not changed, S belongs to T(W) throughout

the SEARCH part of the j-th substage. By its definition, W is the



174

vertex closest to S on p(0+S) such that W 1is not yet well-
defined. Since p{0-MATE(R}) 1is a head of p(0+S) , R too is a
vertex on  p(CG+S} which is not yet well-defined. Therefore, either

W=R , or W is lying on p(MATE(R)»S) .

Assume that W#R . Since ST can be assigned as LINK(R) , all
vertices on p(MATE(R)+T) are well-defined. In particular, all
vertices on p(MATE(R)»M) are well-defined, and thus W cannot be
Tying on this segment. Therefore, W is lying on p(MS) . Since
%(T)<j , the bridge 7S 1is searched and inserted into CHAIN(S) before
the end of the SEARCH part of the j-th substage. If TS has failed
the legality test, then at that point § and T were contained in
~the same set T(R') , and thus they must also belong to the same set
at the end of the SEARCH part of the j-th substage, namely W=R .
Since we assume that W#R , it follows that TS has not failed so
far the legality test, and thus, at the end of the OSEARCH part of
the j-th substage TS belongs to the set
{T'S'IT'S"€CHAIN{S'},S'€T(W}} . Therefore by Corollary 1.0, TS can
be assigned as LINK(W) . This assignment defines for W a level

2 where:
2

=
n

(p(0>T)ep(WS) | = [p(0-T) [+1+|p(WeS) | =

1

|p(0-M} |+|p(MT) [ +1+[p(WeS}] < [p(0+M) [+]p(MT)[+|p(S) [41 =

[p(0+8) [+]p(MeTH+1 < [p{0-S}|+|p(R>T)[+1 = g < J

Thus 22<j , and therefore |p(0+T)|<j-1 . This implies that the



175

bridge 7S has been searched and inserted into CHAIN(S)} before the
end of the SEARCH part of the j-1 substage. Since S has been
contained in T(W) before the end of the j-1 substage, it follows
that TS has belonged to the set {T'S'|[T'S'€CHAIN(S'),S'€T(W)}
aiready at the end of the j-1 substage. However, this implies that

at the end of the j-1 substage W ‘be1ongs to LIST(QZ) , and thus it

must be weil-defined - in contradiction to its choice.
Hence, the assumption that W#R 1is false, and therefore SET(R) .
g.E.D.

Case B. In this case, if A&(N)>&(S) , then &(N)<&(T} . Let U
be the vertex which is defined as follows: If &(N)<&(S) , then
U=S ; else U=T (i.e., U 1is this vertex of S and T such that
(N)<e(U) ). Since &(S),a(T)<j , it follows that 2a(N)<2(U)<j . Thus,
in the beginning of the j-th substage, N s already well-defined,
and therefore N#R . Since M=MATE(N) is the first vertex which is
f-lying on p{R-*+T) and is common to p(A—S) , it follows that

R is not lying on p(A-2=S) .

Denote by P, the weil-defined al-path p{0-N) , and let C be
the l-exposed vertex from which p starts. In the figures this path
3

is drawn as —AAWem= bttt =AM Denote by P, the segment

p(MU) . This path is drawn as ——arAAA= 0006 —AAVAAA=— .

We show that the assumption of Case B implies the existence of

an infinite sequence of vertices RD,Rl,R2,~-« such that R0=C and



176

and for i1 the following conditions are satisfied:

(1) Al1 vertices Ri are T-lying on p3 , and in particular

3

R, 1is f-lying on R

1 i-1

(i1} A1l vertices RZi—l are f-lying on P, and in
: - . 2 . .
particular R21+1 is f-lying on RZiml-—+M ; A1l vertices
R, are f-iying on p and in particular R,. is f-
21 1 2i+2

. 1 .
lying on RZi——+M i

2 3 1 3
(1i1) |B_'*R21'_1!=|C—"R21'_,1] ; |A—~*R21|=|C“—+R21| 3
(iv) BSRy; ; and Ry, ;—>N are disjoint; AR, and

R21—3+N are disjoint.

Clearly, the existence of such an infinite sequence leads to a
contradiction which proves that Case 8 is impossible. This compietes

the proof of Theorem 1.4 {part (b)).
(6) If C--N and R-2+NM are disjoint, then:
{legal} = [C-SMNSoR] < [ALob 2olomN2oR| = o<

C=>MN->R  is therefore a legal al-path of length less than j
which is leading to R - in contradiction to the inductive hypothesis,

Therefore C-3N and R-+NM are not disjoint.

{7) Let Rl be the first vertex which is f-lying on RZ+M and
is common to C-2-N (clearly the choice of R1 satisfies condition

(11)).




; - B
if R1 is not f R R L
lying on C~H (Fiq. R e
A.3) then: Py / *
P ’,2, e v
3 2 % « P3
{legal} = [C—R —R| < PR
1 N 4-&.&
< [edMNZR| < &‘i c
< JALM AN R ]| = ° $
Pad
_ . -]
= JZ,I <] %
U (S orT)

in contradiction to the
inductive hypothesis.
Therefore Rl is f-
lying on C-=N and thus condition (i) is also satisfied by R1
(see Fig. A.4).

(8) Assume that |B-—2-+RII£|C-3-*R1| (see Fig. A.4):

(8.a) If B2R

and Rl—g-*N are not

A ‘R ‘_,&NVJi
disjoint, then let L ' B
! 0, " %
be the first vertex P e b
. "x\%
which is f-Tying on N *p
+ "3
2 . *>
B—R and is common M tapan®
3
to Rl—-—>N. P4

If L is f-lying

on RI—L*N then:



178

{legat} = [B-ZLS4N| < [B-SL-SoR 2R o 2oy
< |c~i—>R1-—i—>N[ = L(N)
which is a contradiction to the fact that N is already well-defined.
If L s not f-lying on R1~—‘°'->N then:
{legal} = [B—2+L—3—+Rl—2-+R| < [B—%-+L*3~>R—2+Rl—i+L|
< [C—~3-+R11>L| < |CN] = 2(N) < j
in contradiction tp the inductive hypothesis.

(8.b) Therefore, if [BLR1|s|C—3—>R1| , then B-*+R and
R1—3+N are disjoint. By the definition of R it follows that in
this case Bi»R1 and R1—3—>N are disjoint, i.e., condition (iv) is

satisfied by R1 .
(9) If [ci>Rl|>|Bi»R11 then:
{Tegal by (8.b)} = [B—2-+R1—2—+N| < 1c—3—+R1—3>N[ = o(N)

which is a contradiction to th_e fact that N is a?ready well-defined.
(10) Thus: |c~3—>R1|<|B—2+R1[ .

(10.a) If C=R and R 5M2-U are not disjoint, then let
1 1
L be the first vertex which is f-lying on C2+R  and is common to
1

R 2ot 2y,
i

If L s f-lying on R1—2—+M-"—+U then:




which is a contradiction to the fact that U is already well-defined.

179

{Tegal} = |C=132%y] < |C—i+L—i+Ri-£+

L23y] <

< |B—2->R1-5+Mi*-»u| = 2(U)

CIf L is not f-lying on Rl—%»MLU then:

{legal} = IC-1+L145R1—3+R| = oL+ |L3R] < 1C—3+R1|+|LEA3R] .

< |B—2~:R1|+|LMR| < |BZsMi+| L3R < Bo<d

which is a contradiction to the inductive hypothesis.

(10.5) Therefore C-3->R1 and R1—3+MJL+U are disjoint.

(11)

It |C——3—+R1|<|B—2+RI[ then:

{Tegal by (10.b)} = |c—3~+R1~3-+M—“-w>U| < |B—2->R1—2+M—“+u| = (V)

which is a contradiction to the fact that U

Therefore (by (10}), \ci+R1|=1B—2->R1| , i.e., condition (i11) is

satisfied

satisfied

(12)

{Tegal}

1]

by R1 . Also, by (8.b) it follows that condition (iv) is

too.

If A->+M and R —=N are disjoint, then:
1

|A- NM =R —R| = IA—1—->M|+[N1>R!|+[R1—2>RI -
IBLMHIN*%RIi+|Bi*R1|—IB—2—*R1 =
(1B} -[BR[) + [N [+[CR | = [MR[+[C-N] =

LM+ MER] < o (U)+|MER| < o<

is already well-defined.



180

which is a contradiction to the inductive hypothesis,
Therefore A—M and R1—1+N are not disjoint.

(13) Let R2 be the first vertex which is f-lying on R1~3aN

and is common to A-1+M (thus, condition (i) is satisfied by R, ).

If R2 is not f-lying on A -5M  then:

{Tegal}

|AL>R2—3»R1~—2—>R| < ;A‘;»NMLRI—%RI =

[AM[F VR JHR =R = (B2l [N (1B | -[B LR

(18- [B2RI) + [NoR [+l | =

[MERI+]C 2N = 2{N)+[M25R] 5 2{U)+IM2oR] < o<
which is a contradiction to the inductive hypothesis.

Therefore, R2 is f-lying on A-—=M and condition {ii) is

satisfied by R2 (see Fig. A.5).
{14) Assume that IA-1+R2§<|C—E+R2| (see Fig. A.5).

(14.a) If A~>R and R >N are not disjoint, then Tet L be
2 2

the first vertex which is f-1ying on A--R  and is common to R2—1+N .
2
If L is not f-lying on R —=N then:
2
{legal} = |A-BL-5R ~3—+R1—'°"+R| = [A=L|+[L=R |+|R 2R <
2 1 1

< ;AL»M|+|NE-+R1|+|R1—%+R | = [BEoM]+|NR [+]R 2R =
1 1




181

il
1

B 2R [+|R M+ |NR [+ [R —R]
1 1 1 1

120+ [M-2oR| =

1]
1

IC5R [+|MAR [+[N-LR |+[R 2R
1 1 1 1

L

BN +MER] < L(U)HMR] <2 s g

which is a contradiction s
A e B
to the inductive hypo- . qua
¥ ’
thesis. . “e

If L dis f-lying

p‘ . % Rl
on R =N then: \ Pa ™/
2 . v ¥ /
¥
/
- 1 L 3 / P2
{legal} = |[A—L-—N]| < Ro /
* /
< |AR 2| < By N
2 +
¥ M
3 3 Tre+
< |C——+RZ-+N| = 2(N) !
=]
g P4
o
which is a contradiction g
to the fact that N is U
already well-defined.
Fig. A.5

{(14.b) Therefore,
if !A—1°+R2|<!C—3-+Rzl then A—1—+R2 and R —>N are disjoint, i.e.,

condition (iv) is satisfied by R2 .
(15) If [A—1+R2!<|C~3—+R2[ then:
(egal by (14.5)} = [A-BR 2] < |c-3—»R2i>N| = 2(N)

in contradiction to the fact that N 1is already well-defined,



182

(16) Thus: |ci>R2]<[AL>R2| :

(16.a) If R—1+R2 and M2»U are not disjoint, then let &
1
be the first vertex which is f-lying on Rl—3-~+R2 and is commoh to

MU,

If L is not f-1ying on M~ then:

{legal} = [A-LH-sL R —R| = [A-M]+[M-L[+|LSR [+]R —oR] ¢

L

B2+ MU+ LR [+[R ER] <

A

B2R [+[R N[+ IH0 [+ R LR [+[R R =
1 1

H

|C—3+Rl|+|M3~+RE+[M—“-+U|+_IR{—31-+RII =

CTR_ [+ [M ]+ (M 2oR] < [A—1—>R2[+{Mi+ul+|M~2~+R[ <
< 1A oM U]+ ME3SR] = (U MER] < 1o
in contradiction {o the inductive hypothesis.
If L s f-lying on M2l then:
{legal by (4.b)} = 55—2+R1_3-»Li—>u| = 1c-3-+al-3—»L—“+u| <
< Jetol ok LMLy < |AL»R2—‘—>M—“+U| -
in contradiction to the fact that U s already well-defined.

(16.b) Therefore R —»R and M--U are disjoint. By (10.b}

it follows that C--R and M——U are disjoint.
2




183

(17) If B-=>R and RZ—L+M are not disjoint, then let L be

the first vertex which is f-lying on B-~*R and is common to Ri-3+M .

I[f L 1is not f-iying on RZ—L+M then:

{1legal}

[BL=oR R R = B+ LR |4 R, R [+[R <RI <

A

(BB H{ MR 4R R [+[R—R] -

I

[BER [H[R =R [+[M—=R | = [C2oR | +|R =R [+ MR | =
1 1 2 2 1 1 2 2

1l

|C2R [+[MAR | € AR [+IR ~IsM] = 2(M) <2 < j
2 2 2 2 1

in contradiction to the inductive hypothesis.
If L s f-lying on R2—1-+M then:

{legal by (4.b)} = |B=sLLoMm2oy| = |B2oLi+] LS| 4| M-20] <

< [BLoR [+|R 2|+ My] =
1 2

tt

[CR [ +[R o]+ [ M| < |[C=R_[+[R ]+ M=u]
< |'AL+R2[+]R2—-—’*+M|+|M-“—+U| = 2(U)
in contradictionlto the fact that U 1is already well-defined,
Therefore: B——R and Rz—l+M are disjoint,
(18) If |c-—3—>R25<[Ai>R21 then:

{legal by (4.b),(16.b}) and {17)}

n
ws]
=
=
=

]

I
&
i:
jgf



184

< [A—R M EsU] = 4 (V)
2
in contradiction to the fact that U is already well-defined.

Therefore, by (16) [C_3~>R2|=|A—l-+R2| , i.e., condition (i) is
satisfied by R . Also, by (14.b) A—1—+R2 and Rz—s—rN are disjoint

and therefore condition (fv) is satisfied too.

Thus, conditions (i)-(iv} hold for Rl and RZ. Hence, there exists
in the graph a seguence RU,RI,RZ,--- such that conditions (i)-(iv)

are satisfied.
Assume now that the sequence in finite,

(19) Assume that the last vertex of the sequence RD,RI,RZ,-=-

is R2k .
If Ry =M and R, =N are disjoint, then:
{legal} = [A-SRy) SoMNEoR| = [CR, MM 2oR| = (W) + [H2oR] <
< 2(U)+{M2oR] < 2o<
in contradiction to the inductive hypothesis.
Thus , Rogq ="M and Ry, =N are not disjoint.

(20) Let Rosy be the first vertex which is f-Tying on
R2k~i+N and is common to R2k_l-3+M (thus, condition (i) is

satisfied by R2k+1 ).

. . 2
It R2k+1 is not f-lying on RZk_l-—ﬁM then;




185

2ks1 o1 R

_ 1 3 2 2 _ 2 3
tegal} = ARy —Ropsy Ry R = [0y 2R 2k-1

< JCNH MR = LN+ IMEoR] < (U)+{M2R] < to<
in contradiction to the inductive hypothesis.

Thus, Ry, 1is f-lying on RZk_1—2->M and thus condition (ii)

is satisfied by R (see Fig. A.6).

2k+1

(21} If

2 3
|B=Ropp [€1C=Rypy | A 3
then (see Fig. A.6): EIKC B

3
(21.a) If ] “;k ;r"/R
. %
&
&

2

Rok-1 ~*Ropey and

3 .
R2k+1 —+N are not dis- .'.
joint, then Tet L be . L we] Rake
=¥ !
the first vertex which is N
/P
. 2 2
frlying on Rop 1 —Ropes RaktePs
®
and is common to H ‘g
5 ] R
R —+N \ 2ksl
2k+1 A,
7 X
X
I¥ L dis not f- N 3
. 3 . q,"'
lying on R2k+1 —N then: M
p =]
a0
(]

Fig. A.6




186

ARy Ry gy LRy R

{legal} k-1

t

: 2
| ARy |+ Ry LI+ LEoR] < [ €20y [+ Ry =L #[ 2oR) <

A

2(N)+| MRl < 2(U)+|MZR] < 2 o<
in contradiction to the inductive hypothesis.

if L 1is f-lying on R2k+l“i+N then:

2 A 2 2 3 3
{legal} = |B-»—»R2k_1——>L~3+N[ < |B—2—+R2k_1——+L——+R2k+1-——>-L-—-+N[ =
_ g2 s, ; St L
= 1B Ry [HIRppag TN € IRy [+IRGy =T = 2(N)

in contradiction to the fact that N is already well-defined.

(21.b) Therefore, if |Bi>R2k+l|s{c—3-a-R2k+l| then
Roge1=—Ropyq and Ry =N are disjoint. Since by condition (iv)
B=+Ry, y and Ry .. N are disjoint, it follows that in this
case B £¢R2k+1 and R2k+1~i+N are disjoint, i.e., condition {iv)

is satisfied by R2k+1 .
(22) If |Bi+R2k+l[<|c-3—>R2k+1| then:
(Tegal by (21.b)} = [BSRy M| < [CSoR,, o] = 2(n)
in contradiction to the fact that N is already well-defined.
(23) Thus: |C—3—+R2k+1|<|8—2->R2k+1| .

(23.a) If R2k—3+R2k+1 and M==U are not disjoint, then let

L be the first vertex which is f-lying on Ry, Ry, and is




187

N
common to M—U .

If L 1is not f-lying on M2+U then:

2

de}=[A—mﬂiﬂ,LMqﬂ|:|@L%ki&imﬁ4u<

4 2 2
< JC Ry g [HIU M+ IMESR] € [B5oRyy g [+ UM+ [M-ER] <

< |BZoM|+ MU [+ |M2oR| = (U)+IM25R| <& < ]
1
in contradiction to the inductive hypothesis.
If L is f-lying of M——=U then:

N

{legal}

ARy L= < [y, ppap ML =

3R

|C-R

2o 2| < |BEoRyp g ZoM U] = 2(U)

2k 2k+1

in contradiction to the fact that U s already well-defined.
{23.b) Therefore: R2k'j+R2k+1 and M= are disjoint.
3 2
(24) If |C——+R2k+1|<|B—~+R2k+1| then:

{legal by (23.b)}

IH
-
i:
Iy

i
)
lw
e
e
=~
lw
=
~J
-~
+
—
lm
=
if
I

A
=
lro
=
lm
=
lp
o
n
=
-———
Lows)
-

in contradiction to the fact that U s already well-defined.

3
Therefore (by (23}), |C—“¢R2k+1|=|B-E+R2k+1| and thus

condition (iii) is satisfied by R2k+1 . Also, by (21.b), condition




188

{iv) is satisfied too.

Hence, conditions (i)-(iv) are satisfied by R2k+1 , and
therefore R2k cannot be the last vertex of the sequence

R ,R 4R ,eee |
¢ 1 2

(25) Assume that the last vertex of the sequence Ro’R1’Rz"°'
is R2k+1 .

1 3 . e .
If RZk——+M and R2k+1—_+N are disjoint then:

{Tegal}

1l

1 1 3 2 . 1 3 2
A =Ry —NU=Roy  =R| =AM 4Ry =N +{R=Ry, |

|B-2—+M|+|R2k+l—3->N1+|R—2+R2k+1| =

2 2 3 2
|BRop sy [+ Ropyy =M+ Ry =N +[R=Ry ]

3 3 2 2 _
|C==Ropg [FIRop g NI+HR=Ry oy [+[Ry =] =

1]

LN+ MZoR] < 8o
in contradiction to the inductive hypothesis,
Thus, RZk—1+M and R2k+1—3+N are not disjoint.

(26) Let R2k+2 be the first vertex which is f-lying on
R2k+1—i+N and is common to RZk—l+M (thus, condition (i) is

satisfied by R2k+2 ).

If R2k+2 is not f-iying on R2k~L+M then:



189

1 1 3 2

{legal} = [A-—*RZk—+R2k+2“—>R2k+1—>R| =
= A Ror | Rops1 ™ Rojesal 1 Rapay —RI <
< TR Ry =N+ Ry —RI - =
= B+ Ry =N H Ry R
= [BRIH R #Ryy )= N|+|R2k+1 Rl =

= |8R 2N+ R M| =

2k+1! T Ropa1

iC-2+R,, .. |+|R N+ RZM] = L(N)+ RZM| <

3
ok+1! T Rope1 ™

< L(U)+|R-ZM[ < 2o
in contradiction to the inductive hypothesis.

Thus Ry 4o is f-lying on RZk—1—>M and thus condition (ii) s
satisfied by R2|<+2 (see Fig. A.7).

(27} If |A~1—*R2k+21§|0-3—>R2k+2| then (see Fig. A.7):

1 3 . .
(27.a) If Ry —Royp and Ry, —N are not disjoint, then

. . . . 1
let L be the first vertex which is f-lying on R, —R, ., and

N 3
is common to R —N .

2k+2

. . 3 .
If L is not f-lying on R2k+2—+N then:

1 1 3 3

1

okep Rl =

H

1 2
| AL +[Ryp =L +[Ryy o =R <

A

A—1~>M|+|R2k+1 N4 [Ry,  R] =

2k+1




190

2 3 A
= [BM+ Ry N+ Rop —RI =

2 2
= BRI+ [REA Ry N+ Ry

2
= 1B Ropq [+ Rpp g~ + IR

= ]C‘E'*R2K+1!+|R2k+1—3">N|+|M‘—2‘+R| = Q’(N)'{'lMi"Ri S

< L(U)+|MZR] < Po<

in contradiction to the inductive hypothesis.

If L is f=lying on

3 -
Ropqp =N then: N f;

{legal} = |A-bRy, oL 2N < ¢
&
5 ‘:’ éR
1 1 1 3 3 3
< ARy LRk - :
3 'pz
3 3
< |C_+R2k+2_+l'—-+N~| = RZk . ¢+¢.+$*+¢
= ’Q'(N) I‘.‘ p3 ]

Ed
in contradiction to the
Roke2 A,

fact that N 1is already

o,
F-°4
z = --.__..-.___\WAL
Py ==
)
=
+

well-defined,
®oa

2

{27.b) Therefore, if

1 3
|A =Ry 40 [ C—Rp 15|

e
PR r—o D 000D

1
then R2k_+R2k+2 and
Ropsp =N are disjoint.
Since by condition (iv)} Fig, A.7



191

A—L+R2k and R2k+2~i+N are disjoint, it follows that in this case

A-i*R2k+2 and R2k+2-3*N are disjoint, i.e., condition {iv) is

satisfied hy R2k+2 .

1 3
(28) If |A-—-+R2k+2]<[C~—+R2k+2] then:

Uegal by (27.b)} = [A Ry 5N < [CTRyy 0 0| = 2(N)
Tn contradiction to the fact that N 1is already well-defined.

3 1
(29) Thus: |c-+R2k+21<[A—-—>R2k+2| .

3 L . e
(29.a) If R2k+1“—*R2k+2 and M—U are not disjoint, then

. . . . 3
Tet L be the first vertex which is f-lying on R2k+1———>R2k+2 and

. )
15 common to M-— .

If L dis not f-lying on M= then:

[A-1R

s L LSS

{legal}

2k =Rl <

2k+2 2k+1

—2—*R|

1 b4 3
AU M =014 1Ry = Ropy [+ Royy g

A

|B—S+M|+|M~~U]+{R

3 2
2k+2” Ropaq [+ Roy R

1l

2 2 4 3 2
1B Rk [ Ry MU 4 Ry R g Ry =R

3 2
€ Roper1 [+ IRy ;™ Ropqp [+ MU+ [RE <

/4

|A=Roy o [+ MU [REM] < [A-oM]+ [ M0 ] + |4 2R =

I

L{U)+|M—R| < 25

in contradiction to the inductive hypothesis.



192

If L s f-lying on M—==U then:

]
w
\I«N
=

{legal by (4.b)} =
2 3

< {BRyp

i3 3 1,4 ‘
= [0SR0 Ry MU <

AR, ., —=M==l] = 2(U)

LS

2k+2

in contradiction to the fact that U 1is already well-defined.

(29.b) Therefore: Ry ,;—R, ,, and M-U are disjoint.

1
(30) If |ci>R2k+2[<[A——+R2k+2| then:
_ 2 3 1 4 =
{Tegal by (29.5),(17)44.b}} = |B =Ry 1 =Ry o —M—]
- 3 3 " 1 i
= [CRyp g TRy =M U] <

Pl

1 4
ARy p —M~=U] = 2(V)
in contradiction to the fact that U is already well-defiend.

3 1
Therefore (by (29)) [C—=Ry 5|=|A—Ry o1, and thus

condition (ifi) is satisfied by R Alsa, by (27.b}, condition

2k+2 -
(iv) is satisfied too.

Hence, conditions {i)-(iv) are satisfied by R2k+2 , and
therefore R2k+1 cannot be the last vertex of the sequence

R ’R ,R yree
¢ 1 2

It follows by (24) and (30) that the sequence RO,RI,RZ,--=




193

is infinite. Clearly, this leads to a contradiction. Therefore Case
B is impossible. Since Case A implies that SeT{R) , the theorem is

proved,

Q.E.D.




194

APPENDIX B

In this appendix we present an implementation of the subroutine
MERGE which is based on a special structure of the sets T(R) . The
algorithm of this implementation (Implementation 4), is similar to the
algorithm of Implementation 2 in Section H of Chapter 1. However, the
special structure of the sets T(R) enables the performance of
subroutine MERGE throughout the whole first stage in no more than
O(m + n1+5) steps, where e 1is an arbitrary positive value. Thus, by
using Implementation 4 we determine a complexity of O(m/n + n1'5+8)

for the whole algorithm.

The structure of the sets T(R) . FEach set T{R) 1is represented

by the following rooted tree: Let K be a constant integer number
(whose value will be discussed later), The depth of the tree which
represents T(R) s K+1 (where the depth of the root is defined to

be 0 and the depth of the leaves is K+l ). The root has ni-KE sons,
while each of the other (inner) vertices of the tree has n° sons,

Thus, the number of vertices whose depth is 1 is nl'(K+1_f)€

. In
particular there exist n leaves of the tree. These leaves are
numbered from 0 (the most "left" leaf) to n-1 (the most "right"

1eaf),

ATl the leaves 1 , where (j-1).n®si<j.n® for some J , have
a common father in the tree (the depth of this father is X }. We denote

this set of leaves by FAMILY(R,J)



195

For each vertex T of the graph we define the variable
VALUE(T) 1in the same way as it is defined for Implementation 2 in

Section H of Chapter 1. Nameiy:

If T s not well-defined yet, or if CHAIN{T) 1is empty then
VALUE(T)=n . Else, VALUE(T)=2(ST) where ST is the first bridge of
CHAIN(T) .

A1l the vertices of the graph which belong to T(R) and whose
VALUE is j are contained and tisted in the following chain: The
first vertex of this chain is stored in the j-th leaf of the tree.
To each vertex T of the chain we attach two variables: PRE(T) ,
which points to the vertex which precedes T in the chain, and
NEXT(T) which points to the vertex which follows T 1in the chain
{(if T 1is the first vertex in the chain then PRE(T)=0 ; if it is

the last vertex in the chain then NEXT(T)=0 ).

To each vertex D of the tree which represents the set T(R) ,

we attach a variable NUM(D) as follows:

(i) If D 1is a leaf of the tree, then NUM{D)=1 if D contains
a vertex of the graph and NUM(D)=0 if it does not (namely: if D is
the j-th leaf of the tree, then NUM(D)=0 1if and only if the set

T(R) does not contain any vertex of the graph whose VALUE is j).

(i1) If D is an inner vertex of the tree then NUM(D} 1is the
number of the leaves which are descendants of D and their NUMs

are not 0 .



196

(111) If D 1is the root of the tree then NUM(D) is the number
of vertices of the graph which are contained in the set T(R) which

is represented by the tree.

In addition to these variables we also attach to each leaf of
the tree a pointer ROOT which points to the root of the tree. To the
root itself we attach a variable NAME » which contains the name R

of the set T(R) which is represented by the tree.-

The algorithm of Implementation 4. According to the definition

of subroutine MERGE(RZ,R) » the following operation has to be perfor-
med ¢ T{R2)+T(R2)UT(R) . In this implementation we perform this union

in a way which assures that the following condition is satisfied:

let 21 be the smallest index such that after the performance
of T(R2)+T(R2)UT(R) . NUM(RI)#O . Then there exists in the set T(Rz)
a vertex T such that CHAIN(T) contains a bridge of level ﬂl which

presently passes the legality test.

[We shall describe later the details of the operation "perform the

union T(R2)+T(R2)UT(R)“I.

This property of the instruction UNION is utilized in the
following algorithm of subroutine MERGE (we assume that MERGE is
activated during the UPDATE part of the ju—th substage):

1. Perform the UNION: T(Rz)@T(Rz)UT(R) .
2. Delete R2 from LIST(R{RZ)) .
3. Find the MINIMUM 1index J such that FAMILY(Rz,j)#G : If



197

(j-l)»negj0 then go to 4. Else, assign: 2(R2)+[(j—1)en51—% ,
LINK(R2)=-1 and go to 8.

4, Search the set FAMILY(RZ,j) and find the first leaf (leaf of
smaliest index) 21 such that NUM(RI)=1 . Let T be the
vertex of the graph which is contained in this leaf.

5. If CHAIN(T)=@ then go to 6. Else let ST be the first
bridge of CHAIN(T) . FIND the vertex R1 of the graph such
that SET(RI) L If RI#R2 [ST passes the Tegality test] then
go to 6. Else, delete ST from CHAIN(T) , and repeat 5.

6. Update VALUE(T) . Let QZ*VALUE(T) . If £1=%2 then go to 7.
Else, gggglgf vertex T from the chain of the Rl—th Teaf and
INSERT” it into the chain of the £ -th leaf. Let T be the
(new) vertex of the grapn which is contained in the il-th
1eaf**. Go to 5,

7. Assign: 2(R2)+£1 , LINK(R2)+(if CHAIN(T)=@ then 0; else ST).

8. Insert R2 into LIST(E(RZ)) and return.

According to this algorithm there are two ways through which the
Tevel and the LIRK of R2 can be assigned: If R(Rz) and LINK(RZ)
are assigned in step 7 of the algorithm then obviously 2:=2(R2} is
the minimum level which can presently be defined for R2 such that

LINK(R2)=ST passes the legality test. However, if E(Rz) and LINK(RZ)

Clearly these operations require the updating of the appropriate
varfables NUM , PRE and NEXT .
* By the property of the instruction UNION , such a vertex must

exist.



198

are assigned in step 3, then both the level and the LINK of R2 are
dummy. Clearly, at present there existSno legal LINK which can define
for R2 a legail Tevel Tess then [(j—l)nng]m% . On the_other hand, the
presently smallest legal level whibh can be defined for R2 is greater
than [(j-l)»ne]d/z. If we shall find for R a Tegal Tevel smaller
than [(j-l)»ns]-% before the beginning of the [(j-l)ongl—th substage,
then we would reassign the LINK of R2 and would amend the Tevel of
Rg——as it is done in the usual algorithm. If we reach the [(j—l)onel—th
substage and the level of R2 is still {(j-l)-nel-g , then we
interrupt the performance of the main algorithm of the first stage,

and perform steps 2-8 of this algorithm. Thus, each time when we proceed
from the j-th substage to the (j+1)-th substage, we first have to check

whether there exists a dummy LIST of vertices whose Tevels are j+4

[clearly thesachecks do not increase the order of the main algorithm).

The _complexity of the operations on the tree. Apart from the

operations which are performed on the tree of the set T(RZ) , all the
other operations which are performed by this algorithm require either

a constant number of steps per each activation of the subroutine MERGE
(steps 2, 3, 7 and 8), or a constant number of steps per each bridge

of the graph which fails the legality test (step 5, 6). Since subrou-
tine MERGE may be activated at most n times during the first stage,

the total complexity of these operations is O{m+n) .

Step 4 of the algorithm {"search FAMILY(RZ,j)") is performed fin

[

n~ steps per each activation of MERGE, and thus its total complexity

throughout the first stage is 0(n1+€)



199

The instructions "DELETE vertex T from the chain of the Rl-th

Teaf" and INSERT vertex T 1into the chain of the izwth leaf" reguire
K steps in order to search the tree from the ﬁl—th [22-th] leaf to
the root and to update the NUMs of the K ancestors of the Rl-th

[22_th] teaf. Since K 1is a constant integer, each of these instru-
ctions requires a constant number of steps. Each of the instructions

DELETE and INSERT may be performed at most once per each bridge of the

graph which fails the Tegality test. Thus, the total complexity of

those instructions throughout the first stage is 0O(m) .

The instruction "Find the MINIMUM index J such that

1-Ke vertices

FAMILY(RZ,j)#ﬂ“ is performed as follows: We search the n
of depth 1 1in the tree and find the first (the smallest, the most
Teft) vertex whose NUM is not O . Then we search the n® sons of
that vertex and find the first one whose NUM is not 0 . Again, we
search the n® sons of this vertex to find its smallest son whose

NUM is not O , and so on. The number of steps we perform during this
search on the vertices of the tree is therefore nl"K€+KvnE . Since
during the first stage MERGE 1s activated n times, the total
complexity of the instruction "find MINIMUM" throughout the first stage

is therefore O(nZ'KE+n1+E} .

The instruction UNION T(R,)}«T(R,JUT(R) . The instruction

UNION T(R2)+T(R2)UT(R) is performed as follows: We denote by T(Rg)

this set among T(RZ) and T(R) which contains more vertices of the
graph, and by T(Rs) the other set (thus, if NUM(root(Rz))zNUM(root(R))
then T(R_)=T(R ) and T(RS)=T(R) ; else T(R_)=T(R) and T(R_)=T(R ) ).

9 2 g 3 2
In this implementation we transfer the vertices which are contained in




200

the tree of T(RS) into the tree which represents T(Rg) . Thus,
throughout the whole performance of the first stage each vertex of the

graph is transferred at most 1gn times.

The transferring of each vertex is performed as follows: With
the help of the instruction "Find MINIMUM" we find the minimum index
J such that the set FAMILY(RS,j) is not empty [this is done in
O(nl"KE+K~nE) stepsl; Then, we search FAMILY(RS,j) and find a leaf
21 whose NUM is not 0 [this search costs 0(n%) steps]; At last
we perform the instructions "DELETE the vertices of the garaph from
the zl-th leaf of T(RS)” and "“INSERT these vertices into the iz-th
leaf of T(Rg)” fthese instructions are performed in a constant number
of steps]. Thus, the transferring of each vertex costs O(nl-K€+nE)
steps, and the total complexity of these operations throughout the

'2—K€+n1+€)

first stage is therefore 0O{(n «1g n) .

In order to satisfy the condition on the instruction UNION we
perform the following operations on each vertex T which is transferred
from T(RS) into T(Rg) : We perform the Tegality test on the first
bridge ST of CHAIN{T)} . If ST fails this test, then both S and
T belong to the same set T(Rz) . We delete the bridge TS from
CHAIN(S) , and if TS is the first bridge of CHAIN(S) then we insert
5 into & stack. We repeat this process on T until its CHAIN becomes
empty, or until its first bridge passes the legality test. Then the
variable VALUE(T) is updated, and if necessary T 1s transferred into
ancther leaf of T(Rz) . After those operations on T are terminated

we repeat the process for each vertex § 1in the stack. Clearly, if at



201

the end of all those operations g is the smallest index such that
1

NUM(QI)#O » then there exists in the chain of vertices of the & -th
I

leaf a vertex T whose CHAIN contains a bridge of level 21 which

presently passes the legality test.

Since a constant number of operations are performed per each bridge

which fails the legality test, the total complexity of those operations
is  0O(m) .

The complexity of the implementation and the value of K . By the

above discussion, the complexity of Implementation 4 is
O(m+(n2"K€+nl+E)-1g n). If we choose K to be é- then we get
complexity 0(m+nl+81g n} . Since for any positive value = there
exists 0(1g n)<0(n€), it follows that the complexity of this
l+2-€) l+e!

implementation is O(mtn

or O(mtn } where &' 1is an

arbitrary positive value.



202

APPENDIX C

This appendix contains a listing of a PL/1 program which is based
on Implementation 1 of Chapter 5. This program was run on an
[BM~370/165 computer, and the cardinalities of the matchings which
were achieved have been verified by comparing them to the cardinalities
of the matchings which were received by a PL/1 program based on Gabow's

algorithm [3].

The input. The input to the program is done by using punched

cards: The first card is in the form:

=
0
=
=
n
=

2

[where n and m are the numbers of the vertices and the edges of

the graph respectivelyl.

The next cards contain a sequence of 2m numbers which are
separated by blanks or comma. The (2j-1)-th and the 2j-th numbers
in this sequence represent the j~th edge of the graph in the
following way: Let n2j—1 be the (2j-1)-th number in the sequence,
and let nzj be the 2j-th number. Then the j-th edge of the graph

goes from vertex ”2j-1 to vertex n2j {clearly, 1 < an-l ,nj % nj.

After receiving the input, the program prints this input in

the following format: The first two rows are:

THE NUMBER OF VERTICES IS n
THE NUMBER OF EDGES IS m



203

Then, under the hsading THE LIST OF EDGES , a list of the edges is

printed, where the j-th edge which goes from vertex n2j-1 to vertex

nj appears in the following format,

T2j~1

n2J
The output. The output is printed under the heading RESULTS .

The first two rows of the output are:

NUMBER OF MATCHED EDGES: n
NUMBER OF EXPOSED VERTICES: Ny

{where n, and n, are respectively the numbers of matched edges and

exposed vertices according to the maximum matchingl.

Then, under the heading MATCHING , a list of the vertices and
their mates is printed, where the i-th vertex and its mate appear in

the following format:

["1 is the number of the vertex which is the mate of the i-th vertex].

If the i-th vertex is exposed, then instead the number Ns s there

appears the word NONE .

[Notice that if 1 is not exposed, then the matched edge Tvni



204
' i n;
appears twice in the output: Once as | and the other time as | ]
1. i
The output is ended by a Tist of the matched adges which are printed
under the heading LIST OF MATCHED EDGES.

The listing

The numbers of the Tabels are in accordance with the numbers of
the steps in the algorithms (e.g., label B4 corresponds to step no. 4
in the second stage, and label SL5 corresponds to step no. 5 in the

algorithm of SRCHLOOP }.

MATCH: PROC OPTIONS(MAIN);

/* DECLARE THE VARIABLES */
DEFAULT RANGE{A:Z) BIN FIXED;
DCL ((E,NXTE) {-M:M) ,V(N),
(PRE ,POST} (~N:N) ,MATE{~N:N),
(LEV,LINK) (-N:N) ,LIST(0:N1),
(TAIL ,NEXT) (-N: N) {FCHN,LCHN
(VLIST,ELIST,BASE LBSLIST)(N)
(LIFE,RLINK)(-N ) (TOP,RTNX
NEWMATE(N) )
BIN FIXED CTL;
/* IN THE PROGRAM: THE INDEX I STANDS FOR VERTICES,
THE INDEX K STANDS FOR EDGES
THE INDICES J,L STAND FGR LEVELS. */

Y(=N:N)  NXCHN(=M:M) ,
o (ER ,NXTER){-M:M) ,SOURCE (M),
TY(-N:N) ,ACTLIST{2*N),

/* INPUT THE GRAPH */
GET DATA({N,M);
PUT PAGE EDIT('THE NUMBER OF VERTICES IS‘,N,'THE NUMBER OF',
' EDGES IS',M)(X(10),A,F(10),SKIP,X{10),A,A,F(10});
ALLOCATE E,NXTE,V;
NXTE=0; Y=0;

DO K=1 70 M; GET LIST(E(K),E(-K));
NXTE( )= ( (K)) 5 NXTE(-K)=V(E(-K)};

N VE(K))=Ky  V(E(-K))=-K;

PUT SKIP(3) EDIT('THE LIST OF EDGES' ,(25)'=")(X{30),A,SKIP,

. X(ZS),A);

Kl=1;

IN1: K2=K1+14:; IFf K2>M THEN K2=M; 3=K2+1-K1;

PUT SKIP{4) EDIT({K DO K=Kl TO K2),{'---" DO K=K1 TO K2}, (E(K)
DO K=KI to 2),{'1' PO K=K1 7O K2),(E{(-K} D
K=Kl TO KZ))((KB)F( ) ,SKIP,{K )( (5),A),SK
(K3)F(8),SKIP,(K3)(X(7) AYLSKIP,(K3)F(8))




Ml :

205

IF K2=-=M THEN DO; K1=K2+1; GO TO IN1; END;

/* INITIALIZATION */
ALLOCATE PRE, POST,MATE,LEV,LINK,LIST(0:0);
N1=N/2+1; MM=3*M; NN=N;
/* NN IS THE NUMBER OF EXPOSED VERTICES */

DO I=1 TO N;  MATE(I)=-I; MATE(-I)=1;
PRE{I)=I-1; POST(I)=1+1;
END; POST(N)=0; LIST(0)=1;

/* MAIN PROCEDURE */
CALL STAGEL;

CALL STAGEZ;

CALL STAGE3;

CALL STAGE4;

GO TO ML,

/* FIRST STAGE */

STAGELl: PROC;,

A0: EXP=LIST{0}; FREE LIST;
ALLOCATE TAIL ,NEXT,FCHN,LCHN,NXCHN,LIST;
D0 I=1 TO N1; LIST(I)=0; END; LIST(0)=EXP;
FCHN,LCHN=0; NXCHN=0; NEXT=0;
DO I=1 TO N3 TAIL{I)=MATE(I); TAIL(-1)=MATE(-I);
IF MATE(I)>0 THEN DO; IIsLIST(N1);
POST(1)=I1; LIST{Nl)=
IF I11-=0 THEN PRE(I1)
LINK(I)=0; LEV(I)=N1;
END;

I;
=I;

ELSE DO; 11=LIST(N1); POST{-I)=I1; LIST(M1)=-I;

IF I1-=0 THEN PRE(I1)=-1; LINK{-1)=0;
LEV(-1)=N1; LINK(I)=0; LEV(I)=0;

END: PRE(LIST{N1))=0;

SUBSTAGE : X=LIST(J-1)3

SEARCH:

Al: IF X=0 THEN GO TO UPDATE; K=V(X); GO TO A2A;
AZ: K=NXTE(XK):
A2A: IF K=0 THEN DO; X=POST(X}; GO TO SEARCH; END;
y=E(-K); Z=MATE(Y); IF Z=X THEN GO TO A2
A3: IF LEV(Y)<Js THEN GO TO Ae; IF LINK{Y}>M THEN GO TO Ag;
Ad: IF LINK(Z)-=0 THEN GO TO Ab;
LINK(Z}=MM+K; LEV(Z)=J; 11=PRE(Z); [2=P0ST(Z);
IF I11-=0 THEN POST(Il)=12; ELSE LIST(N1)=12,

IF 12-=0 THEN PRE(I2)=11; I1=LIST{J); PRE(Z)=0; POST(Z)=11;

LIST(J)=Z; IF 1l=-=0 THEN PRE{Il)=Z; GO TO AZ;
AS: IF FCHN(Y)~=0 THEN DO; NXCHN(LCHN(Y)}=K; LCHN(Y )=K;3
ELSE DO; FCHN(Y)=K; LCHN(Y)=K; END;
GO TO AZ;




206

A6: IF LINK(MATE(X))=MM-K THEN GO TO AZ;
R=TAIL{Y); IF R=TAIL{X) THEN GO TO A2;
A7: IF FCHN(Y}-=0 THEN DO; NXCHN(LCHN( ¥))=K; LCHN(Y)=K; END:
ELSE DO; FCHN(Y)=K; LCHN(Y)=K; END;
LI=LEVX+LEV(Y)+1-LEV(MATE(R}); IF L1>=LEV(R) THEN GO TO AZ;
A8: I1=PRE{R); I2=POST(R ); IF 12-=0 THEN PRE(I2)=I1
I[F I1-=0 THEN POST(I1)=12; EiSE LIST(LEV(R ))=12
[1=LIST(L1); PRE(R}=0; POST(R)=11; LIST(L1)=R;
IF I1-=0 THEN PRE(I1)=R; LEV(R}=LI; LINK(R)=K; GO TO A2
UPDATE:
A9: I1=0; R=LIST(J);
A9A: IF R=0 THEN GO TO A9B:
IF R<O THEN DO; RR=J; FREE TAIL,NEXT,FCHN,LCHN LNXCHN;
RETURN; END;
IF LINK(R)<=M THEN I1=1; R= POST(R); GO TO A9A:
ASB: IF 11=0 THEN GO TO ENDSUB R=LIST(J);
Al0: IF R=0 THEN GO TO ENDSUB:
IF LINK(R)>M THEN DO; R=POST(R}); G0 TO AlO; END:
K=LINK(R); S=E(K);
ALl: R2=TAIL(E(LINK(MATE(R))-MM)); R3=TAIL(S);
Al2: CALL MERGE{R?,R); CALL MERGE(R3,MATE(R) ) ;
R=POST(R); GO TO Ai0;
ENDSUB
Al3: IF J<N1-1 THEN DO; J=J+1; GO TO SUBSTAGE: END;
Al4: GO TO RESULTS; /* MAXTMUM MATCHING */
MERGE: PROC{RZ,R);
DCL. RZ,R;
U=MATE(R) ;
MR1: TAIL(U)=R2; U=NEXT(U); IF U=0 THEN GO TO MR1;
U=MATE(R2) ;
MRZ: IF NEXT(U)-~=0 THEN DO; U=NEXT(U): GO TO MR2; END;
MR3: NEXT(U)=MATE(R);
MR4: Ul=PRE{R2); U2=POST(R2); IF U2~=0 THEN PRE(U2)
IF Ul==0 THEN POST(UL)=U2; ELSE LIST(LEV(R2))=U2
LEV(R2)=N1; LINK(R2)=0: T MATE(RZ)
MR5: IF FCHN(T) 20 THEN GO TO M
K=FCHN(T); S=E{K):
MR6: IF TAIL( )=R2 THEN DO; FCHN(T)=NXCHN(K); GO TQ MRS; END .
MR7: L2=LEV(S)+LEV(T)+1- LEV (MATE(R2));
IF L2<LEV(R2) THEN DO; LEV(R2)=t2; LINK{R2)=K; END;
MR8: T=NEXT(T); IF T-=0 THEN 60 T0O MRS ;
MRI: Ul=LIST(LEV(R2)); IF Ul==0 THEN PRE(U1)=R2,
PRE(RZ2)=0; POST(R2)=U1; LIST(LEV(R2))=R2;
RETURN;
END MERGE;

END STAGEL;

/* SECOND STAGE */

STAGE2 :

PROC;,




207

80¢ ALLOCATE VLIST,BASE,BSLIST,ELIST,ER,NXTER,SOURCE;
VEIST=0; NR=0; J=0;
/* NR IS THE NUMBER OF VERTICES IN THE REDUCED GRAPH */

VERTICES: Y=LIST(J); GO TO BlA;

Bl: Y=POST(Y);

B1A: IF Y=0 THEN G0 TO B4,

BZ: Z=MATE(Y):; LI=LEV(Y )+LEV(
IF L1>RR THEN DO; BASE(Y)
IF L1=RR THEN DO; BASE(Y}=
IF LINK(Y)>M THEN S=E (LINK{
BASE(Y)=BASE(S);
BSLIST(Y)=BSLIST(S); BSLIST(S)=Y; GO TO Bl;

B3: NR=NR+l; VLIST(NR)=Y; BSLIST(Y}=0; ELIST(Y)=0; GO TO BIl;

B4: J=J+1; IF J=RR THEN GO TO EDGES; GO TO VERTICES;

EDGES: 1=0; NXTER=0; MR=0;
/* MR IS THE NUMBER OF EDGES IN THE REDUCED GRAPH */
B5: [F I=NR THEN DO; EXP=LIST(0);:
FREE BASE,BSLIST,LIST; ALLOCATE LIST(0:0); LIST(Q)=EXP;
RETURN: END;
1=1+1; P=VLIST(I); Y=P; GO TO B7A;
B6: Y=BSLIST(Y); IF Y=0 THEN GO TO BS5;
B7A: K=y(Y); GO TO B7B;
B7: K=NXTE(K):
B78: IF K=0 THEN GO TO B6; X=E(-K); IF X=MATE{Y) THEN GO TO B7;
88: IF LEV{X)+LEV(Y)+1-=RR THEN GO TO B7;
Q=BASE(X); IF LEV(Q)+LEV(MATE(Q ))>RR THEN GO TO B7;
1f P>=Q THEN GO TO B7;
K1=ELIST(Q}; IF Ki=0 "THEN 60 TO B8A;
IF ER(-KL1)=P THEN GO TO B7:
B8A: MR=MR+1; ER(MR)=P; ER(—MR)=Q; SOURCE (MR)=K;
NXTERGMR)=Kl; ELIST(Q)=-MR;
NXTER(MR}=ELIST{P); ELIST(P)=MR
GO TO B7;
END STAGEZ;

L)
=Y; GO TO Bil; END;
. GO TO B3; END;

s
Y
Y
Y)-MM}; ELSE S=E(LINK(Y));

/* THIRD STAGE */
STAGE3: PROC;

0+ ALLOCATE LIFE,RLINK,TOP,RTNXT,ACTLIST;
LIFE=N+1; RLINK=0; RTNXT=0; NACT=0;
D0 I=1 TO N; TOP(I):MATE(I); TOP(-I)=MATE(-I); END;
1=0;

PART:. I=I+1; IF I<=NR THER GO TO Cl;

C1A: EREE ELIST,NXTER,TOP,RTNXT, ACTLIST; RETURN;

Cl: P=YLIST(I ); IF LEV( }=0 THEN GO TO ClA;
IF LIFE(P)<N+1 THEN GO TO PART; RLINK(P)—FMM

g2: J=0; NACT=1; ACTLIST(1)=P: LIFE(P)=1; LIFE(MATE(P))=1;

C3: K=ELIST(P)}; IF K=0 THEN GO TO C7;
ELIST{P)=NXTER(K); Q=ER(-K);

c4: IF LIFE(Q)<I THEN GO TO C3;



208

If RLINK(Q)~=0 THEN GO TO C6; U=MATE(Q);
C5: IF RLINK(U)-=0 THEN GO TO €3, RLINK{U) =MM+K 5
LIFE(Q)=1; LIFE{U)=I; NACT=NACT+1; ACLIST(NACT)=U; J=LEV(U);
[F J=RR THEN GO TO PART; P=U; GO TO C3;
C6: IF RLINK(MATE{P))=MM-X THEN GO TO C3;
IF LEV{P)<=LEV(Q) THEN GO TO €3,
CALL SRCHLOOP(K); GO TO C3;
C7: IF NACT=1 THEN GO TO PART; L1=0; Q=ACTLIST(1); NACT=NACT-1;
DO 11=2 TO NACT; U=sACTLIST{I1)};
IF U=P THEN DO; U=ACTLIST{NACT+1):
ACTLIST(I1)=U; END;
IF LEV{U)>L1 THEN DO; Q=i L1=LEV(U): END;
END;
P=G; J=L1; GO TO C3;
SRCHLOOP: PROC(K);
SLI: P=ER(K); Q=ER(-K); U=TOP{Q); R=TOP(P);
SLZ2: IF U=R THEN RETURK;
SL3: RLINK{R)=-K; NACT= NACT+1 ACTLIST(NACT)=R
SL4: W=MATE({R); CALL UNION(U W)
SL5: S= TOHER(RLINK( W)-MM}): CALL UNION(S,R);
SL6: IF S-=U THEN DO; R=S; GO TO St3; END;
SL7: IF LEV(R)<=J THEN RETURN J= LEV(R); P=R; RETHURN;
UNION: PROC{RI1,RZ);
DCL R1,R2;
SI=MATE(RZ);
Ul: TOP({S1}=RL;
S1=RTNXT(S1); IF Sl-=0 THEN GO TO Ul;
S1=MATE(R1);
uz2: 1IF RTNXT(Sl)ﬂ—O THEN DO; S1=RTNXT(S1); GO TO U2; END;
RTNXT(S1)=MATE{R2);
RETURN;
END UMNION:
END SRCHLOOP;
END STAGE3;
/* FOURTH STAGE */
STAGE4: PROC,
D0: ALLOCATE NEWMATE ;
DO I=1 TO N; NEWMATE(I}=MATE(I); END; I=0
Dl: IF I=NR THEN G0 TQ D5; I=I+l; P=VLIST(I)
IF LEV(P)}>0 THEN 60 TO D5; P= MATE(P),
D2: IF RLINK(P)=0 THEN GO TO Dl A=VLIST(LIFE(P)
D3: CALL RPATH(A,P):
D4d: I1=PRE(A); 1I2=POST(A); IF I2==0 THEN PRE(12)=11;
IF 11-=0 THEN POST(I1)=12; ELSE LIST{D)=12;
IF A-=MATE(P) THEN DO; A=MATE(P); GO TO D4; END;

NN=NN-2;, GO TO D1,




209

D5: DO I=1 TO N; MATE(I)=NEWMATE{I}; END;

FREE VLIST,ER,SOURCE,LIFE,RLINK,NEWMATE; RETURN;
RPATH: PROC(A,P} RECURSIVE;

DCL A,P,R,W,Y.X;

RP1: IF A=P THEN RETURN; :
K=RLINK(P); IF K>M THEN K=K-MM; R=ER(K); W=ER(-K);

RPZ: IF K>0 THEN K1=SOURCE(K); ELSE K1=-SOURCE{-K);
X=E(K1); Y=E(-Kl}; NEWMATE(X)=Y; NEWMATE(Y)=X;

RP3: CALL PATH(R,X); CALL PATH(W,Y):

RP4: CALL RPATH{A,R);

RP5: IF Wa=MATE{R) THEN CALL RPATH(MATE{P).W);

RP6: RETURN;

PATH: PROC(A,P) RECURSIVE,

DCL A,P,W,R;

Pl: IF A=P THEN RETURN;
K=LINK(P); 1IF K>M THEN K=K-MM; R=E(K); W=E(-K};

P2: NEWMATE(R)=W; NEWMATE(W)=R;

P3: CALL PATH(A,R);

P4: IF W-=MATE(P) THEN CALL PATH{MATE{P),W):;

Ph:  RETURN;

END PATH;
END RPATH;

END STAGE4;

/* PRINT RESULTS */

RESULTS:

RS1:

BEGIN;
DCL EN PIC'ZZZ9';, DCL EE{N} CHAR(4);
PUT PAGE EDIT{'RESULTS',(20)'-')(X%(20),A,SKIP,X(15),A);
NR=(N-NN)/2;
PUT SKIP(5) EDIT('NUMBER OF MATCHED EDGES:',NR,'NUMBER OF EXP'
,'OSED VERTICES: ' ,NN){X{20) ,A,F{6),SKIP,X(20),A.A,F(6});
DG I=1 TO Ny IF MATE(I)<O THEN EE(I)='NONE';
ELSE DO; EN=MATE(I); EE(I)=EN; END; END;
PUT SKIP(3) EDIT('MATCHING',(20)'-*)(X(20),A,SKIP,X(15),A);
11=1;
[2=11+14; IF I2>N THEN I2=N; 13=I2+1-1I1;
PUT SKIP(2) EDIT({I B0 I=I1TO I2),{'}" DO =11 TO 12),
DO I=I1 TO I2))({I3){x(4),F(4}),SKIP,(I3
A) SKIP,(IB)( (4)
[F I2-=K THEN DO; Il=I2+1; &0 TO RSl; END
K1=0;
DO K=1 TO My IF MATE(E(K))=E{-K) THEN DO;
K1=K1+1l; LEV(K1}=K; END; END;
PUT SKIP EDIT{'LIST QF MATCHED EDGES' (( %5 A;(X(ZO) JA,SKIP
PUT SKIP EDIT({LEV{K) DO K=1 TO Kl))(F(S)),

(EE(I)
)(X(7),
A(4)));

L]

END RESULTS;:
END MATCH;



210

REFERENCES

1. Edmonds, J., "Paths, Trees and Flowers"; Canadian J. 1965, Vol.
17, pp. 449-467. "Maximum Matching and Polyhedron with 0,1
vertices"; Journal of Research of the National Bureau of

Standards, Jan.-dune 1965, Vol. 69B, pp. 125-130.

2, Witzgali, C. and Zahn, €.7. Jr., “Modification of Edmonds'
Maximum Matching Algorithm"; Journal of Research of the
National Bureau of Standards, Jan.-June 1965, Vol. 698,
pp. 91-98,

3. Gabow, H., "An Efficient Implementation of Edmonds® Maximum Matching
Algorithm"; June 1972, Technical Report No. 31, Stan-~CS,
72-328, to be published JACM. "Implementation of Algovithms
for Maximum Matching on Non- Bipartite Graphs"; Ph.D.

dissertation, Stanford University, 1973.

4. Berge, C., "The Theory of Graphs and its Applications":
(English translation from French), John Wiley and Sons Inc.,
New York. "Two Theorems in Graph Theory"; Proceedings of
the National Academy of Science 1957, Vol. 43, pp. 842-844,

5
5. Hopcroft, J.E. and Karp, R.M., "An n? Algorithm for Maximum

Matching in Bipartite Graphs"; SIAM J. on Comp. 2,
December 1973, pp. 225-231.










10.

11.

211

Aho, A.V., Hopcroft, J.E. and Uliman, J.D., "The Design and
Analysis of Computer Algorithms"; Addison-Wesley Publishing
Company, 1974, Chapter 4, pp. 124-163.

Emde Boas, P. Van, "Preserving Order in a Forest in Less Than
Logarithmic Time"; Proceedings of the 16th Annual
Symposium on Foundations of Computer Science (FOCS),

Berkeley 1975, pp. 75-84.

Balinski, M.L., "Labelling to Obtain a Maximum Matching"; in
" R.C. Bose and T.A. Dowling ed., Proc. of the Conference on
Combinatorial Mathematics and Its Applications, Univ. of

North Carolina, April 1967, pp. 582-602.

°

Kameda, T. and Munro, 1., "A O(|Y

E|) Algorithm for Maximum
Matching of Graphs"; Computing 1974, Vol. 12, pp. 91-98.

Lawler, E.L., "Combinatorial Optimization Theory", to be

published.

Even, S. and Kariv, 0., "An 0(n2‘5) Algorithm for Maximum
Matching in General Graphs", Proceedings of the 16th
Annuz1 Symposium on Foundations of Computer Science (FOCS),

Berkeley 1975, pp. 100-112.









17A2 0727073701 07?PI0 0777 1197¢-°91900 Y@ DOYRODRER AY1ApY ARTRAR

L1pRn

1IN 2B 177ann 7R ocer7en awa nY¥1an DXRMIXAR 4UAR Y YT na1on
AXIIF 12 0°NYINY O0¥ni¥na g1an nx (Depth First Search) pmiyy oo
NPT AURPR LRI 1IN 27y 0770 0T 11are-071Yen Y nrhneopn
PIRPY 710,07 TyY nZ-1 AT 77900 Y1Y?a pwaxn 0e1veRa nitYncicn 11Ta

17en 7w ATNY DURITR D7IIN3-713R21 TIUROA AP DCORYY 1TATAR nInTa

L 11BRN

O¥ATXHA 9722 1VINYAY MN87e3-3719D0 AN DTAPA 13I8 2y?190 aTen
N7APD0 AT VITIPR ANYIAD LTIPAN 99A0 Y8 07°YRTICA 1187e-2%19phY

TNPRR 9732 02770712m 077910 0°7F N87p-271%08 Yw neYneopn nviap

0773770 1IN TIR7¥A N9°p nNT JBerge 9 q7Yann nN 0vyyah 1 arvye

BTN 7170 7nnaY Tiewan abey

=2.077¥190 0022900 DA 72p% WON 072I030-723103 7130y vy
5+
22170 7 M0 £ wNd] oy (mdRent T -1 ax moTvy 0{m 1g 1g n)

Jrmiarw

NN 177a0n 7y nppiann PL/1 aemh neian Ayeoan ATAVY naval.

SJULLY ATIAVA

|
|
]
i






ortonn Tye MR 7773 q7Al M0w-R17DR ANTYR] TA@cyYR Rapn
TTIY-1T Ay Tiva . (MIR717 200 ,07piws Int7a) orrpin' a7 17

1an2 V7NN *YYD 9aA A L0 DA N1 PIRTACRORIOY 11gcw-7i7pon 92
nN?YR 7R ONYAR AN D90 1T ATy LRINTIT 7707 %ntatn wigovw 7ivony
na31pn arya% 02eYnUInY 0PTEIN URAT 1ere-v7ion Yw o nvnroph nxiag

LO787A0 BNINY MIATAIA NIwren Y TY1ARD PAORAT ¥ oApntna opve

T10°w-2"71700 7 NTIRTEEA Y127 RYXID T ATIIVA INIAAA 177a0n

:O737P 4-2 Y¥1AR 177000 .07TYY n%-1 w2 yn=1m a??pIn azart

AR 7Y ANy apeap ayyann (prans vat Kanw)  1iexan abea

nnry 73% ,07TTIARD Oenny¥n 7an ann naa a7ennna{Breadtic First Search)
DIARYA TARA 1?78 777nn 7YReanY 7pan a7y 21%PR OURYID 1aX glan
AT 27¥ T 13101 LMK Y IAY IR ATAIR AT 71700 7w 103N .07 TTIand
71700 @ 12X 1NN - 2 ONT SIA2 TPIA DYE 190D 0077 ON DYYTIY 11N
TIRXAE 70 PIN 197 71700 81A2 Ty NY ON) T7nTinn TEInA N18ven
-713201 @ YRNER 13X AT 27w 1Taka L (Fpaa 1vtanm YYRIDEn 1370 Tna1aa
¥ ¥I1§F 18DN2 N132Y% 117 WONAD YT?A 07ID3IXA 1IN OA1 0TTIA17A T711R)
07077270 NB7EA-2717000 790 22 ANRY FAPAI QYETN 1197R-21Yen 0 TvY

.0?7710 037K

3 nn (T1eNYA 2AYPL 1ITAIAR NI4T ATTY1) TUIAND 13N Tapn a%ea
O7F7PN 13INT 077707270 1107e-7719D0 9% QINYR] D1UNY DINEPAT 070R¥n
=271%00 7Y DINYPIR NIRTITA T2 NN WMTYTIONY TA 1IN AT AYW3 CqIAAR ORiR
L0700 0779073780 N197EA-271700 1IND (0P 12ORE 07 7@IN-NT 1397w
NXTI7 73 :ANIA A310RA 7Vl DYRIYR R4 72p0R AT 777A0R ARYIND

DXPINAA 9121 19723 IR 0773910 D797 1187e-71700 ¢ nr7neopn

i
o
|






7992 JIAL TIDTDEN TIATY ANXRY 0vTYY n® T -1 7790

ATINN L AN YRR NDOIN8 %P I0NARR TOR ANPY1 T ATiay

Jmapr  nraann L,y nYTY o 113n L, NTEYhY NPURnhY
V747N

A¥137-00 1T DIARE M=t oenhy noya Y gaaa (matching) Tinvy
T7YAN LONIWD DATY TN TIATYY 127 Teat nneiw o nw 7a%Y 12 9aan nneg v

O7IFIN I0PR PUY R3T1TI DIARE 7e TIRUDpR 18R Y7300 TINCY DNTYR YR

TapIop m?a oraien oratrana o7in ([1ol,[91,(81,03],021,[11 Aaxq)

L0rTyY nP-1 §ra%an 1ra ad Ty

mina L, ([2]) Berge Yw 1voen Yy o ppana 117 82y1TPR °3°YAnn Y2
1197 71700 973 0P BN P ON PTOYDER 11N §Al 1INd TiAYY 7D
M7 W 13TRYY TINTYY D137 MIAYE 1°A117DY 1A nainepn 1ap) nibon
mopy 7y 07RYN1 DI7NY 0TOAY IMITI) orTIIan uriny 1w oaannn L (1Y
217000 7Y DIRXRMAT AINRTER 73 Ty TIRTEAR CIANRXIA YUY AT mapnd L (Tihrean
L 719000 7Y DANYRIA NIIANA NIAPER 73 7Y TInT¥Y7 inp3oal TinryY% miazeens

L1=1 TInvya 771A?

AnN [a3 7Uan oven 17700 nN oyyal oxe ixyn ([5]) Karp-1 hopcroft

P7M7190 1IN 77Y2 07120 DT 1aTe - C7en 7w nohieoEn axaag Ly
73% nrRe vDEn TInTX YBOIANC¥RY TY MIPINTIN 119793 B171ve 18pn PR
077 1197e-7%1700 Yo n;bnvuvn AY1ap Ni¥n? 9311 @x ,7279% YN oanTa
TIN?Y AN ¥AY 1°%an 113w v arTyy n®-1 Yyisa 7°Y%am aveynvicn

ATY 77%an ®i1¥nY% vy Karp-i Hoperoft nta Yy19n 91A1 *throppn

. (bipartite) »77¥-17 91a%7







TN TINWYMYT O7TUY 0253 770
770 A Y70

ARINN 737 OW7 NI
MM aY Mo

TiXT2

A7 Ty

VIRT MY 1100 7Y TPVTAN NXVINT Wi

namm

1976 YN 177N 1IN



