
Computing 12, 91--98 (1974)
 9 by Springer-Verlag 1974

A O([V[.[E[) Algorithm for Maximum Matching of Graphs*
By

T. Kameda and I. Munro, Waterloo, Ontario
With 2 Figures

Received July 25, 1973

Abstract - - Zusammenfassung

A O(]Vl,lEI) Algorithm for Maximum Matching of Graphs. This paper presents an algorithm
which finds a m a x i m u m matching in a graph with n nodes and rn edges within time k~mn+k2,
where k 1 and k 2 are constants. It is also shown that a max imum degree-constrained subgraph
can be found within time kama+k4, where k a and k4 are constants. Use of r andom access
computer is assumed in the computa t ion of the time bounds.

Zur Ermittlung eines maximalen Matching in Graphen in O([V I 9 lEt) Schritten. Es wird ein
Algori thmus zur Best immung eines Matching in beliebigen Graphen mit n Knoten und m Kanten
angegeben, dessen Zeitaufwand yon klmn+k2, wobei k~ und k2 Kons tan ten sind, beschr~inkt ist.
Dieser Zeitaufwand entspricht der Anzahl der Schritten in einem " random access" Computer.

I. Introduction

In this paper a graph G = (V, E) shall mean a finite undirected linear graph without
loops. V is the set of nodes and E is the set of edges, which are unordered pairs of
nodes. The edge (v, w), where v, w s V, is said to connect the nodes v and w. It also
meets (or is incident with) both v and w and vice versa. If two nodes (edges) meet
the same edge (node), the two nodes (edges) are said to be adjacent to each other.
A set M c E is called a matching, iff no two edges in M are adjacent. A matching
whose cardinality] M [is maximum is called a maximum matching. A node is called
free (or exposed) with respect to a matching M, iff it meets no edge in M. An
elementary path (i. e., a path such that no node meets more than two edges in the
path) such that for any consecutive pair of edges in the path, one of them is in M
and the other is in E - M , is called an alternating path. A node is an even node
relative to a fixed free node, iff there exists an alternating path of even length from
the free node. An alternating path whose end-nodes are free is called an
augmenting path. It is easy to see that if there is an augmenting path P in a graph G
with a matching M, then another matching M' with I M'[= [M[+ 1 can easily
be constructed by interchanging the matching edges (i.e., the edges belonging

* This work was supported in part by the National Research Council of Canada under grant
no. A4315.
Added in proof: We recently learned that the same time bound was independently obtained by
Gabor of Stanford University and Tobin of University of Iowa.

92 T. Kameda and I. Munro :

to M) of P and the non-matching edges of P. This operation is called an
augmentation. Berge [2, 3] is credited with the discovery of the following theorem:
A matchin 9 is maximum iff there is no augmenting path.
Based on this theorem Edmonds [4], Witzgall and Zahn [7], and Balinski [1]
devised algorithms for constructing a maximum matching for a given graph. A
close examination of each of these algorithms reveals that they all require time
proportional to mn z, where m= I EI and n= I VI. In arriving at the time require-
ments of algorithms, we assume, as is customary, the use of so-called random-
access computer model, in which data storage and retrieval, arithmetic and logical
operations, and comparisons are all assumed to require fixed amounts of time.
A graph is assumed to be represented by the adjacency structure [61, in which
each node has a list of all nodes that are adjacent to it.

2. Informal Description

In this paper we follow the approach of Witzgall and Zahn [7] in that we search
the graph in the depth-first manner, starting at a free node called the root. More
specifically, given a graph G (V, E) with a matching M, which may be empty, we
first choose a free node to be the root of a labeled subgraph which is to be con-
structed within the graph, by labeling some nodes of the graph. We "grow" the
labeled subgraph at the even nodes which are already in the subgraph. The root
is labeled with the number 0 and successively increasing integers are given to
subsequently encountered nodes. Consider an edge connecting an even node in
the labeled subgraph and a node not in the subgraph. Since this edge is necessarily
a non-matching edge, if the new node met by this edge is free, then an augmenting
path has been found from the root to this new node. Otherwise there is a matching
edge which connects this node and some other node, which is now found to be an
even node. Thus the labeled subgraph now has two additional edges and two
additional nodes.

If a non-matching edge connects an even node v to another even node u, both
in the labeled subgraph, then there is a closed alternating path of odd length
from a node b back to itself which contains both u and v. Such a closed path is
called a blossom. The node b is the only node in this closed path that meets only
non-matching edges of the path. b is called the base of the blossom. Note that all
the nodes in a blossom are even nodes. We shall associate two numbers, P0 (v)
and Pe (v), with each node v, which take integer values larger than or equal to - 1.
If Pe (v)>0, then it means that there exists an alternating path of even length
from r to v, i.e., v is an even node, the edge (Pc (V), V) being the last edge in the
alternating path. Similarly if Po (v)_> 0, then it means that there exists an alter-
nating path of odd length from the root r to v, (Po (v), v) being the last edge or the
final segment (consisting of more than one edge) of the alternating path.

In the following informal description of our algorithm, we use two first-in
last-out pushdown stacks S 1 and S 2. S 1 records (parts of) the alternating path
from the root to the current node, and $2 stores blossom-nodes for further
examinations. The top node means the node corresponding to the number at the

A O(IVI.IEt) Algorithm for Maximum Matching of Graphs 93

top of the stack in question. If any vague point arises in the following description,
the reader is advised to follow the example in the next section to clarify the
point.

A. Initialization: Pick a free node as the root r, let u = r, and put i= 0 in S 1.
B. Continue growing the labeled subgraph from u, assigning the number i = i + 1

to each new node encountered, and putting the number in S 1.
C. IF an augmenting path is found, T H E N stop, ELSE continue.
D. IF a blossom is created, T H E N go to F,

ELSE IF there is an unexamined edge (matching edge if the top node is not an
even node) that meets the current top node u of S 1, T H E N go to B,
ELSE go to E.

E. IF the number on top of S1 has the 4~ marker, T H E N delete the top
number of $1 and $2 and go to G.
ELSE delete the top number from S 1, let u = the new top node of S 1, and
go to B.

F. Complete appropriately the labels (i. e., replace the - 1 entry of each node with
the number of its "predecessor") of all the nodes corresponding to the numbers
in S 1 lying above the number of the base of the blossom and move these
numbers from S 1 to S 2.

G. IF S 2 =fi ~, T H E N let u = the top node of S 2, put N UM (u) ~ in S 1, and go to B,
ELSE IF S 1 =fi ~, T H E N let u = the top node of S 1 and go to B, ELSE stop.

If the above algorithm stops at step G and there remain one or more nodes that
have not been examined, restart at A, with a new free node. Then eventually either
an augmenting path will be found or all the nodes will be examined without
generating an augmenting path. In the latter case the matching M under
consideration is maximum and in the former case we can find a new matching
M' with I M'[= I M] + 1 by augmentation. Starting with M = t~, repeated appli-
cations of the algorithm will eventually produce a maximum matching.

3. Example

In Fig. 1, we have an example of a graph G (V, E) with a matching M. The solid
lines indicate the edges in M and the dotted lines the edges in E - M . In order
to find an augmenting path, we first choose an arbitrary free node as the root,
which is to be the starting point of alternating paths. Fig. 1 (a) shows the first
nine nodes of an alternating path with [P0 (v), Pe (v)] pair attached to each node v.
Note that for the node 8, neither Po (8) nor Pe (8) is -- 1, because of the edge (8, 4)
leading to the base 4 of the blossom 456784. Stack S 1 contains all the nodes we
have visited so far in the order of the visits. We next move nodes from the top of
S 1 to S 2, until the base appears at the top, determining at the same time Po (v) or
Pe (9) of each node moved. In Fig. 1 (b) we enter Pe (7), P0 (6), and Pe (5), as the nodes
7, 6, and 5 are moved from S 1 to S 2. After this operation the node v at the top of
S 2 is copied on top of S 1 with the marker 4~. It is then checked as to whether it
meets an edge which has not been examined yet. If there is such an edge (9, u),
then u is put on top of S 1, and otherwise v is removed from S 1 and $2. The nodes

94 T. Kameda and I. Munro:

6[-1,51 716,-1]

I ! 514.-1] . . . - 814,71 I

312,-1] .._ .'''
z[-1,zl]
i[0,-i] I

I

O[-1,OJ I

Ia)

617,51___716•

(b)

. r t 917,_1J
| , i0[-1 9[

i i
1

(c>

8
7

6

5
4
3

i

$2

Sl $2

SI

i] 917,10]
1o[11 9]

E

(d)

617,5] ___716,8] - 917,10]

4[9*(7) ,3] ']" ' 11110,12]

312,4L~.| - - ] 1212,111
"" 2 [-1,1T 18/ [

1[0~-1]
I

o[-1,oi I
(e)

82

2 ~

LI
s1

i 3 !

f i 4
:9
io

82

Fig, t. Labeling process

5 and 6 are thus deleted from $2 and new nodes 9, 10, 11, and 12 are entered in S 1
as shown in Fig. 1 (c). As before the edge (12, 2) leading to the base 2 of a blossom
enables us to determine Po (12), pe(ll) , Po (10), and pe(9). Note that po(4)=
9* (7), the asterisk indicating the fact that an alternating path of odd length from
node 4 to 0 has, as an initial segment, a path from 4 to 7 to 9. This segment can
be easily determined by back-tracing from 7 to 4.

Suppose now that there is a free node 13, as shown in Fig. 1 (e). An augmenting
path from 13 to 0 can be found as follows.

13~3 (=Po (13))---4 (=pe (3)) l
9* (=Po (4)),,-7 (=Po (9))<---8 (=Pe (7)) '--] V-
10(= p~ (9))~ 11 (= Po (10))~ 12(= pe(11))~ 2 (=Po (12))~ 1 (= p. (2))~0(=Po (1))

A O(IV[. IEJ) Algorithm for Maximum Matching of Graphs 95

4. Formal Algorithm

In the following u, x, and z represent even nodes (i.e.; nodes for which there
exists an a l ternat ing pa th of even length f rom r). We also use the no ta t ion
m (v) = w, iff (v, w) ~ M .

0. i : - -0 . Pick a free node r as a roo t and NUM(r):=i , p o (r) : = - 1 , p e (r) : - 0 .
Place i in S 1 and u : = r.

1. I F there is an edge (u, v) 6 M that has not been examined, T H E N go to 3,
E L S E go to 2.

2. IF N U M (u) in S 1 has the marke r 4~, T H E N delete N U M (u) f rom S 1 and $2
and go to 8,
E L S E delete the top two number s of S I, let u be the new top node of S 1 and
go to I.

3. IF v :# r and free, T H E N an augment ing pa th f rom r to v has been found (stop),
ELSE IF v has not been numbered , T H E N go to 4,

E L S E go to 5.

4. N U M (v) : = i : = i + l , Po(V):=NUM(u), p e (v) : = - l , place i o n top of S1,
N UM (m (v)): = i: -- i + 1, Pe (m (v)): = _N UM (v), Po (m (v)): = - 1, place ion top
of S 1, u : = m (v), and go to 1.

5. IF Pe (V)= --1, T H E N go to 1,
E L S E (new b lossom has been created) z : = v and continue.

6. x: = z and let y and z be such tha t N UM (y) = top entry of S 1, N UM (z) = 2nd
top entry of S 1, if they exist.
IF N U M (y)<_NUM (v), T H E N go to 8,
E L S E IF N UM (y) has no ~ marker , T H E N Po (Y): = N UM (x), Pe (Z) : = N UM (y),
move NUM(y) and NUM(z) f rom S1 to $2, and repeat 6, E L S E delete
N U M (y) ~f f rom S 1 and go to 7.

7. IF NUM(z)>NUM(v) , T H E N po(z):---gUM(x)*(NUM(y)), z:=m(z), and
go to 6
E L S E go to 8.

8. IF S 2 4: 0, T H E N u: = top node of S 2, place N UM (u) ~ on top of S 1, and go to 1,
ELSE I F S 1 = 0, T H E N u: = top node of S 1 and go to 1,

E L S E stop.

5. Analysis of the Algorithm

In this section we shall p rove the correctness of our a lgor i thm and also establish
a t ime bound. Since our a lgor i thm discards a node when all the edges meet ing
it have been examined, we have:

Lemma 1
The algorithm of section 4 eventually terminates.

96 T. Kameda and I. Munro:

The following theorem states that even nodes are correctly identified by the
algorithm.

T h e o r e m 1

Unless the algorithm stops at step 3, each even node v relative to the root evemually
9ets label p~ (v) > O.

Proof: If the algorithm doesn't stop at step 3, it must stop at step 8 because of
Lemma 1. Therefore assume that the algorithm terminates at step 8, leaving
some even nodes unlabeled. Let w be one of them with the shortest alternating
path of even length from the root r. Let this path be P with length 1. Then it
follows that all even nodes for which there exist alternating paths of length
<l-2, have labels p~ ()>0. Now consider the path P, which starts at the root r
and ends at the node w. Let u be the even node which is connected by the last
two edges of P to w. During the application of the algorithm N U M (u) would
have been placed on top of S 1 as long as there was some unexamined edge
meeting it. Thus w = m (v) would have been labeled in step 4, after going through
steps 1 and 3. This is a contradiction to the initial assumption. Q.E.D.

B [9~7.1 _ _ _9 kB,z0]
1" "'''11319,14]

/ .7[6,8] -r 1016,91
Ii[8 121 " ' . . - " |

/ 16Ii1"~),51/
/] .-14E~,~[

1214,11I-. , 514,61-~

1 3[2,4]
(~)

4[5,3] 514,~1 7[5,8]

I 2[-i,i]
Ii

(b)

918,_io I _ 819,71

1319,41 I "" ~r'~ ' | ~[xl*(8),slJ,
1414,13][-)5[4,6] ~-" 1212,11]

4[s,~ T , '~ t 2[-1'11
3[2,4]

(e)
Fig. 2. Blossoms of Depth 1, 2, and 3

In order to prove our final result (Theorem 2), we have to introduce a few more defi-
nitions. In the process of growing a labeled subgraph, following the steps of our al-
gorithm, a blossom may be created, which contains other blossoms. Take Fig. 2 (a)
for instance. The blossom B1=6789106 is created first. Then the blossom
B 2 containing B1 and nodes 4, 5, 11 and 12, is created. We call B 1 a subblossom
of B 2, and B 2 is said to be a nested blossom. B 1 and B 2 have "depth" 1 and 2,
respectively. Note that Po (6) = 1 1" (8) is determined when B2 is created by means
of the edge (12, 4). More precisely, a blossom which contains no other blossoms
is said to be nested to depth 1, and a blossom nested to depth d (or of depth d) is
created, if the closing of an alternating path determines the p~ () value of at least
one subblossom and the maximum depth among those subblossoms is d - 1 . If

A O([V I 9 [El) Algorithm for Maximum Matching of Graphs 97

an alternating path leads from a node of a blossom nested to depth d - 1 to
another node of the same blossom, then the newly created blossom is nested
only to depth d - 1.
According to the above definition of the depth, the creation of a blossom by
adding the edge (8, 2) to the subgraph in Fig. 2 (b) does not increase the depth.
Note also that the depth of a blossom depends on the order in which nodes were
labeled. For example, the outermost blossom in Fig. 2 (c) is nested to depth 2,
whereas that in Fig. 2 (a) is nested to depth 3.

Lemma 2

I f the altorithm stops at step 3, then we can identify the augmenting path in time pro-
portional to the number of edges in the path.

We want to trace the labeled subgraph obtained during the application of the
algorithm from v to r. In this process we may encounter some blossoms. We may
enter a blossom via its base b or one of its non-base nodes u. Without loss of
generality, we can always assume that we enter a blossom via a non-base edge,
since otherwise from Po (b), which is of the form N UM (x)* (N UM (u)) (see step 7
of the algorithm), the path in question can be traced, starting at node u. Lemma 3
below will suffice to prove Lemma 2.

Lemma 3

Given a nested blossom B with base b and any v(4:b)eB, an alternating path of
even length fi'om u to b (within B) can be identified from the labeled graph in
time proportional to the number of edges in the path.

Proof: By induction. If B is a blossom of depth 1, then trace Pe (u), Po (Pe (u)),
Pe (Po (P~ (u))) , until we reach b. Assume as the induction hypothesis that
the assertion is true for all blossoms of depth _ k - 1. Let B be a blossom of depth
k. Let S be the set of nodes that were added to B, when B was created from
subblossom(s) of depth _<k-1. Let v be the frist node in the sequence,
p~ (u), Po (Pe (u)), ..., such that v e B - S. (In case there is no such v, b will appear
in the sequence and the alternating path will be thus found.) Then v belongs to
a subblossom B 1 (of B) of depth _< k - 1 . Let bl be the base of B I. There are two
cases.

(a) v r

By induction hypothesis, an alternating path from v to b 1 will be found within BI,
in time proportional to the number of edges in the path.

(b) v=bl .

In this case there exists a node x such that Po (bl) = N UM (x) * (N UM (y)) and x s S.
Therefore the problem is now reduced to finding an alternating path y to bl
within a subblossom of depth _<k-1 and another from x to b. From our
construction, the path from v to y will have no node in common with the path
from x to b. In either case above, we can repeat the argument until we reach b.
Q.E.D.

Computing 12/1 7

98 T. Kameda and I. Munro: A O(IVt.[EI) Algorithm for Maximum Matching of Graphs

Theorem 2

A maximum matchin9 can be found "within time k 1 ran+k2, where kj and k 2 are
constants.

Proof: Starting with a given graph G(V,E) with matching M = ~ , apply our
algorithm repeatedly. In order to find an augmenting path, we may have to start
our algorithm more than once. But since each edge is examined at most twice
(note that each edge is represented twice in the adjacency structure), the total
time spent to find an augmenting path is bounded by c 1 m, where m = I E t, and
cl is a positive constant. Also the time needed to identify the edges of an
augmenting path, in order to augment a matching, is bounded by c2 m, where cz
is a constant (Lemma 2). A maximum matching will be reached after at most n/2
augmentations. Q.E.D.

A degree-constrained suboraph in a graph G (V, E) is a subgraph G' (V, M) of G,
where M c E, such that for each v ~ V, v meets no more than c (v) edges in M,
where c: V--*N (the set of natural numbers) is a given function. Such a set M is
called a c-matchin9 in [3]. Thus the matching we defined before is a special case
where c (v)= 1 for all v e V. Berge [3] shows that the problem of finding a
maximum degree-constrained subgraph in a graph G(V,E) with n=[V] and
m = [El can be reduced to the maximum matching problem in a graph with tess
than 4 m nodes and 4 m (4 m - 1)/2 edges. The following is also valid for multigraphs
with multiple edges allowed between any pair of nodes but no loops.

Corollary: A maximum degree-constrained subgraph can be found within time
k 3 m3+ k4, where k 3 and k 4 are constants.

References

[1] Balinski, M. L.: Labelling to obtain a maximum matching. Proc. Conf. Comb~ Math. and Its
Applications. Univ. North Carolina, April 1967.

[2] Berge, C.: Two theorems in graph theory. Proc. Natl. Acad. Sci. 43, 842--844 (1957).
[3] Berge, C. : Alternating chain methods: A survey, in "Graph Theory and Computing" (Read,

R. C., ed.), New York-London: Academic Press. 1972.
[4] Edmonds, J., Paths, trees, and flowers. Can. J. Math. 19, 449--467 (1965).
[5] Hopcroft, J. E., and R. M. Karp: A n 5/2 algorithm for maximum matchings in bipartite graphs.

Record of the 12th IEEE Annual Symp. on Switching and Automata, pp. 122---t25. Oct. 1971.
[6] Tarjan, R. E.: Depth-first search and linear graph algorithms. SIAM J. Computing 1, 146----159

(1972).
[7] Witzgall, C., and C. T. Zahn, Jr. : Modification of Edmonds' maximum matching algorithm.

J. Res. Nat. Bur. Stds. 69B, 91--98 (1965).
Prof. Dr. T. Kameda
Department of Electrical Engineering
Prof. Dr. I. Munro
Department of Applied Analysis and
Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G I

Eigentiimer, Herausgeber und Verleger: Springer-Verlag, A-1011 Wien, M61kerbastei 5. - - F~r den Textteil
verantwortlich: Dr. W. Schwabl, A-1011 Wien, M61kerbastei 5. - - FOr den Anzeigenteil verantwortlich:
Bruno Schweder, A-1130 Wien, SchweizertatstraBe 8-10. - - Satz: Austro-Filmsatz Richard Gerin, A-I020 Wien,

Fischergasse 1. Druck: Paul Gerin, A-1021 Wien, Zirkusgasse 13.
Printed in Austria.

