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In many introductory textbooks on Operations Research and Mathematical Pro-
gramming the Linear Assignment Problem is solved by the Hungarian Method,
probably because this is the oldest method. We highlight another method, the
Bradford method of Mack; we think it to be more suited to explain a solution
method for the Linear Assignment Problem. After a short review of assignment
algorithms, we give an exposition of elements of these algorithms. Then we
explain Mack’s algorithm illustrated with an example and we will show it to be
near - equivalent to the Hungarian Method. Finally we indicate an improvement
on Mack's Method.

1. INTRODUCTION

In many introductory textbooks on Operations Research and Mathematical
Programming, e.g., Daellenbach, George and McNickle (1983), and Taha
(1987), the Linear Assignment Problem is introduced by the Hungarian
Method, probably because this is the oldest method and maybe because not
many textbooks treat any other method.

We highlight another method, the Bradford method of Mack (1969), which
is theoretically equivalent to the Hungarian method; we think it to be more
suited to explain a solution method for the Linear Assignment Problem. In
1969, Mack developed this method, which can be considered a forerunner of
Tomizawa’s (1971).

We start with a short review of assignment algorithms, followed by an expo-
sition of elements of these algorithms. Then we explain Mack’s algorithm illus-
trated with an example and we will show it to be near-equivalent to the Hun-
garian Method. Finally we indicate how Mack’s method can be improved.

As is well known, the Linear Assignment Problem on the nXn cost matrix
(cij) can be formulated as a linear program:
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The zero-one constraints on the x;; can be relaxed to nonnegativity restrictions,
yielding the dual problem:

n n
mﬂxzuj + Zvj
i=1 j=1
subject to

cg—u,—‘l?_,;{} (f,j — 1!“'!”)'

From the dual variables #; and v; we may calculate the reduced costs
¢ij—u;—v; (i,j = 1,...,n). So, the dual problem is to find a reduction of the
cost matrix with maximum sum and non-negative reduced costs.

In this and the following sections, » is the number of assignments to make.
Indices i and j refer to rows and columns respectively; x; is the index of the
column assigned to row i and y; the index of the row assigned to column j,
with x; = 0 for an unassigned row i and y; = 0 for an unassigned column j;
the dual variable u; corresponds to row i and v; to column j. We denote the
reduced costs cij—u;—v; by credy, and we may refer to the dual variables as
‘prices’. An unassigned row or column is ‘free’.

2. A REVIEW OF ALGORITHMS

Methods to solve the Linear Assignment Problem can be classified (roughly) in

three categories:

a. algorithms based on maximum flow,

b. algorithms based on shortest paths,

c. algorithms based on the simplex method.

Most algorithms based on maximum flow are primal-dual methods. Papadimi-

triou & Steiglitz (1982) give an introduction to these methods that is very well

suited for use in the classroom. A primal-dual method for the Linear Assign-

ment Problem performs the following steps:

step 1. find a feasible dual solution;

step 2.  solve a restricted primal problem, that is, find a (partial) primal solu-
tion that has complementary slackness with the dual solution;

step 3. terminate if the solution of the restricted primal problem solves the
Linear Assignment Problem; otherwise, solve a restricted dual prob-
lem to adjust the dual solution leading to a less restricted primal
problem, and return to step 2.

Essentially, step 2 consists of solving a maximum flow problem on an auxiliary

graph. The notion ‘complementary slackness’ known from the theory of linear

programming will be described in section 3 for the use in the context of the

Linear Assignment Problem.

Historically seen Kuhn’s Hungarian algorithm (1955, 1956) was actually the
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‘father’ of the general primal-dual algorithm. The original method had compu-
tational complexity O(n*), but later O(n>) versions were developed (Lawler
(1976)). Bertsekas (1981) also presented a primal-dual algorithm. The method
is of the Hungarian type, and the best version even uses the Hungarian algo-
rithm itself.

The methods based on shortest paths are dual algorithms in the sense that
dual feasibility exists and primal feasibility has to be reached. This is achieved
by considering the Linear Assignment Problem as a minimum cost flow prob-
lem, which can be solved by steps that involve finding shortest (augmenting)
paths on an auxiliary graph.

In this group two algorithms, both of time complexity O(n”), stand out:
Tomizawa’s from 1971 and Hung & Rom’s from 1980. The latter method is
the more ingenious, but the former approach the faster. The algorithm of Tom-
izawa is initialized with a partial primal solution and a corresponding feasible
dual solution. The partial assignment is augmented into a complete solution by
primal steps in each of which one shortest augmenting path is determined
using Dijkstra’s method (1959). Hung & Rom’s initial solution is complete, but
may be infeasible. They determine in each step a shortest path tree, which
takes more effort, but may lead to finding more augmenting paths per itera-
tion.

Jonker & Volgenant (1987) described a Linear Assignment Problem algo-
rithm including a Pascal implementation, that appears to be faster than the
best known methods from the literature.

We highlight in this note the so-called Bradford method of Mack (1969),
especially for its intuitively appealing presentation. It resembles the method of
Hung & Rom, but, as originally presented, has computational complexity
O(n*). Adapting it to obtain complexity O (n?) results in an algorithm close to
Tomizawa’s.

The linear programming based algorithms in the third category are (very)
specialized versions of the simplex method. The best published results are from
Barr, Glover & Klingman (1977). A major difficulty with all of these methods
is the phenomenon of zero pivot steps. This can be illustrated in the classroom
by solving a Linear Assignment Problem example as a transportation problem,
showing a lot of degeneracy: almost half of the basic variables are equal to
zero. A drawback is also their relatively complex implementation, as compared
to the other approaches. Computational experiments (Hung & Rom (1980))
show that they are outperformed by the best primal-dual and dual algorithms.

The O(n?) Signature algorithm presented by Balinski (1985) also belongs to
this category. It considers feasible dual solutions corresponding to trees in the
bipartite graph of row and column nodes. Since its first publication, some
refinements have been published, but, up to now, no computational results
have been presented.
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3. ELEMENTS OF LINEAR ASSIGNMENT ALGORITHMS

Most primal-dual and dual Linear Assignment Problem algorithms are based

on only a few standard operations:

- initialization: a feasible dual solution u; (i = 1,...,n) and Vi (j = L..,n) is
determined; the primal solution x; (i = l,..,n), with corresponding
Yj U = l,..,n), is initialized so that complementary slackness holds, that is,
x; = j only if cred;; = 0;

- finding an augmenting path: a sequence of, alternately, row and column
indices is determined, with the first an unassigned row, the last an unas-
signed column, and the intermediate columns and rows assigned in succes-
sive pairs;

- augmentation: augmentation of a partial solution can take place along an
augmenting path by assigning all rows in the path to their succeeding
column, which results in one more assignment;

- adjustment of the dual solution: prices are adjusted either to obtain at least
one additional zero reduced cost coefficient, while maintaining complemen-
tary slackness, or to restore complementary slackness after augmentation of
a partial assignment.

The concept of augmentation along alternating paths is the basis for every

assignment algorithm. How to adjust the dual solution merits some thought.

Each algorithm specifies its own rules for this operation. The purpose is to

maintain complementary slackness, that is,

Cij_'u"‘_Vj;o (i!j - 1,...,?]), (1)

ck—u—v =0, ifx; =k (i = 1,..,n). 2)
Substituting the »; from (2) into (1) leads to
Ck—wesc;—v;  (j = 1,..,n).

This implies that for every assigned column k (y; = i) the v; must be chosen
so that

Gk —vx = min{¢;—v;|j = 1,..,n},
and for every assigned row i (x; = k) the u; must be set at
U = Cig — V-

So all assignments in a (partial) solution must correspond to row minima in
the reduced costs matrix. After augmentation of a partial solution, this trivial
observation will usually show the best way to adjust prices. It even forms the
basis of the assignment algorithm of Mack (1969) in which algorithm only the
values of the v-variables have to be recorded, making it easier to understand
the solution procedure.
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4. THE ALGORITHM OF MACK

Mack’s linear assignment method is easy to understand, and easy to use. We

will show it to be near-equivalent to both the algorithm of Tomizawa and the

Hungarian method. So, in a way, Mack’s algorithm provides the best statement

for an Hungarian-type assignment algorithm. The method is based on two

trivial observations for the Linear Assignment Problem:

1. the cost matrix can be reduced without influencing the optimal solution;

2. an optimal solution is found if for a certain reduced cost matrix the row
minima occur in different columns.

As long as 2 is not fulfilled, Mack’s algorithm adjusts the reduced costs in such

a way that the row minima are spread over more columns.

3 7 6 6 6" 7 6 6 6 7 6" 6
1" 6 8 8 4" 6 8 8 4 6 8 8
3 0" 8 1 6 0" 8 1 6 0" 8 1
0 7 9 9 3 7 9 9 3 q 9 9
(a) start (®) ©
8 7 6" 6 9 8 6" 6 9 8 6" 6
6" 6 8 8 N 8 8 7 7 8 8
8 0" 8 1 9 1" 8 1 9 1 8 1
5 9 9 6" 8 9 9 6" 8 9 9
(d) ©) (f) optimal

FIGURE 1. An assignment problem solved by Mack’s algorithm (bases are
starred).

We illustrate the method on a simple example, which has the cost matrix
given in Figure 1(a). The column where for a certain row i the minimum
current reduced costs occur is called the base of row i, denoted base;. (The
bases are starred in Figure 1.) The method terminates if every column con-
tains one base.

First consider column 1, which contains more than one base. By increasing
its entries we create an alternative position for one of the bases in this column.
If column 1 is increased by 3, an alternative position is found for base,, under-
lined in matrix (b). This position being free, we switch base; from column 1
to column 3 in matrix (c), using in fact an augmenting path of length two. In
the next iteration we consider again column 1, still containing two bases. After
increasing column 1 by the amount 2, we find a new possibility for base, in
matrix (d). The corresponding column 2 is already occupied by a base, so from
now on we must increase columns 1 and 2 simultaneously. An increase of 1 for
both columns leads to the cost matrix of Figure 1(e). In this matrix a path
exists, alternating between bases and alternative bases, along which the current
set of bases can be spread over one more column. The solution in Figure 1(f)
is optimal. Note that after every step, in (c) and in (f), the bases are spread
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over one more column.
This is a more formal statement of the assignment algorithm of Mack.
step 1.  Initialization: Determine the bases in the cost matrix.
step 2.  Termination, if every column contains one base.
step 3. Select a column j that contains more than one base.
Set COL := {j} and ROW := {i|base;eCOL}.
step 4. For i€ ROW set m; = min{credy — cred, ya5, |k €COL}.
Determine § = min{m;|i€ ROW}.
Let rr be a row and kk a column for which & is assumed.
step 5.  Adjust the dual solution: Increase the reduced costs of all columns in
COL by the amount 8.
If column kk contains no base, go to step 6. Otherwise go to step 7.
step 6. Augmentation: A path has been found consisting of, alternately, bases
and alternative bases, starting in column kk:
- alter the current set of bases along the alternating path,
- go to step 2.
step 7. Column kk is base for some row(s):
- mark column kk as alternative base for row rr,
- COL := COL U{kk}; ROW := ROW U {i|base; = kk},
- go to step 4.
Bunday and Garside (1987) have published a computer program for Mack’s
method.

5. IMPROVING MACK’S ALGORITHM
When considering the complexity of Mack’s algorithm, step 4 turns out to be
inefficient. Its formulation above requires O (n”) operations to update the row
minima over the columns not in COL. An alternative formulation is:
step 4. For ke COL set mmy; = min{credy — cred; yys |i EROW}.
Determine 8§ = min{mmy, |k eCOL)}.
Let rr be a row and kk a column for which 8 is assumed.
When dsum is the sum of the §-values by which columns in COL were
increased in previous applications of step 5 during the current iteration, we
note that

mm;;!—&sum = dk (k= 1,...,?!).

This implies that updating the row minima is equivalent to determining a shor-
test path from the original column j (from step 2) to any unoccupied column
in an auxiliary network. As in Tomizawa, Dijkstra’s method can be used as we
consider the (non-negative) reduced costs. So in this formulation, the column
minima over the rows in ROW can be updated in O(n) operations, and the
computational complexity of the method becomes O (n?).

Using the second formulation of step 4 yields a method that is almost
equivalent to that of Tomizawa (1971). Note, however, that Mack’s method
was published in 1969. Tomizawa’s method is obtained as follows:

- rows are assigned only if the minimum reduced costs occur in an unassigned



60 R. Jonker, A. Volgenant

column, that is, every column is assigned at most once;
- the set ROW is initialized (in step 3) with any unassigned row and COL

with the empty set.

The improvement of this section may be omitted when treating Mack’s
method in the classroom. For further improvements, e.g., about finding an ini-
tial solution (step 1), we refer to Jonker & Volgenant (1987).

6. CONCLUSION

We have highlighted Mack’s Linear Assignment Problem algorithm to promote
it as a method to be discussed in textbooks on Operations Research and
Mathematical Programming. We think the given explanation as well as the
cohesion with other Linear Assignment Problem algorithms to contain enough
arguments for the recommendation to use the method for teaching students
about the Linear Assignment Problem.
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