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FINDING A MAXIMUM CUT OF A PLANAR GRAPH
IN POLYNOMIAL TIME*

F. HADLOCKf

Abstract. The problem of finding a maximum cut of an arbitrary graph is one of a list of 21 com-
binatorial problems (Karp-Cook list). It is unknown whether or not there exist algorithms operating
in polynomial bounded time for any of these problems. It has been shown that existence for one implies
existence for all. In this paper we deal with a special case of the maximum cut problem. By requiring the
graph to be planar, it is shown the problem can be translated into a maximum weighted matching
problem for which there exists a polynomial bounded algorithm.
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1. Introduction. In this paper, it is shown that the maximum cut problem
can be translated into the maximum weighted matching problem when the graph
under consideration is planar. For an arbitrary graph, several algorithms exist
for finding a maximum cut [4] and [5]. Both require exponential time in worst-case
situations. Since the maximum weighted matching problem has a polynomial
bounded algorithm [1], [2], a maximum cut of a planar graph can be found in
polynomial time by using the translation process to be presented.

2. Maximum cuts and odd circuits. An edge set D whose removal leaves a
subgraph free ofodd circuits will be called an odd-circuit cover. The purpose of this
section is to obtain an alternative formulation for the problem offinding amaximum
cut. First the relationship between cuts and odd-circuit covers is established.

THEOREM 1. An edge set is contained in a cut if and only if its complement is an
odd-circuit cover.

Proof. Let Q be an edge set contained in a cut C. The intersection ofany circuit
with C is even and so Q must contain an edge ofany odd circuit. Hence Q is an
odd-circuit cover.

Conversely, if Q is an odd-circuit cover, its removal leaves a graph free of
odd circuits and hence bipartite. Thus Q is contained in a cut.

As a consequence of Theorem 1, an alternative to looking for maximum cuts
is to look for minimum odd-circuit covers. This is justified by the following corol-
lary, which follows immediately from Theorem 1.

COROLLARY 1. An edge set is a maximum cut if and only if its complement is a
minimum odd-circuit cover.

The following fact means we can confine our attention to a circuit basis
rather than looking at the entire space in constructing an odd-circuit cover. Since
a graph is bipartite if and only if its circuit space has an even basis [6], an edge set D
is an odd-circuit cover if and only if its removal leaves a subgraph with an even
basis. The term even basis refers to a circuit basis in which every element is an even
circuit.

3. Odd-circuit covers and odd-vertex pairings. To obtain a maximum cut of a
planar graph G, we suppose some embedding and take as a basis the contours ofthe
finite faces. It is more convenient to work with the geometric dual, GD, of G, where
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the odd basis elements (along with the contour of the infinite face, if odd) become
precisely the set of odd vertices. An edge e in G corresponds to an edge e’ in GD
if and only if the two faces separated by e in the embedding of G correspond to the
endpoints of e’ in GD.

An edge set whose removal leaves a subgraph free of odd vertices will be
called an odd-vertex pairing. Thus a subgraph with an odd-vertex pairing as edge
set has an Euler subgraph as complement. The following theorem establishes a
correspondence between odd-circuit covers and odd-vertex pairings.

THEOREN 2. An edge set D is an odd-circuit cover of a planar graph G if and only
if the corresponding edge set P is an odd-vertex pairing for the geometric dual GD
of G.

Proof. Let GD be the geometric dual of G for some embedding of G, with D and
P corresponding edge sets of G and Go, respectively. Let G’ and G be the sub-
graphs of G and GD left by the removal ofD and P. Circuits of G correspond by the
1-1 edge correspondence to cut-sets of GD. This is also true for G’ and G. In
particular, circuit basis elements of G’ correspond to cut-set basis elements of

G as follows. A circuit basis element of G is the contour of a finite face. Its edges
correspond in 1-1 fashion with the edges of GD which are incident with the vertex
representing that face. The set of edges incident with the vertex is a cut-set basis
element.

If D is an odd-circuit cover, the circuit basis for G’ is even. Since the edge
correspondence is 1-1, the cut-set basis ofG is even. Consequently the degree must
be even for any vertex of G corresponding to a finite face of G’. The vertex cor-
responding to the infinite face cannot be the sole odd vertex. Hence P is an odd-
vertex pairing.

The converse follows by a similar argument.
To find a maximum cut of a planar graph, it suffices to find a minimum odd-

vertex pairing of its dual. The following theorem gives a useful characterization of
odd-vertex pairings.

THEOREM 3. For an edge set P ofan arbitrary multigraph G, P is a minimum odd-
vertex pairing if and only if P forms an edge disjoint collection of paths with odd
vertices of G as endpoints, using each once as endpoint, and with minimum sum of
path lengths.

Proof. Let P be a minimum odd-vertex pairing for a multigraph G. The parity
of a vertex refers to its degree odd or even. IfH is the subgraph left by the removal
of P, since H is an Euler subgraph, a vertex has the same parity in P as in G. In any
component of a graph, there must be an even number of odd vertices; hence any
odd vertex in P is connected to another. Remove a path connecting a pair of odd
vertices from both P and G to obtain subgraphs P and G. P is an odd-vertex
pairing for G since its removal leaves H. Any vertex has the same parity in P as

G. In going from P to P, the number of odd vertices has been reduced by two.
Repeating the process eventually yields an odd-vertex pairing P with no odd ver-
tices for a multigraph G. Since any vertex has the same parity in G as P, G is
Euler. Since P was assumed to be minimal, Gi H and P (V, ) (i.e., no edges).
Then P is the disjoint collection of paths with the odd vertices of G as endpoints,
using each once as endpoint. The sum of the path lengths is minimum since P is
minimum.
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Now suppose P is a collection of edge-disjoint paths with odd vertices as
endpoints, using each endpoint once as endpoint, and with minimum sum of path
lengths. Remove P from G, one path at a time. Denote by H the subgraph remaining
after P has been removed. The removal of each path leaves the endpoints even and
does not alter the parity of intermediate vertices. Since any vertex odd in G appears
once as an endpoint, it is even in H, and so P is an odd-vertex pairing. P is minimum
since the sum of path lengths is minimum.

4. Odd-vertex pairings. The task of pairing odd vertices so as to minimize
the sum of the lengths of the paths pairing them is easily posed as a maximum
matching problem as observed in [3].

Given a multigraph G, a minimum odd-vertex pairing P for G is obtained as
follows. Let Gc be the complete graph with vertices corresponding to the odd
vertices of G. With each edge e (u, v), associate the weight IV- d(u, v) where
d(u, v) is the length of the minimum length path connecting u and v and W
+ max {d(u, v)lu, v odd in G}. Let M be a maximum matching of Gc. Then M
defines a minimum odd vertex pairing as follows. For each edge e (u, v) in M,
include in P the edges of any minimum length path connecting u and v in G.

The problem is now in a form for which there exists an algorithm [2] for its
solution. It is an algorithm which is good in the sense that the amount of time it
requires is a polynomial function of an input parameter (the number of vertices in
this case).

5. An example. To illustrate the process of translating a solution to the
maximum matching problem into a solution to the maximum cut problem, we
use an example (Fig. 1) in which the matching problem is solved by inspection.
A minimum odd-circuit cover may be found by determining a minimum odd-
vertex pairing of the geometric dual Go (Fig. 2). In turn, this may be found by
determining a maximum matching for the complete graph on the odd vertices
of Go (Fig. 3). Since the weights here are 1 or 2, any complete matching with all
edge weights 2 is a maximum matching (Fig. 4). A minimum odd-vertex pairing
for Go is obtained by taking a minimum path connecting u and v for each edge
(u, v) in the maximum matching. In this case each minimum path is single edge (u, v).
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FIG. 1. Planar graph G FIG. 2. Dual of G,
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FIG. 3. Edge weights for complete graph G on odd vertices of GD

M ((a, d), (c, g), (h, i))

FIG. 4. Maximum matching for Gc

P ((a, d), (c, g), (h,

FIG. 5. Minimum odd-vertex pairing for GD

FIG. 6. Minimum odd circuit cover for G

Their collection forms an odd-vertex pairing (Fig. 5). The corresponding minimum
odd-circuit cover for G consists of the marked edges (Fig. 6). Its complement is
a maximum cut.

6. Conclusions. Finding a maximum cut of a planar graph is a special case,
as remarked earlier, of a problem on a list [8] of combinatorial optimization
problems, including the traveling salesman problem and the problem of vertex
coloring a graph with the fewest number of colors, if any of these problems have a
polynomial bounded algorithm, all do. In this paper, the existence of a polynomial
bounded algorithm for a special case (planar graphs) of one of these problems may
aid in defining special cases ofthe others for which polynomial bounded algorithms
exist. At the same time, an attempt to extend this approach to the general case
might lend insight as to why a polynomial bounded algorithm does not (as is
widely believed) exist for the general case.
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