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1. INTRODUCTION 

for general transportation (or distribution:l problems of the Hitchcock type [ 11 in which unit 
parcels at origins a r e  to be transported to certain destinations, subject to a specified matrix 
of costs for mwing one parcel from each origin to each destination, so as to minimize the 
total cost. Several other problems are  mathematically equivalent to this transportation prob- 
lem if one includes maximization problems as well as minimization problems. (Any maxi- 
mization problem can be reduced to a corresponding minimization problem by multiplication 
of the elements of the cost matrix by -1.) Maximization problems include the assignment 
problem (which now has the connotation of assigning specific individuals to specific jobs), and 
the personnel classification problem in which individuals or groups of individuals are  assigned 
in groups to jobs. Other equivalent mathematical problems are available in the literature. 

with unit frequencies in each row and coluimn, the essential mathematical problem may be 
interpreted as finding a permutation set of elements (one and only one element from each row 
and from each column) having optimal sum. In a grouped problem the grouping of this per- 
mutation set may be said to be a grouped permutation set. 

sion to two dimensions (as shown by the rows and columns of the specified matrix), but we 
consider a supermatrix (which we call a matrix) in k dimensions which has the form of a 
mathematical cell having equal numbers of rows, columns, layers, etc. The objective is to 
find the permutation set of these elements (resulting from the selection of one and only one 
element from each row, column, layer, etc:.) having optimal sum. As in the common case with 
k = 2, grouping may frequently be applied to the permutation set as well as to the rows, 

The method of reduced matrices was designed to provide an efficient method of solution 

Since the matrices of the grouped problems may be expanded to give square matrices 

In the general transportation problem, as we use the term, we do not limit the discus- 
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a s  necessarily reflecting the views o r  indorsement of the Department of the A i r  Force or of the 
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columns, layers, etc., but alternatively the matrix of each grouped problem may be interpreted 
as  a larger matrix utilizing unit frequencies. In this sense the mathematical problem for this 
general case, as well as for the special case with k = 2, may be said to be the determination of 
a permutation set having optimal sum. Since maximization problems may be reduced directly 
to minimization problems as mentioned earlier, the rest of this discussion is limited to mini- 
mization problems. 

This paper is intended to show how the method of reduced matrices has been translated 
into a workable computer program. Some of the details of the basic theory underlying this 
method have of necessity been omitted, and others have been modified in the process of adapt- 
ing the method to machine computation. In particular, the transformation described in Section 
6 (which is the most important feature of this method) is defined here in a way most suitable 
for automatic computation. 

2. THE OELJECTIVE OF THE METHOD OF REDUCED MATRICES 
The objective of the simplex method and other interchange methods as used in solving 

transportation-type problems with k = 2 is the determination of a feasible solution and the 
improvement of it by successive changes until the optimal solution is reached. The objective 
of this method of reduced matrices is to transform the matrix by operations which preserve 
the differences between the sums of the permutation sets. The resulting matrix consists of 
elements which are  zero or positive, and in which some or all of the zero elements can be 
identified as those of a permutation set. Since the sum of the elements of this permutation set 
is zero, there can be no permutation set  having a smaller sum. The objective of this method 
does not include the use of feasible solutions as does the simplex method, nor even the tentative 
partial assignment of frequencies to some of the elements presumably to be included in the 
solution as in Kuhn's method [ 117 for the assignment problem, or  the Ford-F'ulkerson" gen- 
eralization of Kuhn's method for the transportation problem, but concentrates on the deter - 
mination of transformations on the matrix which introduce additional zero t e r m .  The aim 
here is to resolve the algebraic inconsistencies which appear in the application of the frequency 
conditions for each row, column, layer, etc. to the terms which constitute the trial permutation 
set. For many smaller problems to be worked by hand, especially with k = 2, many of these 
inconsistencies can be determined readily by inspection and the whole reduction is accom- 
plished informally. 

to handle this class of problems (determination of permutation sets having optimal sums) and 
thus avoid the artificiality introduced when these problems are  adjusted so as to utilize meth- 
ods designed for more general problems. The artificiality of treating simpler cases as 
degenerate cases so that the formal requirements of the simplex method may hold, is a case 
in point. Also, the determination of a feasible solution (as has been pointed out by Schell [ 91) 
becomes more difficult with increasing k. These difficulties a re  avoided by directing the 
solution toward the basic mathematical problem, the determination of a permutation set 
having minimum sum. 

The resulting solution is applicable to a wide class of problems in linear programming. 
An additional feature is that the machine process is the same for k = 2, 3, 4, . . . . No special 

An objective of the method, then, is to provide techniques which a r e  especially designed 

*Ford, L. R., Jr., and Fulkerson, D. R., "A simple algori thm fo r  finding maximal  network 
f lows and a n  applicationto the Hitchcock problem," The Rand Gorp., Pape r  P-743,  December 29,  
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program is needed for the two-dimensional case, although additional techniques are available 
for two-dimensional problems to be workeid less  formally by hand. 

In order to simplify the presentatim, we are  concentrating on a discussion of the case 
of k = 3. In general, the treatment of the Ik = 3 case exhibits the chief difficulties (the elimi- 
nation of negative solutions and the elimination of fractional solutions) of the general case. 
The k = 2 case is somewhat special in that there is no necessity for discussing the elimination 
of fractional solutions. 

3. THE GENERAL PROBLEM 
Let Cijh be the known cost of transporting a unit item at origin i to destination h 

through intermediate point j. Denote the number of parcels at i by fi, the number to be 
delivered to h by fh, and the capacity of the intermediate point by f 
the capacities of the intermediate points are adequate, i.e., 

It is understood that 1 '  

(3.1) "1 "2 "3 
C f i = C  f j =  C f h = N  
i=1 j=l h = l  

where nl, n2, and n3 a r e  the respective numbers of origins, intermediate points, and desti- 
nations. If we let 3 be the number of units, zero or positive, which are assigned to route 
ijh, we wish to minimize the transportation cost 

jh 

T =  Xijh 'ijh 
i, I, 11 

(summation is over the entire range of the subscript unless otherwise indicated). Thesevalues 
of 3 j h  must also satisfy the marginal conditions (which we call the equations) 

(3.3) 

If f i  = f j  = fh  = 1 with n1 = n2 = n3 = N, the values of 3. aswell as those of cijh, form an 

N x N x N matrix. The set S of triples (i, j,h) with 3jh = 1, form a permutation set. Then 
(3.2) becomes 

lh' 

(3.4) 

so the problem is to find the permutation set  S whose associated c 

lem associated with an N x N x N matrix. The grouped results of this expanded problem may 

have minimum sum. 
ijh 

Any problem with non-unit frequencies can be interpreted as a permutation set prob- 
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be said to be a grouped permutation set consisting of the elements (i, j, h) with the associated 
non-zero frequencies Xijh. The problem is then the determination of integral 5 > 0 which 
satisfy (3.3) and minimize (3.4). These values constitute a solution to the problem. The actual 
minimal sum may be obtained by substituting this grouped permutation set in (3.2). 

fh 

4. THE REDUCTION OF THE MATRIX 

all elements of some particular row, column, o r  layer. Since in the ungrouped problem there 
must be one and only one selection from this row, column, or  layer, the solution is not changed. 
Of course, the value of T is changed by the amount subtracted. This concept can be imme- 
diately extended to grouped matrices since the grouped matrix may be rewritten as an 
N x N X N matrix with individual frequencies. Again the solution is not changed but the value 
of T is reduced by the total amount subtracted. .Thus if  ai is subtracted from each element 
of row i, which has frequency fi, the value of T is reduced by fi  ai . This process may be 
applied simultaneously to as many rows, columns, and layers a s  desired. 

Theoretically the type of transformation is simple. We subtract some constant from 

5. THE MARGINAL TRANSFORMATIONS 

in non-negative matrices with at least one zero in every row, column, and layer. This can be 
accomplished by subtracting consecutively the smallest element in each row from all the 
elements of that row, the smallest element of each column from all of the elements of that 
column, and similarly with each layer. The resulting matrix is said to be reduced. 

dimensional problem can be performed in k! different orders, and the resulting reduced 
matrix may be different for each order. When using hand methods, it seems better to compute 
the amount of the reduction of T (the sum of the constants with frequencies taken into account) 
and to select the transformation having maximum reduction, i.e., first rows, then columns, 
then layers, or first columns, then layers, then rows, etc. For machine problems the sub- 
tractions in the order layers, columns, rows somewhat simplifies the process. After at most 
k steps, the matrix is reduced. 

The first steps in this method of reduced matrices utilize transformations which result 

In general there is nothing unique about a reduced matrix since the reductions in a k- 

6. THE GENERAL TRANSFORMATION 

noticeably in the procedure used after the marginal transformations are completed, we are 
somewhat more formal in this section. Also, we state the problem in a slightly different way: 

Given a set of equations 

Since this method of reduced matrices differs from other related methods most 

w h e r e A = ( a  ) i s a p x q m a t r i x w i t h p L q  ( h e r e p = n 1 + n 2 +  . . . +  n k a n d q = n l n  2. . .nk),  
find that solution x = (xl, . . . , x ) in which each xi is a non-negative integer and such that 

il 
q 
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is minimized, where the ci (O) are  boundedl. (In the transportation problem at hand, we have 
b 0, and a.. = 0 or 1 [cf (3.3)].) 

been changed into non-negative numbers cl,, with a reduction in T of some amount To, i.e., 

11 
After the marginal transformations described in Section 5, the numbers ci (O) have 

and it is sufficient to minimize T - To. We assume that the ci are not all zero, otherwise 
any set of q positive integers xl, . . . , x (constitutes a solution. 

Let Z = { j I c j  = 0). We look for a rsolution of (6.1) of the form x = (xl, . . . , x ) > 0, 
7 = 0 whenever j 4 Z. (It is clear that for such a solution, T - To is minimized.) Let B be 
the matrix of coefficients of the system (6.1) subject to the condition 3 = 0 for j { Z. In other 
words, B contains the j-th column of the imatrix A if and only if c = 0. By a succession of 1 
row transformations, B may be reduced to a matrix D = (d ) (which is not necessarily unique) 
in echelon form, i.e., D has the form 

q 
9 -  

il 

where r 5 p, $ is the r x r identity matrix, and D1 may be empty. Then D = IT B, where 
IT = t i j )  is the result of applying the same row transformations (in the same order) to the 

p X p identity matrix $, . Let b' = IT b, i.e., b; = C nil bj , i = 1, . . . , p. Then for a solution 
P 

j =1 
of the kind we wish, we have 

(6.4) D x =  ITBX= n b =  b' . 

Suppose now that some row of D, say the io-th row, contains only zeros, while b' f 0. 
io 

(This implies that the io-th equation in the system (6.4) is not consistent with the other equa- 
tions under our restriction on the form of lthe solution. Such a row is called an inconsistency 
row, and b; is called the amount of the inconsistency.) By performing additional row trans- 

formations, if necessary, we may assume that for every inconsistency row i, b; > 0. We may 
also assume that among such rows, b; is maximal. 

0 

0 

The existence of such inconsistency rows shows that a solution of the desired form is 
impossible unless the set S is enlarged. kn this case, we define 0 by the equation 

(6.5) 
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P 
where r 

zero, and if r 

Hq) L 0 to (6.1)): 

- C niok akj, j = 1, . . . , q.  Such a number 8 > 0 exists, since not all c are  io,j - k=l 1 

< 0 for all j, we would have the contradiction (for any solution f=  (Zl, . . . , io,l - 

It can be shown that 8 is bounded from below by a number which depends only on the size of 
the original problem, since at each stage in the process the non-zero c are bounded from 
below and the r 

1 
are bounded from above by such numbers. io,l 

We now define the transformation 

c j = c j - e  r j =  1,2, ..., q .  
i,,j ) 

= 0 by our choice of io . 
i0, j= dial We observe that for j E Z we have c' = c j  = 0, since then r 

C 

- - It is clear, also, from (6.5) that for some j1 4 Z, 8 = -, 4 and we have c' = c - 6 r 
j l  j1 i0Jl 

rio,jl 

0, so that Z is strictly increased to Z' by the transformation. Moreover, since - 91 = 

c > 0, j = 1, 2, . . . , q, it follows that cJ 2 0, j = 1, 2, . . . , q. If, for some j E Z, we had had 1 -  
io,j = - .9dioj > 0, although c 0, so that in this 

j =  
< 0 (cf Section 7 below) then c' 

0 j = v r  

case Z' would have fewer elements. 
Since b! can also be shown to be bounded away from zero by a number depending only b 

q 
on the size of the original problem, it follows that T' = C 4 c' < T - To for any solution 

H= (K1, . . . , xq) of (6.1), since 
j= 1 1 

- 

Let B' be the matrix associated with the system (6.1) relative to Z' as B was relative 
to Z. We may assume that the columns of B' consist of the columns of B with any new col- 
umns adjoined at the right. The matrix B' may be reduced by row transformations to an 
echelon matrix D' of the form (6.3), thus generating a transformation matrix d, so that 
D' = m' B' . We may also assume that in this reduction process those transformations which 
reduced B to D are  applied first and in the same order. We shall show that D' has at least 
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one less inconsistency row than D, so thLat after a finite number of such transformations there 
will no longer be any inconsistency rows, i.e., the system of equations (6.1) will have a solution 
2 = GI, . . . , 2 ) such that 3 = 0 whenever c' f 0, where ci, . . . , c' are the transforms of 

It is clear from our assumption on the generation of ?I' that all zero rows of D' 
a r e  also zero rows of D, so that all inconsistency rows of D' are among those of D. We shall 
argue that the io-th row of D' is not an inconsistency row in D'. 

TB' can be expressed a s  linear combinations of the other rows of II B', i.e., there are con- 

q 1 q 
* * * ' cq. 

Suppose D' = (d! ) has d' = 0 for all j E Z'. Then the elements of the io-th row of 
1j ioj 

P P 
k=l o i f  io k=l 

stants ql, . . . , s, such that C 
?Ii akj = C c qi nik akj for all j E z'. Let X = 

el, . . . , x" ) be any solution of the systsem of equations obtained by dropping the inconsistent 
equations from the system B' x = b', so that, in particular, 3 = 0 for j p' Z'. Then 

q 

P 
C qi I I ~  $ (db)i = b! - c qi 'b;= f ri % - C 0 lo i f i ,  k=l o ifi, k=l 

= 0, so the io-th row of D' is not an inconsistency row in D'. 

This process always transforms at least one inconsistency row to a consistency row at 
each step. (It may transform more than one.) We see then that a set of equations with m 
inconsistencies is reduced to a consistent set in at most m steps. 

7. ELIMINATION OF NEGATIVE SOLUTIONS 
When all inconsistency rows have been eliminated, a solution of the desired form can 

be found, and, in fact, is already at hand in the transform of the vector b by the row trans- 
formations used in the reduction described in Section 6. Although this furnishes a solution to 
the system (6.1), it is an algebraic solution, in that the x might be negative, and (except for 
k = 2) might be fractional. 

Suppose, first, that the io-th row of D contains at least one positive element and no 
negative elements, and b' 

that there a re  no inconsistency rows). By an additional row transformation, the io-th row may 
have all of its signs changed, so that now we would have b; > 0. We then perform the same 

transformation on the elements c as in Section 6, using the coefficients II 

easily verified that the following results are obtained: 

< 0 (we use the same notation as in Section 6, but we assume now 
io 

0 

as before. It is 
j id 

427791 0 - 57 - 5 
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(1) For at least one j1 B Z, 

(2) If dioj f 0 for some j E Z, then j B Z' 

(3) All ci 2 0 as before. 

(4) T - To is decreased as before by an amount 0 b' which is bounded 

c' = 0. 
11 

io 
from below. 

Condition (4) guarantees that the process will stop after a finite number of steps, 
resulting in a positive (not necessarily integral) solution, if  whenever bi < 0 (and the io-th 
row is not an inconsistency row), all the elements of the io-th row are non-negative. 0 

8. PERTURBATIONS 

fied is to arrange to have D1 be empty in (6.3). To insure this it is sufficient to insure that 
B have no more columns than rows, and this can be accomplished by insuring that all the c 
are  distinct, so  that there are  exactly p-k zeros after the marginal transformations a re  com- 
pleted, and also so that each transformation introduces exactly one new zero. Another way of 
arranging to have Dl empty in (6.3) is to temporarily replace each c = 0 whose associated 
column falls in D1 by a small positive quantity ~ j .  Once a solution is obtained to the resulting 
system, the columns of D1 may be returned to the system, and the corresponding 3 may.play 
the role of parameters in the general solution. 

The latter treatment is effectively carried out in hand computations, while the former 
is quite easily accomplished by a computer at the start of the computation. In order to make 
the distinct, we perturb them by adding a (different) random number to each of them. 
These random numbers are  added after first multiplying them by a sufficiently large negative 
power of two so  that no accumulation of these numbers during the course of the computation 
can amount to as much as 1/2 of the unit in which the c a re  expressed. The probability that 
the random numbers used have the same sum for two permutation sets having the same optimal 
sum is extremely remote. If necessary, however, another set of random numbers may be used. 

Such a procedure also modifies the problem so  that it has a unique solution. By dropping 
these small random numbers we can then incorporate into the solution as parameters additional 
x corresponding to the zeros thus obtained. I 

One way of providing that the non-negativity condition of the previous section is satis- 

(0) 
1 

I 

1 

9. THE ADJUSTMENT OF FRACTIONAL SOLUTIONS 
In a sense the attainment of a positive solution, fractional or integral, indicates the 

completion of the method of reduced matrices, even though an acceptable solution must be 
integral, since a matrix with a permutation set of zeros with fractional frequencies, subject 
only to the conditions stated earlier, can be reduced no further. This is shown by the fact that, 
if t is a common denominator of all the fractions of the permutation set of zeros, the corre- 

1 sponding cost matrix is a completely reduced matrix for a related problem with identical c 
values but with frequencies t f .  

combinatorial methods we might select the elements corresponding to the zero terms of this 
matrix which is reduced as f a r  as is possible, and then add in turn the terms corresponding to 
the smallest non-zero elements of this matrix and repeat the reduction process until a solution 
is reached. This technique is satisfactory for many practical problems since in many problems 

In a sense then we are  faced with a second (combinatorial) problem. Using direct 
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16 47 

14 17 17 27 45 14 17 17 27 45 

44 @ 3 43 47 14 44 47 2 23 19 
11 6 17 49 15 20 47 1 29 36 9 
27 17 36 47 30 21 34 31 18 2 14 
38 32 16 12 17 15 47 14 6 1 27 

one of these small elements does compllete the solution. However it is unsatisfactorv theoreti- 
cally, and it is easy to construct problems for which the proposal is obviously inefficient. 

The method developed here uses, the matrix n resulting from the method of reduced 
matrices even though no further reducti'ons of the matrix are possible. The elimination of 
fractional solutions by the addition to the solution of a single new element, as described below, 
has been incorporated into the program now in use on IBM 704. 

The method uses the particular fractional solution one gets by setting all parameters 
to zero in the solution obtained by the method of reduced matrices and modifies it into an 
integral solution with the addition of a new element which plays the role of a parameter. This 
means that the inclusion of the column atssociated with this element in the reduction of B to 
D leads to a reduced equation with zero in the column corresponding to the element, zero in 
the frequency column, and zero in the column corresponding to every element of the fractional 
solution. Furthermore, the coefficient of this element in the solution must be fractional and 
the fraction must be complementary to those of the particular fractional solution. These 
requirements give sets of necessary coinditions which can be written in terms of the rows of II 
and which must be satisfied if the element is to play the role of a parameter. Subsets of ele- 
ments of the matrix are determined from these conditions, the element (or elements) to be 
adjoined to the solution set is then determined from these subsets, and the general solution is 
obtained. 

Although the elimination of fractional solutions is an important feature of the method of 
reduced matrices, w e  have placed the emphasis in this paper on the determination of a positive 
solution, which may be fractional. Though improvements may be made in the method, w e  feel 
that the present techniques provide a practical and efficient method of solving this general 
transportation problem and that this method is generally superior, both by hand and by machine, 
to the simplex method even when k is a.s small as 2. 

57 

14 17 17 27 45 

18 2 46 42 23 
22 0 39 0 31 
47 44 @ 40 33 
16 17 24 3 0 

F i g u r e  1 - Reduction in T = 2(14) + l ( 1 7 )  + l(45) = 90  
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16 47 

14 17 17 27 45 14 17 17 27 45 

Although the process to be described below is almost the same as that used in the 
computer program written for the IBM 704, the perturbation of the cost elements described 
in Section 8 above is omitted (there is a unique solution to this problem and the perturbation 
process is not needed) so the process can be seen more clearly. 

57 

14 17 17 27 45 

44 
11 
27 
38 

0 3 42 47 13 42 47 @ 23 18 16 2 45 42 22 
4 17 48 15 19 45 1 28 36 8 20 0 38 0 30 
15 36 46 30 20 32 31 17 2 13 45 44 0 40 32 
30 16 11 17 14 45 14 5 1 26 14 17 23 3 0 

Figure 2 - Reduction i n  T = l(47) = 47 

44 
11 

Figure 2 shows the result of subtracting the smallest element of each layer from each element 
of that layer (the elements transformed to zero are circled in each case). The numbers thus 
subtracted were 2, 0, 1, 0, 1, respectively, for a total reduction in T of 90 units (cf Section 4). 
A similar transformation performed on the three columns with frequency headings 16, 47 and 
57 yields a reduction in T of 47, since the only subtraction needed to obtain a zero in each 
column is a subtraction of 1 from each element of the second column. At this point the matrix 
is reduced (cf Section 5), and row subtractions are unnecessary. The result of the column 
subtractions is shown in Figure 3. 

16 47 57 

14 17 17 27 45 14 17 17 27 45 14 17 17 27 45 

0 @ 42 47 13 41 46 0 22 17 16 2 45 42 22 
4 17 48 15 19 44 0 27 35 7 20 0 38 0 30 
15 36 46 30 20 I 31 

30 16 1 12 I 45 
44 0 40 32 

30 16 11 17 14 44 13 4 0 25 14 17 23 3 0 

Figure  3 - Reduction i n  T = 3 ( 2 )  = 6 

Now we pass to the more general type of transformation based on the elimination of 
inconsistent equations (cf Section 6). In Figure 4 the system Bx= b is presented, with zeros 
suppressed, the location of the c 0 in the matrix at the head of each column, and the equa- 
tions (3.4) identified at the left. (In the left-most column the first digit is the dimension and 
the second digit is the particular class within the dimension, so that the equation for Column 3 
is listed as 23.) The column headed by 112 is the result of the transformation about to be 
described. 

j =  
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111 123 222 232 234 333 424 435 112 

1 

1 

1 

b 

44 
11 
27 
38 

~ 

16 
47 
57 

14 
17 
17 
27 
45 

I 

F i g u r e  4 - The  s y s t e m  Bx= b 

31 
32 
33 
34 
35 

MACHINES 

1 
1 1  

1 1 
1 1 

1 

44 
11 
27 
38 

65 

16 47 57 

14 17 17 27 45 14 17 17 27 45 14 17 17 27 45 

0 0 39 44 10 44 46 0 22 17 19 2 45 42 22 
4 14 45 12 16 47 0 27 35 7 23 0 38 0 30 

30 13 8 14 11 47 13 4 0 25 17 17 23 3 0 
15 33 43 27 17 34 30 16 @ 12 48 44 o 40 32 

It is not always necessary to reduce B to the matrix D in echelon form to find incon- 
sistencies. It is obvious that Eq. (21) and (31) cannot both be satisfied. (Since such obvious 
inconsistencies occur quite often, a search for the simple type that occurs here has been 
included in the 704 program.) In this case we can bypass the entire reduction process and go 
immediately into the transformation. The coefficients B 

(0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0). (This corresponds to the eighth row of the 12 x 12 identity 
matrix after the transformations 31* = 31 - 21 and 31** = -31* are  applied to it.) By means 

needed to define 8 in this case are iol 

of (6.5) we find 8 = -- “12 - 3 from Figure 3, and the amount of the reduction in T by this 
1 

transformation is 3(2) = 6, since b! = 2 in this case. The result of this transformation 

(which causes the column headed 112 to be adjoined to B in Figure 4) is shown in Figure 5. 
l0 

F i g u r e  5 - Reduction in T = l (38)  = 38 

Figure 6a shows the matrix D obtained at the nexk stage, except that the rows have not 
been rearranged to form an identity matrix as in (6.3). (Leaving the rows in their original 
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- 
11 
12 
13 
14 

21 
22 
23 

31 
32 

order facilitates the machine computation somewhat.) It can be seen that there are two incon- 
sistency rows, 33 and 35, with equal amounts of inconsistency. It does not matter which we 
choose to eliminate, and we simply choose the first, 33. The row of B (cf Figure 6b) corre- 

sponding to this is also designated 33; from (6.5) we have 6 = -- c324 - 1, and in the resulting 

transformation T is reduced by l(38) = 38. The matrix one obtains at this stage is shown in 
1 

Figure 7. 

ll b' 
111 123 222 232 234 333 424 435 112 

1 
1 

28 
27 

1 
1 

1 

2 
-4 
38 
7 

38 

Figure 6a - The matrix D 

Figure 6b - The matrix B 
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44 
11 
27 
38 

16 47 57 

14 17 17 27 45 14 17 17 27 45 14 17 17 27 45 

0 0 40 44 10 43 45 0 21 16 18 @ 45 41 2 1  
5 15 47 13 17 47 0 28 35 7 23 0 39 0 30 

15 33 44 27 17 33 29 16 0 11 47 43 0 39 31 
31 14 10 15 12 47 13 5 0 25 17 17 24 3 0 

F i g u r e  7 - Reduction in T = i(12) = 6 
2 

The process is repeated in Figure 8a, but this time there are  lo inconsistencies. (Note 
that two inconsistencies were eliminated with one transformation.) We have an algebraic solu- 
tion in the column headed b', but there are four negative values. We use the largest (in size) 
to generate a transformation (cf Section 7). We apply one more row transformation, 12* = -12, 
to the matrix IT shown in Figure 8b, and the second row, used to find 8, is then 

111 123 222 232 234 333 424 435 112 324 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

(1, -1, 0, 0, -2, -1, 0, 1, 1, 0, 1, 0) . 

b' 

14 
-12 
-11 

-7 

28 
27 

2 
-4 
38 
45 

'132 - 1 1 This time 6 = - - - , and the reduction in T is - (12) = 6. The result is shown in Figure 9. 
2 2  2 

11 
12 
13 
14 

21 
22 
23 

31 
32 
33 
34 
35 

F i g u r e  8a - The m a t r i x  D 
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14 17 17 27 45 

42.5 44.5 0 20.5 16 
47.5 .5 29 35.5 @ 
33 29 16.5 0 11.5 
47 13 5.5 0 25.5 

’” 27 

14 17 17 27 45 

17 0 44.5 40 20.5 
23 0 39.5 0 30.5 
46.5 42.5 0 38.5 31 
16.5 16.5 24 2.5 0 I 38 

B. A .  CALLER AND P. S. DWYER 

Figure 8b - The matrix 77 

16 47 57 

14 17 17 27 45 

0 0 40.5 44 10.5 
6 16 48.5 14 18.5 
15.5 33.5 45 27.5 18 
31.5 14.5 11 15.5 13 

Figure 9 - Reduction in T = 8(7) = 56 

Note that c222 (which gave the solution value -12) is no longer zero after this transformation. 
It has been replaced by c132. We observe also that the number of negative solution values has 
been reduced by two. 

The process is repeated, as is shown in Figures 10a and lob, with 8 = - c225 - - 8, and T 
reduced by 8(7) = 56. The result is shown in Figure 11. 1 

1 I (  111 123 232 234 333 424 435 112 324 132 

11 
12 
13 
14 

1 
1 

1 
1 

1 I %4 II 1 

1 
1 

1 
1 

b’ I 
TI -5 
-7 - 

Figure 10a - The matrix D 



TRANSLATING METHOD OF REDUCED MATRICES TO MACHINES 

- 
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11 
12 
13 
14 

21 
22 
23 
3 1  
32 
33 
34 
35 

-1 -.6 
-.5 

.5 

.5 
1 1  1 
1 

-. 5 
.5 

.5 -.5 
-.5 -.5 

-1 -1 -1 

1 
.5 .5 .5 
.5 .5 1 .5 

1 1 1 1  

-.5 -.5 -. 5 
.5 .5 -. 5 

-1 
-.5 -.5 .5 
-.5 -.5 -1 -.5 

1 1 1 1 1  
-1 -1 -1 -1 

.5 .5 
-.5 .5 

-1 -1 -1 -1 

44 
11 
27 
38 

.5 .5 

.5 .5 1 
1 1 1 1  

-1 -1 -1 -1 

0 0 40.5 44 2.5 42.5 44.5 0 20.5 8 17 0 44.5 40 12.5 
6 16 48.5 14 10.5 47.5 .5 29 35.5 0 23 0 39.5 0 22.5 

15.5 33.5 45 27.5 10 33 29 16.5 0 3.5 46.5 42.5 0 38.5 23 
39.5 22.5 19 23.5 13 55 2 1  13.5 8 25.5 24.5 24.5 32 10.5 0 

Figure 10b - The matrix ?l 

Figure 1 1  - Finally reduced matrix 

At this point the solution has been achieved, as is seen in Figure 12a, where b’ con- 
tains only non-negative integers, and all equations are consistent. 
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- 
11 

12 

13 

14 
- 
21 

22 

23 

31 

32 

33 

34 
35 

- 

- 

B .  A .  CALLER A N D  P. S .  DWYER 

1 
2 2 - 1  3 

1 - 1  1 
2 2 

1 1 1 

- 

- 

1 1 -- -- -1 
2 2 

2 2 
-_  3 -1 -1 

-1 -1 -1 -1 

1 
1 1 -- -1 -- 1 1 -1 -- 

2 2 2 2 
1 1 1 1 

2 2 2 2 

-- 

-- -- -- -- 

-1 -1 -1 -1 

1 - 1  

3 - 1  

1 1 
2 2 2 2 

1 1 
2 2 2 2 

- 1 

3 

- - 

- - - 

1 1  1 

44 
11 
27 
38 

1 1 
2 2 

- - 

16 47 57 

14 17 17 27 45 14 17 17 27 45 14 17 17 27 45 

14 2 15 13 
7 2 2 

25 2 
38 

1 
1 
2 

-- 

2 2 
1 

-1 -1 -1 -1 

2 

I -l 
1 1 1 

2 2 2 
1 1 1 

2 2 2 

1 1 1 1  1 

- -- -- 

- - - 

Figure 12b - The matrix 7l 

Figure 13 shows the solution values in the corresponding locations in the matrix (with 
zeros suppressed). The minimal value of T may now be computed in either of two ways. One 
may total up the successive reductions in T resulting from the transformations performed: 

90 + 47 + 6 + 38 + 6 + 56 = 243 units 

or one may apply (3.2) directly: 

14(2) + 15(2) + 2(0) + 2(0) + 2(1) + 38(1) + 2(3) + 25(2) + 13(2) + 7(9) = 243 units 

Figure 1 3  - The solution 

The computation time for this problem on the IBM 704 was 1.3 minutes. 
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