NOTICE CONCERNING
COPYRIGHT RESTRICTIONS

The copyright law of the United States [Title 17, United
States Code] governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
reproduction is not to be used for any purpose other than
private study, scholarship, or research. If a user makes a
request for, or later uses, a photocopy or reproduction for
purposes in excess of “fair use” that use may be liable for
copyright infringement.

The institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfilment of the order
would involve violation of copyright law. No further
reproduction and distribution of this copy is permitted by
transmission or any other means.

A Scaling Algorithm for Weighted Matching on General Graphs

Harold N. Gabow *

Department of Computer Science
University of Colorado
Boulder, CO 80309

Abstract.

This paper presents an algorithm for maximum
matching on general graphs with integral edge weights,
running in time 0(n%“m lg N), where n, m and N are
the number of vertices, number of edges, and largest
edge weight magnitude, respectively. The best previous
bound is O(n(m lg lg lggzn +n lg n)) where d is the
density of the graph. The algoritbm finds augmenting
paths in batches by scaling the weights. The algorithm
extends to degree-constrained subgraphs and hence to
shortest paths on undirected graphs, the Chinese post-
man problem and finding a maximum cut of a planar
graph. It speeds up Christofides’ travelling salesman
approximation algorithm from O0(n3) to 0(n*™ g n). A
list splitting problem that arises in Edmonds’ matching
algorithm is solved in O(ma{m,n)) time, where m is the
number of operations on a universe of n elements; the
list splitting algorithm does not use set merging. Appli-
cations are given to update problems for red-green
matching, the cardinality Chinese postman problem and
the maximum cardinality plane cut problem; also to the
all-pairs shortest paths problem on undirected graphs
with lengths plus or minus one.

1.. Introduction.

Matching is one of the broadest classes of linear
programs with guaranteed integral optima. Practical
applications of general matching include mechanical
plotting [RT], routing [FHK], VLSI [JA] and others.
FEdmonds’ gave the first polynomial-time algorithm [E],
which works by augmenting paths. The most efficient
algorithms for matching (and its special case, network
fiow) find augmenting paths in batches. Hopcroft and
Karp achieved this for cardinality matching on bipartite
graphs [HK]. Even and Kariv [EvK] and Micali and
Vazirani [MV] extended this to general graphs. Batching
was applied to weighted bipartite matching in [G83b]
using a scaling technique. This paper takes the fourth
step by extending batching to weighted matching on gen-
eral graphs, also by scaling.

The scaling method for network problems was intro-
duced by Edmonds and Karp [EK]. Initial computational
experience with their method seemed to show that scal-
ing worked poorly in practice [L]. Recent experiments on

* This work was supported in part by NSF Grant #MCS-
B302648.

0272-5428/85/0000/0090$01.00 © 1985 IEEE

their algorithm [BJ] and weighted bipartite matching [B]
indicate it is efficient. Applications of scaling to compu-
tational geometry are given in [GBT].

This paper gives an algorithm for maximum match-
ing on a general graph with integral edge weights. It runs
in time O(n%*m Ig N); throughout this paper, n, 7n and
N are the number of vertices, number of edges, and
largest edge weight magnitude, respectively. The time
bound is the same as bipartite matching [G83b]. The
best previous bound for general matching is
O(n(mlg lg lgg n +n lg n)) where d is the density of
the graph [GGS].

The scaling algorithmn for general matehing is more
involved than the bipartite case because of blossoms.
The algorithm is based on a new view of blossoms as a
"shell”" structure. These shells also have a combinatorial
interpretation (in Section 2.1) that is independent of the
algorithm.

Blossoms also introduce a data structures problem
because they must be "expanded". This problem occurs
in Edmonds’ algorithm and hence in all its implementa-
tions [e.g., GGS]. We reduce this problem to a list split-
ting problem and present an O(ma(m.n)) algorithm.
Here m is the number of operations on a universe of n
elements and a is Tarjan’s inverse to Ackermann's
function [T83]. The splitting algorithrn does not use set
merging.

Section 2 presents the matching algorithm. It also
shows how the algorithm finds approximate optimum
matchings for real-valued weights. This speeds up
Christofides’ travelling salesman approximation algo-
rithm from O(n% to O(n®"lg n). The splitting algo-
rithm is applied to solve update problems for red-green
matching in O(m a{m ,n)) time.

Section 3 extends the matching algorithm to
degree-constrained subgraphs, achieving similar
efliciency. This gives improved running times for shor-
test paths on undirected graphs, the Chinese postman
problem and finding a maximum cut of a planar graph.
The splitting algorithm is applied to do updates in the
cardinality Chinese postman problem and the maximum
cardinality plane cut problem, in O(ma(m,n)) time. It
also finds all-pairs shortest paths on undirected graphs
with lengths plus or minus one, in O(nma(m,n)) time.
Section 4 presents the list splitting algorithm,

We close this section by reviewing some ideas from
matching; more thorough treatments are in [GMG, L,
T83]. A matching is a set of edges, no two of which share
a vertex. A free vertex is not on any matched edge: a
complete matching has no free vertices. An
alternating path (cycle) for a matching is a simple path
(cycle) whose edges are alternately matched and
unmatched. An augmenting path is an alternating path
joining two free vertices.

Let each edge ij have a weight wy; in this paper
weights are integral unless stated otherwise. The weight
of a set of edges S, denoted w(S). is the sum of the indi-
vidual edge weights. A
mazimum (minimum) complete matching is a com-
plete matching of maximum (minimum) weight; a
marimum weight matching is a matching of maximum
weight.

In a graph with a matching, a blossom is a subgraph
B defined as follows. Let k be a positive integer. The
vertices of B are partitioned into sets By, 0<1 =2k,
where each B; either consists of a single vertex or is
itself a blossom. The edges of B are e;, 0 < i < 2k, where
e; joins B; to Biy; {22 joins Bz to Bg) and e; is matched

precisely when i is odd. Note that a blossom is not an -

induced subgraph. The base vertez of B is defined as Bq
or its base, depending on whether By is a vertex or a
blossom.

The blossom structure of a graph is represented by
a blossom tree. Its nodes are the graph G, the blossoms
of G, and all vertices included in blossoms. The root is
G, whose children are the maximal blossoms. The chil-
dren of a blossom B are its constituents B;, 0 <1 <2k,
as above. Any vertex is a leaf. Throughout this paper
node refers to a node in a blossom tree and verfex
refers to a vertex in the matched graph.

For a blossom B, ng denotes the number of vertices
contained in B, that is, the number of descendant leaves
of B; mg denotes the number of edges in the subgraph
induced on the vertices of B (not the number of edges in
the subgraph B, which is 2k +1). Sometimes we use the
same symbol B to denote a blossomn and its vertex set
(i.e., its descendant leaves).

For symmetry the cardinality of a set of vertices §
is sometimes denoted ng. Set inclusion is denoted as <
and proper inclusion as C. Logarithms are always base
two and denoted lg n..

2. The matching algorithm.

The basic problem is taken to be maximum com-
plete matching, on a graph that has a complete match-
ing and whose weights are nonnegative even integers.
Section 2.1 reviews Edmonds’ algorithm and introduces
shells. Sections 2.2-2.5 give a top-down description of the
algorithm. Section 2.8 gives the final result and applica-
tions.

2.1. Edmonds’ algorithm and shells.

We review Edmonds’ algorithm [E] as applied to
maximum complete matching. It is a primal-dual algo-

9

rithm [D]. Each vertex i has a real-valued dual variable
y; ; each set B of an odd number of vertices, ng > 3, has
a nonnegative dual variable zp (see Figure 1). The duals
are dominating if for every edge ij,

Yi +yj+ 2 szwl-j . (1)

ijen

Edge ij is tight if equality holds in (1). A set of dual vari-
ables is denoted y, z. For duals ¥, z and an arbitrary set
of vertices S, define

Wz)S =% v+ % ['ng/ ZJZB + Y lns/z
i€s BZS ScTB

zZg .

This dual value function plays an important role in the
algorithm, although we do not explicitly appeal to duality
theory. Note that the set of all vertices V has

(y.2)V= 3y + ZP'LB / 2]23 , which is the dual objec-
ieV B

tive function. For a vertex i, (y¥.,2)i = %.

(a)

(b)

Figure 1.
(2) Graph with edge weights.
(b) Complete structured matching.

For any dominating dual variables ¥,z and any com-

(y.2)V=w(H). (2
(This follows since M has at most l'ng / 2J edges con-

tained in any odd set B.) If a complete matching consists

of tight edges then it achieves equality in (2) and hence
is a maximum complete matching.

Edmonds’ algorithm works by maintaining a
structured matching, which consists of a matching (not
necessarily complete), a blossom tree (for the match-
ing), and dual variables that are dominating and tight. In
this definition the only odd sets with positive dual vari-
ables are blossoms (of the blossom tree); a
weighted blossom is one that has a positive dual
variable. Also in this definition, the duals ¥,z are said to
be tight (with respect to the matching and its blossoms)
if all matched edges and all edges of blossom subgraphs
are tight. Clearly a complete structured matching is a
maximum complete matching.

The algorithm can be viewed as having input consist-
ing of a graph with a structured matching and output a
complete structured matching. The algorithm starts
with the given structured matching. It repeatedly does a
"search" followed by an "augment step"” until the match-
ing is complete.

A segrch does "grow”, "blossom”, "expand” and
"dual variable adjustment” steps until it finds a
"weighted augmenting path”. The first three types of
steps build a search structure of tight edges: a
grow step adds new tight edges to the structure; a
blossom step constructs a new blossom in the structure;
an ezpand step replaces an unweighted blossom by its
components. These steps are repeated until the szarch
structure is maximal.

If the resulting structure does not contain a
weighted augmenting path, a dua! variablz adjustment
is done. This step starts by computing a quantity §. The
duals of all free vertices are decreased by 4. Other duals
Y; change by +d or zero; zp's change by #28 or zero.
The adjustment keeps the duals dominating and tight.
Our assumption of even edge weights ensures that all
quantities computed are integers [PS, p. 287, ex. 3]. The
dual adjustment decreases the dual objective (y, z)V by
S 0, where f is the number of free vertices.

After the dual adjustment the search continues with
grow, blossom and expand steps. Eventually the search
stops when it finds a weighted augmenting path P. This
is an augmenting path whose edges are tight. Ths
augment step enlarges the matching # by one edge to
MHeaPp,

Now we introduce the notion of a shell. In a com-
plete structured matching if B is a blossom with a des-
cendant C, the graph induced on B~C is a shell.

Shell Lemma. A maximum complete matching on a shell
B-C exists and weighs (y.2)B — (y.2)C; for a child C of
B this is (y,2)(B-C).

Proof. Prove the first assertion as follows. First suppose
that C is a vertex i. Form the graph B’ from B by adding
a vertex i' and an edge %' of weight zero. The blossom

structure gives a complete matching on & —i, which

extends to B’ by matching ii'. Define duals (y',2') on B’

to be identical to {y¥,z) except that v’y = —y; and

zp =), zp. These duals are dominating and tight.
BcD

Thus a maximum complete matching on B' exists and
weighs (y'.2')B' = (y,z2)B—y;. So a maximum com-

92

plete matching on B—i exists and weighs (y.z)B —y; .
as desired.

In the general case choose an arbitrary wertex
i € C. The blossom structure gives a complete matching
on B—i (as above} which is also complete on C—i and
B-C. It weighs
((v.2)B-4)-((y.2)C~v) = (y.2)B—(y.2)C. A larger
matching would give a larger matching on B—i, which is
impossible. ®

2.2. The scaling routine and the difficulty.

The idea of scaling is to solve the problem recur-
sively for a graph with edge weights lw,»_,- / Zl and
transform that solution, which is "close to optimum”, to
the desired optimum solution. To ensure even edge
weights use a slightly different regime: The scaled weight
function @ has @y = zl'wij / 4]. In the algorithm below

the input graph G has even edge weights and the output
is a complete structured matching.

Procedure scale (w).

Step 0. If all weights Wy are zero return a complete
matching M, all duals ; = 0, and no blossoms.

Step 1. Construct the scaled weight function 70 and call
scale (W) recursively to find a complete structured
matching with duals ¥,z and biossom tree T.

Step 2. Let M be the empty matching on G. For each
vertex i set ¥« 2y +1; for each blossom B set
z§ « 225.

Step 3. Use the modified duals ¥°2° and blossom tree T
to find the desired matching by calling a routine match.

This algorithm has O(lg N) levels of recursion. The
extra space is O(m) since the i** level of recursion can
compute the weight of an edge with given weight w as

2w s 2+
The duals y92° are dominating on G. (The expres-
sion for y° accounts for the bit in wy that is lost in

passing to ;). The duals are also close to optimum in
that if /" is a maximum complete matching on &,

W.2)W = wH’) = %)V -n 3

The first inequality follows from (2); the second follows
since the matching found in Step 1 achieves equality in
(2). The shortcoming is that the blossom structure of
Step 1 need not valid be for the duals ¥°2° since the
edges of blossomn subgraphs need not be tight. So
Edmonds’ algorithm, which requires a structured match-
ing, cannot be applied directly in the mafch routine.
Note that in network flow [EK] and bipartite matching
[GB3b], scaling up the duals presents no problem.

There are two approaches to remedy this shortcom-
ing. Neither leads to an efficient algorithm but both are
used as tools in the efficient algorithm.

The "distribution approach” gets valid duals by elim-
inating blossoms from the previous scale. To distribute &
units of blossom B means to decrease 2g by 6 and for
each vertex i € B, increase y; by 6/2. (Edmonds’ algo-
rithm distributes inner blossoms.) Distribution maintains
dominance. However it increases the dual objective
(v.2)V by 6/2, moving it further from optimum. The dis-

tribution approach eliminates blossoms by distributing
all zp units of each blossom. But since the resulting
objective function is no longer close to optimum and
efficient scaling depends on this property, the distribu-
tion approach is inadequate. Section 2.4 does more con-
trolled distributions.

The basic defect in the distribution approach lies in
the fact that z duals are necessary. For instance in Fig-
ure 1 any set of dominating duals that does not use 2
has (y.2)V at least 2N, not close to the optimum value
zero.

The "bottom-up approach” processes blossoms from
the previous scale bottom-up: After all subblossoms of B
have been processed, B essentially has a structured
matching. So B can be processed with a variant of
Edmonds’ algorithm that drives zp to zero as desired.
The problem is that the bottom-up approach can be
inefficient: If a postorder traversal of the blossom tree is
used, an edge can be scanned n times (when the blos-
som tree is a path). The next section gives a more
efficient bottom-up approach.

2.3. The match routine and compressed postorder.

We start with some terminology. The match routine
works with two types of blossoms. It is given the blossomn
tree of the previous scale {see Step 3 of scale). An
old blossom is a node in this tree. The match routine
constructs a current matching M (initially empty in
Step 2 of scale.) A current blossom is a blossom in M.
Although M has an associated blossom tree it is
irrelevant in the current scale. The relevant tree is the
one from the previous scale and hereinafter the term
“blossom tree” refers exclusively to it.

Similarly match works with dual variables zp for
both current and old blossoms. Hence in the definition of
dominance (1) the summation is over duals zp for both
current and old blossoms. Similarly for tightness and the
dual value function (y,z)S. An old blossom dissolves
when its dual zg becomes zero (it is no longer weighted)
or it becomes a current blossom. As a special case the
root of the blossorn tree, which is the graph G, is con-
sidered to be a blossom that never dissolves. The object
of the match routine is to dissolve all old blossoms
except G.

The match routine maintains y duals so that for
each vertex i,

vizyl. (4)

This ensures dominance on the edges going out of the
blossom being processed, so these edges can be safely
ignored.

The efficient bottom-up algorithm uses the idea ofa
compressed tree, introduced by Tarjan [T79]. In any
tree, for a node i let n; denote the number of leaves des-
cending from i. A descendent j of i is a major descen-
dent of 1 if ny > ny/ 2. The major descendants of ¢ form
the major path from i. Partition the vertices of a tree
ipto major paths as follows: Start with the major path
from the root of the tree, and then recursively partition
the trees rooted at the children of this path. A
start vertex of a major pcth is the first vertex of any
major path in this partition.

93

Procedure match.

Partition the blossom tree into major paths. Traverse the
start vertices of major paths in postorder. At each start
B call a routine path(B) to dissolve the old blossoms of
B’'s major path, maintaining (1) and (4), and in addition
when B = G, to find a complete structured matching. ®

Lemma 2.1. If the time for path(B) is O(n¥* mp) then
match is 0(n¥*m).

Proof. Fix an integer ¢ and consider all blossoms 5 that
start major paths and satisfy . / oil>ng=n/ 2. Any
vertex is in at most one of these blossoms, 0 any edge is
in at most one of them. Thus for some constant c, the

time spent on these blossoms is less than
¢ n¥4m ¢ 2%-1/4 Summing over i gives the desired
bound. *

Now we discuss path(B). Let P be the major path
from B. The shells of B are the shells formed by con-
secutive undissolved (old) blossoms of P. As path exe-
cutes and blossoras dissolve, the shells of B merge
together until finally none remain. There are two special
shells at the boundaries. The first shell of B, A-A' is
the one formed by the first two undissolved blossoms
AA onP. (A=Baslongas B is weighted or if B = G.)
The last shell of B, Z—-¢, is the last undissolved blos-
som Z on P, considered to be a shell. This is not really a
shell as defined in Section 2.1 so its properties are
slightly different. Path{B) repeatedly calls a routine
search(S) to search each shell S of B and dissolve old
blossoms. Before giving the path routine we describe
search.

2 4 The search routine and dissolving blessoms.

The search routine is Edmonds’ algorithm modified
to take old blossoms into account. Consider a shell C—D
that has one or more free vertices. The search routine
runs Edmonds’ algorithm on C—D. (Recall this shell is
defined as an induced subgraph.) When the duals are
adjusted by a quantity 5, 26 units of C and 20 units of D
are distributed (see Section 2.2.) There are two excep-
tions: For the last shell Z—¢ only 28 units of Z are distri-
buted: when € = G only 26 units of D are distributed. A
dissolve step is executed when C or D dissolves. This
step enlarges the shell, by adding the shell adjacent to
the dissolved blossom C or D (forming a new induced
subgraph). Any free vertex that gets added to the shell
is immediately added to the search structure of
Edmonds' algorithm (as a new outer vertex). Edmonds’
algorithm is modified to allow for dissolve steps when cal-
culating the value of the next dual adjustment.

There are two ways for the shell search to stop.
First, any search stops when a weighted augmenting path
is found in the shell. As a special case this implies that if
a dissolve step enlarges the shell by adding a new shell
S', and S’ has already been searched and found to con-
tain an augmenting path, the current search stops.
Second, a search of the first shell A—A’ stops if an aug-
menting path is found or alternatively if A dissolves.
Note that the latter makes A'—A" the first shell (for
some descendant A"); a subsequent search of this shell
can stop by dissolving A'. As a final special case note

that in searching the last shell Z—¢ it is possible that all
old blossorns dissolve, and so path'is complete.

In the following Lemma f denotes the number of
free vertices in a shell C—D. If C—D is not the last sh=ll
of B then f is even; if it is last then f is odd.

Lemma 2.2. (i) A shell search maintains dominance and
tightness (1), and (4).

(#) If C~D is not the last shell of B a dual adjust-

ment of § decreases (¥, z)B by 6(f —2) and (y, z}{(C-D)
by 6f. If it is the last shell Z—¢ a dual adjustment of §
decreases (¥, 2)B and (y, z)Z by §(f —1).
Prool. (i) Edmonds’ algorithm maintains dominance and
tightness on the edges of the shell. The distributions of C
and D ensure dominance on all edges and also property
(4). Note that the distribution of D is nseded for domi-
nance on edges ij where i € D, j € C~D: z; decreasss
by 26 and Y; may have no net change, so ¥; may need to
increase by 26. The proof of (it) is similar. ®

Correctness of search is essentially Lemma 2.2(i).
For the efficiency several data structures are used. The
data structure for expand steps is discussed in Section
4. Details of various lists and indicators are omitted from
this abstract. The remaining data structure is the prior-
ity queue needed for Edmonds’ algorithm. For any shell
C-D except the last, the priority queue can be imple-
mented as an array, for the following reasons. The algo-
rithm works only with integers. (Dissolve steps cause no
problem with the integrality of 4, since a z dual is always
even). A calculation similar to Lemma 2.3 below shows
that the dual objective on C—D decreases by at most
n¢ —np. So Lemma 2.2(ii) implies that an array with
n¢ — np entries can be used as the priority queue.

Thus in a search of any shell but the last, the only
processing that uses more than linear time is the algo-
rithm of Section 4 for expand steps. So executing search
once on every shell of B except the last uses time

O(mp a(mg.ng)). (5)

The same priority queue can be used to a search the
last shell when f > 1. When f = 1 similar reasoning can
be applied, but the array priority queue is not quite as
efficient: The calculation of Lemma 2.3 shows that the
last shell Z—-¢ dissolves after dual adjustments totalling
nz. Since there can be ()(ng) old blossoms this gives qua-
dratic time for a search of a last shell that dissolves all
blossoms. This suffices for our time bound when
m = (n™*) but not sparser graphs. However as shown
in Lemma 2.5 it suffices to use a method that, in a
search of a last shell that dissolves all blossoms, uses
time O(n"?ma(m,n)). This can be achieved by another
approach based on array priority queues. Alternatively
the algorithm of [GGS] can be used to achieve time
O(m lglglgyn +nlgn). The array priority queue is
slower but probably preferable in practice, because of
its simplicity.

2.5. The path routine and batching augmenting paths.

Procedure path (B).
Repeat the following steps until all old blossoms of A

94

(except G) dissolve and, if B = G, the matching is com-
plete.

Step 1. Construct a graph T from B by contracting
every current maximal weighted blossom C, and keeping
only the edges of the contracted graph that are tight and
bave both vertices in the same shell. Transform the
current matching # to a maximum cardinality matching
on T, using the Micali-Vazirani cardinality matching algo-
rithm. Match B according to M.

Step 2. Order the shells of B that have at least one fres

vertex as S;, i = 1, - - - ,k, so the number of free vertices
in S; is nonincreasing.
Step 3. For i =1, - .k, if S; is still a shell (i.e., no

shells have dissolved into it) do search(S;).»

Observe that when B is a blossom, path can end in
two ways. Possibly all old blossoms dissolve and path
ends with a matching on B of arbitrary cardinality.
Alternatively path can find a maximum cardinality
matching on B (with exactly one free vertex) before all
blossoms dissolve. In this case k becomes one in Step 2
and Step 3 does a search that eventually dissolves all
blossoms. Also observe that when B = G, after all old
blossoms except G dissolve Steps 2-3 amount to doing a
search of Edmonds' algorithm.

To show path is correct, note that Step 1 matches
only tight edges. It modifies the current blossom tree
only by removing maximal blossoms that are
unweighted. So the resulting matching, together with
the modified current blossom tree and the unchanged
duals, is structured. This is valid input to the search rou-
tine, which requires a structured matching since it uses
Edmonds’ algorithm. Now we turn to the efficiency of
path.

Lemma 2.3. path(B) decreases (y, z)5 by at most ny.
Proof. Assume B is a blossom; when B = G the argu-
ment is a simple special case. First note from Lemma
2.2 that the dual objective never increases. In particular
when the mafch routine calls path (B), the previous exe-
cutions of path did not increase the dual objective
(y.2)B. So when path(B) starts, (y¥.z)B is at most
(y%2%B. Furthermore (y,z)B never increases in
path(B). So we need only show that any duals y,z com-
puted by path(B) satisfy

(¥.2)B = (%298 —nyp .
Choose any vertex i € B. Let w be the weight of a
maximum complete matching on the shell B—i. Then
w=(y°z%B -yl - ng .

This is an analog of (3), and also depends on the Shell
Lemma applied to the matching from the previous scale
and shell B—i. Any duals computed in path(B) are dom-
inating, and so satisfy

(y2)B-y=2w .

(Strictly speaking this involves a construction of duals
similar to that in the proof of the Shell Lemma.) Combin-
ing these inequalities along with (4) (also maintained by
path(B)) gives the desired result. »

Now we analyze the number of iterations of Steps 1-
3 of path. For a given iteration let F denote the set of

N ——

vertices in B that are free immediately before Step 2
begins. Let f = | F|.

Lemma 24. For any exponent e >0 the number of
iterations with f = ng® is O(np!™®).

Proof. Assume B is a blossom; when B = G the argu-
ment is a simple special case. Call a shell small if it has
at most two free vertices and big otherwise. Consider an
iteration with f = npg®.

The first case is when at least f /2 vertices of F" are
in big shells (immediately before Step 2). Observe that in
general, Step 3 decreases the duals of at least one third
of the free vertices initially in big shells by one or more.
This is true because after Step 1, the matching MonT
does not have an augmenting path. Hence a search of
any shell must do at least one dual veriable adjustment.
(This follows from inspection of Edmonds’ algorithm.
Alternatively it follows since in any structured matching,
an augmenting path that keeps the matching structured
gives an augmenting path on the graph with all weighted
blossoms contracted.) So any shell searched in Step 3
has its duals adjusted by at least one. A shell may not
have its duals adjusted if an adjacent shell dissolves into
it in the same dual adjustment that creates a weighted
augmenting path. However the ordering of the searches
(Step 2) guarantees that such a shell is adjacent to a
shell that was adjusted and had at least as many free
vertices. Thus at least one third of the free vertices in
big shells are decreased, as desired.

So in the first case ths big shells whose duals are
adjusted contain at least f/ 8 vertices of F. Since the
shells are big Lemma 2.2 implies that (y. z)B decreases
by at least f/12 = ng' / 12. Lemma 2.3 implies this
case oceurs O{ng!™®) times.

The second and remaining case is when at least f /2
vertices of F are in small shells. Assume the iteration is
not the first. Any shell with a free vertex had its match-
ing enlarged by at least one edge in Step 1, by the stop-
ping condition of search in the previous iteration. There
are at least f/4 such shells. So at least f/2 verlices
were matched in Step 1. Thus Step 1 multiplied f by 2/ 3
or less. So this case occurs O(lg np) times. ®

Lemma 2.5. The time for path (B) is 0(np® *mgz).
Proof. For convenience, in this proof only, let n denote
ng and m denote mg. First consider the time for Steps
2-3. These steps are executed O(nY?) times: The
number of executions with f = n!/?is 0(n'/?) by Lemma
2.4. The number with f =n'? is 0(n'?), since each
execution of Step 1 except possibly the last matches at
least one more edge, by the stopping condition of
search. Step 2 is done in linear time with a bucket sort.
From (5) one execution of Step 3 uses time O(ma{m.n))
for all searches except the last shell. So the total time
for Steps 2-3 excluding last shells is o(n'?ma(m,n)).
Over all iterations the last shell searches amount to at
most one search of the entire blossom. This can be done
in the above time, as indicated in Section 2.4. So Steps
2-3 use less time than the bound of the Lemma.

Next consider Step 1. The number of executions
with f =n%%is O(nV*) by Lemma 2.4. One execution
uses 0(n'/?m) time [MV], giving total time equal to the

95

bound of the Lemma. The exscutions with f <n¥4
match a total of at most n%* additional vertices; each
execution except possibly the last matches at least on=
more edge, as above. An execulion matching a addi-
tional edges uses O((a+1)m) time (by inspection of
[MV]; note that Step 1 uses the current matching as
input to the cardinality matching algorithm). This gives
total time equal to the bound of the Lemma. »

2.8. The final result and applications.

Theorem 2.1. A maximum complete matching on a
graph with integral edge weights can be found in
0(n3*m lg N) time and O(m) space. The same bounds
hold for maximum weight matching.

Proof. The time bound follows from Lemmas 2.5, 2.1 and
the scale routine. The final step is to show that
throughout the algorithm the duals ¥,z have magnitude
O(nN). (This justifies charging O(1) time for each arith-
metic operation). This is proved by bounding the change
in duals in one execution of path, then in all executions
of path {using the proof of Lemma 2.1), and finally in
scale (as in [G83b]).

To justify our various assumptions, note that the
base case of scale can check that the graph has a com-
plete matching. To make all edge weights nonnegative
even integers, if the given weights are arbitrary integers
in the interval [a,b] then transform any weight w to
2(w—a). This does not change the maximum complete
matchings. Note that in the time bound N can be taken
as the largest magnitude of a given edge weight or alter-
natively as the spread b —a.

Maximum weight matching is done by complete
matching using the reduction of [G83b]. In this cass
negative edges can be deleted, so in the time bound N is
the largest positive weight. ®

When N is very large or weights are real numbers,
our algorithm can find an approximately optimum
matching by running a limited number of scales [G83b].
As an example consider minimum complete matching.
For this problem there is a slight difficulty: If some com-
plete matching contains only very small edges the initial
scales may yield no useful information. This difficulty is
overcome by choosing an appropriate starting scale. In
the approximate minimum complete matching algorithm
below, the input is a graph G with nonnegative real edge
weights and an integer e = 0; the output is a complete
matching weighing at most (1 + 1/7®) times optimum.

Step 1. Let b be weight of a minimum bottleneck
matching, that is, the minimum value such that there is
a complete matching M on the edges of weight b or less.
Delete all edges weighing more than w(#) from G.

Step 2. Let N = maxfwy|ij is still in G |. Define new
edge weights w'y = ZI(N —wynlte / b]. Return the

matching found by scale (w'). ®

Corollary 2.1. Consider a graph with nonnegative real
edge weights and a positive integer e. For minimum
(maximum) complete matching, a complete matching
weighing at most {1 + 1/7n°) (at least (1 - 1/7n%)) times

optimum can be found in 0(en%*m Ig n) time and
O(m.) space.
Proof. First analyze the above algorithm for minimum
matching. To prove the accuracy bound let O be an
optimum matching and 4 the matching returned by the
algorithm. Set F =2n!** / b, so that for any edge if
the weights wy; and w';; are related by
F(IV —wi,-) - ZS‘U)'.,-_J- < F(l‘\f _wij) .

No edge of O is deleted in Step 1 since w(0) < w(M).
Thus O is a matching on the graph of Step 2 and
w'(0) < w'(A). The above relation, on the edges of O and
A, implies Pw(4) < Fw(0) +n . The bottleneck match-
ing implies w(0)=b. So
w(A) = w(0) + b/n° < (1+ 1/n*)w(0), as desired.

For the time bound, the bottleneck matching # can
be found in O{{(n lg n)?m}) time [T85]. For Step 2,
since N < w(#) < nb/2 any weight w'y is at most n?e,
Thus scale (w') runs in the bound of the Corollary.

Maximum matching is similar but there is no need
to find the starting scale: The algorithm defines new edge

weights w'y = 2juyn'*e / NJ (for N the maximum given
weight) and returns the matching found by scale (w’). #

In practice the minimum matching algorithm can be
sped up by noting that the last Ig n levels of recursion in
scale are unnecessary. This stems from the fact that in
these levels all edges of the bottleneck matching have
essentially the largest weight, so good duals are easily
defined. Also the above algorithms, and any approxima-
tion algorithms that follow this scaling approach, have a
"restart” feature: If the final structured matching is
saved then a solution with greater accuracy can be com-
puted by resuming the computation at the last scale.

The only other approximation algorithm with a
known bound on the relative accuracy is the greedy algo-
rithm [A}. For maximum weight matching with nonrnega-
tive real weights it finds a solution that is at least half
the optimum weight in O{m lg n) time. Corollary 2.1
extends to maximum weight matching by the reduction
of Theorem 2.1.

The approximation algorithm speads up
Christofides’ algorithm for the travelling salesman prob-
lem [C]. That algorithm can use a matching that is at
most (1 + 1/n) times optimum; the slight inaccuracy in
the matching is compensated for by the spanning tree of
the algorithm.

Corollary 2.2. For n cities with real-valued distances
satisfying the triangle inequality, a travelling salesman
tour that is at most 3/2 times optimum can be found in
time O(n?" lg n) time and O(n?) spac=. ®

Returning to integral weights, a useful special case
is when N = O(1). In this case scaling is unnecessary,
and the algorithm behaves like path(G) after all blos-
soms are dissolved. Using this approach a maximum
weight matching can be found in O(n'/?*m) time and
O(m) space [G83b].

When N =1 the problem is redgreen matching:
Given a graph with each edge colored red or green, find a
complete matching with the greatest possible number of
red edges. Since on bipartite graphs our algorithm is

96

identical to that of [G83b], that paper exhibits a red-
green matching problem where our algorithm uses
©(n% *m.) time. Thus our timing analysis for one scale is
tight. :

We close this section by discussing update problems
on matchings. Update algorithms have been presented
in [BD,CM, and W] but they change the dual variables too
much for our purposes. We give an update algorithm for
graphs with arbitrary real weights, that refines [BD]. Like
the three above algorithms its asymptotic running time
is the time to find one weighted augmenting path in a
structured matching. However it appears simpler in that
it does not use artificial vertices or edges, nor does it
modify Edmonds' search routine. The algorithm gives an
asymptotic speedup for "small” update problems.

The mafching update problem is to start with a

sequence of update operations. Each update operation
changes the graph arbitrarily at one vertex i — edges
incident to i can be added, deleted or changed in weight.
A new complete structured matching must be found
after each update.

An update is accomplished as follows. First suppose
i is not in a weighted blossom. Then unmatch the
matched edge incident to i, set ¥ to ensure dominance
on the new edges incident to i, and search for an aug-
menting path from i. Next suppose i is in a weighted
blossom; let the maximal such blessom be B with base
vertex &. Unmatch the matched edge incident to b,
make i the base of B (by rematching ons alternating
path [G78]) and distribute all units of all blossoms con-
taining i. Observe that now i is not in a weighted bles-
som, 1 and exactly one other vertex are free, and the
matching is structured. So proceed as in the first case.

Now consider the update problem for red-green
matching, or more generally, for complete matching
with N = 0(1). An update operation changes the weight
of the optimum matching by O(n). In the above update
algorithm, the value of the dual objective (y,z)V right
before the search begins is its original value plus the net
increase in ¥;. Assume for the moment that this net
increase is O(n). Then the dual objective is within O(n)
of optimum. Using the data structures of Section 2.4 an
augmenting path can be found in time O(ma(m,n)),
which is the time for the update.

Note that the value used for y; in the update algo-
rithm is -y; +0(1) for some vertex j. So ths assumption
is valid if all duals are O(n) in magnitude. This is the
case for the initial structured matching if it is found by
our algorithm (see the proof of Theorem 2.1). It is
maintained by searching an appropriate amount from
each free vertex. (If this is not done correctly the mag-
nitude of the duals can increase exponentially in the

number of updates.)

Corollary 2.3. Consider the update problem for red-
green matching, or more generally for complete match-
ing with N = 0(1). Each update operation can be done in
time O(ma(m,n)), where n and m give the size of the
current graph. The update operations allowed are adding
and deleting arbitrary edges incident to a vertex, adding
two new vertices {(and incident edges). deleting two verb-

s]

tices, and changing the weights of the edges incident to a
vertex (i.e,, recoloring in red-green matching). Each
operation of the last type can be done in time O(m).
Proof. Further details of the search are given in the
complete version of this paper. For weight changes, the
search routine for a last shell (Section 2.4) is used. In
fact even if N is arbitrary, this routine handles weight
changes by O(1) in the edges incident to a vertex in time
o(m).=

Other types of updates can be handled. For
instance for maximum weight matching with arbitrary
N, updates that add a vertex with incident edges weigh-
ing O(m) can be done in time O(ma(m,n)).

3. Degree-constrained subgraphs.

Consider a multigraph with integral edge weights,
where each vertex 1 has associated integers [; and u;. A
degree-constrained subgraph (DCS) is a subgraph where
each vertex i has degree between !; and ¥; in a com-
plete DCS each degree is u;. Let U = Zy’u.,;. This section

te

gives a DCS algorithm that runs in time O(U%*m Ig N).
Applications to shortest paths on undirected graphs, the
Chinese postman problem and maximum cut of a planar
graph are also given.

Space allows just an overview of the DCS algorithm;
details are in the complete paper. The approach is to
reduce complete DCS to complete matching. A DCS on a
multigraph G corresponds to a matching on a graph &',
where each vertex i of G is replaced by a vertez substi-
tute that is a complete bipartite graph. The scale rou-
tine is modified to work efficiently on G'. Each scale ini-
tializes the matching to cover all "extra” vertices in the
substitutes. This is done by working with the weighted
blossom tree instead of the blossom tree, to keesp the
vertices of each substitute in the same shell. {To prove
this works, a characterization is given for an alternating
cycle of four equal weight edges in a structured mateh-
ing.) The dual objective function at the start of a scale is
at most U above optimum, since matched edgss in sub-
stitutes are tight. So the partition into major paths is
defined not with respect to np but u3, the number of ori-
ginal edges that have both vertices in B and are
matched in the previous scale.

For further efficiency the algorithm does not work
on &' directly since it can have ((nm) edges, but rather
on graphs with O(m) edges. For shell searches G’ is
replaced by a sparse substitute greph G, constructed
using a sparse substitute for each vertex. This method
was introduced in [G83a]. Slightly larger substitutes are
used here in order to ensure that structured matchings
on G' and G correspond. This allows the algorithm to
switch between the two graphs at will. The alternating
cycle characterization is used to construct these sparse
substitutes. A different sparse model is used for the car-
dinality matching in path, similar to [G83b].

Theorem 3.1. A maximum complete DCS on a multi-
graph with integral edge weights can be found in
O{U¥*m lg N) time and O(m) space. The same bounds
hold for maximum weight DCS. ®

97

Now consider the update problem. DCS update
operations like adding or deleting an edge, increasing or
decreasing two degree constraints by one, and adding or
deleting a degree zero vertex all translate into o(1)
matching updates of the types in Corollary 25 on &'. The
matching updates can be done by searching the sparse
substitute graph G;. So the analog of Corollary 2.3 holds
for DCS.

Certain path problems are solved most efficiently as
DCS problems. Consider the p-poths problem: Given an
undirected graph with nonnegative edge weights and a
set of 2p vertices S, find p paths of minimum total
weight whose endpoints are the vertices of S. To solve
this, for any vertex © let §; be one if i € § and zero oth-
erwise. Let I, be the number of paths thati can be an
d; —6;

2 b
Construct a multigraph £ from G by adding 4 weight
zero loops at each node i and using the degree con-
straint 2; = 2l;+6;. A minimum complete DCS on
solves the p-paths problem. (This follows because the
p-paths problem has a solution where no edge is in more
than one path.) Hence the p-paths problem can be
solved in O(min{np,mi{¥**m lg N) time and O(m)
space.

intermediate vertex on, that is, 4 = min{p—-é;,

On planar graphs the p-paths problem can be solved
in 0(n¥?1lg n) time and O(n) space. First observe that
a DCS on a planar graph where all degree constraints u;
are O(1) can be found in O(n*?1g n) time. (This gen-
eralizes a result of [MNS].) The idea is to use the planar
separator theorem as in the matching algorithm of [LT],
and use the sparse substitute graph G to search for
augmenting paths. The p-paths problem cn a graph G
reduces to a DCS problem on a graph with bounded
degrees: Replace any vertex 1 of G having degres d by a
cycle of d vertices, distinguishing one vertex of the cycle
if i € S; attach one edge of G to each cycle vertex, and
attach a loop at each nondistinguished vertex; edges of
G have their original weight and all other edges weigh
zero; the degree constraint of a vertex is one if it is dis-
tinguished and two if it is not. The new graph is planar if
G is, so the bounds for the p-path problem follow.

Now consider the shortest path problem for two
given vertices in an undirected graph with no negative
cycles. The above reductions are still valid (they hold for
the p-paths problem on graphs with negative edges as
long as there are no negative cycles and the paths must
be disjoint). Here the first reduction becomes the one
given in {L]. The all-pairs version of this problem is
solved by a two phase algorithm of [GB3a). The first
phase finds a minimum complete DCS. The second phase
amounts to adding a vertex with one edge, n times. So
Corollary 2.3 applies.

Corollary 3.1. The single-source shortest path problem
on an undirected graph with integral edge lengths of
magnitude at most N and no negative cycles can be
solved in 0(n¥*m lg N) time and O{m) space; on planar
graphs, 0(n%21lg n) time and O(n) space. The all-pairs
problem, where edge lengths are plus or minus one
(more generally, magnitude O(1)) can be solved in

- O(nma(m,n)) time and O(m) space. ®

Perhaps a different approach can remove the a factor
from the bound for the seemingly simple all-pairs prob-
lem.

The Chinese postman problern gives another p-paths
problem [EJ]. Finding 2 maximum cut of a planar graph
with nonnegative edge weights reduces to a p-paths
problem on the dual of the given graph [H]. The cardinal-
ity versions of these problems (i.e., find a tour with ths
fewest edges or a cut with the most edges) are DCS prob-
lems with N = 1.

Regarding updates, adding or deleting an edge in
the Chinese postman problem translates into 0(1) DCS
update operations of the type listed above. The same
holds for maximum planar cut, assuming the reduction
to DCS for planar graphs is used. However it is necessary
to work with a fixed embedding of the planar graph: The
update problem starts with a plane graph and any adgz
added joins two vertices currently on the same face.

Corollary 3.2. The Chinese postman problem can be
solved in O(m™*g N) time and O(m) space. A max-
imum cut of a planar graph with nonnegative edgs
weights can be found in O(n¥21lg n) time and O(n)
space. For the update problem for cardinality Chinese
postman or maximum cardinality cut of a plane graph,
an edge can be added or deleted in time O{(ma(m.n)),
where n and mn give the size of the current graph. ®

An alternate approach to the Chinese postman prob-
lem and the maximum planar cut problem is based on
matching [L,H]. It uses 0(n?%) time and O(n?) space. The
p-paths approach is more efficient for maximum cut,
and more efficient for the postman problem on sparse
graphs. The matching approach to these problems does
not seem to support efficient updates.

4. The list splitting algorithm.

The splitting problem is defined on a universe of
elements partitioned into lists. Every element z is in a
list L(z) and has a cost c¢(z), a real number or infinity.
The cost ¢ (L) of a list L is defined as the smallest cost of
an element of L. The object is to process (online) a
sequence of two types of operations:

decreasecost (z,d) - replace c{z) by min(c(z).d) and
¢(L(z)) by min(c (L(z)).d).

split(z) - replace list L{z) by L,, the sublist of all ele-
ments up to and including z, and L,, the remainder; set
c(L;) to its proper value.

The operations can be intermixed. It is convenient to
allow a third operation that can also be intermixed:
initialize (L) initializes a list L of elements with arbi-
trary costs. This section gives an algorithm- that
processes a universe of n elements, hence initializes of
at most n elements and at most n splits, and
m = n decreasecosts in time O(ma{m,n)). The algo-
rithm can be used in the scaling algorithm for matching
and in Edmonds’ algorithm.

The splitting problem models the portion of
Edmonds' algorithm that expands blossoms. At the start

98

of a search the algorithm constructs a list of all vertices
that are in blossoms, in their left-to-right order as leaves
in the blossom tree. Any blossom, maximal or not,
corresponds to a sublist. The algorithm maintains the
cost of a nonouter vertex z to be the minimum slack of
en edge zy, where ¥ is an outer vertex. It uses
decreasecost for this. It uses splif to expand a blossom
into its subblossoms. It uses the costs of lists (i.e., blos-
soms) to choose the next step of Edmonds’ algorithm to
execute.

Define Ackermann's function by the relations

A{i,0) =2, fori=>1;

ALj)=%, forj=1;

A(ij) = A(i—1,A(i.5 1)), fori = 2i=1.
Define inverse functions

a{i,n) = max {7 |24(i,j) s n}, forn = 4;

a(mn) = minfi|A(i,lm/n]) 2 n], form =n.
These inverses differ by at most one from those of [T83]
and are more convenient for our purposes.

The splitting algorithm is recursive. We describe it
as an infinite family of algorithms A, 1 = 1,2, - - , where
A calls A ;. Algorithm A; partitions each list £ into a
head H and a tail T. Any element in H precedes any ele-
ment in 7; H or T can be empty. H and T are them-
selves partitioned into "superelements”. For j =0, a
level j superelement for A consists of 24(i,j) consecu-
tive elements. A superelement e in H has the highest
possible level a(i,|H, |), where H, is the portion of H
from the first element of / to the last element of e. Thus
H is partitioned into superelements plus at most three
leftover elements at the start of the list (since
A(i,0) = 2). Similarly a superelement e in 7 has highest
possible level a(i,|T,|), where T, is the portion of T
from the first element of e to the last element of T. T is
partitioned into superelements plus at most three left-
overs at the end of the list. A maximal sequence of two
or more consecutive level j superelements in H or T is
called a level j sublist of L; a level j superelement not
in a sublist, or a leftover element at the start of or the
end of T, is called a singleton. Algorithm A; works by
running A, on Ay's sublists.

These data structures are used: Bach list [has a
doubly-linked list of elements, and its cost ¢(L). Also L
has a list of its sublists (of all levals) and singletons, and
each sublist or singleton has a pointer to L. Each ele-
ment z stores its cost ¢ {z) and a pointer to its superele-
ment e(z). It is also convenient to store a table of values
of Ackermann’s function A(i,7) that are n or less.

The initialize operation can be done by either of
two routines, initialize —~head or initialize —tail. The
former scans the elements right-to-leit, partitioning into
superelements, sublists and singletons; it calls A todo
initialize ~head on each sublist. The total time for
initialize ~head on alist of k elemants is O(k), since A,
is called on lists collectively containing at most k/ 4 ele-
ments. The initialize —tail routine is similar, using a
left-to-right scan.

To do decreasecost(z,d), assumne that decreasecast
also returns a pointer to the list containing z. Suppos=
that z is not a singleton. Algorithm A calls A to do
decreasecost (e(z).d). Then it updates c(z), uses the
returned pointer to &(z)'s sublist to find L(z), updates

c(L(z)) and returns L(z). If z is a singleton there is no
recursive call {a singleton superelement updates c(e (z))
directly). The time for one decrezasecost is O(1).

To do split(z) suppose that z is not a singleton.
Algorithm A, calls A;_; to do sptit(e(z)) and then another
split to make {e(z)} into a list. If = is not the last ele-
ment of e(z) it does initialize —head on the elements of
e(z) up to and including z, and initialize ~tail on the
remaining elements. Then it constructs the rest of the
data structure for the new lists I;, 2 = 1,2, by examining
each of the sublists of [;. If z is a singleton there are no
recursive calls.

To check split is correct, suppose that z is in a
superelement and e{z) is in the head of L. The new
superelements of L, form its tail. The new superelements
of L, are part of its head. Obviously the superelements
after e(z) in the head of L are on the correct level for
the head of L. A symmetric argument holds if e(z) is in
the tail.

We show that the time for all splits is O(na(i,n)).
First consider the time exclusive of recursive calls. For
initialize —head and initialize —tail, whenever an ele-
ment z is in an initialization the level of e (z) decreases
(or = becomes a leftover). Since A; uses a(i,n) levels of
superelements this gives O(na(i,n)) time. Next con-
sider constructing the data structures for ;. Since a list
has O(z(i,n)) sublists and singletons and there are at
most n splits, the total time is O(na (i,n}).

JIf i =1 every superelement is a singleton. Hence
there are no recursive calls and the time bound for splif
follows. Suppose i > 1. By induction assume that for
some constant ¢, A uses at most cka(i—1k) time for
splits on a universe of k elements. In algorithm A for
any j., a level j sublist has at most
24(i,j+1) / 2A(i,j) < A(i.j+1) superelements. Since
a(i,n) is nondecreasing in n, the time per level j
superelement is at most c times
a(i-1,A(j+1)) = a(i-1,A(1-1,4(3.7))) < A(Z.j). There
are at most n / 2A(4,7) level j superelements. So the
total time on level j superelements is at most cn/2. The
total time on all levels is at most cna(i,n)/ 2. Choose ¢
so that the time exclusive of recursive calls is at most
cna(i,n)/2. Then the total time for splits is at most
cna(i,n). This completes the induction and proves the
time for splits in A;is O(na(i,n)).

Theorem 4.1. A splitting problem on a universe of n ele-
ments with m = n decreasecosts, where m is known in
advance, can be solved in time O(ma(m,n)) and space
o(n).

Proof. Run algorithm A; for i = a{m,n). The above
discussion shows the time is O(im+na(in)). Since
a(a{m,n)n) < m/n] the time is O(ma{m,n)). For the
space note that the data structures for A; exclusive of
the recursive calls, use O(n) space. Since there are at

most n./ 4 superelements the space bound follows. *

If m is not known in advance choosing i = a(n,n)
gives total time O(ma(n,n)). The above algorithm also
solves the split —find problem. (Here split is defined as
above and find(z) returns a pointer to L(z).) Hopcroft
and Ullman [HU] solve this problem in O(m lg ‘n) time.
The splif ~find algorithm of [GT] uses O(m+n) time.

99

However it requires a random access machine, while our
algorithm is easily implemented on a pointer machine
[T79]; also it does not seem to generalize to the splitting
problem.

Our approach leads to other algorithms with similar
time complexity. For instance it gives a set merging
algorithm that runs in the bounds of Theorem 4.1.

Acknowledgment.
The author thanks Dr. Robert Tarjan for many
inspiring conversations.

References.

[A] D. Avis, “A survey of heuristics for the weighted
matching problem’, Nefworks 13, 4, 1983, pp.
475-493.

[B] C.A. Bateson, "Performance comparison of two
algorithms for weighted bipartite matching”, M.S.
Thesis, Department of Computer Science, Univer-
sity of Colorado, Boulder, Co. 1985.

[BD] M.O. Ball and U. Derigs, "An analysis of alternative
strategies for implementing matching algo-
rithms", Networks 13, 4, 1983, pp. 517-549.

[BJ] RG. Bland and D.Jensen, manuscript to appear,
Cornell University, Ithaca, New York. i

[C] N. Christofides, "Worst-case analysis of a new
heqristic for the travelling salesman problem",
Technical Report, Graduate School of Industrial
Administration, Carnegie-Mellon Univ., Pittsburgh,
Pa., 1978.

[CM] W.H. Cunningham and A.B. Marsh, I, "A primal
algorithm for optimum matching”, Math. Pro-
grammirg Study 8, 1978, pp- 50-72.

[D] G.B. Dantzig, Linear Pragramming and Ezten-
sions, Princeton Univ. Press, Princeton, N.J., 1963.

[E] J. Edmonds, "Maximum matching and a
polyhedron with 0,1-vertices”, J. Res. Naf. Bur.
Standards 698 (1965), 125-130.

(BJ] I Edmonds and E.L. Johnson, "Matching, Euler
tours and the Chinese postman”, Math. Program-
ming 5, 1973, pp. 88-124.

[EK] J. Edmonds and R.M. Karp, "Theoretical improve-
ments in algorithmic efficiency for network flow
problems,”" J. ACM 19, 2, 1972, pp. 248-264.

[EvK] S. Even and O. Kariv, "An 0(n?? algorithm for
maximum matching in general graphs", Proc. 16th
Annual Symp. on Found. of Comp. Sci, 1975,
pp-100-112.

[FHK] G.N. Frederickson, M.S. Hecht and C.E. Kim,
"Approximation algorithms for some routing prob-
lems", SIAM J. Computing 7, 1978, pp. 178-193.

[G76] H.N. Gabow, "“An efficient implementation of
Edmonds' algorithm for maximum matching on
graphs," J. ACM 23, 2, 1976, pp. 221-234.

[GB83a]H.N. Gabow, “An efficient reduction technique for
degree-constrained subgraph and bidirected net-
work flow problems,” Proc. Fifteenth Annual ACM

Symp. on Th. of Computing, 1983, pp. 448-456.

[G83bJH.N. Gabow, "Scaling algorithms for network prob-
lems", Proc. 24th Annual Symp. on Found of
Comp. Sci., 1983, pp. 248-257; also J. CSS, to

appear.

[GBT] H.N. Gabow, J.L. Bentley and R.E. Tarjan, "Scaling
and related techniques for geometry problems”,
Proc. 16th Annual ACH Symp. on Th. of Comput-
ing, 1984, pp. 135-143.

[GGS] H.N.Gabow, Z.Galil, T.H.Spencer, "Efficient imple-
mentation of graph algorithms using contraction”,
Proc. 25th Annual Symp. on Found. of Comp. Sci.,
1984, pp.347-357.

[GT] H.N. Gabow and R.E. Tarjan, "A linear-time algo-
rithm for a special case of disjoint set union”,
Proc. 15th Annual ACH Symp. on Th. of Comp.,
1983, pp. 246-251; also J. CSS, to appear.

[CGMG] Z. Galil, S. Micali, H. Gabow, "Priority queues with
variable priority and an O{EV log V} algorithm for
finding a maximal weighted matching in general
graphs," Proc. 23rd Annual Symp. on Foundations
of Comp. Sci., 1982, pp. 255-261; also SIAM
J.Comp., to appear.

[H] F. Hadlock, "Finding a maximum cut of a planar
graph in polynomial time", SIAM J. Comp. 4, 3,
1975, pp. 221-225.

[HK] J. Hoperoft, and R. Karp, "An n%/ 2 algorithm for
maximum matchings in bipartite graphs," SIAM J.
Comp. 2, 4, 1973, pp. 225-231.

[HU] J.E. Hoperoft and J.D. Ullman, "Set merging algo-
rithms", SIAM J. Comp. 2, 4, 1973, pp. 294-303.

[1A] H. Imai and T. Asano, "Eficient algorithms for
geometric graph search problems”, RMI83-05,
Dept. Math. Enz. and Instrumentation Physics,
Univ. of Tokyo, 1983; also J. Algorithms, to appear.

[L] E.L. Lawler, Combinatorial Optimization: Net-
works and Matroids, Holt, Rinehart and Winston,
New York, 1976.

[LT] RJ. Lipton and RE. Tarjan, "Applications of a
planar separator theorem”, SIAM J. Computing 9,
3, 1980, pp. 615-627.

[MNS] K. Matsumoto, T. Nishizeki, and N. Saito, “Planar
multicommodity flows, maximum matchings and
negative cycles,” SIAM J. Computing, to appear.

[MV] S. Micali and V.V. Vazirani, "An O(V] V]| £|) algo-
rithm for finding maximum matching in general
graphs,” Proc. 2ist Annual Symp. on Found of
Comp. Sct., 1980, pp. 17-27.

[PS] C.H. Papadimitriou and K. Steiglitz, Combinatorial

Optimization: Algorithms and Complezity,
Prentice-Hall, Inc., Englewood Clifls, New Jersey,
1982.

[RT] EM. Reingold and RE. Tarjan, "On a greedy
beuristic for complete matching”, SIAM J. Com-
puting 10, 4, 1981, pp. 676-681.

{T79] RE. Tarjan, "Applications of path compression on
balanced trees", J. ACH 26, 4, (1979), pp. 690-715.

[T79] R.E. Tarjan, "A class of algorithms which require
nonlinear time to maintain disjoint sets”, J. CSS
18, (1979), pp. 110-127.

[T83] RE.Tarjan, Data Structures und Network Algo-
rithms, SIAM Monograph, Philadelphia, Pa., 1983.

[T85] R.E.Tarjan, Problem 85-2, J. Algorithms 6, 2, 1985,
p. 284, and private communication.

[W] G.M. Weber, "Sensitivity analysis of optimal match-
ings”, Networks 11, 1981, pp. 41-56.

e

