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FASTER SCALING ALGORITHMS FOR NETWORK PROBLEMS*

HAROLD N. GABOW AND ROBERT E. TARJAN$

Abstract. This paper presents algorithms for the assignment problem, the transportation
problem, and the minimum-cost flow problem of operations research. The algorithms find a minimum-
cost solution, yet run in time close to the best-known bounds for the corresponding problems without
costs. For example, the assignment problem (equivalently, minimum-cost matching in a bipartite
graph) can be solved in O(v/’rn log(nN)) time, where n, m, and N denote the number of vertices,
number of edges, and largest magnitude of a cost; costs are assumed to be integral. The algorithms
work by scaling. As in the work of Goldberg and Tarjan, in each scaled problem an approximate
optimum solution is found, rather than an exact optimum.
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1. Introduction. Many problems in operations research involve minimizing a
cost function defined on a bipartite or directed graph. A simple but fundamental
example is the assignment problem. This paper gives algorithms for such problems
that run almost as fast as the best-known algorithms for the corresponding problems
without costs. For the assignment problem, the corresponding problem without costs
is maximum cardinality bipartite matching.

The results are achieved by scaling the costs. This requires the costs to be
integral-valued. Further, for the algorithms to be efficient, costs should be polynomi-
ally bounded in the number of vertices, i.e., at most n(1). These requirements are
satisfied by a large number of problems in both theoretical and practical applications.

Table 1 summarizes the results of the paper. The parameters describing the input
are specified in the caption and defined more precisely below. The first column gives
the problem and the best-known strongly polynomial time bound. Such a bound
comes from an algorithm with running time independent of the size of the numbers
(assuming the uniform cost model of computation [AHU]). The second column gives
the time bounds achieved in this paper by scaling. The table shows that significant
speedups can be achieved through scaling. Further, it will be seen that the scaling
algorithms are simple to program. Now we discuss the specific results.

The assignment problem is to find a minimum-cost perfect matching in a bipartite
graph. The strongly polynomial algorithm is the Hungarian algorithm [K55], [K56]
implemented with Fibonacci heaps [FT]. This algorithm can be improved significantly
when all costs are zero. Then the problem amounts to finding a perfect matching in a
bipartite graph. The best-known cardinality matching algorithm, due to Hopcroft and
Sarp, runs in time O(v/-m) [HK]. The new time bound for the assignment problem is
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just a factor of log(nN) more than this. The algorithm is similar to the Hopcroff-Karp
cardinality algorithm and appears simple enough to be useful in practice.

TABLE 1
Bounds for network problems.

Strongly Polynomial Bound New Scaling Bound

Assignment problem
O(n(m / Iogn)) [FT]

Shortest paths (single-source, directed graph,
possibly negative lengths)

O(nrn) [Bel

Minimum cost degree-constrained subgraph
of a bipartite multigraph

O(U(m + n log n)) [FT], [GS3]

Transportation problem
(uncapacitated or capacitated)

O(min{U, n log U}(m + n log n))
[FT], [EK], ILl

Minimum cost flow
+ [GAIT]

O(v/ra log(nN)

O(v/-m log(nN))

O(min{v/, n2/3M1/3}-log(nN))

O((min{x/,n}m + U log U)log(nN))

O(nrn log n log(nN)log M)
convex cost functions allowed

O(n(m + n log n) log M)
lower bounds only

Parameters: n number of vertices; rn number of edges;- number of edges
counting multiplicities; U total degree constraints; N maximum cost magnitude;
and M maximum flow capacity or lower bound, or edge multiplicity.

The new algorithm improves the scaling algorithm of [G85], which runs in time
O(n3/4rn log N). The improvement comes from a different scaling method. The algo-
rithms of [G85] compute an optimum solution at each of log N scales. The new method
computes an approximate optimum at each of log(nN) scales; using log n extra scales
ensures that the last approximate optimum is exact. The appropriate definition of ap-
proximate optimum is due to Tardos [Tard] and independently to Bertsekas [BerT9],
Ber86]. The new approach to scaling was recently discovered by Goldberg and Tarjan
for the minimum-cost flow problem [Go], [GoT87a], [GoT87b]. Their minimum-cost
flow algorithm solves the assignment problem in time O(nrn log(nN)), which this pa-
per improves. Bertsekas [Ber87] gives an algorithm for the assignment problem that
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also runs in sequential time O(nrn log(aN)) and has a distributed asynchronous ira-
plementation.

The assignment algorithm extends to other network problems. This paper presents
extensions to problems on bipartite graphs and directed graphs. For algorithms on
general graphs (and bidirected graphs) and other extensions, see 4. Throughout this
paper all undirected graphs are bipartite (we usually mention this explicitly).

Variants of minimum-cost perfect bipartite matching (such as minimum-cost bi-
partite matching) can be done in the same time bound. The linear programming dual
variables for perfect bipartite matching can be found from the algorithm. This gives
a solution to the shortest path problem when negative edge lengths are allowed. The
table entry for the degree-constrained subgraph problem is just a factor of log(aN)
more than the bound of [ET] for the corresponding problem without costs, namely,
the problem of maximum flow in a 0-1 network. These bounds improve [G85] in a
manner analogous to the assignment problem.

The table entry for the transportation problem is a good bound when total supply
and demand (U) is small. The key fact for this bound is the low total augmenting path
length for the assignment algorithm; this fact generalizes the bounds of [ET] for car-
dinality matching and 0-1 network flow. The entry for minimum-cost flow is a double
scaling algorithm it scales edge capacities, and at each scale solves a small trans-
portation problem by the above cost-scaling algorithm. This algorithm is not as good
asymptotically as the recent bound of Goldberg and Tarjan, O(nrn log(n2/rn) log(aN))
[GoT87b]. The latter is just a factor of log(aN) more than the best bound for maxi-
mum value flow [GoT86]. The double scaling algorithm may be more useful in practice,
however, since it requires fewer data structures. The double scaling algorithm gener-
alizes to find a minimum-cost integral flow when the cost of each edge is an arbitrary
convex function of its flow. The time bound is unchanged, as long as the cost for
a given flow value can be computed in O(1) time. The last bound of the table im-
proves the previous one for problems where edges have a lower bound on the flow and
infinite capacity (more generally, O(n) finite capacities are allowed). Such problems
arise as covering problems. We illustrate how this bound leads to an efficient strongly
polynomial bound for the directed Chinese postman problem.

Section 2 presents the matching algorithm and its analysis, including facts used
in the generalizations. Section 3 presents the extensions to more general network
flow problems. Section 4 gives some concluding remarks. This section closes with
definitions from graph theory; more thorough treatments are in ILl, [PSI, [Tarj].

We use interval notation for sets of integers: for integers and j, define [i..j]
{klkisaninteger, _< j _< k}, [i..j) { klk is an integer, _< j < k}, etc. The
symmetric difference of sets S and T is denoted by S T. The function log n denotes
logarithm to the base two.

For a graph G, V(G) and E(G) denote the vertex set and edge set, respectively.
The given graph G is bipartite and has bipartition V0, V1 (so V(G) is the disjoint
union of V0 and V1, and any edge joins V0 to V1). The given graph G has m edges;
in 2, n IV01 IV11 (we assume without loss of generality that the two sets of
the bipartition have equal cardinality); in 3, n IV(G)I. If H is a subgraph of
G, an H-edge is an edge in H and a non-H-edge is not in H. When an auxiliary
graph G is constructed from the given graph G, G-edge refers to an edge of G that
represents an edge of G. We use this term without explicit comment only when the
representation is obvious (i.e., vw E E(G) is represented by vw, where v and w are
obvious representatives of v and w). We say path P ends with edge vw if vw is at an
end of P and further, v is an endpoint of P.
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A matching in a graph is a set of vertex-disjoint edges. Thus a vertex v is in
at most one matched edge vvr; v is the mate of v. A free vertex has no mate. A
maximum cardinality matching has the greatest number of edges possible; a perfect
matching has no free vertices (and is clearly maximum cardinality). An alternat-
ing path (cycle) for a matching is a simple path (cycle) whose edges are alternately
matched and unmatched. An augmenting path P is an alternating path joining two
distinct free vertices. Augmenting the matching along P means enlarging the matching
M to M G P, thus giving a matching with one more edge. Suppose each edge e has a
numeric cost c(e); in this paper costs are integers in [-N..N], unless stated otherwise.
The cost c(S) of a set of edges S is the sum of the individual edge costs. A minimum
(maximum) perfect matching is a perfect matching of smallest (largest) possible cost.
The assignment problem is to find a minimum perfect matching in a bipartite graph.
More generally, a minimum-cost maximum cardinality matching is a matching that
has the greatest number of edges possible, and subject to that restriction has min-
imum cost possible. (The phrase "minimum-cost maximum cardinality set" can be
interpreted ambiguously. In this paper it refers to a set that has maximum cardinality
subject to any other restrictions that have been mentioned, and among such sets has
minimum cost possible.) A minimum-cost matching is a matching of minimum cost
(its cardinality can be any value, including zero).

A multigraph has a set of edges E(G), where each.edge e has an integral mul-
tiplicity u(e) (i.e., there are u(e) parallel copies of e). The size parameter m is the
number of edges, m IE(G)I; counts multiplicities, i.e., {u(e)le e E(G)};
M is the maximum edge multiplicity. (In a graph M 1.) When each vertex v has
associated nonnegative integers t(v) and u(v), a degree-constrained subgraph (DCS) is
a subgraph such that each vertex has degree in [g(v)..u(v)]. It is convenient to use
both set notation and functional notation for a DCS. Thus we use a capital letter
D to denote a DCS, and the corresponding lowercase letter d to denote two func-
tions defined by D" for an edge e, d(e) denotes the multiplicity of e in D, and for
a vertex v, d(v) denotes the degree of v in D, i.e., d(v) ,{d(vw)lvw e E(G)}.
Hence d(e) <_ u(e) and t(v) _< d(v) <_ u(v). The deficiency of DCS D at vertex v is
(v, D) u(v) d(v). In a perfect DCS each deficiency is zero. The size of the DCS
is measured by V ’{u(v)lv e V} (so U is twice the number of edges in a perfect
DCS). When edges e have costs, the usual assumption is that each copy of e has the
same cost, denoted c(e). When this assumption fails, we use cost functions, defined
in the text. Other definitions for DCS e.g., minimum perfect DCS, minimum-cost
maximum cardinality DCS, etc., follow by analogy with matching.

The transportation problem is to find a minimum-cost perfect DCS in a bipar-
tite multigraph in which all edges have infinite multiplicity; alternatively, if M is the
maximum degree constraint, all multiplicities are M. If some multiplicities are less
than M, the problem is a capacitated transportation problem. The usual definition
of the transportation problem allows nonnegative real-valued degree constraints and
edge multiplicities (both given multiplicities and those in the solution). This paper
deals with the integral case of this problem. Note that if the given degree constraints
and multiplicities are rational, they can be scaled up to integers. Also note that
no loss of generality results from the constraint in this paper that the solution to
the transportation problem has integral multiplicities such an optimum solution
always exists when the given degree constraints and multiplicities are integral ILl. Fi-
nally note that in our terminology the minimum perfect DCS problem is the same as
the capacitated transportation problem.
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2. Matching and extensions. Section 2.1 presents our algorithm to find a
minimum perfect matching in a bipartite graph. Section 2.2 gives extensions to other
versions of matching, some facts about the algorithm needed in 3, and our shortest
path algorithm. In this section n denotes the number of vertices in each vertex set V0,
V1 of the given bipartite graph.

2.1. The assignment algorithm. For convenience assume that the given graph
G has a perfect matching (the algorithm can detect graphs not having a perfect match-
ing, as indicated below).

The plan for the algorithm is to combine the Hungarian algorithm for weighted
matching with the Hopcroft-Karp algorithm for cardinality matching. Recall that
the Hungarian algorithm always chooses an augmenting path of smallest net cost.
The Hopcroft-Karp algorithm always chooses an augmenting path of shortest length.
Both of these rules can be approximated simultaneously if the costs are small integers.
Arbitrary costs can be replaced by small integers by scaling. Thus our algorithm
scales the costs. At each scale it computes a perfect matching. The computation is
efficient because it is similar to the Hopcroft-Karp algorithm; the matching is close
to optimum because the computation is similar to the Hungarian algorithm. Now we
give the details.

Each scale of the algorithm finds a close-to-minimum matching, defined as follows.
Every vertex v has a dual variable y(v). A 1-feasible matching consists of a matching
M and dual variables y(v) such that for any edge vw,

y(v) + y(w) <_ c(vw) + 1,
y(v) + y(w) c(vw), forvweM.

A 1-optimal matching is a perfect natching that is 1-feasible. If the +1 term is omitted
from the first inequality, these are the usual complementary slackness conditions for a
minimum perfect matching ILl, [PSI. The following result is due to Bertsekas [Ber79],
[Ber86].

LEMMA 2.1. Let M be a 1-optimal matching.
(a) Any perfect matching P has c(P) >_ c(M) n.
(b) If some integer k, k > n, divides each cost c(e), then M is a minimum perfect

matching.
Proof. Part (a) follows because

c(M) E{c(e)le e M} E{y(v)]v e V(G)} _< c(P) + n.

Part (b) follows from (a) and the fact that any matching has cost a multiple of k. [:]

This lemma is the basis for the main routine of the algorithm, which does the
scaling. The routine starts by computing a new cost (e) for each edge e, equal to n+ 1
times the given cost. Consider each (e) to be a signed binary number +bib2...b
having k [log(n + 1)N] + 1 bits. The routine maintains a variable c(e) for each edge
e, equal to its cost in the current scale. The routine initializes each c(e) to 0 and each
dual y(v) to 0. Then it executes the following loop for index s going from 1 to k:

Step 1. For each edge e, c(e) 2c(e)+ (signed bit be of (e)). For each vertex v,
y(v) - 2y(v)- 1.

Step 2. Call the scale_match routine to find a 1-optimal matching.



1018 HAROLD N. GABOW AND ROBERT E. TARJAN

Lemma 2.1(b) shows that the routine halts with a minimum perfect matching.
Each iteration of the loop is called a scale. We give a scale_match routine that runs
in O(vrn) time. Since there are O(log(nN)) scales, this achieves the desired time
bound.

It is most natural to work with small costs. The scale_match routine transforms
costs to achieve this. Specifically, scale_match changes the cost of each edge vw to
c(vw)- y(v)- y(w); then it calls the match routine on these costs to find a l-optimal
matching M with duals y’(v); then it adds y’(v) to each dual y(v) (y(v) is the dual
value before the call to match).

Clearly, M with the new duals is a l-optimal matching for cost function c. Fur-
ther, since Step 1 of the main routine changes costs and duals so that the empty
matching is l-feasible, the costs input to match are integers -1 or larger. If vw is
an edge in the l-optimal matching found in the previous scale, then after Step 1,
y(v) + y(w) >_ c(vw) 3. Hence vw costs at most three in the costs for match. Thus
there is a perfect matching of cost at most 3n. (This is true even in the first scale).
We will show that if every edge costs at least -1 and a minimum perfect matching
costs O(n), match finds a l-optimal matching in O(v/--rn) time. This gives the desired
time bound.

Note that the transformation done by scale_match is for conceptual convenience
only. An actual implementation would not transform costs; rather match would work
directly on the untransformed costs.

The cost-length of an edge e with respect to a matching M is

cl(e) c(e) + (if e M then 1 else 0).

The net cost-length of a set of edges S with respect to M is

cl(S) E{cl(e)le E s- M} E{cl(e)le S M}.

This quantity equals the net cost of S (with respect to M) plus the number of un-
matched edges in S. Hence an augmenting path with smallest net cost-length approx-
imates both the smallest net cost augmenting path and the shortest augmenting path;
this is in keeping with our plan for the algorithm.

An edge vw is eligible if y(v) + y(w) cl(vw), i.e., the 1-feasibility constraint for
vw holds with equality. (Note that a matched edge is always eligible.) It follows from
the analysis below that an augmenting path of eligible edges has the smallest possible
net cost-length. Hence the algorithm augments along paths of eligible edges. If no
such path exists, it adjusts the duals to create one. The details are as follows.

Assume the costs given to match are integers that are at least -1, and there is a
perfect matching costing at most an. (In the scaling algorithm a 3.)
procedure match.
Initialize all duals y(v) to 0 and matching M to 0. Then repeat the following steps
until Step 1 halts with the desired matching:

Step 1. Find a maximal set A of vertex-disjoint augmenting paths of eligible edges.
For each path P A, augment the matching along P, and for each vertex w V1 P,
decrease y(w) by 1. (This makes the new matching 1-feasible.) If the new matching
M is perfect, halt.

Step 2. Do a Hungarian search to adjust the duals (maintaining 1-feasibility) and
find an augmenting path of eligible edges. V1
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We now give the details of Steps 1 and 2 that are needed to analyze match. (A full
description of these steps is given below, in the paragraphs preceding the statement
of Theorem 2.1. The reader may prefer to examine these details now, although this is
not necessary.) Both steps can be implemented in O(m) time. Step 2 is a Hungarian
search (essentially Dijkstra’s shortest path algorithm, see e.g., ILl, [PSI). The search
does a number of dual adjustments. Each dual adjustment calculates a positive integer
5 and increases or decreases various dual values by 5, so as to preserve 1-feasibility
and eventually create an augmenting path of eligible edges. (The dual adjustment is
defined more precisely below.) At any point in the algorithm define

F the set of free vertices in V0;
A the sum of all dual adjustment quantities 5 in all Hungarian searches so far.

The Hungarian search maintains the duals so that any free vertex v E F has y(v) A
and any free vertex v E V1 has y(v) O.

To analyze the match routine, first observe that it is correct: The changes to the
matching (in Step 1) and to the duals (in Steps 1-2) keep M a l-feasible matching.
If M is not perfect but G has a perfect matching, the Hungarian search creates an
augmenting path of eligible edges. Hence the algorithm eventually halts with M a
l-optimal matching, as desired. (Note that if G does not have a perfect matching,
this is eventually detected in Step 2.)

To analyze the run time, consider any point in the execution of match. Let M be
the current matching, and define F and A as above. Let M* be a minimum perfect
matching. For any set of edges S let cl(S) denote net cost-length with respect to M.

M* (R)M consists of an augmenting path Pv for each v F, plus alternating cycles
Cw. Thus

(1) n + c(M*) c(M) >_ el(M* @ M) E c/(Pv) + E cl(Cw).
vEF w

To estimate the right-hand side, consider an alternating path P from u G V0 to rn V0,
where u is on an unmatched edge of P and rn is on a matched edge of P (m stands
for "matched"; no confusion should result from the double usage of m). Then

(2) < v( n) +
This follows since for edges uv M and vm e M, y(u) + y(v) <_ cl(uv) and y(v) +
y(m) cl(vm), so y(u) <_ y(m) + cl(uv)- cl(vm). Inequality (2)implies that any
alternating cycle C has el(C) >_ O. It also implies that any augmenting path P
from some v E F to some free vertex t V1 has y(v) + y(t) <_ cl(P). Recall that the
Hungarian search keeps y(v) A and y(t) 0. Hence A _< cl(P), and the right-hand
side of (1) is at least ]FLA.

By assumption on the input to match, c(M*) <_ an and c(M) >_ -n. Hence the
left-hand side of (1) is at most bn for b a + 2. Thus we have shown

(3) IFI/X <_ bn.

This implies there are O(x/) iterations of the loop of match. To see this, note
that each execution of Step 1 (except possibly the first) augments along at least one
path because of the preceding Hungarian search. Hence at most + 1 iterations
start with IFI _< v/. From (3), IFI _> v/ implies A _< xfb-. The next paragraph
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shows that each Hungarian search increases A by at least one. This implies that at
most v/ + 1 iterations start with A <_ v/, giving the desired bound.

Now we show that a Hungarian search $ increases A by at least one. It suffices
to show that , does a dual adjustment (since any dual adjustment quantity 5 is a
positive integer). Search $ does a dual adjustment unless there is an augmenting path
P of eligible edges when it starts. Clearly, P intersects some augmenting path found
in Step 1. It is easy to see that P contains an unmatched edge vw, with w but not v
in an augmenting path of Step 1, and w V. But vw is ineligible after the Step 1
decreases y(w). So P does not exist, and $ does a dual adjustment.

In summary, match does O(v/-) iterations. Each iteration takes time O(m),
giving the desired time bound O(v/-dm).

It remains to give the details of Steps 1 and 2. Step 1 finds the augmenting paths
P by depth-first search. To do this, it marks every vertex reached in the search. It
initializes a path P to a free unmarked vertex of V0. To grow P, it scans an eligible
edge xy from the last vertex x of P (x will always be in V0). If y is marked, the next
eligible edge from x is scanned; if none exists, the last two edges of P (one matched
and one unmatched) are deleted from P; if P has no edges, another path is initialized.
If y is free, another augmenting path has been found; in this case y is marked, the
path is added to ,4, and the next path is initialized. The remaining possibility is that
y is matched to a vertex z. In this case y and z are marked; edges xy, yz are added
to P; and the search is continued from z.

It is clear that this search uses O(m) time. To show that it halts with A maximal,
first observe that for any marked vertex x V0- V(A), every eligible edge xy has y
marked and matched, or y in V(A). (Note that V(A) is the set of vertices in paths of
A.) Hence an easy induction shows that an alternating path of eligible edges, starting
at a free vertex of V0 and vertex-disjoint from A, has all its V0 vertices marked and is
not augmenting.

Step 2 is the Hungarian search. It grows a forest $" of eligible edges, from roots F.
An eligible edge vw with v V0 C? 9r and w $" is added to whenever possible. If w
is free, 9r contains an augmenting path of eligible edges. Otherwise, the matched edge
ww is added to 9r. Eventually either contains an augmenting path or 9r cannot be
enlarged.

In the latter case a dual adjustment is done. It changes duals in a way that
preserves 1-feasibility and allows $" to be enlarged, as follows. It computes the dual
adjustment quantity

min{cl(vw)- y(v)- y(w)lv e Vo J:, w

Each v E gets y(v) increased by 5 (if v E V0 then 1 else -1). It is easy to see
that this achieves the goal of the dual adjustment (an edge vw achieving the above
minimum becomes eligible and so can be added to .T’).

After the dual adjustment, the search continues by enlarging 9. Eventually 9v

contains the desired augmenting path of eligible edges and the Hungarian search halts.
Note that, as claimed above, at any point in the algorithm a free vertex v has

y(v) A if v F (since every dual adjustment increases y(v)) and y(v) 0 if v V1
(no dual adjustment changes y(v)).

A Hungarian search can be implemented in O(m) time. This depends on two
observations. First, the proper data structure allows a dual adjustment to change all
duals y(v) in O(1) time total. Specifically the algorithm keeps track of A (defined
above). When a vertex v is added to $’, its current dual value and the current value
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of A are saved as y(v) and A(v), respectively. Then at any time the current value of
y(v) can be calculated as

y(v) + (A- A(v)) (if v e V0 then 1 else 1).

Hence the dual adjustment is accomplished by simply increasing the value of A.
The second observation is how to compute 5 in a dual adjustment. The usual

implementation of a Hungarian search does this with a priority queue that introduces
a logarithmic factor into the time bound (e.g., [FT]). This can be avoided when, as in
our case, costs are small integers (this was observed in [D], [W] for Dijkstra’s shortest
path algorithm). The details are as follows. The next value of 5 is the amount that
the next value of A increases from its current value. Hence it suffces to calculate the
next value of A. The next value of A is the smallest possible value such that some
edge vw with v E V0 n 9 and w $" becomes eligible (when duals are adjusted by 5).
Thus the next value of A equals

min{cl(vw) y(v) y(w) + A(v)lv e V0 n ’, w 9}.

Since any Hungarian search has IFI _> 1, inequality (3) implies A _< bE. The algorithm
maintains an array Q[1..bn]. Each entry Q[r] points to a list of edges vw that can
make A r, i.e., v V0 N $’, w 9v, and r cl(vw)- y(v)- y(w)+ A(v). The
algorithm scans down Q and chooses the next value of A as the smallest value r
with Q[r] nonempty. This gives the next value of 5, and the newly eligible edges, as
desired. The total overhead for scanning is O(n), since Q has bn entries. (Note that
an edge vw with v V0 , w $" does not get entered in this data structure if

 0(v) + >
Only one detail of the derivation remains: We have assumed that the dual values

y(v) do not grow too large, so that arithmetic operations use O(1) time. To justify this,
we show that each y(v) has magnitude O(n2N). It suffices to do this for v V0. Define
Y8 as max{ly(v)llv V0} after the sth scale. Then Y0 0 and Ys+I <_ 2Y + bn 1
(since A _< bE). Thus Yk

_
(2k- 1)(bE-1) O(n2N), as desired. Note that the input

uses a word size of at least max{log N, log n} bits. Hence at worst the algorithm uses
triple-word integers for the dual variables.

THEOREM 2.1. A minimum perfect matching in a bipartite graph can be found
in O(x/-dm log(nN)) time and O(m) space. Yl

A heuristic that may speed up the algorithm in practice is to prune the graph at
the start of each scale. Specifically, scale_match can delete any edge whose new cost
is 6n or more. In proof, recall that in the costs computed by scale_match there is a
perfect matching M costing at most 3n; taking into account the low-order bits of cost
that are not included in the current scale, the true cost of M is less than 4n. In the
costs computed by scale_match every edge costs at least -1; again taking into account
low order bits, the true cost is more than -2. Hence a matching containing an edge
of new cost 6n or more has true cost more than 4n and so is not minimum.

2.2. Extensions of the assignment algorithm. The bounds of Theorem 2.1
also apply to finding a minimum-cost matching. To see this, let G be the given graph.
Form G by taking two copies of G; for each v V(G) join the two copies of v by a
cost zero edge. Then G is bipartite, and a minimum perfect matching in G gives a
minimum-cost matching in G.

A similar result holds for minimum-cost maximum cardinality matching. The
construction is the same except that the edges joining two copies of v cost nN. The
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problem of finding a minimum-cost matching of given cardinality can also be solved
in the same bounds; it is most convenient to use Theorem 3.2 below.

Returning to perfect matching, several properties of match are needed for 3.
Define

A the total length of all augmenting paths found by match.

We first derive a bound on A. Let Pi denote the ith augmenting path found by match.
Let i be its length, measured as its number of unmatched edges; let Ai denote the
value of A when P is found; let M be the matching after augmenting along Pi. Recall
that in the Hopcroft-Karp algorithm, for some constant c, <_ cn/(n- + 1). Thus
the total augmenting path length is En__l O(n log n) [ET]. In match, does not
have a similar bound. However, it is bounded in an amortized sense, as follows.

LEMMA 2.2. For any k 6 [1..n], c(Mk)-F Ei--1 i Ei--1/i.
Proof. A calculation similar to (2) shows that for any i, A cl(P). It is easy to

see that cl(P) + c(Mi) c(M-l) (assume c(Mo) 0). Summing these relations
gives the lemma.

COROLLARY 2.1. A O(n log n).
Proof. Since IMkl k, the entry conditions for match imply c(Mk) > -k. Hence

A < n + -]n__l A. By (3), A < bn/(n- + 1). Summing these inequalities gives the
lemma.

The second property shows that the depth-first search of Step 1 never encounters
a cycle. A similar property for network flows is used in [GoT87a].

LEMMA 2.3. In match there is never an alternating cycle of eligible edges.
Proof. Initially there are no matched edges, so there are no alternating cycles of

eligible edges. In a Hungarian search, whenever the duals of a matched edge vw are
changed, w E V1 gets y(w) decreased. Hence any edge joining w to a vertex not in the
search forest $- is ineligible. This implies that the Hungarian search does not create an
alternating cycle of eligible edges. Similar reasoning applies when an augment creates
a new matched edge and changes duals.

Some applications of matching require the optimal linear programming dual vari-
ables. The dual variables y(v) are optimal if there is a perfect matching M such that
every edge vw has y(v) + y(w) < c(vw), with equality for every vw M. (This
implies that M is a minimum perfect matching.) Such duals exist for any bipartite
graph having a perfect matching [L], [PSI. The scaling algorithm halts with duals that
are 1-optimal but not necessarily optimal. Optimal duals can be found as follows.

Let G+ be G with an additional vertex s V0 and an edge sv for each v V1.
Extend the given cost function c to G+ by defining c(sv) as an arbitrary integer;
the cost function used by the matching algorithm extends to G+ by its definition,

(n + 1)c. To specify a cost function on G+, we write G+; c or G+;. Let M be
a minimum perfect matching in G; for vertex v, let v denote its mate, i.e., vv M.
For v V0, let My be a minimum perfect matching in G+ v; c. (Such a matching
exists, for instance, M- vv + sv.) Set

y(v) if v e V0 then -c(Mv) else c(vv’)- y(v’).

These duals are optimal on G. (This can be proved by an argument similar to the
algorithm given below. Alternatively, see [G87] for a proof from first principles.)

Suppose a Hungarian search (as in match) is done on G+; . It halts with a tree T
of eligible edges, rooted at s. Clearly T is a spanning tree. For any v V0, augmenting
along the sv-path in T gives a l-optimal matching N in G+ -v; . N is a minimum
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perfect matching in G+ -v; c. This follows from Lemma 2.1, since G+ -v and G have
the same number of vertices. Hence Nv qualifies as My.

In summary, the following procedure finds optimal duals. Given is the output of
the matching algorithm, i.e., a 1-optimal matching in G; with duals y. Form G+; ,
defining c(sv) [y(v)/(n + 1)] for each v E V1; also set y(s) 0 (this gives i-feasible
duals). Do a Hungarian search to construct a spanning tree T of eligible edges rooted
at s. DO a depth-first search of T to find c(M) for each v E V0. Define optimal duals
y(v) by the above formula.

The time for this algorithm is O(rn). This is clear, except perhaps for the time for
the Hungarian search. The choice of c(sv) ensures that A _< n. Hence, as in match,
the Hungarian search can be implemented using an array Q. This gives O(rn) time.

COROLLARY 2.2. Optimal dual variables on a bipartite graph can be found in
O(xfdrnlog(nN)) time and O(rn) space. [:]

This implies the next result. Consider a directed graph with n vertices, m edges,
and arbitrary (possibly negative) edge lengths.

THEOREM 2.2. The single-source shortest path problem on a directed graph with
arbitrary integral edge lengths can be solved in O(v/-dm log(nN)) time and O(rn) space.

Proof. This problem can be solved by finding optimal duals on a bipartite graph
whose costs are the edge lengths and then running Dijkstra’s algorithm [G85]. [:]

Obviously the same bound holds for O(x/-) sources.

3. Degree-constrained subgraphs and extensions. This section extends
the assignment algorithm to derive the last three bounds of Table 1. Section 3.1
gives an algorithm for the minimum perfect degree-constrained subgraph problem,
deriving time bounds for finding a degree-constrained subgraph and for solving the
transportation problem. Section 3.2 discusses scaling edge multiplicities, which im-
proves the bounds when edge multiplicities are large. Section 3.3 extends the results
to network flow. Throughout 3, n denotes the number of vertices in the input graph.
The problems of 3.1-3.2 are defined on a multigraph. Recall that for a multigraph
rn denotes the number of edges and the number of edges counting multiplicities.

3.1. The degree-constrained subgraph algorithm. This section gives an
algorithm for the perfect degree-constrained subgraph problem. Note that a perfect
DCS problem on a multigraph of n vertices and edges can be reduced in linear time
to a perfect matching problem on a graph of O() vertices and edges [G87]. Hence
Theorem 2.1 immediately implies a bound of O(3/2 log(N)) for the DCS problem.
We now derive the better bound given in Table 1.

For a DCS D, the cost-length of edge e is

cl(e) c(e) + (if e t D then 1 else 0).

A 1-feasible DCS is a DCS D and dual variables y(v) for each vertex v, such that for
any edge vw,

y(v) + y(w) <_ cl(vw), for vw D,
y(v) + y(w) >_ cl(vw), for vw D.

A 1-optimal DCS is a perfect DCS that is 1-feasible. (Note that the definition of
a 1-feasible matching is slightly different the second relation holds with equality.
The difference is not significant: if we treat a matching problem as a DCS problem, a
1-feasible DCS gives a 1-feasible matching, by lowering duals as necessary to achieve
the desired equalities.)
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As in Lemma 2.1, if every cost is divisible by k, k > n/2, then a 1-optimal DCS
is a minimum perfect DCS. This is essentially a result of Bertsekas [Ber79], [Ber86].
In proof, note that a perfect DCS D has minimum cost if any alternating (simple)
cycle C has c(C N D) <_ c(C D). This condition can be verified for a 1-optimal DCS
D by a calculation similar to Lemma 2.1.

Now we describe the algorithm. Many details are exactly as in 2, so we elaborate
only on the parts that change. All data structures have size O(m) (not O()). Clearly
the multigraph G can be represented by such a structure.

The main routine works in (at most) [log(n / 2)N] scales. (This is justified by
the above analog of Lenma 2.1; each original cost is multiplied by [(n + 1)/2.) Steps
1-2 and scale_match are unchanged. Let Do be the 1-optimal DCS of the previous
scale. Note that the match routine is called with integral costs c(e) that are at least
-1 for e Do and at most three for e E Do.

The match routine initializes all duals y(v) to 0 and D to {elc(e < -1}. (Clearly
D does not violate any degree constraint.) The definition of an eligible edge vw is still
y(v) + y(w) cl(vw). Step 1 of match finds a maximal set of edge-disjoint augmenting
paths of eligible edges such that any vertex v is an end of at most (v, D) paths. (In
a multigraph, "edge-disjoint" means a given copy of an edge is in at most one path.)
It augments the DCS along each path. Unlike 2, no duals are changed after an
augment; the new DCS is 1-feasible, and the edges on an augmenting path become
ineligible. Step 2 does a Hungarian search to adjust duals and find an augmenting
path of eligible edges.

Note that this algorithm is correct: Since the Hungarian search maintains 1-
feasiblity, the algorithm halts with a 1-optimal DCS (assuming a perfect DCS exists).

Step 1 is implemented by a depth-first search similar to that of 2, modified for
degree constraints larger than one: Each augmenting path P is initialized to a vertex
x E V0 with positive deficiency; x is used to initialize paths P until its deficiency
becomes zero or it is deleted from P. P is grown as an alternating path, so that when
its last vertex x is in V0 an edge not in D is scanned, and when x is in V1 an edge of
D is scanned. Instead of vertex marks, each vertex has a pointer to its last unscanned
edge. The last edge of P gets deleted if x has no more unscanned edges. It is easy to
see the time for Step 1 is O(). (As shown below, each augmenting path is simple,
although this fact is not needed for correctness.)

The details of the Hungarian search are similar to 2. The main differences stem
from the fact that the search forest $" is grown edge by edge, rather than in pairs
of unmatched and matched edges. The time for the search is O(m). This assumes
that, as in 2, an array Q[1..dn] is used to compute minima; here d is the constant of
Lemma 3.3, which justifies using the array.

This completes the description of the DCS algorithm. The discussion shows that
it is correct. The efficiency analysis uses three inequalities, each analogous to (3) of
2. To state the inequalities, we use notation similar to that of 2: D is the DCS at
any point in match. Do is the 1-optimal DCS of the previous scale; hence each of its
edges costs at most a 3. F is the set of vertices in V0 with positive deficiency; (I) is
their total deficiency,

E{(v,D)lv e F}.
A is the sum of all dual adjustment quantities 5 in all Hungarian searches so far. Each
x F has y(x) A. Px denotes any one of the augmenting paths in Do G D that
contains x.

LEMMA 3.1. For some constant b, at any point in match, OA <_ bU.
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Proof. The argument of 2 gives an analog of (1),

cl(Do D) >_ E{(v, D)y(v)lv e F}.

An edge of Do D has cost-length at most a + 1; an edge of D Do has cost-length
at least -1. Hence the lemma holds with b (a + 2)/2. [:]

The second inequality is for graphs with bounded multiplicity. It generalizes [ET].
Recall that M denotes the maximum multiplicity of an edge in the multigraph.

LEMMA 3.2. For some constant c, at any point in match,
Proof. Set b a + 2. For each integer j define

Uj {u e Voly(u) e [b(j- 1)..bj)},
Wj {w e Vlly(w)- a- 1 e (-bj..- b(j- 1)1}.

We will show that for any j e [1..[A/b + 1]], each Px has an edge uw with
Uj, w e Wj. This implies MIUjlIWjl >_ . Thus Igjl or Iw l is at least V/O/M.
Hence n >_ V/O/M(A/b), as desired.

To find the desired edge uw of Px, let the edges in Px D be tiWi 1,’’’,
(thus Ul x, and Ui+lWi+l follows UiWi). Since Px C_ Do (R) D,

(4)
y(ui) + y(wi) <_ a + 1,
y(wi) + y(ui+l) >_ -1.

Note that y(ttl)-" /; y(tk) < b (by (4) and y(wk)= 0); and y(ti+l)

_
y(ti)-b (also

by (4)). These three inequalities imply that for any j E [1..[A/b + 1], P has some
ui Uj. For a given j, choose the last such i. Then ui+ Uj_. Together with (4)
this implies wi Wj, since

-bj < -y(ui+) b <_ y(wi) a- 1 <_ -y(ui) <_ -b(j 1).

We have shown that wi Wj and ui Uj, as desired. Yl
Before giving the third inequality, we note a useful refinement of Lemma 3.2. Let

X be a matching such that every edge not in X has multiplicity at most Mx.
COROLLARY 3.1. For some constant c, at any point in match, Ax/- _< cnx/-M-.
Proof. The proof is similar to the lemma. We show that for any j E [1.. [A/b + 1]],

each P has an edge uw not in X with u Uj UUj_I, w Wj. This implies
Mxlgy gj-lllWjl >_ which leads to the desired conclusion.

To find the desired edge uw for a path P, proceed exactly as in the lemma to
find an index with ui Uj, ui+ Uj_, and wi E Wy. One of the edges uiwi,

Witi+l is not in X and can be taken as uw.
Another bound on A is useful for large multiplicities. It is similar to the bound

used in [GoTSTa]. It justifies using the array Q[1..dn] to compute minima in the
Hungarian search.

LEMMA 3.3. For some constant d, at any point in match, A <_ dn.
Proof. The proof of Lemma 3.2 shows that for any j [1..[A/b + 1]], P has

some u Uj. r?
COROLLARY 3.2. The number of iterations ofmatch is O(min{v/-, n2/3M/3, n}).
Proof. Each execution of Step 1 (except possibly the first) augments along at

least one path, i.e., it decreases by at least one. The definition of Step 1 implies
that each Hungarian search (except the last) increases A by at least one. Now the



1026 HAROLD N. GABOW AND ROBERT E. TARJAN

first two bounds of the lemma follow because at any point in the algorithm A or is
at most B, where Lemma 3.1 gives B and Lemma 3.2 gives B (cn)2/3M1/3.
The third bound follows from Lemma 3.3. [:]

The corollary implies the following time estimates. The estimates are good for
graphs or multigraphs of very small multiplicity.

THEOREM 3.1. A minimum perfect DCS on a bipartite multigraph can be found
in O(min{v/-,n2/3M/3}log(nN)) time. The space is O(m). [:]

For example, in a bipartite graph a minimum perfect DCS can be found in
O(min{v/- n2/3}m log(nN)) time.

The bounds of the theorem also apply to finding n minimum-cost DCS. To see
this let G be the given multigraph or graph. Form G by taking two copies of G and
adding a set of edges X, where for each v V(G), X contains an edge joining the
two copies of v, with multiplicity u(v) g(v) and cost zero. It is easy to see that
G is bipartite, and a minimum perfect DCS on G gives a minimum-cost DCS on G.
Furthermore, X is a matching, so Corollary 3.1 applies with Mx M. This implies
the time bound of the theorem for minimum-cost DCS.

A similar reduction can be used to find a minimum-cost maximum cardinMity
DCS. The only difference is that an X-edge costs nN rather than zero. A minimum
perfect DCS on this graph G induces the desired DCS on (either copy of) G. (In proof,
let D be a minimum perfect DCS on G. We can assume that D contains the same
subgraph D in the two copies of G. Suppose D does not have maximum cardinality.
Let P be an augmenting path. Then an alternating cycle C is formed by the two copies
of P plus two edges of D X that are incident to the two ends of P. Furthermore,
c(D (R) C) < c(D), a contradiction.)

Now we derive bounds that are good for multigraphs with moderately sized mul-
tiplicities. First observe that Lemma 2.3 still holds’ in match there is no alternating
cycle of eligible edges. The proof is essentially the same" There is no such cycle ini-
tially, since the edges initially in D are ineligible. A Hungarian search does not create
such a cycle, since immediately after a dual adjustment a cycle leaving .7" on a new
eligible edge reenters .7" on an ineligible edge.

This fact ensures that the time for a depth-first search in Step 1 is O(m) plus the
total augmenting path length. Thus the total time for match is O(mB + A), where B
is the number of iterations and A is the total augmenting path length. Corollary 3.2
bounds B; now we estimate A.

LEMMA 3.4. A O(min{V log.U, nv/MV}).
Proof. As in Corollary 2.1, A < U + L’iU__l Ai. For the first bound, estimate the

summation as in Corollary 2.1, using Lemma 3.1. For the second bound, Lemma 3.2
shows that the summation is at most --]iu__ cnv/M/i O(nv/MU). D

THEOREM 3.2. The transportation problem capacitated or not) can be solved in
O((min{v/-’,n2/3M1/3,n}m + min{UlogU, nx/MU})log(nN)) time. The space is
O(m).

To understand this rather involved time bound, first note that the terms con-
taining M are relevant only in the capacitated transportation problem. The main
use of the theorem in this pper is when U O(nm), in which case the time is
O(nm log n log(nN)); this bound is used in 3.2 to solve transportation problems with
larger U. For further applications we concentrate on the range M O(n). In this
case the above bound for U O(nm) holds, and also the bound O(n,’--log(nN));
hence in this range the performance is competitive with [GoT87a]. In most of the
range M O(n), the bounds of Theorem 3.2 are those of Theorem 3.1, with re-
placed by m" Using Ulog U as the second term of the time bound and writing Bm
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as the first term, the first term dominates if U O(Bm/ log n). Hence the bound is
O(n2/3M1/3m log(aN)) if U O(n2/3M/3m/logn), e.g.., M O(n/(logn)3/2); the
bound is O(v/mMmlog(ng))if U O(v/mMm/ log n), e.g., M O(m/(logn)2);
the bound is O(-mlog(aN)) if V O(v/--m/log n), e.g., all degree constraints
are O(M) and M O(m2/(n(logn)2)).

As in Theorem 3.1, the same bounds hold for networks where each node has an
upper and lower bound on its desired degree, and the objective is minimum cost or
minimum-cost maximum cardinality.

3.2. Scaling edge multiplicities. In multigraphs with large multiplicities, ef-
ficiency is gained by scaling the multiplicities. Let D be a DCS. Recall that for an
edge e, u(e) and d(e) denote the multiplicities of e in G and D, respectively; for a
vertex v, u(v) and d(v) denote the degree constraint of v and the degree of v in D,
respectively. The term u-value refers to a multiplicity u(e) or a degree constraint u(v).
The approach is to scale u-values. The "closeness lemma" needed for scaling is the
following.

Let G be a multigraph with u-values for which D is a minimum-cost maximum
cardinality DCS. Form u+ by adding one to the u-values of an arbitrary subset of
vertices and edges (in particular a u-value can increase from zero to one). Let I be the
number of increased u-values (so I _< m / n). Let D+ be a minimum-cost maximum
cardinality DCS for u+. Let D+ (9 D denote the subgraph that is the direct sum of
subgraphs D+ and D (i.e., for any edge e, D+ (9 D has Id+(e)- d(e)l copies of e).
Choose D+ so that ID+ (9 D is as small as possible. +(v,D) denotes the deficiency
of D at v for u-values u+.

LEMMA 3.5. D+ (9 D can be partitioned into at most I simple alternating paths
and cycles (where "alternating" means with respect to D and D+ ).

Proof. Since both D+ and D are DCSs for u+, D+ (9 D can be partitioned into
simple alternating paths and cycles; for each vertex v, at most +(v, D+) paths end
at v on a D-edge, and similarly for a D+-edge. Call an edge vw with d+(vw) > d(vw)
new if either

(i) d(vw)= u(vw), or
(ii) vw is an end of a path of D+ (9 D and d(v) u(v).

There are at most I new edges. (A type (i) new edge clearly has an increased u-value.
For a type (ii) new edge vw, v has an increased u-value and +(v, D) 1, so vw is the
only type (ii) edge associated with v.) Thus it suffices to show that any alternating
path or cycle P of D+ (9 D contains a new edge.

P does not begin and end with a D-edge, since D+ has maximum cardinality.
Suppose P does not contain a new edge. Then D (9 P is a feasible DCS for u. (This
follows, since a D+-edge vw of P has d(vw) < u(vw); further, if this edge vw is an
end of P, then d(v) < u(v).) P does not begin and end with a D+-edge, since D
has maximum cardinality. Thus P is an even length alternating path or cycle. This
implies that P has zero net cost (with respect o D or D+). But this contradicts the
fact that ID+ (9 D is as small as possible. [:]

It is convenient to define a new cost function ON(e,) c(e)- nN. Here, as usual,
N denotes the largest magnitude of an edge cost. Observe that D+ is a minimum-cost
DCS for cy. (To prove this, we show that any DCS F with fewer edges than D+
is not minimum: F has an augmenting path P. The DCS F (9 P has cy(F (9 P) <_
cy(F) + (n 1)g -ng < cy(F).)

Lemma 3.5 indicates that D+ (9 D can be found in a multigraph G that models
alternating paths. More precisely G is defined as follows. A vertex v E V(G) corre-
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sponds to vl, v2 E V(G’); G’ has an edge vlv2 of cost 0 and multiplicity I. An edge
vw e E(G) corresponds to edges VlW, vw E(G’), with multiplicities and costs

u’(vw) u+(vw) d(vw), ct(VlWl) CN(VW);
U’(V2W2) d(vw), c’(v2w2) --CN(VW).

Finally, each v V(G) has upper- and lower-degree constraints u’(v) u’(v2) I,
l’(vl) 0, t’(v) I- +(v,D).

Edges of type vv2 are called non-G-edges, and all other edges are G-edges; edges
of type v2w2 are called D-edges, and type VWl are non-D-edges. Observe that G is
bipartite, since a cycle has an even number of non-G-edges and the G-edges give a
(not necessarily simple) cycle of G.

The desired subgraph D+ can be chosen as D D, where D is a minimum-cost
DCS on G. To prove this, we will show two properties:

(a) A DCS D+ for u+ gives a DCS D’ on G’ of cost cg(D+)- cN(D).
(b) A minimum-cost DCS D’ on G’ gives a DCS for u+ of cy-cost cy(D)-bc’(D’).

To see that (a) and (b) suffice, observe that (a) implies cg(D+)- cg(D) >_ c’(D’),
(b) implies cg(D) + c’(D’) >_ cg(D+), implying equality in both relations.

For (a), D consists of the D-edges of D- D+ and the non-D-edges of D+ D;
additionally, for each vertex v, D has I- k copies of edge VlV:, where v is on k of
the I paths and cycles of D+ O D given by Lemma 3.5. Note that the lower bound
constraint for v2 is satisfied, since D+ has at most +(v,D) more non-D-edges than
D-edges.

Part (b) follows from the observation that the G-edges of D can be partitioned
into at most I paths and cycles that are alternating for D, and that D(R)D is a feasible
DCS. The lower bounds P(v:) ensure that D D satisfies all upper bounds u+.

Now we can state the capacity-scaling algorithm for finding a minimum perfect
DCS. Given a DCS problem on a multigraph G, let Z denote the given u-values, with
M the largest Z-value. (Without loss of generality, M is the Z-value of a vertex.)
Consider each Z-value to be a binary number b... bk of k [log MJ + 1 bits. The
routine maintains u as the u-values in the current scale. Each scale constructs a
minimum-cost maximum cardinality DCS D for u; d is the function corresponding to
D. The routine initializes each u(e), d(e) and each u(v), d(v) to zero. Then it executes
the following loop for scale index s going from 1 to k:

Step 1. For each edge e, d(e) 2d(e) and u(e) 2u(e)+ (bit bs of Z(e)). For each
vertex v, u(v) 2u(v)+ (bit b8 of Z(v)).
Step 2. Form the multigraph G defined above. (Note that the function u+ in the
definition of G is given by the function u constructed in Step 1; increased u-values
correspond to bits bs that are one in Step 1.)
Step 3. Let D beaminimum-cost DCSonG. Set D -D(R)D, and let dbethe
function corresponding to D.

To see that this algorithm is correct, note that the subgraph D constructed in Step
3 is a minimum-cost maximum cardinality DCS for u, by the above discussion. Hence
in the last scale, D is the desired minimum perfect DCS. (Note that the algorithm
works on both bipartite and general graphs.)

To estimate the running time, assume that Step 3 uses the cost-scaling algorithm
of Theorem 3.2 to find the minimum-cost DCS. Noting that U O(nm) gives the
following.
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THEOREM 3.3. The transportation problem capacitated or not) can be solved in
M)

This result extends to the variants of the perfect DCS problem mentioned above.
Next consider the transportation problem with cost functions. This problem allows

parallel copies of an edge to have different costs. Specifically the cost of the pth copy
of an edge e, 1 _< p _< u(e), is given by c(e, p), a nondecreasing function of p that can
be evaluated in O(1) time. As usual, these costs are in [-N..N], and each vertex v
has a desired degree u(v). The problem is to find a minimum-cost perfect DCS for
these degree constraints. Note that the desired DCS can still be represented by an
integral function on the edges d(e), where 0 _< d(e) <_ u(e), since we can assume that
the DCS contains the d(e) smallest cost copies of e.

As examples of this problem, c(e, p) [aepJ + be is the original DCS problem for
ac 0, and a simple example of diminishing returns to scale for ac > 0. Alternatively,
c(e,p) could be, say, a piecewise quadratic function; in this case evaluating c(e,p) for
arbitrary p would probably involve a binary search on the breakpoints. (Note that
in the definition of the transportation problem with cost functions, the restriction to
nondecreasing cost functions c(e,p) is crucial: without it the problem is NP-hard [GJ,
p. 214]. Also note that the solution to the problem is a multigraph with integral
multiplicities, by definition. This assumption of integrality is also crucial. This issue
is discussed further after Theorem 3.5 for network flows, where real-valued flows make
sense.)

In a trivial sense, the algorithm of Theorem 3.3 solves the transportation problem
with cost functions just treat parallel copies of an edge with different costs as
different edges. The disadvantage of this approach is that in the time bound, the term
m must count each edge e according to the number of distinct costs c(e,p). We show
how to avoid this: We extend the capacity-scaling algorithm to the transportation
problem with cost functions, preserving the time bound of Theorem 3.3.

First we modify the cost-scaling algorithm to preserve the time bounds of Theo-
rems 3.1-3.2. The derivation of those theorems remains valid for cost functions and
gives the desired time bounds, provided all individual steps are implemented to run
in essentially the same time as before. This means implementing Step 1 of the main
routine and scale_match in time O(m) (even though they modify every cost) and sim-
ilarly for match. This can be done because of the following observation. When there
are cost functions, the conditions for a DCS D to be l-feasible are equivalent to a
system involving only two inequalities per edge e vw,

c(e, d(e)) <_ y(v) + y(w) <_ c(e, d(e) + 1) + 1.

Furthermore, the only copies of e that can be eligible are D-edges costing c(e, d(e))
and non-D-edges costing c(e, d(e)+ 1)+ 1.

Step 1 of the main routine and scale_match do not explicitly modify edge costs.
Instead, match computes the cost of an edge when it is needed, in O(1) time using
arithmetic operations. Specifically, the pth cost for vw is

+  0(v)

where + denotes integer division, k [log(n + 2)NJ is the number of cost scales, s is
the index of the current cost scale, and y0 denotes duals at the start of scale s.

The match routine starts by initializing D to contain all edges costing less than
-1. This is done by examining each edge and adding smallest cost copies to D until
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the cost reaches -1. The time is O(m / U), which suffices for the bounds of Theorems
3.1-3.2.

In the depth-first search of Step 1, it is unnecessary to know the multiplicity of
each eligible edge when the search begins. Rather, costs c(e, d(e)) and c(e, d(e) + 1) are
used to determine which edges have at least one eligible copy. When the depth-first
search finds an augmenting path P, the next cost for each edge e P is used to see
if there is another eligible copy of e (i.e., for e P D, another copy of e is eligible
if c(e,d(e)- 1) c(e,d(e)), and similarly for e P- D). Thus the time for the
depth-first search is still O(m) plus the total augmenting path length. It is obvious
that the Hungarian search, given costs c(e, d(e)) and c(e, d(e) + 1), uses time O(m).
Thus the bounds of Theorems 3.1-3.2 apply.

Now we modify the capacity-scaling algorithm of Theorem 3.3. The new version
works by scaling the domain of the cost functions. The closeness lemma (Lemma 3.5)
generalizes as follows. Let G be a multigraph with cost functions c and u-values for
which D is a minimum-cost maximum cardinality DCS. Form u+ by adding one to
the u-values of an arbitrary set of vertices and edges. Form c+ so that for each edge
e and p e [0..u+(e)),

(6) c(e,p + 1) >_ c+(e,p+ 1) >_ c(e,p).

(Here c(e, O) -, c(e, u(e) + 1) .) Let I be the number of vertices with an
increased u-value plus the number of edges with an increased u-value or some decreased
c-value (so that I _< m + n). Let D+ be a minimum-cost maximum cardinality
DCS for c+ and u+, chosen so that ID+ @ D is minimum (D+ (R) D has the obvious
interpretation).

LEMMA 3.6. D+ D can be partitioned into at most I simple alternating paths
and cycles.

Proof. The argument is an expanded version of Lemma 3.5. We will explicitly
state only the new material. The definition of new edge is expanded to include a type
(iii) new edge e, defined to have d+(e) > d(e) and c(e,d(e)+ 1) > c+(e,d(e)+ 1),
where by definition only the d(e) + 1st copy of e is new. (Note that d+ (e) d(e) may
be larger than one.)

The argument remains unchanged until the end, when P is an even length alter-
nating path or cycle not containing a new edge, and we must show that it has zero
net cost (with respect to c+ and D+). The net cost of P with respect to c+ and D+
is nonnegative, by the minimum-cost property of D+. Hence it suffices to show that
the net cost of P with respect to c+ and D is nonnegative.

This follows from the minimum-cost property of D if for every edge e whose pth
copy is in P N D+, c+(e,p) >_ c(e,d(e) + 1). We prove this inequality as follows. The
pth copy of e is not new and p >_ d(e) + 1. Consider two cases: If p d(e) + 1 then
c+(e,p) c(e,d(e) + 1), as desired. If p :> d(e) + 1 then c+(e,p) >_ c(e,d(e) + 1) by
(6), as desired. [-1

This lemma justifies an algorithm similar to the capacity-scaling algorithm. The
main differences are as follows. Step 1, in addition to scaling d and u, scales the cost
function domain. Specifically let co denote the given cost function. Then for each e
and p e [1..u(e)] (where u(e) is the new u-value) Step 1 sets c(e,p) co(e,2-*p),
where k [logM] + 1 is the number of capacity scales and s is the index of the
current capacity scale. Observe that the DCS corresponding to the new (scaled) d
is a minimum-cost maximum cardinality DCS for the new (scaled) u-values rounded
down to even numbers and the new costs c with c(e, 2p- 1) increased to c(e, 2p). So
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Lemma 3.6 applies and justifies the remaining steps: Step 2 defines G as before but
with costs changed in the obvious way to take cost functions into account. Step 3
computes D using the cost-scaling algorithm described above.

For efficiency, these three steps are not done explicitly. (For instance, doing Step
2 explicitly would use O(m2) time, since an edge can be in G with multiplicity m +n.)
Step 1 computes only two new costs for each edge e, c(e,d(e)) (already known) and
c(e, d(e) + 1). To do Step 2, G’ is initialized to contain only the cheapest copy of each
edge of type vlwl, v2w2. This is the copy that will be added to the DCS D first.
Each copy comes from a cost computed in Step 1. When the cost-scaling algorithm
checks to see if there is another eligible copy of an edge e (in the depth-first search),
the next higher (or lower) cost copy of e is computed (by the formula of Step 1) and
the cost is scaled down using (5).

THEOREM 3.4. The transportation problem (capacitated or not) with cost func-
tions can be solved in O(nm log n log(aN)log M) time. The space is O(m). [:]

We close this section with a variant of the capacity-scaling algorithm of Theorem
3.3. It will be useful in the next section for flow problems with lower bounds. The
variant is essentially the (capacity scaling) mincost flow algorithm of Edmonds and
Karp [EK]. For completeness we sketch this algorithm, which we call EK (capacity)
scaling.

It is convenient to describe EK scaling in terms of two well-known ideas, which we
now summarize. The algorithm could be given in terms of 1-feasibility, but it is more
natural to use optimal dual variables. Analogous to 2.2 for matching, optimal duals
satisfy the 1-feasible inequalities with cost-length cl replaced by cost c. Specifically,
variables y(v), v E V, are optimal for a DCS D if for any edge vw, y(v) + y(w) <_ c(vw)
if vw D and y(v) + y(w) >_ c(vw) if vw D. Any graph with a perfect DCS has a
minimum perfect DCS with corresponding optimal duals. (Optimal duals correspond
to the optimal linear programming dual variables.)

The classic Hungarian search for the Hungarian matching/DCS algorithm works
with such optimal dual variables (see [L], [PSI). In contrast, the Hungarian search of
3.1 uses 1-feasible duals. The difference in the two Hungarian searches is essentially

the definition of "eligible": 3.1 uses cost-length in the definition of eligible where the
standard Hungarian search uses cost. In either case, the purpose of the Hungarian
search is to adjust duals, preserving 1-feasibility or optimality as appropriate, and find
an augmenting path of eligible edges. A Hungarian search (with optimal duals) can
be done in time O(m + n log n) using Fibonacci heaps [FT].

Hungarian search can be used to do sensitivity analysis for the DCS problem.
We will need two sensitivity problems: Given is a minimum perfect DCS D with
corresponding optimal duals y. The first problem is to increase the degree constraints
of two vertices v, w each by one, and update D and y (if a perfect DCS exists). The
second problem is to add an edge vw to the multigraph and update D and y. Both
problems can be solved in the time for one Hungarian search. We briefly sketch the
algorithms.

First, suppose u(v) and u(w) are each increased by one. Do a Hungarian search
from v. Eventually the search finds an augmenting path P of eligible edges from v to
w. (The augmenting path can only end at w. If no such path is found, there is no
perfect DCS for the new degree constraints.) The algorithm augments along P.

Next, suppose edge vw is added. If y(v) + y(w) <_ c(vw), then D and y remain
optimal. Suppose y(v) + y(w) > c(vw). Add new vertices v’, w’, and new edges vv’,
ww’ with c(vv’) c(ww’) 0; set y(v’) -y(v), y(w’) -y(w). Do a Hungarian
search from v, to adjust duals and find an augmenting path of eligible edges. Note that
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the search lowers y(v). If at some point y(v) is lowered so that y(v) + y(w) <_ c(vw)
the search stops, since now vw can be added to the graph. Otherwise, the search
finds an augmenting path P of eligible edges from v to wI. (Note that if there is no
augmenting path from v to w, the Hungarian search can eventually lower y(v) so
that the first case holds.) The algorithm augments along P and adds vw to the DCS.
(This is permissible, since y(v)+ y(w) > c(vw).) Finally, the new vertices and edges
are deleted.

The EK-scaling algorithm scales capacities similar to the capacity-scaling algo-
rithm. Since it works with optimal duals, it modifies the graph of each scale to ensure
that a perfect DCS exists. This is done by using the graph G (defined in 3.1): G
consists of two copies of G plus edges X, where for each v E V(G), X contains an
edge joining the two copies of v, with multiplicity u(v) and cost nN. Note that (as in

3.1) a minimum perfect DCS on G induces a minimum-cost maximum cardinality
DCS on G. Hence in the last scale, the desired minimum perfect DCS is found.

Now we present the EK-scaling algorithm. It finds a minimum perfect DCS. Given
a DCS problem on a multigraph G, define g, M, k as in the capacity-scaling algorithm.
The routine maintains u as the u-values in the current scale. Each scale constructs
a minimum perfect DCS D for the graph G; d is the function corresponding to D.
The routine initializes each u(e), d(e), and each u(v) to zero. Then it executes the
following loop for scale index s going from 1 to k"

Step 1. For each e e E(G), d(e) - 2d(e) and u(e) 2u(e). For each v V(G),

Step 2. For each e E(G) such that the binary expansion of g(e) has bit b8 1, do
the following: For each copy of G, add one to the copy of u(e) and add another copy
of e, updating D and y using the above routine for adding an edge.

Step 3. For each v V(G) such that the binary expansion of g(v) has bit bs 1, do
the following" Add another copy of the edge joining both copies of v to G. Update
D and y using the above routine for adding an edge. Then add one to both copies of
u(v), and update D and y using the above routine for increasing upper bounds, gl

The correctness of EK scaling follows from the fact that it maintains a set of
optimal duals on G for u and D. Note that in Step 3 in the update routine for
increasing upper bounds, an augmenting path always exists: If the edge vv was added
to D in the routine for adding an edge, the augmenting path that was used can now
be reused.

In problems where each scale has I O(n), the total time for EK scaling is
O(n(m + n log n) log M) slightly improving Theorem 3.3. We will encounter such
problems in the next section.

3.3. Network flow. This section extends the results to integral network flows.
It is convenient to work with the problem of finding a minimum-cost circulation, de-
fined as follows ILl. Let G be a directed graph where each vertex v has a nonnegative
integral capacity u(v), and each edge e has a nonnegative integral capacity u(e), a
lower bound t(e) and a cost c(e). The minimum circulation problem is to find a
feasible circulation with smallest possible cost. (If vertex capacities are not given,
setting u(v) vw u(vw) does not change the problem. The circulation problem
includes the minimum-cost flow problem as a special case. As already mentioned, the
usual definition of the circulation (network flow) problem allows real-valued parame-
ters. However, note that if all capacities and lower bounds are integral, an optimum
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circulation (flow) that is integer-valued always exists [L].)
A minimum circulation problem on a network G can be transformed to a minimum

perfect DCS problem on a bipartite multigraph B, as follows. A vertex v E V(G)
corresponds to vl, v2 E V(B); B has an edge vlv2 of cost 0 and multiplicity u(v).
An edge vw E(G) corresponds to vlw2 E(B) with cost c(vw) and multiplicity
u(vw) i(vw). The degree constraints on B are

c

u(v2) u(v) E{ (wv)lwv c E(G)}.

A circulation on G corresponds to a perfect DCS on B costing less by exactly
E{i(e)c(e)le E(G)}. Thus the flow problem can be solved using the DCS algo-
rithms given above. Note that B has n vertices in each vertex set, O(m) edges,
U O(E{u(v)lv V(G)}) and O(U + Y{u(e)le E(G)}). In part (a) below,

is the number of edges, with each edge counted according to its capacity.
THEOREM 3.5. A minimum-cost circulation on a network with all edge capacities

and lower bounds in [0..M] can be found in the following time bounds (and space

(a) O(min{x/, n/3M/3}log(nN)).
(b) O((min{v/--, n2/3M/3, n}m + min{mM log(mM), n2v/})log(aN)).
(c) O(nm log n log(nN)log M).

These bounds also hold when each edge cost is a convex function of its flow.
Proof. These bounds follow essentially from Theorems 3.1-3.4. Note that M

does not necessarily bound the multiplicities in B, since we assume no bound on
vertex capacities in G. Nonetheless, the bound for part (b) holds. To show this,
use Corollary 3.1, with matching X containing all edges of the form vv2; note that
Mx M. Also the bound for part (c) holds" There are log(mM) capacity scales,
but the time bound involves the factor log M, because each of the first log rn scales is
trivial.

Note that in Theorem 3.5(c), the algorithm for convex cost functions finds an
optimal integral-valued flow. However, this flow need not be the global optimum,
which may involve real-valued flow values. Finding this solution appears to be much
harder. For instance, if the cost of an edge is a quadratic function of its flow, finding
a minimum-cost flow is NP-hard [GJ], [H].

Next, consider a minimum circulation problem in which O(n) vertices and edges
have finite capacity. As usual, every edge has a lower bound, perhaps zero. Such
problems arise as covering problems; a common special case is circulations with lower
bounds but no upper bounds (e.g., the aircraft scheduling problem of [L, p. 139]).

THEOREM 3.6. A minimum circulation on a network with lower bounds but only
O(n) finite capacities, all lower bounds and finite capacities in [0..M], can be found in
O(n(m + n log n)log(aM)) time and O(m) space.

Proof. Without loss of generality assume that no cycle has negative cost and infi-
nite capacity. (Such a cycle can be detected in time O(nm) using Bellman’s algorithm
[Bel].) Recall that a circulation can be decomposed into flows around cycles [Tarj].
Hence it is easy to see that all infinite capacities (on edges or vertices) can be re-
placed by any number that is at least S {if c(e) is finite then c(e) else
E(G)} / ,{c(v)[v e V(G), e(v) is finite}.

The algorithm is as follows: Find S and set k [log S. For each infinite capacity
vertex v, redefine its capacity to S; for each infinite capacity edge e, redefine its
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capacity to t(e) + 2k+l. Transform the new circulation problem into a DCS problem,
as above, and solve the DCS problem using EK scaling.

The correctness of this algorithm follows from the definition of S. To estimate
the efficiency, note that in the DCS problem, every infinite capacity edge of G has
multiplicity 2k+l and every vertex vl, v2 has degree constraint at most S _< 2k.
Hence the first scale is trivial no edges are in the DCS, and the duals can be set
to any sufficiently small values (say min{c(e)/21e e E}). Every scale after the first
has I O(n) (recall that I is the number of increased u-values), since the u-values
of infinite capacity edges double. Hence the total time is O(n(m + n log n) log S)
implying the desired bound.

The term log(nM) in the time bound can be replaced by log M, or more precisely,
(1 + log(S/n)). This modified bound is an asymptotic improvement for S very close
to n. The modified bound follows because, although there are log S scales, the first
log n scales do O(n) augmentations. (This in turn holds, since every unit of I in the
first log n scales contributes at least Sin to the sum for S. Actually, to achieve this
requires a slight modification to the algorithm: the capacity of an infinite capacity
vertex v is changed to 2k + {/(e)le is incident to v}.) Bounds similar to this are in
[EK], [ALl.

As an example of an application of these bounds, consider the directed Chinese
postman problem. A complete definition of the problem is given in [EJ], [PS]; it
is a special case of the above problem with S O(m). The theorem gives time
O(n(m+n log n) log n) for this problem; the modified bound is slightly better, O(n(m+
n log n) log(m/n)). (For instance, it is easy to see that the modified bound is no worse
than O(nm log n).) Aho and Lee [AL] give a complete discussion of covering problems
such as this one.

4. Concluding remarks. Table 1 shows that in terms of asymptotic estimates,
many network problems can be solved efficiently by scaling. Scaling algorithms also
tend to be simple to program. For instance, the assignment algorithm consists of an
outer scaling loop plus an inner loop that does a depth-first search, followed by a
Dijkstra calculation. We believe that such algorithms will run efficiently in practice.
Note that in the experiments done by Bateson [Ba] the scaling algorithm of [G85]
ran faster than the Hungarian algorithm as long as the cost of the matching could be
stored in a machine integer. Our assignment algorithm has even simpler code than
[G85] and so should do even better.

We have extended the assignment algorithm in three other directions. The first
direction is parallel computation. Almost-optimum speedup can be achieved for a
large number of processors. Specifically, the time bound for the assignment problem
improves by a factor of (log(2p))/p for a version of the algorithm running on an
EREW PRAM with p processors, for p <_ m/(x/log2 n). Details are in [GabT88].
The second direction is matroid generalizations of bipartite matching, such as the
independent assignment problem and weighted matroid intersection. As in this paper,
time bounds very close to the best-known bounds for the cardinality versions of the
problems can be achieved; see [GX89a], [GX89b]. The third direction is matching
on general graphs. The time bound for finding a minimum perfect matching on a
general graph is O(v/n(m n)logn rn log(nN)). The algorithm is more complicated
than the assignment algorithm because of "blossoms" that occur in general matching.
Blossoms compound the error due to scaling. Details are in [GabT89].

Since the initial writing of this paper several related results have also been ob-
tained by others. Orlin and Ahuja [OA] discovered an alternative O(v/-dm log(nN))-
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time algorithm for the assignment problem. Their algorithm uses our scaling approach
in combination with a hybrid inner loop that uses the Goldberg-Tarjan "preflow-push"
method in a first phase and single augmentations in a second phase. (We chose not
to use this approach because of the conceptual and practical advantages.of a uni-
form algorithm.) Orlin and Ahuja also show how to use their assignment algorithm
(or ours) to find a minimum average cost cycle in a directed graph with edge costs,
in the same time bound. Ahuja, Goldberg, Orlin, and Tarjan [AGOT] have studied
other double scaling algorithms for the minimum-cost flow problem. Their fastest
algorithm runs in O(nm log(nN)loglogM) time with sophisticated data structures
or O(nm log M(1 + log(nN)/log log M)) time with simple data structures. Aho and
Lee [ALl have investigated the use of Edmonds-Karp scaling in covering problems, as
already mentioned in 3.3.
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