Almost-Optimum Speed-ups of Algorithms for Bipartite Matching and Related Problems

Harold N. Gabow!

Department of Computer Science
University of Colorado

Boulder, CO

80309

Abstract.

We present algorithms for matching and related problems that run on
an EREW PRAM with p processors. Given is a bipartite graph G
with n vertices, m cdges, and integral edge costs at most N in magni-
tude. We give an algorithm for the assignment problem (minimum cost
perfect bipartite matching) that runs in O(/mm log (nN)(log (2p))/»)
time and O(m) space, for p £ m/(nlogin). For p = 1 this im-
proves the best known sequential algorithm, and is within a factor
of log(nN) of the best known bound for the problem without costs
(maximum cardinality matching). For p > 1 the time is within a fac-
tor of logp of optimum speed-up. Extensions include an algorithm for
maximum cardinality bipartite matching with slightly better processor
bounds, and similar results for bipartite degree-constrained subgraph
problems (with and without costs). Our ideas also extend to general

graph matching problemms.

1. Introduction.

Problems such as cardinality matching, degree-constrained sub-
graphs and network flow have efficient sequential algorithms {L, T} but

scem difficult to parallelize, in the sense of NC parallelism (e.g., [GSS])).

! Rescarch supported in part by NSF Grant No. MCS-8302648 and
AT&T Bell Laboratorics.

? Research supported in part by NSF Grant No. DCR-8605962 and
ONR Contract No. N00014-87-K-0467.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1988 ACM-0-89791-264-0/88/0005/0514 $1.50

514

Robert E. Tarjan?
Computer Science Department
Princeton University
Princeton, NJ 08544

and
AT&T Bell Laboratories
Murray Hill, NJ 07974

This paper investigates parallel algorithms from the more practical
viewpoint of speeding up the best known sequential time bounds. We
achicve running times that are within a logarithmic factor of optimuin
speed-np, using siguificant numbers of processors. Furthermore, our
algorithm for the assignment problem executed on one processor im-
proves the best known sequential time bound. In fact it is within a
logarithmic factor of the best known bound for the simpler problem of
maximum cardinality matching.

We start with some definitions and notation; more definitions are
at the end of this section. A matching on a graph is a set of vertex-
disjoint edges. A free vertex is not on any matched edge. A marimum
cardinalily matching has the greatest number of edges possible; a per-
fect matching has no free vertices. When every edge has a numerical
cost, the cost of a set of edges is the sum of its edge costs. A mini-
mum perfect matching is a perfect matching of smallest possible cost.
The assignment problem is to find a minimum perfect matching on a
bipartite graph. This problem has many practical applications [Dan)].

A PRAM (Parallel Random Access Machine) consists of p synchro-
nized processors accessing a common memory. On an EREW (Ezclu-
sive Read Ezclusive Write) PRAM, at most one processor can access
a given memory cell in any instruction cycle. 1f a sequential algorithm
runs in time ¢, an oplimum speed-up of this algorithim on a PRAM with
p processors runs in time O(t/p).

We state resource bounds in terms of the following parameters:
The given graph has n vertices, m cdges, and integral edge costs at
most N in magnitude. The model of computation is an EREW PRAM
with p processors.

Let us review the best known sequential algorithms for bipar-
tite matching problems. For maximum cardinality matching the al-
gorithm of Hopcroft and Karp runs in time O(y/nm) [HK]. For the
assignment problem the best known strongly polynomial time bound is
O(n(m + nlogn)), achieved by the Hungarian algorithm implemented
with Fibonacci heaps [FT]. When the costs are integers of magnitude
at most N and N is not huge, this can be improved: Gabow [G85] gives

a cost scaling algorithm that runs in time O(n®*mlog N).

Qur main result is this:

Theorem 1.1. For integral costs of magnitude at most N, the as-
signment problem can be solved in time O(y/nim log (nN)(log (2p)}/p)

and space O(m), for p < m/(/7 log *n).

For p = 1 our algorithm runs in time O((y/am log(nN)). This
improves the algorithin of {G85] by a factor of n!/4, and is within a
logarithmic factor of the Hopcroft-Karp bound for the problem without
edge costs. For onc processor our algorithm simplifies considerably-~-
details are in [GaT87].

For p > 1 our algorithm speeds up the sequential algorithm by the
almost optimum factor pf logp, for p in the stated range. This gives
a non-trivial specd-up even for very sparse graphs, e.g., graphs with
m = O(n). Using the greatest number of processors allowed, Theorem
1 gives a running tiac of O(n log ®n log (nN)).

Now let us review previous parallel algorithms for matching and
related problems. [KUW], [GP] and [MVV] give parallel algorithms for
minimum cost matching that work even on general graphs. However
these algorithms are probabilistic and use large numbers of processors
(O(log2n) time and nmN M(n) processors for [MVV], slightly fewer
processors and slightly more time for [KUW] and [GP}; here M(n) > n?
is the sequential time to multiply two n x n matrices). Our work is
related to the algorithm of Goldberg and Tarjan for the more general
minimum cost flow problem {GoT]. A parallel version of their algorithm
runs in O(n?(log n)(log nN')) time using n processors and O(n?) space.
Theilr approach to cost scaling is the starting point for our work.

Qur assignment algorithm can be used to solve the single-source
shortest path problem on a directed graph with arbitrary cdge lengths,
in the bounds of Theorem 1.1. The assignment algorithm generalizes
to the minimum cost degree-constrained subgraph problem. The result
is similar to Theorem 1.1 (all s in the bounds of Theorem 1.1 change

to U, the sum of the degree constraints). Yor p 1 these results
improve the sequential algorithms of [G85], by factors of 1!/ and U/4,
respectively.

The basic problem addressed by our work is finding paths fast in
parallel. Efficient transitive closure algorithms use too many processors
for optimum speed-up. Our solution involves extending the notion of
e-optimality of [GoT] to r-optimality, a form more suited to parallel
computation. We also we use the idea of a reduced directed acyclic
graph, and a path doubling technique, to ensure that all paths explored
are short, on the average.

Our approach to the assignment problem simplifies when applied to
the problem of finding a maximum cardinality matching on a bipartite

graph. We achieve slightly better processor bounds.

Thoorem 1.2. A maximum cardinality matching on a bipariite graph
can be found in time O((rm log (2p))/p) and space O(m), for p <

m/(/ulogny. §

515

This bound is within a factor of log(2p) of an optimum speed-up
of the best sequential algorithm for maximum matching matching [ITK].
Using the greatest number of processors allowed, the running time is
O(n logn).

Shiloach and Vishkin [SV] give a parallel algorithm for cardinal-
ity matching. They achieve almost optimum speed-up but for fewer
processors, p < m/n (fastest running time O(n' % logn) and O(y/fim)
space. [KC) has faster running time O(n logn log logn), a factor
logn/log logn better than our fastest time. But transitive closure
is used, and the number of processors required is M(n), plus O(n?)
space. The above-mentioned algorithms of [KUW]), [GP] and [MVV)
are more cfficient in this case but still not close Lo optimum processors
(» = nM(n) for [KUW] and [GP], p = nimAM(n) for (MVV]).

Our cardinality matching algorithin gencralizes to the maximum
carcdinality degree-constrained subgraph problein. For instance on a
bipartite graph the time is O((n*/%n log (2p))/p) for p < m/n®€. This
improves Shiloach and Vishkin's bound of O{(mmlogn)/p) time for
p< mfn {SV]. Extensions of our approach to the problem of finding a
maximum value network flow are given in [GaT88a).

Our ideas also extend to general matching. However the algorithms
and proofs are much more complicated. The main result is that for one
processor, a minimum perfect matching on a general graph can be found
in O(\/na(m, n)logn mlog(nN} time [GaT88b]. An efficient parallel
implementation for p < m/n processors is also given.

The rest of this paper is organized as follows. Section 2 presents
our algorithm for maximum cardinality bipartite matching, and exten-
sions. This illustrates our approach in a simple setting. Scetion 3 is
devoted to the assignment problem. Section 4 discusses the extensions
to the shortest path problen and the minimum cost degrec-constrained
subgraph problem. This section closes with definitions from graph the-
ory.

The logarithm function fog n is to the base two; login denotes the
i power of log n. We use the following convention to sum the values
of a function: If f is a rcal-valued function defined on elements and S
is a set of elements, then f(S) = 3_{f(s)|s € S}.

The given graph has vertex set V and edge set E. In general
for a graph G, V(G) and E(G) denote its vertex set and edge sct,
respectively. We use the notation v € G (vw € G) as a shorthand
for v € V(G) (vw € E(G)) when no confusion can arise. If H is a
subgraph, an H-edge is an edge in H and a non-H-edge is not in H. If
the given graph is bipartite we denote the bipartition as Vp, V). Hence
any edge joins Vp to V); if ¢ is an edge, e denotes its vertex in Vg and
similarly for ;. For a subgraph H, Vo(H) and Vi(H) have the obvious
meaning. In problems with edge costs, ¢(e) denotes the cost of edge e.
By our convention for functional notation, ¢{S) denotes the cost a sct
of edges 5.

An si-path is a path from vertex s to vertex f; two sl-paths are

verfex disjoint if their only common vertices are s and L. A directed

graph is layered if V(G) can be partitioned into sets Wi, i = 0,...,k
such that any edge goes from some ¥, to W4y,

In a graph with a matching M, an aliernaling path (cycle) is a sim-
ple path (cycle) whose edges are alternately matched and unmar.ch;:d.
An augmenting path P is an alternating path joining two distinct free
vertices, Augmenting along P mcans enlarging the matchingto M@ P,
thus giving a matching with one more edge.

If A is a matching on a bipartite graph G, the residual graph for
M (a term from network flow theory [T]) is a directed graph I} that
models the augmenting paths. The vertices of D are V(G) plus two new
vertices s and ¢; its edges are the unmatched edges of G, directed from
Vp to Vq; plus the matched edges of G, directed oppositely; plus edges
from s to each free vertex of Vj; plus edges [rom each free vertex of
V) to t. Augmenting paths for A correspond one-to-one with st-paths
in D. Consider a multigraph in which each vertex v has asscciated
nonnegative integers {(v) and u(v). Let D be a subgraph, and let d(v)
denote the degree of vertex v in D (each copy of an edge incident to
v contributes one to d(v)). A degree-consirained subgraph (DCS) is a
subgraph in which each v has {(v} < d(v) < u(v). In a perfect DCS
each v has d(v) = u(v). The size of the DCS is ineasured by U = u(Vs)
(this is the number of edges in a perfect DCS). A vertex is frec in D il
d(v) < u(v). Other definitions for DCS— e.g., minimum perfect, DCS,

tlie residual grapl, etc., follow by analogy with matching.

2. Maximum cardinality matching.

This section introduces our approach in the simple setting of car-
dinality problems. It discusses the problem of maximum cardinality
bipartite matching, proving Theorem 1.2. This illustrates two main
ingredients of our algorithins: efficient breadth-first search techniques
and the reduced graph. The section begins by stating the cardinal-
ity matching algorithin of Mopcroft and Karp {UK]. Then it gives an
efficient parallel implementation. The section ends with extensions of
our algorithm to the maximum cardinality degree-constrained subgraph
problem.

Let G be a bipartite graph. Consider an arbitrary matching M on
G, with residual graph D (defined in Section 1), The level £(v) of a
vertex v is the length of a shortest sv-path in D ({(v) is infinite if there
is no sv-path). The Icvel graph (for M) consists of all directed edges
rw tllu!‘ have f{w) = {(v) + 1 (with both levels finite). The following
algorithm of llopcroft and Karp finds a maximum cardinality matching
onG.

procedure maich.

Initialize the matching M to . Then repeat the following steps until

the Search Step halts with the desired matching.

Scarch Step. Construct the level graph for M by doing a bLreadth-
first scarch on D, starting from s. If £(t) is infinite in D, halt with the

desired matching M.

516

Augment Step. Find a maximal set A of vertex-disjoint st-paths in
the level graph. Then for each path P € A, augment the matching

along P.]

Two quantities are used o analyze the various matching algo-

rithms in this paper:

I = the number of iterations of the loop of match;

A = the total length of all augmenting paths found by match.

For the Hopcroft-Karp algorithm I = O(y/n) [HK] and A = O(nlogn)
[ET]. Now we show that, on an EREW PRAM with p processors {1 <

p £ m), match can be implemented in time

O((Im/p + A)log(2p)). (1

We start with the data structure for graphs that is used through-
out this paper. The given graph G is represented by sequentially-stored
adjacency lists. More precisely, let I(v) denote the set of edges inci-
dent to a vertex v. For each vertex v, the edges of I(v) are stored in
consecutive locations; v has pointers to the first and last edges of 1(v),
and all lists I(v) are stored in O(m) consecutive locations. The two
copies of any edge are linked to each other. Both copies of an edge
lave O(1) fields for working storage (determined by the algorithm). In
particular these fields contain the links for all lists of edges used by
the algorithm. This data structure can be constructed by one proces-
sor in time O(m 4 n), given any reasonable input representation of G.
([GaT88a] gives a procedure using O(m/p) time).

This data structure facilitates scanning a set of edges in parallel.
For example, the next p edges incident to a vertex v can be scanned
concurrently, processor ¢ scanning the edge # locations after the current

position in I{v). An algorithm for breadth-first search can be based

on this principle. It finds the first L levels of a breadth-first search

starting from any given sel of vertices in time

O((m/p + L) log (2p))- @

This fact may be viewed as an application of Brent’s principle [B},
since it is obvious that each level of a breadth-first search can be done
in O(1) time, assuming m processors and ignoring processor allocation
problems. We will assume this breadth-first search routine for now.
We sketch an implernentation below.

The Search Step is implemented with the breadth-first search rou-
tine. Each search stops when vertlex ¢ is rcach.ed. or when there are no
more vertices to scan. (‘The latter is true in the last iteration, since £()
is infinite).

The Search Steps use total time (1). To see this note that there are
I Search Steps, so the first termns of (2) for all breadth-first searches
sum to O((Jmn/p)log(2p)). In all seatches except the last, the total
number of levels L searchied is less than A, by the stopping criterion of

the Search Step. The last search explores O(A) levels, since the search

paths are alternating. So the second terms of (2) sum to O{A log(2p)).
This gives the desired time bound.

The Augment Step is implemented to avoid backtracking, using the
following idea. Consider a directed acyclic graph £ with distinguished
vertices s and £. The reduction R of D is the maximal subgraph of D
such that cvery vertex except ¢ has positive outdegree (in f2). Note
that any st path of D is in B. Further, an st-path in R can be found
by a greedy strategy: start at s and repeatedly traverse an edge zy
directed from the most recently reached vertex z. The Augment Step
uses the reduction graph, as follows.

For a subgraph H, the notation V. (H) stands for V(H) — {s,t}.

The Augment Step finds st-paths one-by-one, adding successive
paths to A. Let L be the level graph. The Augment Step maintains
the reduction R of the graph L — V (4). (It does this by marking the
vertices that are in R). It finds the next st-path P using the above
greedy strategy: Starting with the above most recently reached vertex
z, to find the next edge ry the processors repeatedly examine the next
p edges directed from z, to find an edge directed to a vertex y of £t
Using this approach the time to find all st-paths in the entire match
algorithm is given by (1) (the term O((7m/p) log (2p)) accounts for the
time examining a group of p edges that do not lead to a vertex in R).

After an st-path P is found, the vertices V (P) are deleted from
R. Then R is updated so that each vertex has positive outdegree. This
is essentially a breadth-first search backwards (rom the level of { to the
level of s. The scarch uses Cole’s algorithm to sort p numbers in time
O(logp) (to keep track of outdegrees when edges are deleted) [C]. A
breadth-first search that deletes u edges uses time O((1/p+ L) log (2p)).
Since the preceding st-path has length L, the time for updating R over
the entire algorithm is given by (1).

We finish the discussion of Theorem 1.2 by sketching the paral-
lel breadth-first search routine. ('l'his routine and its data structures
are used throughout the paper). First obsorve that it is easy to do
a breadth-first search of G, from a given set of vertices S, in time
O(nlog(2p) + m/p). The wdea is that a parallel prefix computation
broadcasts the next vertex v to scan; the processors scan the edges
.incident to v in parallel, cach processor building up a “vertex list” of
vertices on the next level.

A slightly more involved procedure achieves time (2). The search
works in L stages (for L the desired number of levels). For £ =
0,...,L — 1, the £ stage scans all vertices on level £ and places all

newly reached vertices on level £+ 1. Define
me= Z{II(U)I | vertex v is on level £}.

Stage £ uses time O((1 + (m¢ + mey1)/p) log (2p)) time. (Clearly this
gives bound (2)).

There are two data structures: each processor i has two linked
lists, a scan list S(i) and a wverter list V(i). The scan lists contain

the edges to be scanned in the ¢** stage and the vertex lists contain

517

the vertices on level £+ 1. More precisely, the scan lists partition the
edges incident to vertices on level £. Each scan list specifies at most
[ne/p] such edges. An entry on a scan list is a triplet (v, j, k), which
correspouds (o the j* through & cdges (inclusive) in the incident list
I{v). A vertex list is & list of at most [ine/p] vertices on level £ 4 1.

Stage £ works in two parts. ‘The first part scans the edges incident
to level £, I'rocessor i scans the edges on $(i). It adds newly reached
vertices w to its vertex list V(i). Sorting and parallel prefix compu-
tations are used to coordinate the manipulations of vertices w. Cole’s
algorithm is used to sort p numbers in time O{log p) [C).

The second part of stage £ uses the vertex lists to construct scan
lists for stage £ 4 1. This is done in two steps. Step 1 is a parallel
prefix computation that calculates several quantities including mey,.
In Step 2, each processor i constructs one or more triplets for each
vertex v € V(i); the triplets specify how I{v) will be partitioned among
scan lists. The construction uses the fact that scan list boundaries
occur every [mes1/p) edges. Since any processor examines at most
[me/p] vertices and [me41 /p] boundarics, the time is as desired.

This comnpletes the proof of Theorem 1.2,

Now consider the problein of finding a maximum cardinality
degree-constrained subgraph. Our implementation of the Hoperoft-
Karp algorithm easily gencralizes to this problem. (We omit the de-
tails here. Section 4.2 addresses the main issues, in the context of the

weighted case).

Corollary 2.1. Consider a bipartite multigraph, where all edge mul-
tiplicities are at most M (M = 1 for a graph). A maximum cardinality
degree-constrained subgraph can be found in time

O(min{ VT, n23M¥ %} m/p + min{U log U, nv/MU}) log (2p))

and space O(m).

Proof. The time is expression (1), using the bounds on [and A given

in [ET,FM, GaT87). Further discussion is in [Ga'T88a). B

3. The assigument problem.

This section presents our parallel algorithm for the problem of
finding 2 minimum perfect matching in a bipartite graph, proving The-
orem 1.1. For convenience we assume the given graph G has a perfect
matching. (The algorithms of Section 4.2 handle other versions of the.
weighted matching problem). We present the algorithm in a top-down
fashion. Section 3.1 introduces r-optimal matchings and gives the basic
routines of the algorithm. The two major subroutines are in Sections

3.2 and 3.3.

3.1. The basic algorithm: r-optimality.

Most algorithms for weighled inatching, including ours, use the

linear programming dual variables [Dan). A dual funclion is a function

y:V — Z (for Z the set of integers); y(v) is calied the dual variable
of vertex v. Our notational convention for functions (sce Section 1)
implies the following notation: For an edge e, y(e) = y(co) + yler)
(since preciscly speaking, ¢ is {eg,e1}). Similarly if S is a set of edges,
y(S) = Y {y(e)le € 5}. Observe that if M is a matching, y(M) =
S {y(v)| vertex v is matched in M}.

The Hungarian algorithm and other traditional approaches to
weighted matching are based on the complementary slackness condition
for minimum perfect matching [L]: A perfect matching M has minimum
cost if and only if there is a dual function such that for any edge e,
y(e) £ c(e), with equality holding for any e € M. We cali such a dual
function an (optimum) linear programming dual.

Our approach use a modification of linear programming duals. An
1-feasible matching consists of a matching M, a nonnegative integer r,
and dual function y such that

y(e) < e(e) + (if e € M then 0 else 1), e € E; (1a)

(M) < y(M)+r. (1b)
An r-optimal (relazed-oplimal) matching is a perfeet matching that is
r-feasible.

To motivate this definition, first observe that dropping the if term
from (la) and setting r = 0 gives the linear programming duals. Now
put back the if term but keep r = 0. We call this notion I-optimalily.
1-optimality can be used to design an efficient sequential algorithm for
minimum perfect matching. The intuition is that the if term makes
the cost of augmenting paths reflect their length (each unmatched edge
contributes 1 to the path length, and an extra 1 to the path cost; in
the context of scaling the extra 1 is significant, since costs are small).
Because of this the algorithm tends to augment along paths cf short
length, as in the Hopcroft-Karp cardinality matching algorithm. 1-
optimality is similar to the notion of ¢-optimal flows in the minimum
cost flow algorithm of [GoT). The details of the sequential algorithin
based on 1-optimality are omitted hiere (sec [GaT87)), since the same
asymptotic cfficiency is achieved when our parallel algorithm runs on
ONE Processor.

‘The notion of l-optimality docs not seem to lead to an efficient
parallel algorithin, T-oplimality gunrantees a low bound on the total
length of all augmenting paths, but some augmenting paths can still
be long. This implies that an algorithm must explore long candidate
augmenting paths, which secms hard to do efficiently in parallel. We
use r-optimality to overcome this difficulty: r-oplimality guarantees a
low bound on the total length of all augmenting paths (Lemma 3.5)
and also gives the algorithm the flexibility to invalidate Iong candidate
augmenting paths.

We now develop the propertics of r-optimality, and at the same
time state the basic algorithm. We start with the relation between r-

optitmal matchings and minimum perfect matchings; similar results are

in ([GOT], [GaT8T)).

518

Lemma 3.1, If some integer larger than r + n divides each cost c(e)

cvenly, then any r-optimal matching is a minimum perfect matching.

Proof. Consider a perfect matching P. It suffices to show that

(M) £ e(P) +r +n, sinc: ¢(M) and ¢(P) are both multiples of the
integer hypothesized in the lemma. From (1), ¢(M) < y(V) + r; from
(1a), y(V) < ¢(P) 4+ n. Combining these gives the desired inequality.]

The algorithm is stated using three integer parameters,
r, b=3r+5n, g.

The value of these parameters is chosen in Section 3.2 (specifically we
choose r,b = O(n), g = O(logn); r is the parametet for r-optimality).

The main routine of the algorithm scales the costs. It first com-
putes a new cost ¢(e) for each edge ¢, equal to r +n+ 1 times the given
cost. Consider each #(e) to be a signed binary number b,b; ... bs of
k = |log(r + n + I)Nj + 1 bits. The routine maintains a variable
c(e) for each cdge e, equal Lo its cost in Lhe current scale. The routine
initializes each ¢(¢) to 0 and cach dual y(v) to 0. Then it exceutes the

following loop for index s going from 1 to k:

Double Step. For each edge e, c(e) — 2¢(e) + (signed bit b, of z(e)).

For each vertex v, y(v) « 2y(v) — 1.

Match Step. Call the scale_match routine to find an r-optimal matching
for costs c(e). 1

Lemma 3.1 shows that the main routine halts with a minimum
perfect matching. Each iteration of the loop is called a scale. Clearly
the total time is O(log((r + n)N)) times the time for one scale. Note
that the entire algorithm runs in the desired time bound if each scale
runs in time

O((vam/p + nlog?n)log(2p)). 2

"This follows since as noted above we will choose r = O(n). The time
for Step 1 is O(in/p).

The scale_malch routinc transforms costs so they are small integers
(this is for conceptual convenience), Tt changes the cost of cacl edge e
to c(c) — y(e); then it calls the maleh routine on these costs Lo find an
r-optimal malehing Al with duals y’; then it constructs the new dual
function y + y’, where y is the dual function before the call to match.
The time for these transformations is O(m/p+ log p) (a parallel prefix
computation is used to broadcast dual values y(v)).

Clearly when scale-mateh terminates, Al with the new duals is an
r-optimal matching for cost function ¢. Furthermore, the costs that

scale_malch inputs to malch have these properties:

(a) The costs are integers —1 or larger.

(#) There is a perfect matching of cost at most 2r + 3n.

Property (a) follows from the fact that Step 1 of the main routine
changes costs and duals so that each edge e has y(e) £ ¢(e) + 1. Next.
we show that M, the r-optimnal matching found in the previous scale,
satisfies property (b) (property (b) is obvious in the first scale). For
any edge e € M, let p(e) be the value c(e) — y(e) from the previous
scale. After Step 1, 2p(e) + 3 > c(e) — y(e). Hence e costs at most
2p(e) + 3 in the costs for malch. The conclusion for M follows.

In the maick routine, an edge e is eligible if it is matched or con-
straint (la) holds with equality. The malch routine augments the
matching along paths of eligible edges. (To motivate this, think of
(1a) as placing a lower bound ou ¢(e). Then an unmatched eligible
edge has smallest cost possible, and so using it in an augmenting path

is desirable). If there is no augmenting path of eligible edges, match

adjusts the duals to create one. More precisely match wotks as follows.

procedure malch.
Initialize all duals y(v) to 0 and matching A to @. Then repeat the
following steps until the Augment Step halts with the desired r-optimal

matching,

Augment Step. Find a maximal set A of vertex-disjoint augmenting
paths of eligible edges. For each path P € A, augment the matching
along P, and for each vertex w € Vi(P), decrease y(w) by 1. If the

new matching M is perfect, halt.

Search Step. Do a Relaxed Hungarian Search (see below) to adjust
the duals, maintaining r-feasibility, and create an augmenting path of
eligible edges. I

To analyze malch, we must first give some details of the Search and
Augment Steps (the Search Step is described completely in Section 3.2;
the Augment Step is in Section 3.3). The Relaxed Hungarian Search
is a modification of the Ilungarian search done in bipartite matching
(the latter is essentially Dijkstra’s shortest path algorithm [L,T]). The
Relaxed Hungarian Scarch changes dual values in two ways: dual ad-
justments, which are also done in the ordinary Ilungarian search, and
relax operations, which are new. Each dual adjustment calculates a
positive integer § and increases or decreases various dual values by §,
so as to preserve r-feasibility and eventually create an augmenting path
of eligible edges. A relax operation does not create any eligible edges.

At any point in match define

f = the number of free vertices in Vp;
A = the sum of all dual adjustment quantities §
in all Hungarian searches so far.

(A is defined with respect to the current execution of match). The

duals are maintained so that any (ree vertex v has

y(v) = if v € 15 then A alge 0. (3)

519

Now we analyze match. First obscrve that it is correct, specifically:
{i) it maintains r-feasibility, and (if) it halts with M an r-optimal
matching. Property (i) holds after the initialization (by property (a)
of the costs for match). Tt is part of the specification of the Relaxed
Hungarian Search. Ilence we need only consider an Augment Step. It
decreases duals so that y(e) = ¢(e) for every newly malched edge e.
This implics (1a) holds. It also implies (1b) (since every previously
matched edge satisfied y(e) < c(e)). Now consider property (ii). If M
is not perfect but G has a perfect matching, the Search Step creates
an augmenting path of eligible edges. Ilence (if) eventually holds. (If
@ does not have a perfect matching, this is eventually delected in the
Search Step).

The cfficicncy analysis starts with a fact similar to the key result

in the analysis of the Hoperoft-Karp algorithim,

Lemma 3.2, At any poiut in malch, fA <b.
Proof. At any pointin maich let M be the current matching, and let

M?* be a minimum perfect matching. Consider the expression
Y =y(M*) - y(M).

M*® M consists of alternating cycles plus exactly f augmenting paths.
Hence Y = y({vfv is free in M}) = fA, by (3). On the other hand (1)
implies Y < ¢(M*)+ n — ¢[M) + r. Properties (a)—(3) of the costs for

match imply that the last expression is at most 3r +5n =b. §

Define the quantities I and A as in Section 2. In the definition of A4,
measure the length of an alternating path by the number of unmatched

edges. For 1 €1 €< n define

th

A; = the valuc of A during the i** augmentation.

(The i** augmentation is when malch augments along the i augment-

Ling path). ‘These quantities are bounded as follows.

Lemma 3.3, I <2vh+ 1.

Preof. First we show that a Hungarian search S increases A by at
least one. It suffices to show that § does a dual adjustment (since
any dual adjustment quantity § is a positive integer). Search S does
a dual adjustment unless, when it starts, there is an augmenting path
P of eligible edges. Clearly P intersects some augmenting path of 4
of the preceding Augment Step. It is easy to see that P contains an
unmatched edge e, such that e; but not ¢¢ is in an augmenting path of
A. But e is ineligible after the Augment Step decreases y(e;). Thus P
does not exist, and S does a dual adjustment.

This implies that at most v Search Steps end with A < vb. If
a Search Step ends with A > v then f < V& by Lemma 3.2 There
can be at most f more iterations, since cach Augment. Step enlarges

the matching. W

Lemma 3.4. Y0

izl

A; <b+blogn.

Proof. Since f = n—i+1 right before.the i** augmentation, Lemma
3.2 implies A; < bf(n—i+1). I

Lemma 3.5. A< n+b+blogn.

Proof. Let P; be the path used in the i** augmentation. Let £ be
its length, mcasured as the number of unmatched edges; let M; be
(Note that Ay = # and

¢(Mo) = 0). Using (3), the definition of eligible and (1a),

the matching after augmenting along 2.

A = y(Pi — Mioy)) — y(Pin M) 2 & + o(M;) — c(Mi-y).

Summing these incqualities implies 3, A; > A—n (by property (a),
¢(M,) > —n). Now Lemma 3.4 implies the desired bound. |

3.2. Relaxed Hungarian Search.

This section first describes ordinary Hungarian search, modified to
accommodate the concepts of our paper—eligible edges and r-feasiblity.
This version of Hungarian Seatch is what is needed in an efficient one
processor algorithm. The rematinder of the section describes Relaxed
Hungarian Search and prescuts its apalysis.

Ordinary Hungarian search has two main components, the search
forest ¥ and the dual adjustment operation. Recall that the purpose of
a llungarian search is to crcatle an augimenting path of eligible ed ges, by
adjusting the duals in a way that preserves r-feasibility. The angment-
ing path is found by growing a forest F. The roots of ¥ are the frec
vertices of Vg; any path from a vertex to a root in F is an alternating
path of cligible edges. Ilence when F contains a free vertex of Vj it
contains the desired augmenting path.

Il a maximal forest F does not contain an augmenting path. a dual

adjustment can be done. Define the dual adjustment quantity

6 = min{c(e) + 1 — y(c)leo € F, 1 ¢ F}. (4)
Each v € F has its dual y(v) increased by §x (if v € V5 then 1 else
—1). This adjustment preserves r-feasibility, since it does not change
y(e¢) when e has both vertices in F. Furthermore, any edge e achieving

the above minimuin becomes cligible, and can be added to F.

The Hungarian search allernates between growing F and doing
dual adjustnents. Specifically, is grown until iv is maximal: An cli-
gible edge e with eg € Fand e; ¢ F is added to F whenever possible; if
) is not free, its matched edge ¢; ¢4 is also added Lo F. If the maximal
F does not contain an augmenting path, a dual adjustment is done.
‘I'hen the process repeats. Eventually F contains the desired avgment-
ing path of eligible edges, at which point the ordinary Hungarian scarch

halts.

520

The ordinary Hungarian search is adequate for p = 1 (it is used in
the one processor algorithm of [GaT87]). However it is not efficient for
our approach to parallel processing, for the following reason. As illus-
trated in Section 2, our approach charges search time to augmenting
path length. But ordinary I ungarian search leads to two circumstances
where search time can be much longer than augmenting path length:
First, a search might grow a forest F with long paths, yet after dual ad-
justiments, find a shorl angmenting path. Second, when the search halts
there may be Jong alternating paths of cligible edges that the Augment
Step must explore, yel. these paths may not lead to any augmentations.

The Relaxed Hungarian Secarch remedies this using the relax op-
eration. To rclar a sct of matchied vertices S C Vp means to decrease
y(v) by 1 for each v € S. The relax operation makes every unmatched
edge incident to S ineligible. Concerning r-feasibility, note that a relax
operation preserves (la). It decreases y(Af) by |S|, so (1b) places a
limit on relax operations.

Relax operations can be used to overcome the above two difficul-
ties, as follows. First the algorithm can limit the time to grow F: If a
parallel step adds just a small number of vertices to F, the algorithm
relaxes those vertices, preserving (1b), yet cutting off the growth of F.
Second, after the parallel Hungarian search finds an augmenting path,
there may still be eligible edges to add to F. The algorithm continues
to add vertices to F in parallel, until some parallel step adds just a
small number of vertices. At that point the algorithin relaxes those
vertices, cutting off further growth as desired. Ve shall see that these
two remedies lead to an efficient algorithm.

Before presenting the algorithm in detail note that the following
modification of the relax operation might be more efficient in practice:
decrease y(v) only if v € S is incident to an unmatched cligible edge.
Our analysis applies without change to this modification. For definite-
ness, the rest of the paper assumes that the simpler relax operation
given above is used.

Now we describe Relaxed Hungarian Search. The search initializes
the search forest F ta contain the free vertices of Vo. Then it repeats the
following steps until the Adjust Step halts with F as desired. (Recall
that f denotes the number of free vertices in Vp and g is a parameter

of the algorithm).

Adjust Step. Set W1 — {ei| some eligible edge ¢ has e € F, e ¢ F},
W — {eofer € W1, e € M}. If Wy = @ and F contains a [ree vertex
of Vi, halt. If IV; = 8 and F does not contain a frec vertex of Vi, do a

dual adjustment and repeat this step.

Grow Step. Tor each vertex w € W), add an eligible edge vw (v € F) to
F,and il w is not free, add the matched edge ww' to F. If [Wo| < f/g
then relax Wo. §

Let us clarify the flow of control in this algorithm. First consider
the Adjust Step. A dual adjustment in this step is well-defined, since

it is done only when F does not contain a free vertex of V3. A dual

adjustment ensures that the next Adjust Step has W) # @; hence the
Adjust Step repeats at most once.

Next comsider the Grow Step. After it adds edges, the eligible
edges L joining a vertex of Vo(F) to a vertex not in F are all incident
to Wo. If |Wal > f/g, the next Adjust Step and Grow Step process
the edges L (if L # @). If |Wo| < f/g the relax operation makes the
edges L ineligible; hence the next Adjust Step either halts or does a
dual adjustment.

Define two more quantities for the analysis:

R = the total decrease in duals caused by relux operations;

H = the tota} number of iterations in all ungarian scarches,

Here an iteration is defined as an execution of an Adjust Step plus the
following Grow Step (if it cxists). Both quantitics are defined with re-
spect to the current exccution of match, We shall choose the paramnceter

r to be an upper bound on R.

The correctness of the Relaxed Hlungarian Search amounts to these
properties: (i) it preserves (3); (if) it preserves r-feasibility; (i) it
eventually halts having created an augmenting path of eligible edges.

For (), the dual of a free vertex v changes only in a dual adjust-
ment. If v € Vg then every dual adjustment increases y(v), so y(v) = A.
If v € Vi then no dual adjustment changes y(v), so y(v) = 0.

Property (ii) was essentially verified in the above discussion. For
(1d), we have observed that a dual adjustment does not change y(M);
an Augment Step does not increase ¢(M) — y(M). Relax operations
decrease y(M). Hence the choice of r guarantees r-feasibility.

For (iii), as already noted an Adjust Step repeats at most once.
Then a Grow Step with Wy # @ is exccuted. Hence every iteration
of Adjust and Grow enlarges . Thus the routine eventually halts.
When it halts, F contains a {ree vertex of Vq. Hence F contains an
augmenting path of eligible edges. (Note that rclax operations do not
destroy the eligibility of edges in F).

We establish two other properties that are nceded by the Augment
Step (Section 3.3). The first is that F contains all vertices that are on
an augmenting path of eligible edges. This follows since the search
halts with W, = 0.

For the second property, first tecall that the Augment Step of the
cardinality matching algorithm relies on the fact that the level graph
is layered. In minimum cost matching the graph of eligible edges is
not layered. This makes the Augment Step more difficult. The eligible
edges have the following weaker property (similar to {GoT] for network
flow).

Lemma 3.6. In maich there is never an alternating cycle of eligible

edges.

Proof. Consider an alternating cycle of eligible edges C. C does not

exist after the initialization of maich, since there are no matched cdges.

521

C is not created in a Relaxed Iungarian Scarch, for the following
reasons: A relax operation does not create an eligible edge, so it does
not create C. A dual adjustment does create eligible edges e ¢ M,
where eg € F, ey ¢ F. If C contains such an edge, it also contains an
edge f ¢ M with fo & F, fi € F. But f is ineligible after the dual
adjustment.

Similar reasoning applies when the Augment Step creates new

matched edges and changes duals. I
Now we analyze the cfficiency of the Relaxed Hungarian Search.

Lenna 3.7, I = O(b + gnlogn).

Proof. There are three possibilitics for an iteration: (i) It adds at
least. f/y vertices to Vo(F). (#i) It is the last or next-to-last iteration
in its Hungarian scarch. (iii) The next iteration does a dual adjust-
ment. These possibilities are exhaustive since if (i) does not hold and
the Adjust Step does not halt, the Grow Step does a relax operation,
making Wy = @ in the next iteration.

Possibility (ii) occurs O(v/B) times by Lemma 3.3. Possibility (iii)
occurs at most b times, since Lemma 3.2 implies that the number of
dual adjustments is at most b. Possibility (i) clearly occurs at most
gn/f times in a given search. Each Hungarian search has a distinct
value of f, since each Augment Step after the first does at least one
augment. Thus () occurs less than 377, gn/f = O(gnlogn) times,

as desired. 1

Lemma 3.8. R < (4blogn)/g.

Proof. Consider a Search Step that starts with f {ree vertices, whose
dual adjustment quantities § sum to sonic value d. The relax operations
cause a total decrease in duals of at most 2fdfg. To sec this, observe
that a relax operation that is not the last is followed by a dual adjust-
ment. Ilence there are at most d + 1 relax operations, that decrease
duals by at most (d + 1)f/g < 2df/g.

Thus R < ¥ 2fd/g, where the summation is over all Hungarian
searches. Observe that ¥ fd (summation over all Hungarian searches)
is precisely E;‘=1 A;. This follows since the duals of free vertices are
changed only by dual adjustments. Now Lemma 3.4 implies the desired
bound. B

The lemma implies that r can be chosen to be any value satisfying

the inequality r > 4(3r + 5n)logn/g. Mence choose

r=2n, b=11n, g=24[logn].

This imnplies that the number of scales is O(log(nN)), and

[=0(/n), A=O(nlogn), [=0(nlog?n).

In the timing analysis we assume that all arithrnetic operations use
0(1) time. To justify this we show that each dual y(v) has magnitude
O(n?N). Since the input requires a word size of at least max{ log N,
logn} bits, the dual variables can be stored in at worst triple-word
integers.

To show this first define Y, as the largest magnitude of s dual
value y(v), v € Vo, during the s** scale. maich increases y(v) by at
most A < b, and decreases it by at most » < b. Thus Y, < 2Y,+b -1,
and Yp = 0. Hence ¥, < (2* — 1)(b - 1) = O(n?N). Hence the duals of
Vb satisfy the desired bound. When match changes the dual of a vertex
v € V], it preserves the relation y(vv') = c{vv), for vv' € M. So the
duals of V] satisfy the desired bound.

It remains to describe the parallel implementation of the Relaxed
Hungarian Search. It can be implemented so that the total time for
all gearches is O((Im/p + b + I} log (2p)), which is within the desired
time boumd (2). We omit most of the implementation details here; they
are in the complete paper. The algorithm uses breadth-first scanning
techniques and ideas from the ordinary Hungarian search as modified

for scaling (sce [G85]).

3.3. The Augment Step.

This section describes the Augment Step of match. Consider the
Augment Step for some value A. Let 44 denote the total augmenting
path length in this Augment Step. The algorithm of this secticn uses
time

O((m/p+ Aa) log (27)). ®)
The bounds on I and A together with (5) imply that the total time for

all Augment Steps is less than the desired bound (2).

The Augment Step works on the residual graph of the graph of
eligible edges. This directed graph is acyclic, by Lemma 3.6, Thus it
is casy to see that the Augment Step amounts to an algorithm for the
following problem: Given a dirccted acyclic graph D with distingnished
vertices s and ¢, find a maximal set A of vertex disjoint st-paths. "This
is the same problem as in Section 2, but now the graph is acyclic instead
of layered. We present an algorithm for this problem.

For any graph D as in our problem, its reduction R is the sub-
graph induced by the vertices that are on st-paths. Equivalently R is
the maximal subgraph of D such that every vertex except ¢ has posi-
tive outdegree and every vertex except s has positive indegree. (Here
indegree and outdegree refer to degrees i R. Section 2 uses a weaker
notion of reduction). Note that for any vertex v of R, a vi-path in R
can be found by starting at v and repeatedly traversing an edge from
the most recently reached vertex. An sv-path can be found by a similar
stralegy.

As in Section 2 for a subgraph K, V. (II') stands for V(IT)-- {s,t}.

The algorithm maintains the graph R as the reduction of I —

V.(A). As in the Augiment Step of Scction 2, the algorithn repentedly

522

finds an st-path P, adds it to .4, and updates 2 by deleting V. (P) and
all vertices whose indegree or outdegree drops to zero. The difficulty
in this approach is that vertex the deletion time can be excessive. To
see why, observe that the time to delete vertices for P is at least (a
constant times) the lengtl of any path @ of deleted vertices. In Section
2 R is layered, so |Q| < | P]. This gives an acceptable bound on vertex
deletion time. When R is not layered, |@Q| can can larger than |P| —
we know no bound con |Q] except » — 1. Because of this the algorithm
could conceivably exceed its time bound in a small number of searches
(log?n).

The algorithm overcomes this difficulty with the following ap-
proach, based on doubling. The algorithm starts with a candidate
path P. It determines the effect of adding P to A by tentatively delet-
ing V. (P) and other vertices as appropriate. It checks if the time to do
this is acceptable. 1f not, it uses tentatively deleted edges to construct
a new st-path, over twice as long as P. 1t repeats the process for the
new path. Eventually an acceptable path is found and added to A

This strategy is imiplemented in the algorithm find.path below.
find.path is called on a graph R, the current reduction of D — V_(A).
Its purpose is to add one path to .4 and update R. The In and Out
Steps below estimate the deletion time by tentatively deleting vertices
from R. These tentative deletions are either made permanent in the
Double Step, or are ignored. Throughout this section, “tentatively

deleting” a vertex or edge means tentatively deleting it from R.

procedure find_path.
Initialize P to be an arbitrary st-path. Then repeat the following steps
until the Double Step adds the desired path to A.

In Step. Tentatively delete all edges directed from V. (P). Then tenta-
tively delete any vertex whose indegree has dropped Lo zero; repeat this
until every veriex of R — s has positive indegree. Let p; be the total
nuniber of edges tentatively deleted in this step. Let P{ be a loungest

path of edges tentatively deleted in this step.

Out Step. Tentatively delete all edges directed to V. (). Then tenta-
tively delete any vertex whose outdegree has dropped to zero; repeat
this until every vertex of R — ¢ has positive outdegree. Let s, be the
total number of edges tentatively deleted in this step. Let P! be a
longest path of edges tentatively deleted in this step.

Double Step. Set i — p; + po. Let P! be the longer path of P}, P. If
|P'] £ 2(|P| + 1t/p) then make the deletions of the In and Out Steps
permanent, delete V. (P), add P to A and halt. Otherwise ignore those
tentative deletions; let S be a path from s to the first vertex of P’; let
T be a path from the last vertex of P* to ¢; let P be the s¢-path formed
by S, Pland T |

The correctness of find_path amounts to the fact that if the routine
is called with R a nonempty reduction graph, il eventually adds an st-

path to A nnd halts. Tn the initialization, path P exists since R is a

nonempty reduction graph. Similarly, in the Double Step paths $ and
T exist. Thus every iteration of find.path constructs a longer st-path.
Hlence find_path eventually halts as desired.

Before analyzing the efficiency of this routine, let us observe that
it is not difficult to implement find_path. In particular in the In and
Out Steps, paths P! and P! are readily available. ‘To sce why, consider
for definiteness the Out Step and path P. For a vertex v deleted in the
Out Step, define level(v) as follows. If v € V. (P) then level(v) = 0;
otherwise level(v) is the smallest value such that for any edge vuw,
level(w) < level(v) — 1. Then the longest path of edges deleted in the
Out Step starting at v has length exactly lcvel(v). Furthermore, such a
longest path can start with any edge vw where level(w) = level(v) - 1.
Thus P} can be found if for each vertex v, the algorithm records the
edge that caunsed its outdegree to drop to zero.

Now we estimate the efficiency of find_path. Suppose find_path
performs J iterations. For 1 < j < J, let I be the candidate path
P in the j* iteration, and let g, be the number of edges tentatively
deleted in the j** iteration, (Path 22 is constructed immediately before
the j** iteration; s is the value p computed in the j** iteration). Thus
P; is the path that find_path adds to A and yis is the number of edges
actually deleted from R. Let Pyyy = Pa. We shall see that find_path

can be implemented so that the time for the §** iteration is

O((15/p + | Fj+1]) log (2p)). (6)

Lemma 3.9.

|Pa}) log (2p)).

The time for one execution of find_path is O((us/p +

Proof. By (8) the time is O(log(2p)) times T°7_, uj/p+)Pjs1]; this
summation is less than ps /p+2| P |+ E;_;" 5 /p+{P;|. Thus it suffices
to show that this last sum is O(|Ps]). The Double Step implies that
for j < J, |Pj41] 2 |1P]] > 2(1P;| + ;/p). Thus the last sum is at most
Ti=alPil/2 S Tio 1Ps1/274170 <Pyl B

The Augment Step works by repeatedly calling find_path until 2
becomes empty. Note that when the tentative deletions become perata-
nent in the Double Step, R becomes the new reduction graph. Hence
the entry condition for the next call to find_path is satisfied. A crucial
part of the algorithm that is still unspecified is how R is imtialized
when the Augment Step begins (i.e., before the first call to find_path).
Excluding that, it is clear that the Augment Step works correctly. The
total time used is the sum of the bounds of Lemma 3.9, which equals

(5).

Now we describe how R is initialized when the Augment Step be-
gins. The first Augment Step of match is siple: There are no matched
edges, whence R is the residual graph of the eligible edges. For an Aug-
ment Step that is not the first, the following routine is used. In addition
to finding R it constructs a path P to be uscd as the first candidate
path in find_path. Hence the routine ends by skipping the initialization
of find_path and going directly to the In Step of find_path.

523

procedure find_RP.

R Step. Let F be the forest of the preceding Relaxed Hungarian Search.
Do a breadih-first search of the eligible cdges, as follows: Start the
search from the free vertices of Vi (not Vp). Stop the search upon
reaching the first breadth-first level L that does not contain a vertex
of F. Set V(R) to the vertices of F reached in the search. Comnstruct

E(R) from the cligible edges that join vertices of R.

P Step. Let v be a vertex of F i the level preceding L. Let S be
Let T be

the alternating path of the above breadth-first search, from v to a free

the alternating path of F from a free vertex of Vg to v.

vertex of V). Sct P to be the si-path in R that corresponds to S
followed by T'. Go to the In Step of find_path.

Now we show that find_RP is correct. Observe that the R Step
constructs R correctly: When the Relaxed Hungarian Search halts, as
noted in Scction 3.2, F contains all vertices that arc on an augmenting
path of eligible edges. Hence F contains V(J1). Thus a vertex is in /2
if and only if it is joined o a free vertex of V) by an alternating path
of cligible edges containing only vertices of F. Such a veriex is reached
by level L in the breadth-first searcl. This implies that It is initialized
correctly.

In the P Step it is clear that the constructed path P exists and is
in R. Hence find_RP is correct.

The time for find_RP is O((m/p+ |P{} log(2p)), since {P]| > |T| =
JL} ~ 1. The first augmenting path constructed by find_path will be at
least as long as the path it starts with, which is the P constructed by
find_RP. Hence find_RP runs within the desired bound (5).

It remains to describe the parallel inplementation of find_path. It
can be implemented so the time for one exccution is given by (6). As
with the Relaxed Hungarian Search we omit most of the implemen-
tation details. The algorithm uses technigues similar to the Augment
Step of Scction 2.

‘This completes the derivadion of ‘Theorem 1.1,

4. Extensions.

This section first presents an cfficient algorithm for shortest paths
in a directed graph with arbitrary integral edge lengths. Then it gen-
eralizes the assignment algorithm to the minimum cost degree-
constrained subgraph problem. It concludes by discussing further re-

sults for degree-constrained subgraphs.

4.1. Optimum duals and shortest paths.

Some applications of maiching require the optimum linear pro-
gramming duals. We begin by showing how such duals can be derived
from r-optimal duals. Then as an example, we show how this gives an

eflicient shortest path algorithmn.

Let Gt be G with an additional vertex s € V, and an edge sv for
each v € V;. Extend the given cost function ¢ to G+ by defining c(sv)
as an arbitrary integer; the cost function used by the main routine of
our algorithm extends to G* by its definition, € = (r+ n + 1)c. To
specify a cost function on Gt we write Gt;c or G+;¢. Let M be a
minimum perfect matching on G; for vertex v let v/ denote its mate,
ie, vo' € M. Forv € V; let M, be a minimum perfect matching on
Gt — v;c. (Such a matching exists, e.g., M — vv’ + sv’). Optimum

linear programming duals arc given by
y(v) =if v € Vj then —e(M,y) else o(ve’) — y(v').

(This can be proved by an argument similar to the algorithm given
helow. Alternatively see [(87] for a proof from first principles).

Recall the ordinary Hungarian scarcl deseribed in Section 3.2.
Suppose such a search is done on G¥;E, with matching Af. 1L halts
with a tree T of eligible edges, rooted at s. The construction of G+
implies T is a spanning tree. For any v € Vg, augmenting along the
sv-path in T gives an r-optimal matching N, on Gt — ;2. N, is a
minimum perfect matching on G+ — v;¢. This follows from Lemma
3.1, since Gt — v and G have the same number of vertices. Hence N,
qualifies as the above M.

This implies the following procedure to find optimum linear pro-
gramming duals. Given is the output of our matching algorithm, i.c.,
an r-optimal matching on G;¢ with matching M and dual function y.
Form G+, &, defining c(sv) = [y(v)/(r + n + 1)] for each v € V;; also
sct y(s) +— O (this gives r-feasible duals). Do an ordinary Hungarian
search to construct a spanning tree 7' of cligible edges rooted at s, For
a vertex v € Vg, let £2 denote its path to the root in 7. Compute o's
lincar programming dual as e(M) + (PO M) — (P> — M) Compute
the dual of a vertex of V; using the above formula.

‘This algorithm can be implemented in time O((mm/p+ n) log (2p)).
"Tlie Mungarian scarch is implemented as in maick (The choice of ¢(sv)
ensures that A < n). The duals are found by a depth-first traversal of

T using one processor.

Corollary 4.1. Optimum linear programming duals on a bipartite

graph can be found in the bound of Theorem 1.1. I

This implies the next result. Consider a directed graph with n

vertices, m edges, and (possibly negative) edge lengths.

Theorem 4.1. The single-source shortest path problem on a directed
graph with arbitrary integral cdge lengths can be solved in the bound

of Theorem 1.1,

Proof. This problem can be solved by finding optimum lincar pro-
gramming duals for a bipartite graph whose costs are the edge lengths,
and then running Dijkstra’s algorithm [G85a). The latter can be imple-
mented in time O((m/p+n)log N log(2p)), using the scaling algorithm

of [G85a). 1

524

4.2. Dcgree-counstrained subgraphs.

This section presents our algorithm for finding a minimum perfect,
DCS. The algorithm generalizes the matching algorithm of Section 3.
Here we concentrate only in the aspects of the algorithm that are new.
The analysis uses the same sequence of lemmas as Section 3. Most of
the proofs here give only the facts needed to extend the argument of

Section 3. The section also discusses several other DCS algorithms.

Recall that the function u specifies the degree constraints; we denotc a
DCS by D, and the function d specifies the degree of a vertex in D.

Define a relaration function to be a function p: V — N (for N the
nonnegative integers) that has p(v) = 0 for cach v € V}. (The intent
is that p(») cquals the total amount that y(») has decreased in relax
operations). Note that in expressions such as y(1) (or p(D)), a vertex
v contribules y(v)d(v).

An r-feasible DCS consists of a degree-constrained subgraph D, a
nonnegative integer r, a dual function y and a relaxation function p

such that

y(e) Scle) + 1, e¢ D; (1a)
y(e) > cle) — ple), e€ D, (1b)
D)< (le)

An r-optimal DCS is a perfect DCS that is r-feasible.

Lemma 4.1. I some integer larger than r + n divides each cost c(r)

cvenly, then any r-optimal DCS is 8 minimum perfect DCS,

Proof. Use the characterization that a perfect DCS D has minimumn

cost. if and only il any alternating cycle € has ((CADY < (C— D). |

The algorithin is again stated using the integer parameters r,b =
3r 45U and g. We cventually choose r,b= O(U), g = ©(logU).

The main routine and the scale_match routine work exactly as in
matching. The desired time bound for the algorithm follows if each

scale runs in timme

O((VUm/p + Ulog?U)log(2p)). 2)

Let D be the l-optimal matching of the previous scale. (For the
first scale, D_ is any perfect DCS). The costs input Lo match have these

properties:

(a) Any edge not in D_ costs at least ~1.
(0) Any subset of E(1)) costs at most. 2r -+ 3U/.

The prool of (4) uses the nonnegalivity of p.

I the match routine, edge ¢ is eligible if equality holds in (1a) {for
e ¢ D) or (1) (for ¢ € D). The maich routine differs from Section 3 in
two respects: The first is initialization. Each relaxation amount p(v)

is set to 0. Further, the DCS D is initialized to {e|c(e) < —1}.

The sccond difference is the Augment Step. I finds a maximal set
of edge-disjoint augmenting paths of eligible cdges and angments the
DCS along each path. (In a multigraph, “edge-disjoint” means a given
copy of an edge is in at most one path). Unlike Section 3, no duals are
changed after an augment.

The properties of the Search and Augment Steps are similar to
Section 3, with these changes: The definition of f is changed to the
deficiency of the DCS, i.e.,

J =u(Vg) — d(V).

In addition to relation {3) of Section 3, any free vertex v € V, will have
p(v) = 0 (it is never relaxed).

The correctness of match follows as in Section 3, using these obser-
vations to show r-feasibility: The initialization of D guarantees (la);
also the initial D is ncluded in D_ by property (a), so it salisfics the
degree constraints, Finally, the Augment Step does not increase p(D),
since a free vertex v has p(v) = 0.

The analysis of the efficiency of match follows Section 3:
Lemma 4.2. At any point in match, fA < b.

Proof. Consider the expression Y = y(D. — D) - y(D- D). |

Lemma 4.3. 1< 2Vh+1.

Proof. In the Augment Step the edges on an augmenting path be-
come ineligible, by the definition of eligible and the nonnegativity of p.

This implies that any Hungarian search does a dual adjustment. §

Lemma 4.4. }:5;1 A <b+blogll. |

Lemma 4.5, A <U b+ blogll.

Proof. By the argument of Lemma 3.5 and the nonnegativity of p,
Zf.;, A > A+ (Dy) = o(Dy). The initialization of match shows that
an edge in Dy — Dy costs at least —1. So Lemma 4.4 implics the desired
bound.

Now we turn to the Relaxed Hungarian Search. I differs from
Section 3 as a consequence of the fact that an edge of D need not be
eligible. Hence the search forest ¥ is grown edge-by-edge, rather than
in pairs of unmatched and matched edges. Thus the dual adjustment

quantity is defined as

§=min{cle)+1-yle)eg D, ea € F, ey ¢ F}

(4)
Vigle)—cle) +ple)l e€ D, eg ¢ F, e1 € F}.

To relaz a set of nonfree vertices S C Vp means to decrease y(v)
by 1 and increase p(v) by 1, for each v € S. This operation makes

any non-D-edge that is incident to S iucligible. It does not change the

525

eligibility of any D-edge. Concerning r-feasibility, a relax operation
preserves (la)-(1b). Concerning (1¢), it increases p(D) by u(S9).

The Relaxed llungarian Search works as follows. It initializes the
search forest F to contain the free vertices of V5. Then it repeats the

following steps until the Adjust Step halts with F as desired.

Adjust Step. Set Wy — {e;| some eligible edge e ¢ D haseg € F, ¢, ¢
F}, W « {eq] some eligible edge e € D has e; € Wy, ¢ ¢ ¥},

Wa — {eg| some eligible edgee € Dhase; € F, ep ¢ F}. f W U
W = @ and F contains a free vertex of Vi, halt. If W,uW,; =0 and F
does not contain a free vertex of Vi, do a dual adjustment and repeat

this step.

Grow Step. For cach vertex w € Wy U W, add an appropriate eligible
edge vw (v € F) to F; then do the same for each w € Wy, Il u(Wy U
Wy) < f/g then relax Wou Wy,

This routine works analogous to Section 3. Note that after the
Grow Step adds edges, an eligible edge with exactly one vertex in F is
either a non-D-edge or is incident to Wy U W,. If a relax operation is
done, it makes the non-D-edges incident to Wy U 1, ineligible. Hlence

the next Adjust Step halts or does a dual adjustment.

As in Section 3 we will chioose parameter r as an upper bound to
p(D). The correctness of the Relaxed Hungartan Search is proved as in
Section 3.

Now we establish the two properties needed by the Augment Step.
The first is that F contains all vertices that are on an augmenting path
of eligible edges. When the search halts an eligible edge e with exactly
one vertex in F is either a D-edge with eg € F or a non-D-edge with
e, € F. Since an augmenting path starts at a vertex of Vo(F) and is
alternating, it cannot leave F on such an edge.

The sccond property is acyclicity:

Lomma 4.6, In malch there is never an alternating cycle of cligible

edges.

Proof. Consider an alternating cycle of eligible edges C. C does not
exist after the initialization of match, since every D-edge is ineligible.
C is not created by an Augment Step or relax operation, since neither
creates an eligible edge. It remains only to show that C is not created
by a dual adjustment.

A dual adjustment can create an eligible edge e that has exactly
one of its vertices in F. Suppose C contains such ane. Let f be the first
edge after ¢ in C with exactly one vertex in . The two possibilities
fore aree ¢ D withep € F, or ¢ € D withe; € F. In either case since
C is alternating, the two possibilities for f are f ¢ D with f, € F,
or f € D with fy € F. But such an edge is ineligible after the dual
adjustment. B

Now we analyze the efficicncy of the Relaxed ungarian Scarch.

Lemma 4.7, 1 = O(b + gU log UV).

Proof. The only change in the argument is the definition of possibility
(1) - It becomes: (i) The itcration increases u(Vo(F)) by at least f/g.

This occurs at most gU/f times in a given search. I

Lemma 4.8. At any point in time, p(D) < (dblog¥)/g.

Proof. A relax operation increases #(D) by at most f/g. B
The rest of the development—choosing parameters, implementing
of the Relaxed Hungarian Secarch, the Augment Step and its analysis,

is entirely analogous to Section 3.

Theorem 4.2. A minimum perfect degree-constrained subgraph on
a bipartile multigraph can be found in time

O(VT i log (nN)Y(log (2p))/p) and space O(mn),

for p < w/ (VT log™n).

Now consider the general minimum cost degree-constrained sub-
graph problem on a bipartite multigraph G. Each vertex v has given
degree bounds €(v) and u(v). Also given are bounds on the cardinality
of the solution, L and II. We scek a degree-constrained subgraph (i.e.,
for cach vertex v, £(v) < d(v) < u(v)) that has minitnum cost subject
to the restriction that it contains between L and I edges (inclusive).
Note that special cases of this problem include minimum cost match-
ing (£ =0,vu=1,L=20,I = n) minimum cost cardinality £ matching
(change L and H to k), minimum cost maximum cardinality matching,
and similar DCS problems.

It is straight{orward to reduce this general problem on a multi-
graph i to a minimum perfect DCS problem on a multigraph G*. For
t=0,1,add a vertex s; to V;. Now let i range over 0,1 and let i/ = 1.
For each vertex v € Vi, add edge s;v with multiplicity u(v) ~ £{v) and
cost zero. Also add edge sgs; with multiplicity Jf — L and cost zero.
For vertex s; set u(s;) = u(Vir — sit) — L. 1t is easy Lo see that a min-
imum perfect DCS on G* is a solution to the general problem. This
gives the following result. Define U as the sum of the upper bounds of

the given multigeaph G.

Covollary 4.2. The general minimum cost degree-constrained sub-
graph problem on a bipartite multigraph can be solved in time
O(VTmlog (nN)(log (2p))/) and space O(sm),

for p < wf(VU log?n). 1§

We close this section by discussing Lwo refinements of Lhe degree-

constrained subgraph algorithm. In both refinemeuts we state the re-
sult for onc processor. It is unclear at the time of this writing if the

algorithms can be extended to achieve efficient parallelism.

When U is relatively large the fullowing bound improves Theorem

526

1.2. Let A denote the largest multiplicily of an edge (e.g., in a graph,
M

[GaT87} (this paper also extends the algorithm to the minimum cost

1). The following result is analogous to [ET]. Details are in

network flow problem).

Theorem 4.3. A minimum perfect degree-constrained subgraph on
a bipartite multigraph can be found in time O(n*3M/3mlog (nN))

and space O(m). |

Returning to Corollary 4.2, in some applications a better bound
is desirable, to wit, we would like to replace U/ by u, the number of
edges in the solution graph. (In the perfect DCS problem U = u, but
this does not hold for the general problem.) This can be achieved (for
one processor) by modifying the approach of Corollary 4.2. The ideca
is Lo use the above graph G*, but Lo avoid errors (caused by scaling
and relaxation) on the edges incident to s;. Specifically the definition
of r-optimality is changed: There is no relaxation at all, so p = 0; for
any edge ¢ incident to so or s3, the r-optimality conditions become
y(e) S e(e) ife ¢ D and y(e) > c(e) if € € D. Such an edge ¢ is eligible
if the constraint holds with equality.

Several problems arise from this new definition. Most notably, an
edge incident to s; in an augmenting path does nel! become ineligible
after the augment. This means there may be cycles of eligible edges.
Furthermore, the [Tungarian Scarch following the Augment Step may

not do a dual adjustiment.

Theorem 4.4. The general minimum cost degree-constrained sub-
graph problem on a bipartite multigraph can be solved in time
O(/Emlog(nN)) and space O(m), where 4t is the number of edges in

the solution graph.

Proof. The algorithm, a slight modification of the one presented here,
ensures that there is af fcast one dual adjustment every (our iterations.

Details are in the complete paper. 1

Finally we present a more specialized bound.

Theorem 4.5. Consider & bipartite multigraph where every vertex
in Vi has degree O(1). The gencral minimum cost degree-constrained
subgraph problem can be solved in time O(min{ %2, 0?3} log (nN))

and space O(m), where i is the number of edges in the solution graph.

Proof, With careful organization, each Adjust Step and Augment
Step uses time O(u). In maitch it is useful to keep the edges sorted by

cost. Details are in the complete paper. fl

Graphs of the type covered by the theorem arise when an arbitrary
(possibly noubipartite) graph G is converted to a biparlite graph, by
V(G), Vi = E(G), and for each edge ¢ = vw € E(G),

setling Vo
adding edges ve and we. ‘I'his construction and ‘T'heorem 4.5 are used

itt {GW] to solve the weighted k-forest problem.

Acknowledgments. We thank Andrew Goldberg and Serge Plotkin

for helpful conversations.

References.,

(B]

€]

[Dan]

[Di]]

[Din)

[ET)

[FM]

(1)

[G85)

(G87]

{GaT87]

[GaT88a]

R.P, Brent, “T'he parallel evaluation of general arithmetic
espressions”, J. ACM 21, 2, 1974, pp. 201-206.

R. Cole, “Parallel merge sort”, Proc. 27'h Annual Symp.
on Found. of Comp. Sci., 1986, pp. 511-516.

G .B. Dantzig, Linear Programming and Extensions, Prince-

ton Univ. Press, Princeton, N.J., 1963.

E. Dijkstra, “A note on two problems in connexion with
graphs”, Numerische Mathematik 1, pp. 269-271, 1959.
E.A. Dinic, “Algorithm for solution of a problem of maxi-
mum flow in a network with power estimation”, Sov. Math,
Dokl. 11,5, 1970, pp. 1277-1280.

S. Even and R.E. Tarjan, “Network flow and testing graph
connectivity”, SIAM J. Comput. 4, 4, 1975, pp. 507-518.

D. Pernandez-Bacaand C.U. Martel, “Theorctical efficiency
of maximum flow algorithms on networks with small integer
capacities”, Algorithmica, to appear.

M.L. Fredman and R.E. Tarjan, “Fibonacci heaps and their
uscs in improved network optiniization algorithing”,

J. ACM 34, 3, 1987, pp.596-615.

H.N. Gabow, “Scaling algoritlins for network problems”,
J. of Comp. and Sys. Sciences 31, 2, 1985, pp. 148-168.
H.N. Gabow, “Duality and parallel algorithms for graph

matching”, manuscript.

H.N. Gabow and R.E. Tarjan, “Faster scaling algorithms

for network problems”, manuscript.
H.N. Gabow and R.E. TFarjan, “Improved parallel and se-

quential algerithms for network flow problems”,

manuscript.

527

[GaT88b] ILN. Gabow and R.E. Tarjan, “Faster scaling algorithms

[GoT]}

Gl

[GSS]

GW]

(K]

(KUW]

[MVV]

[KC]

(L]

{svi

7]

for general graph matching problems”, manuscript.

A.V. Goldberg and R.E. Tarjan, “Solving minimum-cost

flow problems by successive approxination”, Proc. 19th

Annual ACM Symp. on Th. of Computing, 1987, pp. 7-
18,

7. Galil and V. Pan, “Improved processor bounds for al-
gebraic and combinatorial problems in RNC”, Prac. 2640
Annual Symp. on Foundetions of Comp. Sci., 1985, pp.
450-495.

L.M. Goldschlager, R.A. Shaw and J. Staples, “The maxi-
mum flow problem is logspace complete for P, Theorctical
Comp. Sci. 21,1982, pp. 105-111.

1I.N. Gabow and 11.1l. Westermann, “Forests, frames and
games: algorithms for matroid sums and applications”
Proc. 20** Annual ACM Symp. on Th. of Compuling,
1988.

J. Hoperoft and R. Karp, “An n%/2 algorithm for maximum
matchings in bipartite graphs”, SIAM J. Comp. 2, 4, 1973,
pp. 225-231.

R.M. Karp, E. Upfal and A. Wigderson, “Constructing a
perfect matching is in Raudomn NC”, Combinalorica 6,1,
1986, pp. 35-18.

K. Mulmuley, U. V. Vazirani and V.V. Vaziram, “Matching
is as casy as malrix inversion”, Combinatorica 7,1, 1987,
pp. 105-113.

T. Kim and K.-Y. Chwa, “An O(nlog nlog logn) parallel
maximum matching algorithm for bipartite graphs”, Inf.
Proc. Lelters 24, 1987, pp. 15-17.

E.L. Lawler, Combinalorial Optimization: Networks and
Matroids, llolt, Rinchart and Winston, New York, 1976.
Y. Shiloach and U. Vishkin, “An O(n? log n) parallel MAX-
FLOW algorithm”, J. Algorithms 3, 1982, pp. 128-146.
R.E.Tarjan, Data Structures and Network Algorithms,
SIAM Monograph, Philadelphia, Pa., 1983.

