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Abstract. 

We present algorithms for matching and rclatcd problems !&I, run on 

an ERLSW ITtAM with p processors. Given is a biparlilc &raph c 

with n vertices, m edges, and iutcgral edge costs at most N in magni- 

tude. WC givean algorithm for the assignment problem (minimumcost 

perfect bipartiLe matchillg) that Culls in O( fin1 log (nN)( log (2rJ))/jJ) 

time and O(m) space, for p $ m/(filog*tl). For p = 1 this im- 

proves the best known sequential algorithm, and is withill a factor 

of log (nN) of the best known bound for the problem without costs 

(maximum cardinality matching). For p > 1 the time is within a fac- 

tor of logp of optimum speed-up. Extensions include an algorithm for 

maximum cardinality bipartite matching with slightly better processor 

bounds, and similar results for bipartite degree-constrained subgraph 

problems (with and without costs). Our ideas also extend to genera1 

graph mate hing problems. 

1. Illtroduction. 

Prohlcms such as cardirlolity matching, degree-consl.ratncd sub- 

graphs and network llow have eliicicnt sequential algorilluns fL,T] hut 

seem difficult to pnrallelize, ill 111~ sense of NC parallelism (e.g.. [GSS]). 
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This paper investigates parallel algorithms from the more practical 

viewpoint of speeding np the best. known sequential time bounds. We 

arhicvr running limes l.hal. arc wit.hin a logaril~hmir farl.or of optimuu~ 

speed-up, using siguilicHn1 numbers of proecssors. Furthrrmore, our 

algorithm for 111c assignment problem exerut.ed on one processor im- 

proves the bexl known sequclltial lime bound. In fact ic. is within n 

logarithmic factor of the best known bound for lhc aim&r problem of 

maximum cardinalil y matching. 

We start with some dcliuitions and notation; more definitions are 

at the end of this section. A matching on a graph is a set of verlex- 

disjoint edges. A free vertex is not on any matched edge. A matimum 

cardinalily matching has the greatest number of edges possible; a per- 

fect mafching has no free vertices. When every edge has a numerical 

cost, the cost of a set of edges is the sum of its edge costs. A mini- 

mum perfccl matching is a perfect matching of smallest possible cost. 

The assignment pro6lem is to find a minimum perfect matching on a 

bipartite graph. This problem has many practical applications [Dan]. 

A PRAM (Parallel Random Access Machine) consists of p synchre 

nized processors accessing a common memory. On an EREW (Ezclu- 

sive Read Ezclusive Wrilc) PRAM, at most one processor can access 

a g,ven memory cclt in any instruction cycle. If a sequenlial algorilhul 

runs in time f, an optimum sprcd-up of l.his algorithm on a PRAM with 

p processors runs in tilne O(l/y). 

Wr sl.ale rcsourcc bounds in lcrms of the followil~g parameters: 

The given graph has n vertices, tn edges, and integral edge costs at 

most N iu magnitude. The model of computation is an EREW PRAM 

with y processors. 

Let us review the best known sequential algorithms for bipar- 

tite matching problems. For maximum cardinality matching the al- 

gorithm of Bopcroft and Karp runs in time O(fim) [IIK]. For the 

assignment problem Ihe best known strongly polynomial time bound is 

O(n(m + ~1 logn)), achieved by the Bungarian algorithm implemented 

with Fibonacci heaps [FT]. When Ihe costs are integers of magnitude 

at most N and N is not huge, this can be improved: Cabow [G85] gives 

a cost scaliug algorithm that runs in time o(n3/‘m log N). 



Our main result is this: 

Theorem 1.1. For integral costs of magnhude at meet N, the as- 

signment problem can be solved in time O(J;;m log(nN)( log(2p))/p) 

and space O(ln), for p 5 va/(&ilog *II). 

For p = 1 our algorithm runs in time O((Jiim log(nN)). This 

improves the algorithm of (G85] by a factor of n’/‘, and is within a 

logarithmic factor of the Hopcroft-Karp bound for the problem without 

edge ~0~18. For one processor our algorithm sirapli&s considcrably-- 

details are in [GaT87]. 

For p > 1 our algorithm speeds up the sequcutial algorithm by the 

almost optinrum factor p/ logp, for 1’ in tbc stale<1 range. This gives 

a non-trivial speed-up even for very sparse graphs, e.g., graphs with 

m = O(n). Using the greatest number of Processors allowed, Theorem 

I gives a ruuning tinnc of O(n log% log(nN)). 

Now let us review previous parallel algoritbrns for mat.ching and 

related problems. [IiUW], [GP] and [MVV] give parallel algorithms for 

minimum cost matching that work even on general graphs. However 

these algorithms are probabilistic and use large numbers of processors 

(0( log’,) time and nmNM(n) processors for IMVV], slightly fewer 

processors and slightly more time for [KUW] and [GPJ; here M(n) 1 n* 

is the sequential time to multiply two n x n matrices). Our work is 

related to the algorithm of Goldberg and Tarjan for the more general 

minimum cost llow problem [GOT]. A parallel version of their algorithm 

runs in O(n2( log n)( log nN)) t ime using R processors and O(n2) space. 

Their approach to cost scaling is the starting point for our work. 

Our assignment algorithm cau be used to solve the siugle-source 

shortest path problem ou a directed graph with arbitrary edge lengths, 

iu the bounds of Theorem 1.1. The assigurnrut algorithm generalizes 

to t,he u~iuimum cost dcgrcr-coostraillr~l subgr~~ph problem. The result 

is similar to Throrem 1.1 (all II’S iu tbc* bouuds of l’hcomn 1. I chnlqe 

to I.‘, I,hc sum of 1110 degrcr couslrniuls). For 1’ = 1 I.ll~‘sr rcautts 

improve the srqucut ial algorithms of [CX], by fat l,ors ofr&‘/” antI u’/+, 

rrspcc tively. 

The basic problem addressed by our work is finding paths fast in 

parallel. Efficient transitive closure algorithms use too many processors 

for optimum speed-up. Our solution involves extending the notion of 

c-optimality of [GOT] to r-optimality, a form more suited to parallel 

computation. We also we use the idea of a reduced directed acyclic 

graph, and a path doubling technique, to ensure that all paths explored 

are short, on the average. 

Our approach to the assignment problem simplifies when applied to 

the problem of finding a maximum cardinalit,y matching on a bipartite 

graph. We achieve slightly better processor bounds. 

This bauud is wilhin a factor of log(2p) of an optimum speed-up 

of the best sequential algorithm for maximum matching matching [III<]. 

Using the greatest number of processors allowed, lhe running time is 

O(n log%). 

Shiloach aud Vishkiu [SV] give a parallel algorithm for cardiual- 

il.y matching. They achieve almost optimum speed-up but for fewer 

processors, p < m/u (fastest. ruuniag time O(n’-s logn) and O(J;im) 

spare. [KC] has f,aster runuiug t.irnc O(n logn log log”), a firrlor 

lOgn/ l0lJ log?* tcttcr than our fastcsl time, nut lrauaitive cloeurc 

is used, aud lhe number of processors required is Al(n), plus 0(1&z) 

space. The above-mentioned algorithnLs of IKIJW], [GP] strd [MVV] 

arc more cnicient in this CRYC but sl.ill not close Lo oplinnm~ processors 

(II= t1~9f(s) for [KUW] and [Cl’], p = urn&/(n) for (hlVL’]). 

Our cardiuality matchiug algorillrm grucralixes to lbc maximum 

cartlirlali(.y degcccconstrained subgraph problem. For instance on a 

bipartite graph the time is O((n?&,h log (2p))/p) for p 5 m/ns/s. This 

improves Shiloach and Vishkiu’s bound of O((nmlog u)/p) time for 

p 5 m/n [SV]. Extensions of our approach to lhe problem of finding a 

maximum value network flow are givcu in [GaTSSa]. 

Our ideas also extend to general matching. However the algorithms 

and proofs are much more complicated. The main result is that for one 

processor, a minimum perfect matching on a general graph can be found 

in 0( na(m, n) log R m log (nN) time [GaTSdb]. An efficient parallel 

implementation for p 5 m/n processors is also given 

The rest of this paper is organized as follows. Section 2 presents 

our algorithm for maximum cardinality bipartite matching, and exten- 

sions. This illustrates our approach in a simple setting. Section 3 is 

dcvotcd to the assignmcut problem. Section 4 discusses the extensions 

to the shortest path ptoblaul aud the uliuimuul cost degree-constrained 

subgraph problem. This section closea with dcliuitions from graph thc- 

WY. 

wlc logarithni function log u is to the IXLSC two; loyin d1:110tr3 the 

if* power of Ing *L. We use the following eouvcrrtion to sum the values 

of B function: If / is a real-valued funclion defined on elements and S 

is a Set of elements, then f(S) = C{f(s)ls E S}. 

The given graph has vertex set V and edge set E. In general 

for a graph G, V(G) and E(G) denote its vertex set and edge set, 

respectively. We use the notation v E G (utu E G) as a shorthand 

for 2, E ii(G) (uu, E E(G)) when no confusion can arise. IT H is a 

subgraph, an H-edge is an edge in H and a non-H-edge is not in H. If 

the given graph is bipartite we denote the bipartition as Vo, V~. IIence 

any edge joins VO to V,; if e is an edge, es denotes its vertex iu VO and 

similarly for el. For a subgraph H, Vi(H) and Vl( ?I) have the obvious 

meaning. In problems with edge costs, c(e) denotes the cosl of edge e. 

By our convml.ion for functional notation, r(S) denotes the cost a sr:t 

of 0dgrpY s. 
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graph is layered if V(G) can be partitioned into sets Wi, i = 0,. , k 

such that any edge goes from s”me Ii’, t” lJ’i+l. 

In a graph wilh a matching Al, an altcnroting pflth (cyctc) is ,P sim- 

ple path (cycle) whose edges are alternately matched and unmal,ched. 

An augmenliug path P is an alteruating path joining two distinc.1 free 

vertices. Augmenting alorrg P means enlarging the .matclring to Al $ P, 

thus giving a matching with one m”re edge. 

If A4 is a matching on a bipartite graph G, the residual graph /or 

A4 (a term from network flow theory [T]) is a directed graph L) that 

models the augmenting paths. The vertices ol D are V(G) plus two new 

vertices s and t; its edges are the unmatched edges of G, directed from 

V, to VI; plus the matched edges of G, directed oppositely; plus edges 

from s to each free vertex of Vo; plus edges from each free vertex of 

VI to 1. Augmenting paths for Af correspond one-to-one with St-paths 

in D. Consider a multigraph in which each vertex v has asscciated 

nonnegative integers e(u) and u(u). Let D be a su!bgraph, and let d(v) 

denote the degree of vertex t’ in D (each capy of an edge incident to 

II contributes one to d(u)). A degree-constrained .subgruph (LXX) is a 

subgraph in which each v has e(v) < d(u) 5 u(v). In a per/et1 DC’S 

each u has d(v) = u(u). The size of tlrc DCS is measured by U = ~(1’s) 

(this is the number of edges in a pcrbct DCS). A vertex is /ret in D if 

d(u) < u(u). Other deliuitions f”r DCS- e.g., miuiruuru pcrfec!. DCS, 

the residual graph, etc., follow by analogy with matching. 

This section iutroduces our approach in the simple setting of car- 

dinality problems. It discusses the problem of maximum cardinality 

bipartite matching, proving Theorem 1.2. This illustrates two main 

ingredieuts of our algorithms: efficient breadth-tr-st search techniques 

and the reduced graph. The section begins by jstating the cardinal- 

ity matching algorithm of Hopcroft aud Karp [UK]. Then it gives an 

eIIicient parallel implementation. The section ends with extensions of 

our algorithm to the maximum cardinality degree-constrained subgraph 

problem. 

Let G be a bipartite graph. Consider an arbitrary matching A4 on 

G, with residual graph D (defined in Section 1). The tevel P(v) of a 

vertex v is the length of a short& su-path in D (t?(v) is infinite if there 

is no su-path). The /cue1 grnph (for A4) consists of all directed edges 

VW that iwc [(ul) = t(u) + I (with both levels finite). Tlrc Rllowing 

algorithm of Bopctoft and Karp finds a maximum cardinality matching 

on G. 

procedure mofch. 

Initialize the matching Af to 8. Then repeat the following steps unlil 

the Searclr Step halts will] the desired matching. 

Scorch Slrp. C:“nstruct the level graph for M by doiug a breatllh- 

lirst search on D, starting from s. If t(t) is iulluitc iu D, hall wit Ir the 

desired matching A4. 

Augment Sfep. Find a maximal set A of vertex-disjoint al-paths in 

the level graph. Then for each path P E A, augment the matching 

aloug P. I 

Two qnantities are ured to analyze the various matching algo- 

rithms in this paper: 

I = the number of iterations of the loop of match; 

A = the total length of all augmenting paths found by match. 

For the Bopcroft-Kar,p algorithm I = O(& [HI<] and A = O(n logn) 

[ET]. Now we show that, on an EREW PRAM with p processors (1 5 

p 2 m), match can be implemented in time 

O((I~P + A) log (2~)). (1) 

We start with the data structure for graphs that is used through- 

out this paper. The given graph G is represented by sequentially-stored 

adjacency lists. hlore precisely, let I(u) denote the set of edges inci- 

dent to a v&es u. Ear each vertex v, the edges of I(V) are stored in 

consecutive locations; v has poiuters to the first and last edges of J(u), 

and all lisls I(v) are stored in O(m) consecutive locations. The two 

copies of any edge are liuked to each other. Both copies of an edge 

have 0( 1) Ilelds for workiug storage (determined by the algorithm). In 

particular thcsc fields contain the links for all lists of edges used by 

the algorithm. Thiv dala slructurc can be conslructed by “nc proces- 

sor in time O(m + n), given any reasonable input representation of G. 

([GaTSga] gives a procedure using O(m/p) time). 

This data structure facilitates scanning a set of edges in parallel. 

For example, the next p edges incident to a vertex v can be scanned 

concurrently, processor i scanning the edge i locations after the current 

position in I(v). An algorithm for breadth-first search can be based 

on this principle. It finds the first L levels of a breadth-first search 

starting from any given set of vertices in time 

0((4p+ Qlog(2p)). (2) 

This fact may be viewed as an application of Brent’s principle [B], 

since it is obvious that each level of a breadth-Ilrst search can be done 

in O(1) time, assuming m processors and ignoring processor allocation 

problems. We will assume this breadth-first search routine for now. 

We sketch an implrrnentation below. 

The Search Step is implemented with the breadth-first search rou- 

tine. Each search stops when vertex t is reached, or when there are no 

more vertices to scan. (The latter is true iu lhc last iteration, since 4(t) 

is infinite). 

The Search Steps use total time (I). Tosee this note that there are 

I Search Steps, so the first terms of (2) for all breadth-first searches 

sum to O((lm/p) log(2p)). In all scurclrce except the last, lhe tolal 

number of levels L searched is less than A, by the slopping criterion of 

the Search Step. The last search explores O(A) levels, since the search 
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paths are alternating. So the second terms of (2) sum to O(A log(Zp)). 

This gives the desired time bound. 

The Augment Step is in~plemcntctl to avoid barkl.racking. using the 

following idea. Consider a directed acyclic p,r;\ph 1) with distinguislwtl 

vertices 8 and t. The redacfion R of D is lbc nlaxirn:d nnlrgrapll 0I D 

such t.hat, every vertex except f has positive outtlrgree (in If). Note 

that any st path of D is in R. Further, an st-path in R cm be found 

by a greedy strategy: stnrt at s and rcpcatedly traverse an edge zy 

directed frcom the most recently reached vertex +. The Augment Step 

uses the reduction graph, as follows. 

For a subgraph H, the notation V_(H) stands for V(H) - {s, t}. 

The Augment Step finds St-paths one-by-one, adding successive 

paths to A. Let L be the level graph. The Augment Step maintains 

the reduction R ol the graph L - r(A). (It does this by marking the 

vertices that are in R). It iinds the next s&pa111 I’ using the above 

greedy strategy: Starting will1 lhc above ntost rccrnt.ly rcachrd vcrtcx 

2, to find 1.1~ nexl edge ry Ihr processors reprn~c~lly cxnluinc lhc next 

p edges directed from I, to find an edge dircct.cd to a vcrlc>x !I ol II. 

Using this approach tbc time to find all st-p:\l.hs irr I.hr entire tnalch 

algorithm is givrn hy (1) (t.he term 0(( Iu*/JI) log (21')) accou111s for the 

time examining a group of p edges that do not Icod t.o a vertex in R). 

After an at-pat.h P is found, the vertices v(P) are deleted from 

R. Then R is updated so that each vertex has positive outdegree. This 

is essentially a breadth-first search backwards Cram the level of 1 to the 

level of s. The search uses Cole’s algorilhm to sort p numbers in time 

O( Iogp) (to keep track of outdegrees when edges are deleted) [C]. A 

breadth-first search that deletes /A edges uses time O((\r/y+L) log(2p)). 

Since the preceding St-path has length I,, the time for updating R over 

the entire algorithm is given by (1). 

A slightly more involved procedure achieves time (2). The search 

works in L stages (for L the desired number of levels). For fJ = 

0,. . , L - 1, the P” stage scans all vertices on level ! and places all 

newly tea&d vertices 011 level e + 1. Define 

mr = C{II(u)l 1 vertex v is on level e}. 

Stage P uses time O((1 + (ml + ml+, )/p) log (2p)) time. (Clearly this 

gives bound (2)). 

There are two data structures: each processor i has two linked 

lists, a scan lrsl S(i) and a verler Iisl V(i). The scan lists contain 

the edges to be scanned in the C’* stage and llre vertcr lists contain 

the verlkes ou level C + 1. Mote precisely, the scan lists partition the 

edges incident to vertices on level e. Each scan list specifies at most 

[ml/pJ such edges. An enlry on a scan list is a ltiplel (u, j, k), which 

corrcsyoids lo Ihc j’* through C f* c:dg~s (il&tsivc) iu llrc irrcidrut lit 

[(I,). A vcrtcx list is a list. of nl. most. [r~r/1;1 vcrticcs on level ! + 1. 

Stage f’ works iu two ports. ‘I’hr first pnrl scans lhc edges incidcllt 

to level e. I’rocee~~ i e~sne the edges on S(i). It adds newly reached 

vertices tf~ to its vertex list V(i). Sorting and parallel prefix compu- 

tations are used to coordinate the manipulations of vertices w. Cole’s 

algorithm is used to sort p numbers in time 0( logp) [Cl. 

The second part of stage e uses the vertex lists to construct scan 

lists for stage !+ 1. This is done in two steps. Step 1 is a parallel 

prefix computation that calculates several quantities rncluding ml+I. 

In Step 2, each processor i constructs one or more triplets for each 

vertex u e V(i); the triplets specify how I(v) will be partitioned among 

scan Ms. The construction uses the fact that scan list boundaries 

OCC~T cvcry [ntc+l/pJ edges. Since any processor examines at most 

rmcilJi vcttices and [m(+*/pJ boundaries, the time is as dcsircd. 

Tbis completes the proof of Thcorcm 1.2. 

Now corrsidct the problem of finding a maximum cardinalily 

degree-constrained subgraph. Out implementation of the Ilopctoft- 

Karp algorithm easily generalizes to this problem. (We omit the de- 

tails here. Section 4.2 addresses the main issues, in the context of the 

weighted case). 

CoPollary 2.1. Consider a bipattite multigraph, where all edge mul- 

tiplicities are at most M (M = 1 for a graph). A maximum catdinality 

degree-constrained subgraph can be found in time 

O(min{Jil, n2/sM 1/3)m/p + min{Ulog U, nm)) log(2p)) 

and space O(m). 

This section presents our parallel algorilhm for the problem of 

finding a minimum perfect matching in a bipartite graph, proving The- 

orem 1.1. For convenience we assume the given graph G has a perfect 

matching. (The algorithms of Section 4.2 handle other versions of the. 

weighted matching problem). We present the algorithm in a top-down 

fashion. Section 3.1 introduces r-optimal matchings and gives the basic 

routines of Ihe algorithm. The two major subroutines are in Sections 

3.2 and 3.3. 

3.1. The basic algorithm: r-optimality. 

hiost a1gorithms for weighted matching, including ours, use the 

linear programming dual variables [Dan]. A dualfunclion is a function 
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y : V -+ Z (for Z the set of integers); y(v) is called the dual cmriable 

of vcrlcx v. Our notational convenlion for functions (see Secliou 1) 

implies ~lrc following notation: For an edge e, y(c) = V(Q) + r/(e,) 

(since precisely speaking, E is (eo, el]). Similarly if S is a set ofedges, 

y(S) = C{y(e)le E S). Observe thal if M is a matching, y(M) = 

C{y(v)j vertex v is matched h Al}. 

The Hungarian algorithm and other traditional approaches to 
weighted matching are based on the complementary slackness condition 

for minimum perfect matching [L]: A perfect matching M has minimum 

cost if and only if there is a dual function such that for any edge e, 

y(e) 5 c(e), with equality holding for any e E M. ‘We call such a dual 

function an (opiimum) linear programming dual. 

Our approach use a modific.aLion of linear programming duals. An 

t,-/castbJe mafclring consists of a matching M, a nounegalive intcgcr r, 

and dual function y such that 

y(e) < c(e) f (if e E A4 thou 0 eta l), e E E; (10) 

c(M) < y(M) + r. (lb) 

An r-op/imnl (r&Led-oplimol) maJch:ny is a pcrl;urL matching Lhat is 

r-hrsil~lr. 

To nroLivaLe Lllis dcfiuition, first observe Lhat dropping the .if term 

from (la) and setting r = 0 gives the linear programming duals. Now 

put back the if term but keep r = 0. We call Lhis notion I-oplimaJity. 

1-optimality can be used to design an efficient sequential algorithm for 

minimum perfect matching. The intuition is that the if term makes 

the cost of augmenting paths reflect their length (each unmatched edge 

contributes 1 to the path length, and an extra 1 to the path cost; in 

the context of scaling the extra 1 is significant, since costs are small). 

Because of this the algorithm tends to augment along paths cf short 

length, as in the Hopcroft-Karp cardinality matching algorithm. I- 
. . . opt~unsl~ty 1s similar to the notion of c-optimal flows in Lhc nlinimum 

cosl fIow algorithm of [COT]. The dcLails of the srqueutial algoriLhrn 

based on I-oplimality are omiLLcd hccc (see [GaT87)), since: lhc same 

asympLotic cff&nry is achicvcd when our parallel algoriLhm runs ou 

OllC ,‘roccssar. 

‘I‘hc not.ion of I-opt,imnlit y dors not seem to lrad to au ~+fi&nt 

praII14 ;+orilhln. I-trpti111111il.y gu~~~~~nl.ccs R low b0u11d on I,hc, tol.:~l 

I~~IlgLll of all augnlcnting p:rlhw, bul some augmcnling palhs can wlill 

be long. This implies LhaL an algorilhm must er.plore long candidale 

augmenting paths, which seems hard to do efficiently in parallel. We 

use r-optimality to overcome this difIiculty: r-optimaliLy guamntees a 

low bound on the total length of all augmcnling paths (Lemma 3.5) 

and also gives the algorithm Lhc flrxibilily to invalidale long calldiclate 

augmcnlillg paths. 

\Ve now develop the properlies of r-optimalliLy, and al lhe same 

time state the basic algorithm. We start with the relalion between r- 

opLim.al malclliugs aud nliuimluu perfect ruxtchillgs; similar rcsulLs an: 

ill ([GOT], [CaT87]). 

Lcnmm 3.1. If some integer Iargrr Lhan r + n divides each cost c(e) 

evenly, Lbcu Buy r-oplinral malt hing is a miuimum perfect matching. 

Proof. Consider a perfect matching P. It sufices to show that 

c(M) 5 e(P) + r + n, sinr ! c(M) and c(P) are both multiples of the 

integer hypolhesizcd in the lemma. From (lb), c(M) 5 y(V) + r; from 

(la), y(V) < c(P) +n. Combining these gives the desired inequality. 8 

The algorithm is stated using three integer parameters, 

r, b=3r+5n, g. 

The value of these parameters is chosen in Section 3.2 (specifically we 

choose P, b = O(n), g = O( log n); r is the parameter for r-optimality). 

The main routine of the algorilhm scales the costs. IL first com- 

putes a new cost I for each edge e, equal to r + n + I times the given 

cost. Consider each ?‘(e) Lo be a signed binary number rtblbs b* of 

k = Llog(r + n + J)NJ + 1 bits. The rouLine maintains a variable 

c(e) for each cdgc c, equal lo iLs cost iu Lhc current scale. The routine 

inil,ializc*s each r(r) lo 0 and ra<,h rlusl P(P) Lo 0. ‘I’htisn il. cxccutcs Lhc 

following loop for index s going from 1 to k: 

Double Sfcp. For each edge e, c(e) c 2c(e) + (signed bit b. of F(e)). 

For each vertex v, v(,u) c 2y(v) - 1. 

Match Step. Call the scalematch roufine to find an r-optimal matching 

for costs c(e). I 

Lemma 3.1 shows that the main routine halts with a minimum 

perfect matching. Each iteration of the loop is called a sceJe. Clearly 

the total lime is O( log((r + n)N)) times the time for one scale. Note 

that the entire algorithm runs in the desired time bound if each scale 

runs iu time 

O((fitn/p + tt log%) log(21,)). (2) 

‘rbis follows since as noted above wc will choose r = O(n). The l.ime 

for Sl.ep 1 is O(tn/lj). 

The scale-mnlch roulinr Lrnnsforms costs so Lhry arc small inlcgcrs 

(I.hin is for ro~~rc~pl.u;d convwicww), II. rhangcs Lhc rosl. of each c*dgt\ c 

to r(r) - p(c); 01f.11 it. calls LIIC mcrlch ronliu~~ on these cohl,s lo liud au 

r-optimal malcbing Af will) duals 8’; thru it consl.rurts the ucw tlu;rl 

function y + y’, where y is the dual funclion before the call to match. 

The time for these transformations is O(m/p+ logp) (a pnralIe1 prefix 

compuLat,ion is used to broadcast dual values &u)). 

Clearly when sde~m~fch Lcrminntcs, M wilh I.he new duals is an 

r-oplimal matching for cosl function e. FurLhcrmore, the cosLs that 

stole-mafc8 inputs Lo mulch have lhcse properlies: 

(a) The costs are integers -1 or larger. 

(b) ‘L’herc is a pcrli~cl, matching of cosl at mosl 2r + 3n. 
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Property ((I) follows from the fact that Step 1 of the main routine 

changes costs and duals so that each edge e has y(e) -< c(e) + 1. Next 

we show that M, the r-optimal matcbiug found in the previous scale, 

satisfies property (b) (property (b) is obvious in the first scale). For 

any edge e E M, let p(e) be the value c(e) - y(e) from the previous 

scale. After Step 1, 24.~) + 3 2 c(e) - y(e). IIeuce e costs at most 

2p(e) + 3 in the costs for mnfch. The conclusion for M foollows. 

In the malch routine, an edge e is eligi6le if it is matched or con- 

straint (la) holds with equality. The mulch routine augments the 

matching along paths of eligible edges. (To motivate Ibis, think of 

(la) w placiug a lower bound ou c(e). ‘1‘11~ an unmal.el~c~d eliyiblo 

edge has smallcsl cost possible, and so using it in an augmcuting path 

is desirable). If there is no augmenting path of eligible edges, mrlch 

adjusts the duals to create one. More precisely mnfch works as follows. 

procedure mafch. 

Initialize all duals y(u) to 0 and matching M t.o 0. Then repeat the 

following steps until the Augment Step halts with the desired r-optimal 

matching. 

Augment Step. Find a maximal set A of vertex-disjoint augmenting 

paths of eligible edges. For each path P E A, augment the matching 

along P, and for each vertex UJ E V,(P), decrease y(w) by 1. If the 

new matching XI is perfect, halt. 

Search Srcp. Do a Relaxed Rungarian Search (see below) to adjust 

the duals, maintaining r-feasibiluy, and crcatc an augmeut.ing patb of 

eligible edges. 1 

To analyze march, we must first give some details of Lbe Sear& and 

Augment Steps (the Search Step is described completely iu Section 3.2; 

Lhe Augment Step is in Se&on 3.3). l’bo Rclaxrcl Ilrmgarian Search 

is a modilicat.ion of the Ilungarixn scnrcb clone in bipartite matching 

(Ihc Inl.t.cr is esscnlintly DijksLra’s shortc~sl. pal II atgorithni [l,~‘l’]). ‘1’11~ 

Relaxed 1Iungarian Starch clurngcs dual values in Iwo ways: dual ad- 

jusinrenls, which are also done in Lbc ordinary Bungarian search, and 

relaz operalions, which are new. Each dual adjustment calculates a 

positive integer 6 and increases or decreases various dual values by 6, 

so as to preserve r-feasibility and eventually create an augmenting path 

of eligible edges. A relax operation does not create any eligible edges. 

At any point in match define 

f = the number of free vertices in Vo; 

A = the sum of all dual adjustmeut quantities 6 

in all Ilungarian searches so far. 

(A is defined with respect to the current execution of mafch). The 

duals are maiutained so that any free vertex u has 

y(u) = if u E \j tlrcrr A (4~ I?. (3) 

Now we analyze m&h. First observe that il iscorrect, specifically: 

(i) it maintains r-feasibility, and (ii) it halts with M an r-optimal 

matching. Property (i) holds after the initialization (by property (a) 

of the costs for malch). It is part of the specification of the Relaxed 

llungarian Search. Bence we need only consider an Augment Step. It 

decreases duals so that y(e) = C(E) for every newly matched edge e. 

This implies (lo) holds. It also implies (11) (since every previously 

matched edge satisfied y(e) < c(e)). Now consider property (ii). If M 

is not perfect but G has a pcrhcl matching, Lbe Search Step creates 

an augmenting path of eligible edges. llencc (ii) eventually holds. (If 

(; ~I~w.4 ~10l. hvc a perbct, malchiug, Lhis is r~vrnl.ually clrl.cclr~cl ill Lfu* 

Scnrch Step). 

The cllicicncy analysis slarts willi a fact similar to llre key result 

iu thr analysis of the llopcrolt-Iinrp atgotithm. 

Lcnmm 3.2. At any point iii m&h, /A < 6. 

Proof. Al any point in match let M be the current malelung, and Ict 

M* be a minimum perfect matching. Consider the expression 

Y = y(M’) - y(M). 

M* @M consists of alternating cycles plus exactly f augmenting paths. 

Bence Y = y({v]u is free in M}) = fh, by (3). On the other hand (1) 

implies Y 5 c(M*) + n - c(M) + P. Properties (a)-(b) of the costs for 

match imply that the last expression is at most 3r + 5n = b. 1 

Define the quantities I and A as in Section 2. In the definition of A, 

measure the leogth of an alternating path by the number of unmatched 

edges. For 1 5 i 5 n define 

Ai = the value of A during Llre if* augmentation 

(The it* augmentation is wbcn mafch augmc:nt,s along the ilh sugn~cnt.- 

,ing lmlti). ‘I‘henc quanl.iLies are bounded as follows. 

Lcmnnn 3.3. I < 2X4 + 1. 

Proof. First we show that a Iiungarian search S increases A by at 

least one. It suffices to show that S does a dual adjustment (since 

any dual adjustment quantity 6 is a positive integer). Search S does 

a dual adjustment unless, when it starts, there is an augmenting path 

P of eligible edges. Clearly P intersects some augmenting path of A 

of the preceding Augment Step. It is easy to see that P contains an 

unmatched edge e, such that el but not es is in an augmenting path of 

A. But e is ineligible after the Augment Step decreases y(el). Thus P 

does not exist, and S does a dual adjustment. 
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Lemma 3.4. Cy=, Ai 5 b + blogn. 

Proof. Since f = n - i+ 1 right before.the Ph augmentation, Lsemma 

3.2 implies Ai 5 b/(n - i $1). I 

Lemma 3.5. A<n+b+blogn. 

Proof. Let Pi be the path used in the Ph augmentation. Let I!; be 

its l(~gt11, ~IICESUWCJ zw the number of UOIIUI~CII~~ edges; ICL !Lfi ba 

the matching after augnlcutiug along Pi. (Note that Ms = ld autl 

c(Mo) = 0). Using (3), the dcfmition of eligible and (la), 

Summing these inequalities implies xy=‘=l Ai 2 A-n (by property (a), 

c(M,,) 2 -n). Now Lemma 3.4 implies the desired bound. 1 

3.2. Relaxed Hungarian Search. 

This section first describes ordinary Hungarian search, modified to 

accommodate the concepts of our paper-eligible edges and r-feasiblity. 

This version of Hungarian Search is what is needed in an eficient one 

processor algorithm. The rcmatinder of the section describes Relaxed 

llungariatl Starch and prescuts its apalysis. 

Ordiuary Iluagarian search has two main components, the search 

forest f and the dual acljuslmeut operation. Recall lhat IIW purpose of 

a Hungarian search is to crcatc au augmenliug path of eligible cdycs, hy 

acljustiug the duals in a way that prcservcs r-fcasilbility. The au~3ment- 

iug path is found by growing a forest 3. The roots of 3 are 111~ fret 

vertices of VO; any path from a vertex to a root iu 3 is an alternating 

path of eligible edges. Hence when 3 contains a free vertex of VI it 

contains the desired augmenting path. 

IT a maximal forest 3 does not contain an augmenting path. a dual 

adjustmeni can be done. Define the dual adjustment quantity 

6 = min{c(e) + 1 - y(c)leo E 3, el $ 3). (4) 

Each u E 3 has its dual y(u) increased by 6x (if II E Vo than 1 else 

-1). This adjustment preserves r-feasibility, since it does not change 

y(e) when e has both vertices iu 3. Furthermore, any edge e achieving 

the above minimum becomes eligible, and can be added to 3. 

The Jlongarinn search altcrr~etcs between growing 3 antI doi~~g 

dual adjustments. Specifically, 3 is grown until ilt is maxilual: An cli- 

gible edgo e with ea E 3 and el $ 3 is added to 3 whenever possible; if 

el is not free, its matched edge elel, is also added to 3. If the ulaximal 

3 dock uot contain an augturutiug pall I, a dual acljurilnwut is done. 

‘I’hen the process repeats. Evcutually 3 contnius the desired augmcut- 

ing path of eligible edges, at which point the ordinary Jlungarian search 

halts. 

The ordinary Ruugarian search is adequate for p := 1 (it is used in 

the one processor algorithm of [GaT87]). However it is not efficient for 

our approach to parallel processing, for the following reason. As illus- 

trated in Section 2, our approach charges search time to augmenting 

path length. But ordinary J*ungarian search leads to twocircumstances 

where search time cau be much longer than augmenting path length: 

First, a search might grow a forest 3 with long paths, yet after dual ad- 

just mcu(.s, fiucl a shorl augrncuting pnt.h. Second, when the search halts 

thcrc may 1~ long allurnnting paths of cliaible edges that the Augment 

Step must explore, ycl. these paths may not lead to any augmentations. 

‘L’he Rclaxcd Jlungnrion Search remedies this using the relax op- 

etation. To rclaz a set of matched vertices S C_ VO means to decrease 

y(v) by 1 for each tr 6. S. The relax operation makes every unmatched 

edge incident to S ineligible. Concerning r-feasibility, note that a relax 

operation preserves (la). It decreases y(M) by ISI, so (lb) places a 

limit on relax operations. 

Relax operations can be used to overcome the above two difficul- 

ties, as follows. First the algorithm can limit the time to grow 7: If a 

parallel step adds just a small Itumber of vertices to 3, the algorithm 

relaxes those vertices, preserving (lb), yet cutting off the growth of 3. 

Second, after the pamllel Ilungarian search finds an augmenting path, 

there may still be eligible edges to add to 3. The algorithm continues 

to add vcrliccs to 3 iu parallel, unt,il some parallel st,rp adds just a 

small nurubcr of vrrticca. At t.hat poinl thr algoril hnl relaxes those 

vertices, cutting olT further growth as desired. We shall see that these 

two rcmcdies load to au cficicnt algorithm. 

Bcforc pr~~s~~ntinfi the algorithm iu &Gil n0l.e l.hat the followiug 

motlificatiou of the rcslax opcrat.ion might be more elficicnt iu practice: 

decrease y(a) only if v E S is incident to an unmatched eligible edge. 

Our analysis applies without change to this modification. For definite- 

ness, the rest of the paper assumes that the simpler relax operation 

given above is used. 

Now we describe Relaxed JIungarian Search. The search initializes 

the search forest 3 to contain the free vertices of VO. Then it repeats the 

following steps until the Adjust Step halts with 3 as desired. (Recall 

that f denotes the number of free vertices in Vo and 9 is a parameter 

of the algorithm). 

Adjust Step. Set l+‘l + {ell some eligible edge e has eo E 3, el $! 31, 

LV, - {eolel E Pi’,, e E Al). If W, = 0 and P contains a free vertex 

of V,, halt. Jf tv~ = 0 and 3 does not contaiu a fret vertex of VI, do a 

dual adjuslmcllt and repent lhis step. 

Grow Slrp. For each vertex w E CV,, add an eligible edge VW (v E 3) to 

3, and if w is not frce, add the matched edge ww’ to 3. If IH’el < f/g 

then relax We. I 

Let us clarify the flow of control in this algorithm. First consider 

the Adjust Step. A dual adjustment in this step is well-dellned, since 

it is done only when 3 does not contain a free vertex of V,. A dual 
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adjustment ensures that the next Adjust Step has WI f 0; hence the 

Adjust Step repeats at most once. 

Next consider the Grow Step. After it adds edges, the eligible 

edges L joining a vertex of V’(7) to a vertex not in T are all iucident 

to We. If IWa( 2 f/g, the next Adjust Step and Crow Step process 

the edges L (if L # 0). If /IV,-,1 c f/g the relax operation makes the 

edges L ineligible; hence the next Adjust Step either halts or does a 

dual adjustment. 

Define two more quantities for the analysis: 

R = the total decrease ia duals caused by relax operations; 

H = the total uumher of iteralions in all Hungarian scar&s. 

Here an iteration is defmcd as au cxccutiou of au Adjust Step plus the 

followiug Grow Step (if it rxis1.s). Both cluantilics nrc dcliucd with re- 

spcct to the currcul cxccutiou ol r~irtlcL. \V<* shall choose l.hc parumct~~r 

P to be an upper bound ou R. 

The correctness of the Relaxed Iluugarian Search amounts to these 

properties: (i) it preserves (3); (ii) it preserves r-feasibility; (iii) it 

eventually halts having created an augmenting path of eligible edges. 

For (i), the dual of a free vertex v changes only in a dual adjust- 

ment. If v E Vo then every dual adjustment increases y(u), so y(u) = A. 

If u E IJ, then no dual adjustment changes y(u), so y(v) = 0. 

Property (ii) was essentially verified in the above discussion. For 

(lb), we have observed that a dual adjustment does not change y(M); 

an Augment Step does not increase c(M) - y(M). Relax operations 

decrease y(M). Ilence the choice of r guarantees r-feasibility. 

For (iii), as already noted an Adjust SI.rp rt,peats al mast once. 

Then a Grow Step wil,h 11’1 # 0 is cxccuted. llcnce every iteration 

of Adjust and Crow enlarges 3. Thus tlrr routine eventually halls. 

\\‘hcii iL halts. F coutains a free vertex of V,. llcnce T contains au 

augmenting patb of eligible edges. (Note that relax operations do not 

destroy the eligibility of edges in 7). 

We establish two other properties that are needed by lhe Augmmt 

Step (Section 3.3). The first is that 7 eontaius all vertices that arc on 

an augmenting pa&h of eligible edges. This follows since the search 

halts with W, = 0. 

For the second property, first recall that the Augment Step of the 

eardinality matching algorithm relies bu the fact that the level graph 

is layered. In minimum cost matching the graph of eligible edges is 

not layered. This makes the Augment Step more difficult. The eligible 

edges have the following weaker property (similar to [GOT] for network 

flow). 

Lemma 3.6. In mafc/~ there is never au alleruating cycle of eligible 

edges. 

Proof. Consider an alternating cycle of eligible edges C. C does not 

exist after the iuitializatiou of tuafch, since thcrr arc no matched cdgcs. 

c is not created in a Waxed IIungariau Scar&, for the following 

reasons: A relax operatiou does not create au eligible edge, 90 it does 

not create C. A dual adjustment does creale eligible edges e $! M, 

where ee E 7, el 4 3. If C contains such an edge, it also contains an 

edge f @ M with /o # T, fi E T. But f is ineligible after the dual 

adjustment. 

Similar reasoning applies when the Augment Step creates new 

matched edges and changes duals. u 

Now we analyze the enicicncy of the Relaxed Bungarian Search 

LCllllUH 3.7. II = O(b + gn logn). 

PlTML ‘I’hcrc are three possihilitirn for au itcmtion: (i) It add8 at 

Icnst. j/g vcr(.iccs to Ve(T). (ii) IL is the Kit or uext-to-lust itcral.ion 

in ils Iluogariau starch. (iii) The next itcraliou does a dual adjust- 

ment. These possibilities are exhaustive since if(i) does not hold and 

the Adjust Step does not halt, the Grow Step does a relax operation, 

making WI = 0 in the next iteration. 

Possibility (ii) occurs O(d) times by Lemma 3.3. Possibility (iii) 

occurs at most b times, since Lemma 3.2 implies that the number of 

dual adjustments is at most b. Possibility (i) clearly occurs at most 

gn/f times in a given search. Each Hungarian search has a distinct 

value of f, since each Augment Step after the first does at least one 

augment. Thus (i) occurs less than C;=, gn/f = O(gn log )I) times, 

as desired. 1 

Lcnmm 3.8. R < (4b log r&)/g. 

Proof. Consider a Search Step that starts with / free vertices, whose 

dual adjustmeut quantities 6 sum to sor~lc valued. The relax operations 

cause a total decrease in duals of at most, 2 /d/g. To see this, observe 

that a relax operation that is not the last is followed by a dual adjust- 

ment. Bencc there are at most d + 1 relax operations, that decrease 

duals by at most (d t l)f/g <- 2df/g. 

Thus R 5 CIfd/g, where the summatiou is over all Hungarian 

searches. Observe that C fd (summation over all Hungarian searches) 

is precisely CL1 Ai. This follows since the duals of free vertices are 

changed only by dual adjustments. Now Lemma 3.4 implies the desired 

bound. 1 

The lemma implies that r can be chosen to be any value satisfying 

the inequaliby r 2 4(3r -+ 5n) log n/g. Hence choose 

r= 2n, b = lln, g = 24rlognl. 

This iinplics that lhc number of scales is O( log(nN)), and 

I = O(J;;), A = O(r1 logn), II = O(n log 5‘) 
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In the timing analysis we assume that all arithmetic operations use 

O(1) time. To justify this we show that each dual :y(u) has magnitude 

O(nzN). Since the input requires a word size of at least max{ :~og N, 

logn} bits, the dual variables can be stored in at worst triple-word 

integers. 

To show this first define Y, as the largest magnitude of s. dual 

value y(v), v E Vo, during the sth scale. match increases y(c) by at 

most A 5 b, and decreases it by at most t < b. Thus Y, 5 ZY, + b - 1, 

and Ye = 0. Hence I: < (2’ - I)(b - I) = U(n2N). IIence the duals of 

VO satisfy the desired bound. When match changes the dual of a ,vertex 

v E VI, it preserves the relation y(vv’) = c(uu’), for vu’ E hf. So the 

duals of Vi satisfy the desired bound. 

It remains to describe the parallel implementation of the Relaxed 

llungarian Search. It can be implemented so that the total time for 

all searches is O((lm/p + b + II) lcJg(2p)), w nc i IS within l.lre desired 1 1 

time bound (2). We ornil most of the illi1~lnnietltatiolr details here; they 

are in the complete paper. The algorithm uses breadth-first scanuing 

techniques and ideas from the ordiuary Ilungariau search as modil5.4 

for scaling (see [CXi]). 

3.3. The Augment Step. 

This section describes the Augment Step of rnafch. Consider the 

Augment Step for some value A. Let AA denote the total augmenting 

path leugth in this Augment Step. The algorithml of this section uses 

time 

o((tll/P + AA) 1°6(2P)). (5) 

The bounds on I and A together with (5) imply th[at the total time for 

all Augment Steps is less thau the desired bound I(Z). 

The Augment Step works on the residual graph of lhe graph of 

eligible edges. This directed graph is acyclic, by Lrmma 3.6 Thus il 

is easy to see that the Augmrnl Step amounts to an algorithm for the 

following problcni: Given a dircctcd acyclic graph n wilh disl.inguishccl 

vcrticcs s aud t, fhal a maxinsil SC!I. A of vcrtcx disjoiut st-p:rthr. This 

is the same problem ‘as in Section 2, but now the graph is acyclic instead 

of layered. We present an algorithm for this prob’lem. 

For any graph D as in our problem, its wdsclian R is the sub- 

gmpl1 induced by the vertices that are on &paths. Equivalcnt.ly R is 

the maximal subgraph of D such that every vert,ex except 1 bus posi- 

tive outdegree and every vertex except s has positive indegrce. (Bere 

indegree and outdegree refer to degrees iu R. Section 2 uses a weaker 

notion of reduction). Note that for any vertex v of R, a v&path in R 

can be fouud by starting at u and repeatedly traversing an edge from 

the most recently reached vertex. An su-path can be fouud hy a similar 

stral,cgy. 

As in Section 2 for a subgraph H, V’(If) stands for V(U) .- {s, t). 

The algorithm mainlains lhc grnpb R as the rcduct.ion of U - 

l:(d). As iu lhe Auguient Snrp of Section 2, the algorithui rel~~ealeclly 

finds an &path P, amdds it to A, and updates R by deleting V_(P) and 

all vertices whose indegree or outdegree drops to zero. The difficulty 

in this approach is that vertex the deletion time can be excessive. To 

see why, observe that the time to delete vertices for P is at least (a 

constant times) the I~engtl of any path Q of deleted vertices. In Section 

2 R is layered, so IQ1 5 IPI. This gives an acceptable bound on vertex 

deletion time. When R is not layered, IQ1 can can larger than lPl - 

we know no bound on IQ1 except n - 1. Because of this the algorithm 

could conceivably exceed its time bound in a small number of searches 

(log%). 

The algorithm overcomes this difficulty with the following ap 

proach, based on doubling. The algorithm starts with a candidate 

path P. It determines the effect of adding P to A by tentatively delet- 

ing V-(P) and other vertices as appropriate. It checks if the time to do 

lhis is acceptable. If not, it uses t.cntativcly dehtcd edges to construct 

a new &path, over twice as long as I’. It tepcats the prowess for the 

uew path. Evcutually an accrpt.able path is fouud and added lo A. 

This strategy is inrplcmcnted in thr algorit.hm $nd-pafh below. 

/inJ.pa/h is called on a grayll R, the current reduction of D - V_(A). 

Its purpose is to add one path to A and update R. The In and Out 

Steps below estimate the deletion time by tentatively deletiug vertices 

from R. These tentative deletions are either made permanent in the 

Double Step, or are ignored. Throughout this section, “tentatively 

deleting” a vertex or edge means tentatively deleting it from R. 

procedure find-path. 
Initialize P to be an arbitrary s&path. Then repeat the following steps 

until the Double Step adds the desired path to A. 

In Step. Tentatively delete all edges directed Irem r(P). Then tenta- 

Lively delete any vertex whose iudegree has dropped to zero; repeat this 

until every vertex or 13 - s has positive iudegrcc. Let 18; be the total 

number of cdgcs tcutatively dclctcd in this st,rp. LaL I’/ hc a longest 

pat.11 d edges Lcnt;itivrly dclcled in this step. 

Our SlrI). Tentatively dclctc all edges directcd to V_(P). Then tcnta- 

tively delete any vertex whose outdegrcc has dropped to zero; repeat 

this until every veri.ex of R - 1 has positive outdegree. Let ,J,, be the 

total number of edges tentatively deleted in this step. Let Pi be a 

longesl palh of edges tentatively deleted in this step. 

Double Slep. Set 11 + pi + po. Let P’ be the longer path of Pi, Pi. If 

lP’1 < 2(IPI + jr/p) then make the deletions of the In and Out Steps 

permanent, delete k:(P), add P to A anb halt. Otherwise ignore those 

tentalive deletions; let S be a path from s to the Arst vertex of P’; let 

T be a path from llre last vertex of P’ to t; let P be the St-path formed 

by s, P’ a11tl T. I 

The correctness offiud-pafh amounts to the fact that if the routine 

is called with R a nonempty reduction graph, it eventually odds an st- 

pat.11 to A nncl halts. 111 the initialisntion, path P exists siuce R is a 
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nonempty reduclion graph. Similarly, in the Double Step Baths S and 

T exist. Thus every iteration of find-path conslrttcts a longer St-path. 

Hence jndqnih cvontually halts as desired. 

~cfore analyzing the eficicncy of this routine. Ict us ohscrvc t,hat 

it is not dimcult lo itqhlerlt /inkpath. III particular in the 10 alid 

Out St.eps, pdts P{ and Pj ace readily available. To see why, ronaidcc 

for definiteness the Out Step and path Pi, For a vertex v deleted in lhe 

Out Step, define leoel(u) as follows. If v E v(P) then Ieoel(u) = 0; 

otherwise level(u) is the smallest value such that for any edge uu,, 

level(w) 5 level(v) - 1. Then the longest path of edges deleted in the 

Out Step starling at u has length exactly leuc~(u). Furthermore, such a 

longest path can start with any edge VW where leuel(w) = level(u) - 1. 

Thus Pi can he found if for each vertex v, the algorithm records the 

edge that caused its outdegree to drop to zero. 

Now we estimate the efficiency of fi,ldqa/h. Suppose find-path 

performs J it.rrat.ions. For I 5 j 5 J. 1~1 Pj bc lhe candidate path 

P in the j’” iteration, and tct 14, bc the nuuiber of edges I.cnt;~tivcly 

dclctrd in t,hc ji” itrmt.iou. (Path I’ is consl.rurt IYI imiiiedi;~l.rly before 

the j Ih iteration; )tj is lhe value 1‘ compuled in lhe jib ilcration). Thus 

PJ is the path that find-path adds lo Sz and 1,~ is the number of eclgcs 

actually deleted from R. Let PJ+~ z 1’~. \\:e shall see thal jindqnfh 

can be implemented so that the time for the j’h iteration is 

O((&lP+ IPj+ll)b(2P)). (6) 

Lemma 3.9. The time for one execution of find-pnlh is o((pJ/p + 

IW b3(2PD 

Proof. By (6) the time is 0( log(2y)) limes C:=, pj/p+ JPj+r]; this 

SulmnatiOll is kss than I~J/~+L?[PJI+~~~~ ~j/p+lPj(. Thus it suffices 

lo show that this last sum is O(IPJI). The Double Step implies that 

for j < J, lPj+il 2 If’;1 > 2(/Pjl+/rj/n). Thus the 1st sum is at most 

xi=, lpjl/2 5 ,& lfJi/?+‘-j < lpJ[. 1 

The Auguieul Step wet ks lay r~*pc~itl.~~lly calliiig jifrd.pa/h unt.il /I 

bccomcs cuipty. Note that when tbc teut;&vr~ &+,t ions become perma- 

ncnt in the Double Sky, R becoincs the new reduction graph. llencc 

the entry condition for the next call to fiord-p&h is satisfied. A crucial 

part of the algorithm thal is still unspecified is how R is initialized 

when the Augment Step begins (i.e., before tbc first call to find-path). 

Excluding that, it is clear that the Augment Step works correctly. The 

total time used is the sum of the bounds of Lemma 3.9, which equals 

(5). 
Now we describe how R is initialized when the Augment Step be- 

gins. The first Augment Step of mulch is simple: There are no matched 

edges, whence R is the residual graph of the eligible edges. For an Aug- 

ment Step that is not the first, the followingrouline is used. In addition 

to finding R it constructs a path P to be used as the first candidate 

path in find-path. Hence the routine ends by skipping the initialization 

of find-path and going directly lo lbe 11~ Slrp of find-pnfh. 

proccdurc findeRi’. 

R Step. Let F be the forest of the preceding Relaxed Rungarian Search. 

Do a brcad1.hfirst search of the ebgibb? edges, as follows: Start lhe 

starch from the free vertices of Vi (not Cl). Stop the search upon 

rcachiug ~.hr first breadth-first level L that dots not contain a vertex 

of F. St4 \/(R) to lh vrrliees of T rc:\chrd in lhc search. C:ouslrucL 

E(R) from lhe eligible edges that join verlices of H. 

P Sfcp. Let v be a vertex of ?= in the level preceding L. Let S be 

the altcrnaling palh of f from a free vertex of Vs to v. Let T be 

the alternating path of the above brcadlh-first search, from v to a free 

vertex of Vi. Set P to bc the St-path in 12 that cortcsponds to S 

followed by 2’. Go to the In Step of jiad-path. B 

Now we show that jiadA?P is correct. Observe that the R Slcp 

constructs R corccctly: Wheu lhe Relancd Ilungnrian Search halts, as 

nolo1 iii Scclion 3.2, 7 conl.ains all vcrliccs lbal arc on an augrnenling 

path d cligiblc edges. Il~nro 7 cont.:iins V(R). ‘I’l~us a vrrl.c~x is iu /I 

if and ouly if il. is joinctl lo a rrcc vcrt.ex 0r Vi by an akcrnaliug pal11 

of eligible edges containing ouly vertices of T. Such a vcrtcx is rrachctl 

by level I, in the brcadlh-first scarcli. This iiuplicn that n is initialized 

correctly. 

In the l’ Step it is clear that tbc constructed path P exists and is 

in R. Hence fiad_RP is correct. 

The time for find_RP is O((m/p+ IPI) lo&$)), since [P( 2 ITI = 

JLJ - 1. The first augmenting path constructed by find-path will be at 

least as long as the pat11 it starts with, which is the P constructed by 

find-RP. Bence jind_RP runs within lhe desired bound (5). 

It remains to describe the parallel implementation of /ind_pnth. It 

can be implemented so the time for one execution is given by (6). As 

with the Relaxed Bungarian Search we omit most of the implemen- 

tation dctsils. The algorithm uses techniques similar to the Augment 

Step d Section 2. 

4. Extensions. 

This section first presents an efkient algorithm for shortest paths 

in a directed graph with arbitrary iutegral edge lengths. Then iL gen- 

eralizes the assignment algorithm to the minimum cost degree- 

constrained subgraph problem. It concludes by discussing further re- 

sults for degree-constrained subgraphs. 

4.1. Optimum duals and shortest paths. 

Some applications of matching require the optimum linear pro- 

gramming duals. We begin by showing how such duals can be derived 

from r-optimal duals. Then as an example, we show how this gives an 

cllicient sl~orlcsl pal11 algorilhm. 
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Let G+ be G with an additional vertex s E Vo and an edge sv for 

each v E V,. Exctend the given cost function c to G’+ by defining c(sv) 

as an arbitrary integer; the cost function used by the main muline of 

our algorithm extends to G+ by its definition, F := (r + n + 1)~. To 

specify a cost function on G+ we write G+;c or lG+;?. Let M be a 

mhkmm perfect matching on G; for vertex v let Y’ denote its mate, 

i.e., w E Al. For v E V, let M, be a minimum perfect malching on 

G+ - V; e. (Such a matching exists, e.g., M - VU’ + sv’). Optimum 

linear programming duals arc given by 

Il~dI ltw ordimry II uyqri:uh S~~WI~II dI~scriln~0 ill Sc*rl.ioll X2. 

Suppow such a search is done 011 C+; - c, with malching hf. I1 tdls 

with a tree T of eligible edges, rooted at s. The construction of G+ 

implies T is a spanning tree. For any v E V,, au,gmenting along the 

sv-path in T gives an r-optimal matching NV on G+ - v;~. N, is a 

minimum perfect matching on G+ - V; c. This follows from L~~mma 

3.1, since G+ - v and G have the same number of vertices. Ilence NV 

qualifies as the above &fV. 

This klplies the following procedure to !?nd optimum linear pro- 

gramming duals. Given is the output of our matclhing algorithm, i.e., 

an r-optimal matching on G; F with matching h4 and dual function y. 

Form G+; i?, defining C(W) = [y(u)/(r + n + 1)1 for each v E V,; also 

set y(s) + 0 (this gives r-fcasilk duals). 110 iill orclimry 1lungiwiau 

sv;~rcl, tr, c<,nstrrrct a spanning I.rrc 7’ or c:ligiblc edges roi~l.c.d zrl. 9. For 

II vwI.w v E V,,, 119. I’ ctctl0l.r its p;~I.h I.0 1111: root in ‘I’. (:ompul~. 0’s 

lillcar ~WI~,~;WII~I~II~ dual its c(llf) -+ c( I’ n M) - r(I’ - Al). (~0111puLc: 

11~ dual of a vcrkx of VI using I.hn abovn formula 

‘t‘his algorithul can IX illltkmcntcd in lime O((m/p+ n) log (21’)). 

The IIungarian search is implemented as in rnafch (The choice orc(sv) 

ensures that A 5 n). The duals are found by a depth-first traversal of 

T using one processor. 

Corollary 4.1. Optimum linear programming duals on a bipartite 

graph can be found in the bound of Theorem 1.1. 1 

This implies lhe next result. Consider a directed graph with n 

vertices, w edges, and (possibly negative) edge lengths. 

Tbcorcm 4.1. The single-source shortest path problem on a directed 

graph with arbitrary iutcgral t*tlgc len~l.tw CRIB tw solved in l.hr 11ouml 

or ‘I’lWorc,!, I. 1. 

Proof. ‘This problo~i~ can bc solved by liudillg opl.imunk linear pro- 

gramming duals for a bipattitc graph whoso cosLs arc the c:dRc Irngl.hs, 

and theu running Dijkstra’s algorithm [GSSa]. The latter can be imple- 

mented in time O((nr/p+ n) log N log(2p)), using the scaling algorithm 

of [G85a]. 1 

4.2. Degree-coustraiued subgraphs. 

This section presents our algorithm for finding a minimum perfect 

DCS. The algorithm generalizes the matching algorithm of Section 3. 

Here we concentrate only HI the aspects of the algorithm that are new. 

The analysis uses the same sequence of lemmas as Section 3. Most of 

the proofs here give only the facts needed to extend the a.rgument of 

Section 3. The section also discusses several other DCS algorit!lms. 

Recall that ~.hc function u specifes the degree constraints; we denote a 

I)CS by I), ad I.lw luncl.ion rl qlrrifics t.hr tla,gree of a vcrtcx iti D. 

An r-jeasible DCS consists of a degree-constrained subgraph D, a 

nonnegative integer r, a dual function y and a relaxation function p 

such that 

de) 5 c(e) + 1, 

i/(e) 14s) - de), 

P(D) I r. 

e ti Q 

e E D; 

(la) 

(lb) 

(lc) 

An r-oplimal DCS is a perfect DCS that is r-feasible. 

Lemma 4.1. If some int.eger larger than r + n divides each cost c(r) 

cvrllty, l,hcn any r-oplimal DCS is a minimum pcrkrl. DCS. 

‘I’hr ;rtgoric.lnn ir again stnkd using I.hr intrgcr pnmmrlrrs r, b = 

3r + 5U and g. We eventually choose P, 6 = O(U), g = O( log U). 

The main rouf,,ze and the scaknaalch routine work exactly as in 

matching. The desired time bound for the algorithm follows if each 

scale runs in time 

O(( dFt”/p + u log *cq log’(Zp)). (2) 

Let D- be the l-optimal matching of the previous scale. (For the 

first scale, De is any perfect DCS). The costs input lo molch have these 

properties: 

The proof of (b) USES 1.h nonne@.ivity of p. 

In the mafca routine, edge c is eligible if equality holds in (la) (for 

e $ D) or (lb) (for e E D). The match routine differs from Section 3 in 

two respects: The first is initialization. Each relaxation amount p(a) 

is set to 0. Further, the DCS D is iuitialized to {eIc(e) < -1). 
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The second difference ix the hu@~~enL SLep. IL Ii& a maximal set 

of edge-disjoint augmenting paths of eligible edges and augments the 

DCS along each path. (In a multigraph, “edge-disjoint” means a given 

copy of au edge is in at masl one path). Ilnlike Section 3, no duals are 

changed after an ougmcnt. 

The properties of the Search and Augment Steps are similar to 

Section 3, with these changes: The definition off is changed to the 

deficiency of the DCS, i.e., 

In addition to relation (3) of Section 3, any free vertex v 6 V, will have 

p(u) = 0 (it is never relaxed). 

The correctness of match follows as in Section 3, using I.~ICSC obscr- 

vations to show r-feasibility: The initialization of D guarantees (Ia); 

also the initial IJ is iurluded in D- by l~oprr~y (s), so it salisfics the 

degree conslrainls. I~inally, lhe Augmrnt Stqr dots not illrrc;Lsc* p(D), 

since a free vertex v has p(u) = 0. 

The analysis of the efficiency of nrofch follows Section 3: 

Lemma 4.2. At auy point in malck, /a 5 6. 

Proof. Consider the expression Y = ~(4 - D) - Y(D - 4). I 

Lemma 4.3. I < 2& + 1. 

Prod In the Augment Step the edges on an augmenting path be- 

come ineligible, by the definition of eligible and the nonnegativity of p. 

This implies that any IIungarian.search does a dual adjustment. 1 

Lemma 4.4. cfi, Ai <b+QlOF,C’. I 

Lcmmn 4.5. .I<l,+b+blogU. 

Proof. By the argument of Lemma 3.5 and the nonnegativity of p, 

Cy=l Ai 1 A + C(DU) - c(Du). Tl 1c initialization of malcR shows that 

an edge in Dv -Do costs at least -I. So Lemma 4.4 implies the desired 

bound. 1 

Now we turn to the Relaxed Ilungnrian Search. It diIfers from 

Section 3 as a consequence of the fact that an edge of D need not be 

eligible. IIence the search forest 7 is grown edge-by-edge, rather than 

in pairs of unmatched and matched edges. Thus the dual adjustment 

quantity is defined as 

6 = min{c(e) + I - y(e)! e +! D, eo f 3, cl $! 3) 

u {y(e) - c(e) + p(e)1 e E D, eo $ 3, el E 3). 
(4) 

To relaz a set of nonfree vertices S c I40 means to decrease Y(V) 

bg 1 and iucrease p(v) by 1, for each v E S. This operation makes 

any non-D-edge that is incideut to S iueligiblc. It does nol change the 

eligibilil.y of any D-edge. Concerning r-feasibility, a relax operation 

,wscrves~ (la)-(lb). Conccrniug (lc), it iucreases p(D) by u(S). 

The Relaxed IIungariau Search works as follows. It initializes the 

search forest 3 to contahr the free vertices of Vo. Then it repeats Lhc 

following steps uuLil Lhe Adjust Slcp hails with T aa desired. 

Adjust Sep. Set M’1 + {eI/ some eligible edge e $ D has eo E 3, el @ 

T), Wc +- {eel some eligible edge e E D has el E IV,, es +4 T}, 

WZ c {es1 some eligible edge e E D has el E 3, es $ 3). If We u 

LV, = 0 and 3 contains a free vertex of VI, halt. If WI IJ IV, = 0 and 3 

does not contain a free vertex of V,, do a dual adjustment and repeat 

this step. 

Grow Sfep. For each vortex u, E LV, u I+‘,, add an appropriate eligible 

edge WJ (v E 3) to T; then do the same for each w E W,. If u(W,, u 

Lv,) < J/g lhen relax cl’0 u t~lg. I 

‘I’his roul,irw works andogouu to Scrt.ion 3. Note that af1t.r the 

Grow Slcp adds cclgcs, an eligible cdgc with exactly one vertex in F is 

eilher a non-D-edge or is incident to LV, u I+‘,. If a relax operation is 

done, il makes Lhc non-D-edges incitleul to 1.V” U IV2 incligihlc. Ileuce 

Lhe next Adjust Step halts or does a dual adjustment. 

As in Section 3 we will choose parameter P as an upper bound Lo 

p(D). The correctness of the Relaxed Hungarian Search is proved as in 

Section 3. 

Now we establish the two properties needed by the Augment Step. 

The first is that 3 contains all vertices that are on an augmenting path 

of eligible edges. When the search halts an eligible edge e with exactly 

one vertex in 3 is either a D-edge with ec E 3 or a non-D-edge with 

el E 3. Since an augmenting path starts at a vertex of Vo(3) and is 

alternating, it cannot leave 7 on such an edge. 

The sccoud prop&y is acyclicity: 

Lemma 4.6. In mnfch lhcre is ncvcr an allcrnoLiug cycle of eligible 

edges. 

Proof. Consider an alternating cycle of eligible edges C. C does not 

exist after the inilialization of mafch, since every D-edge is iueligible. 

C is not created by an Augment Slcp or relax operation, siucc ncithcr 

creates an eligible edge. IL remains only Lo show that C is not crealcd 

by a dual adjustment. 

A dual adjustment can create an eligible edge e that has exactly 

one of its vertices in 3. Suppose C contains such an e. Let f be the first 

edge after e in C with exactly one vertex in 3. The two possibilities 

for e are e $ D with es E 3, or c E D with el E 3. In either case since 

C is alternating, the two possibilities for f are i $ D with fi E 3, 

or / E D with fo E 3. But such an edge is ineligible alter the dual 

adjustment. I 

Now we analyze the eflicicncy of the Relaxed IIungarian &arch. 
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Proof. The only change in lhe argument is the delinition of possibi1it.y 

(i) It becomes: (i) The iteration increases u(Vo(.F)) by at least f/g. 
This occurs at most gU/f times in a given search. 1 

Lemma 4.8. At any point in time, p(D) 5 (4blcgU)/g. 

Proof. A relax operation increases y(D) by at most f/g. 4 

The rest of the development-choosing parameters, implementing 

of the Relaxed Rungarian !&arch, the Augment SLep and its analysis, 

is entirely analogous to Section 3. 

Now consider the general minimum cost degree-constrained sub- 

graph problem on a bipartite mulLigraph G. Each vertex v has given 

degree bounds e(v) and u(u). Also given are bounds on the cardina1it.y 

of the .solulion, L and II. WC seek a dcgrce-conslrained subgraph (i.e., 

for each vcrlcx v, P(U) 5 d(u) < U(U)) that has minimum cost subject 

to lhe rcslriction that it contains between L and II edges (inclusive). 

Note that special cases of this problem iuclude minimum cost match- 

ing (e = 0, u = 1,L = 0, If = n) minimum cost cardinality k matching 

(change L aud H to k), minimum cost maximum cardinality matching, 

and similar DCS problems. 

It is straightforward to reduce this general problem on a multi- 

graph c to a minimum perfect DCS problem on a mulligraph C’. For 

i = 0, 1, add a vertex Si LO Vi. Now let i range ovet 0,l and let i’ = l-i. 

For each vertex u E Vi,, add ctlge sir) wilh multiplicity u(w) - C(v) and 

cost zero. Also add edge sesL wilh nudLi1~licit.y i’f - L and cost zero. 

For vertex si set u(si) = u(L:, - si,) - L. IL is easy to see that a miu- 

imum perfect DCS on c’ is a solution to the general problem. This 

gives t.hc following result. Deline U as the sum of the upper bauuds of 

the given inulligraph G. 

Corollnry 4.2. The gcncml iiiiiiimiinl cosl clr~r~~c-collstrniIlc,l sub- 

graph problem on a bipartite mulLigrapb can be solved in Lima 

O(~nrlog (nN)( log (2P))/lj) and spncc O(m), 

for p 5 r~i/(JITlogsn). I 

\Vc close Lhis secliou by discussing Lwo rolincmcnts of 1111: clcgrcc- 

constraiucd subgraph algorithm. In both rclinemcnts we stak: lhe rc- 
stilt for one processor. It is unclear at lhe time of this wriliug if the 

alg<,riLhiia can bc cxlcndcd Lo nchicvc clliciwt parallr~lism. 

Wlrcrr /J iu r&Livcly Iwgc the following bound improvw ‘l‘hc~orw~ 

4.2. Let Af dcuote the IorgcnL nwlt.iplicil.y of au edge (e.g., in a graph, 

A4 = 1). The follovviug result is analogous to [ET]. Delails are in 

[GaT87] (this paper also extends the algorilhm to the minimum cost 

network flow problem). 

Theorem 4.3. A minimum perfect degree-constrained subgraph on 

a bipartite multigraph can be found in time O(nZ/sM’&n log (WV)) 

and space O(m). 1 

Returning to Corollary 4.2, in some applications a better bound 

is desirable, to wit, we would like to replace CJ by fl, the number of 

edges in the solution graph. (In the perfect DCS problem U = n, but 

this does not hold for the general problem.) This can be achieved (for 

one processor) by modifying L~C approach of Corollary 4.2. The idea 

is t,o use the above graph G*, but. to avoid errors (caused by scaling 

and relaxation) on the cdgcs incidrut I.0 rii. Specifically lbe definition 

of r-0pl.imalil.y is ch:uigcd: Tlwrc is no wlnsalion at all, so p = 0; for 

any edge f incidcnl lo sc or s1, the r-optimality conditions become 

u(c) < c(r) if e $! D and y(e) 2 c(e) if e E D. Such an edge c is eligible 

if the constraint holds witb equality. 

Several problems arise from this new dclinition. Most notably, an 

edge incident to si iu au augmeuting path does tmf bocomc ineligible 

after Lhe augment. This means there may be cycles of eligible edges. 

Furthermore, the Rungarian Search following the Augment Step may 

not do a dual adjuslment. 

Theorenr 4.4. The general minimum cost degree-constrained sub- 

graph problem on a bipartile multigraph can be solved in time 

O(@nlog(rtN)) and space O(m), where 11 is the number of edges in 

the solution graph. 

Proof. The algorithm, a slight modification of the one presented here, 

ensures 11~1 thcrc is at leas1 one dual adjustment cvcry four iterations. 

Details arc in Lhe complele paprr. m 

Finally we present a more specialized bound. 

Tl~~nwm 4.5. Consider a bipartite multigraph where every vertex 

in Vt has degree O(1). The general minimum cost degree-constrained 

subgrnph problem can bc solved in time O(min(pe/*. 11~/~/r] log (n/V)) 

and space O{m), where 1~ is the number of edges in the solution graph. 

Proof. With careful organization, each Adjust Step and Augment 

Step uses time 0(/l). III maid, it is useful to kcrp the edges sorted by 

rest. Dclails arc ii1 Iha compl~lr paper. I 

Graphs of the type covered by the theorem arise when an arbitrary 

(possibly noubipartitc) graph G is convcrtcd to a biparlite graph, by 

selling VU = V(C:), C’I = S(C), and for each edge c = w E K(C), 

adding edges ve 01~1 uw. ‘I’his cwnlruclion and ‘I’lwor~~m 4.5 are used 

in [CW] to solve the wight.c?cl C-foreel. problem. 
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