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Abstract

Efficient algorithms are given for the bidirected network flow problem and
the degree-constrained subgraph problem. Four versions of each are solved,
depending on whether edge capacities/multiplicities are one or arbitrary, and
whether maximum value/maximum cardinality or minimum cost/maximum
weight is the objective. A version of the shortest path problem is also efficiently
solved. The algorithms use a reduction technique that solves one problem
instance by reducing to a number of problems.






1. Introduction

Bidirected network flow, introduced by Jack Edmonds [E67,1], models a
broad class of integer linear programming problems, including ordinary network
flow, graph matching, degree-constrained subgraphs, shortest paths and others.
It is well-known that problems in this class can be solved in polynomial time by
matching techniques [L, EJ70]. Two approaches have been used. The first is to
apply the ideas of matching to the more general problem and work out the
details of an efficient algorithm [e.g., 'EI73, U, W]. This can be done "in princi-
ple” but made difficult by the complex structure of matching blossoms. In fact
this conceptual complexity has apparently prevented researchers from develop-
ing good algorithms for some of these problems (see our list below). The second
approach is to use a problem reduction, from the more general problem to a
well-understood one. The drawback of this technique is expansion in problem
size, which can give nonpolynomial algorithms [L] or can degrade the perfor-
mance by one or more orders of magnitude [Berg, Gol, Sh].

This paper presents an efficient reduction technique for bidirected network
flow problems. The major difference from previous work is that we do not
attempt to reduce one problem instance to another. Instead a number of
different reductions are used to solve one problem instance. Our results are for
the following bidirected flow problems:

(1) Mazimum cardinality, unit capacily problems. (i) Degree-constrained
subgraph (DCS). Given a graph where each vertex 4 has integer bounds ; and
u;. Find a subgraph H with the greatest possible number of edges, such that
each vertex i has degree d; (in H) with I < d; <w;. Our algorithm runs in
G(‘V/i_ei‘. v;u.“E) time. This generalizes the maximum cardinality matching algo-
rithm of Micali and Vazirani [MV] (where all I, =0, u; = 1 and the time is
O(VVE), and in fact our algorithm is a reduction to theirs. It improves the
o(( E VuL)VB) algorithm of Urquhart [U].

%

(ii) Bidirected network flow fbiflow). 'Given a bidirected network with unit

edge capacities, find a maximum value flow. Our algorithm has run time 0(£%).
This generalizes the result of Even and Tarjan [ET] which achieves the same time
bound for the directed case.

(R) Maximum cardinality, arbitrary copocity problems. (i) Given a DCS
problem as in (1) on a multigraph, where each edge e has an integral multipli-
city ge. Find a degree-constrained subgraph with the greatest possible number
of edges. (ii) Given a biflow problem as in (1), where each edge ¢ has integral
capacity ¢,. Find a maximum value 'flow. For both problems our algorithms
have run time O(V £ log V). This generalizes the algorithm of Sleator and Tarjan
[SL BT] for directed graphs (and:our algorithm uses theirs. Note however that
they allow real- valued capacities).

Recent work of Anstee [A] offers a competitive approach. We can imple-
ment his algorithm forthe f-factor problem (DCS where ; = u; for all vertices
i) in O(V E log V) time, the same bound as ours. His method is based on solving
one network flow problem and one;problem of the matching type.

(3) Mazimum. weight, unit capacity problems. (i) Given a DCS problem as in
(1), where in addition each edge has a real-valued weight. Find a degree-
constrained subgraph of maximum weight. Our algorithm runs in
G((igvui)min(E log V, V%)) time. This generalizes the maximum weight matching

algorithm of Galil, Micali, and Gabow |G, GMG] (and our algorithm uses theirs). It
improves the algorithm:of Urquhart [U[] which is 0(( ZI V'u,;) ).
i
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- {ii) Given a biflow problem as above, where in addition each edge has a
real-valued cost. Find a minimum cost flow of a prespecified value. Our algo-
rithm runs in O£ min(Z log V, ¥?)) time. .. ,

(4) Shortest paths in an undirected graph. Given an undirected graph where
each edge has a real-valued length; edges may have negative lengths but there
are no negative cycles. Find the shortest path between a given pair of vertices,
or-more generally find the shortest path!betweeniall pairs of vertices. This prob-
lem cannot be solved by the standard algorithms for directed graphs [L]. 1t is
an instance of a "natural” biflow problem. Our algorithm for this problem (single
pair or -all pairs version) runs in’ O(¥ min(# log ¥, ¥?)) time (compared with
directed graphs, this matches the bound for the all-pairs problem, and com-
pares to O(VE) for the single source problem [T].) Bernstein Bern] has recently
claimed an 0(V*) algorithm for this problem, based on Dijkstra’s shortest path
algorithm. '

‘Other applications of the DCS problem include efficient algorithms for the
matroid parity problem on matching matroids and their variants [GS].

(6) Maximum weight problems. (i) The problem is the maximum weight
DCS problem for multigraphs. (ii) The problem is'the minimum cost biflow prob-
lem (with arbitrary integral capacities). Our algorithm runs in
0(E®*(log V){log C)) time where C is the largest capacity. It resembles the algo-
rithm of Edmonds and Karp for the minimum cost network flow problem [EK].
(Actually it gives improved results for the special case of network flows, e.g., an
O(VE(log C')% algorithm for maximum value network flow, and others).

'The rest of this paper is organized:as follows. Section 2 defines the above
problems and also the upper degree-constrained subgraph problem (UDCS); we
reduce all problems to UDCS. This section also sketches our reduction tech-
nique for augmenting paths. Sections 8-6 sketch the algorithms for problems
(1) - (4). (5) will be discussed elsewhere.

2. Basic Problems and Reductions
Thethree problems we investigate, stated in general form, are as follows,

(i) Bidirected network flow [L, pp. 223-4]. In a directed graph an edge goes
Jrom one vertex fo another. A bidirected graph allows this possibility and two
others: :an edge may be directed from both of its end vertices, or fo both of
them. (Additionally, the two vertices of an edge may coincide.)

Figure 2.1 illustrates the usefulness of this concept by giving an undirected
graph with a path and the corresponmding bidirected graph and path. (A
bidirected path is a sequence of verticesiand iedges vg, e, vy, ..., €, v;, such that
if e; is directed fo (from) v; then e;, is directed from (to) v;. Paths in the
undirected and bidirected versions wcorrespond. This correspondence is
achieved wilhout duplicating edges, as is done in the correspondence between
undirected and directed graphs. This allows one to solve the shortest path prob-
lem:((4) of Section 1).

A bidirected network flow (biflow) problem is defined from a bidirected
graph as follows: As usual, edges have capacities that upper bound the flow; for
each vertex v the net outflow is OUT(v)—/W(v), where OUT(v)(IN(v)) is the
sum of the flows on all edges directed from (o) v. Each vertex v may have a
constraint that the net outflow is b,, where &, is arbitrary. (Flow conservation
corresponds to b, = 0.) In a maximum value flow problem we seek to maximize
the outflow of s for some specified source s. A minimum cost flow problem is
defined similar to the ordinary network case [L, p. 129].



(i) The degree-constrained subgraph (DCS) problem is on an undirected
graph, with lower and upper bounds I; and u;at each vertex i (see Section 1).

~ {iii) The upper degree-constrained subgraph ( UDCS) problem is the special
case of DCS where all lower bounds 4 are 0, Any feasible subgraph of G {i.e., one
that satisfies the degree constraints u;) is a UDCS i (upper degree-constrained
subgraph). B
“ “We reduce biflow and DCS to UDCS. In this paper the reductions for biflow
are omitted (see [L, pp. 224-225] for a related construction).

.~ Now we sketch the reduction technique that forms the theme of this paper.
It reduces a UDCS problem to matching problems. Consider a UDCS problem on
a graph G. Fix a vertex i. Let u =wu; be the given degree bound; let d be i's
degree in G, define A = d—u, the least possible number of unchosen edges. 1t is
well-known [e.g., Berg] that a UDCS on G correspondsito amatching on G', where
' is constructed from G by replacing each vertex i by a substitute S that is the
complete bipartite graph Kj 4, .as in Figure 2.2. The figure shows how a UDCS of
G corresponds to a matching on G' (wavy edges are in the UDCS in Figure 2.2(a)
and in the matching in Figure 2.2(b).) m denotes the number of edges incident
to i in the UDCS. In this reduction a UDCS on G corresponds to a matching on
G' that covers every internal vertex of every vertex substitute. (Infernal and
external vertices of a substitute are indicated in Figure 2.2.) Further, maximum
cardinality and weight subgraphs correspond.

This reduction is inefficient since it can increase the number of edges to
Q(VE). (For instance, if there are Q(%) vertices of degree (V) and each such

vertex ¢ has u = g— the number of edges added is Q(%V") = Q(VE)). However

we will show that an augmenting path need only pass through a given substitute
S twice. Because of this the substitute S in Figure 2.2 can be replaced by the
sporse substitute shown in Figure 2.3. Here the two (matched) internal edges
correspond to the two uses of the substitute. Observe that a sparse substitute is
defined with respect to a given matching; when the matched edges incident to
change, the substitute changes. Also note that sparse substitutes are efficient:
The number of edges added for one sparse  substitute is
Bgm + 2(u—m) + 3A + 2 = 0(d), so the total mumber of edges for all substitutes
is O(Z). (The number of vertices added is O(£) but this is not important.)

Our algorithm work by simulating ‘the appropriate matching algorithm on
G'. The simulation is done on a graph G,, identical to G' except that sparse sub-
stitute are used. Each time a new matching is formed on (', a new graph G, is
formed by using sparse substitutes for the new matching. Since all graphs G
have O(F) edges, the matching algorithm runs fast and an efficient algorithm is
maintained. :

The technical difficulties in carrying out this approach are of two types.
The cardinality matching algorithm finds a number of augmenting paths simul-
taneously. This causes difficulties in the simulation on G,. The weighted match-
ing algorithm maintains a structure from one augment to the next. This causes
difficulties in the switch from G to G.4;.

We close this section by briefly reviewing the notion of a matching blossom.
Familiarity with the basic ideas of matching such as augmenting paths is
assumed [see e.g., L].

A'blossom is a subgraph B of a matched graph, defined as follows. (See Fig-
ure 2.4.) Letk > 1 be an integer. The vertices of B are partitioned into sets B;,
1=1 = 2k+1, where each B; either consists of a single vertex or is itself a blos-
som. The edges of B are e;, 1 <1 < 2k+1, where e; is incident to a vertex in B;
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and a vertex in B;y; (wheni = 2k +1, take i+1 to be 1). ¢; is a matched edge iff i
is even.

The shorthand i € B means that 4 is a vertex of blossom B. {(Note that a
blossom is not an induced subgraph, so we may have i, § € B without edge ij
being in B.) A simple induction shows that except for one vertex b € B, every
vertex i €3 has a matched edge i with j € 5. The exceptional vertex b is the
base vertex of B. :Another induction shows that for each vertex i € B, B and its
subblossoms contain an alternating path that starts with a matched edge, from 1
tod. (If this pathisi, 7, k, ..., b, it is not usually true that &, ..., b is k's path,
e.g., inFigure 2.4 let ep =14j and 7, k € Bs. This leads to pitfalls for the unwary -
the open literature contains a number of blunders about blossoms!)

For cardinality matching blossoms are slightly simpler: Subblossoms such
as By and Bg . that are an odd distance from b are always vertices. We do not
use this property here. .

3. Maximum Cardinality, Unit Capacity Problems
This section presents.algorithms for the maximum cardinality UDCS and

DCS problems that use 0(VZu,; £) time and 0(£) space. We start with the UDCS
problem. ~

QOur approach is to simulate the cardinality matching algorithm on &', the
graph with vertex substitutes. Recall how the cardinality matching algorithm
works [HK]: An sap is a shortest length augmenting path. An sop set is a maxi-
mal set of vertex disjoint sep'’s. The algorithm is organized into phases. Each
phase finds an sap set, and then augments the matching along the paths of the
set. The length of:an sap increases every phase.

We can assume that any matching we construct on &' covers every internal
vertex of every substitute. For we can easily start with such a matching.
Further, augumenting the matching never exposes a vertex that is already
matched. So the conditionwill always hold.

We estimate the number of phases of the matching algorithm on G'. The fol-
lowing argument is analogous to ones in [HK] and [ET].

Lemma 3.1 At most —g—-\/?u: phases are needed to find a maximum matching on
G

Proof. In a given phase let L be the number of matched edges in an sap (So
2L+1 is the length of an sop). Let A be the number of edges that must be added
to the current matching to get a maximum cardinality matching. Se the
current matching thas a set of A disjoint augmenting paths. Each such path con-

tains at least £ matched edges. At least =——of these are matched edges of the

original graph G. (If two consecutive matched edges in an augmenting path are
substitute iedges, the next matched edge, if it exists, is an edge of G.) So the

current matching has at least %—g—A matched edges of G.

A maximum matching has A more edges of G than the current matching
{(Both matchings cover all internal vertices of substitutes, so they have the same
number of substitute edges.) Clearly at most Zu;/ 2 edges of G are matched.



_ Tt : T
Thus és—z—i_'\ +A< ——g‘— which implies L < —g——:‘—

If A> /%, then the last inequality implies [ < g—«/ﬂ Since L increases

every phase, this implies that at most S‘\@ phases have A=~/Zu;. On the

other hand the definition of A implies that less than /T, phases have A < /S,
This gives the desired result. = -

The Lemma implies that to achieve our time bound it suffices to implement
a phase of the matching algorithm on &' in 0(E) time. We do this by running
each phase on the graph G.. G is derived from &' and the current matching by
using sparse substitutes. It has O(E) edges. One phase of the matching algo-
rithm runs in linear time. So it is clear that a phase of our algorithm uses 0(£)
time. It remains to show that G is a correct model for G', i.e., an sap set of G
gives an sap set of &',

We begin with the basic principle behind the idea of sparse substitutes.
Consider the graph G', with a rmatching that covers all internal vertices. Let S
be a vertex substitute. Let P be an sap consisting of edges ey, ..., e,. Internal
edges of .S occur as pairs in P, say e;, €;4;. In each pair one edge is matched
and the other is not. We say P traverses a pair in one of two directions, depend-
ing on whether the matched edge is first or second.

Cardinality Motching Reduction Principle. An sap traverses at most two pairs of
edges from a given substitute, one in each direction.

Froof. Suppose P traverses two pairs in the same direction. So P has the form
o WU, VW, L, TY, Y2, ..., Where vertices v and ¥ are in the same substitute,
and edges uv and zy are matched. P can be shortened by replacing the sub-

path from v to 2z with the edge vz. This contradiction proves the result, =

Note that if G is bipartite only one direction, and hence one pair of edges, is
possible for a substitute.

This principle implies that sap's in &' and G, correspond. We must show
that sap sets on the two graphs correspond. In fact they do nof: an sap set may
pass through a substitute up to two times on each augmenting path. We analyze
how an sap set uses a substitute, and show that G, can still be used as a correct
model.

It is convenient to work with a graph G'; that is intermediate between &'
and . G'; uses the same sparse substitutes as G; the only difference is that
the substitute for a vertex i of G contains d; internal edges (as opposed to two
internal edges in G.).

Lemma 3.2. An sop set in (‘% corresponds to an sap set in ' containing the
same edges of G.

Proof Consider an sap P in G'. P consists of edges of G alternating with two
edges of a substitute. P may begin or end with either an edge of G or two sub-
stitute edges. Let P contain L edges of G and 6 pairs of substitute edges at the
beginning or end, § =0, 1 or 2. So P has length L + 2(L—1+4) = 3L-2 + 26.
Note that L is odd. Hence ordering the paths P on length is the same as
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ordering thern lexicographically on (£,6).

Now consider an sap in G'. Defining L and ¢ as above gives the sap length
L + 4(L—-1+6) = BL—4+46. Again, ordering paths by length is the same as lexi-
cographic order on {L,6).

A path with values L,6 in G' gives a path with the same values in Gy, and
vice versa. Hence sap's in the two graphs correspond.

A set of disjoint sap's in G’y clearly gives a corresponding set in &'. The
converse is true too: Disjoint sap’s in G' pass through the substitute for a vertex
i at most d; times. Hence the substitute in G'x has enough internal edges to

Apodel all of the sap’s. We conclude.that sap sets in (% and G' correspond. =

The Lemma shows that we can take our goal to be finding an sap set on G'.
We analyze the structure of such a set by using ideas from the cardinality
matching algorithm of [MV]. Consider an arbitrary matched graph. For a vertex
v, the even level of v, e(v), is the length of a shortest even length alternating
path from a free vertex to v; the odd level o{v) is defined similarly. (We also
refer to "paths defining e (v )or o{(v)", with the obvious interpretation.) The tena-
city of an edge e, £(e), is the length of a shortest alternating path that contains
e and ends at free vertices, but is not necessarily simple. (If it is simple it is an
augmenting path.) So for e = vw, t{e) is o(v) + o{w) + 1 if e is matched and
e(v) + e(w) + 1 otherwise. A blossom B of lenacity t is defined, as in Section 2,
from blossoms By, ..., Bo4; and edges e, ..., €2r+1. The only difference is the
added requirement that blossoms B; have tenacity at most ¢, and edges e; have

tenacity £. !

We will refer to two simple but important properties of blossoms. In an
arbitrary matched graph, let an sap have length 2s +1.

Cardinality Blossom Properties

(i) Let vw be an edge of tenacity #(vw) < 2s+1. Then some blossorm of
tenacity at most ¢ (vw) contains both vertices v and w.

(ii) Let B be a maximal blossom of tenacity £, where t <2s+1, and let b be
its base. For any vertex v € B, any path defining e(v) or o(v) passes through
b,

These properties are obvious in [MV]. Alternatively they can be proved
directly from the definitions. (It is convenient to prove them together, inducting
on . We leave this as an exercise.)

We show that sap sets on G, can be found using G.. The reason is that lev-
els and blossoms on the two graphs correspond. To show this it is convenient to
define a relation of "similarity” between vertices in G, and G'y: Let v and v' be
vertices in either of the two graphs (perhaps the same graph). Then v and v’
are similar if they are in substitutes for the same vertex of G, and either they
are external vertices on the same edge of G, or they are matched to external
vertices on the same edge of G, or they are vertices on the same (left or right)
side of an internal edge.

! This definition can easily be proved equivalent to the one in [MV]: maximal blossoms of a given
tenacity are identical in both definitions. We use our definition since it is the same as for weighted
matching. It also appears to simplify the algorithm of [MV], eliminating the Double Depth First
Search.



- Lemma 3.3 (i) If w and v' are similar vertices then their levels are equal:
e(v)=e(w)ando(v)=olv").
(i) If v and v' are similar vertices in the same graph, any maximal blossom
of tenacity ¢ contains both wertices or neither.

(iii) Let B be a maximal blossom of tenacity £ in G or G';. Let B' consist
of all vertices in the other graph that are similar to a vertex of . Then B’ is a
maximal blossom of tenacity .

Proof (i) We consider the case ¢f v in G, and v' in Gy, since vertices in the
same graph are trivial. Let Pl!be a path defining e (v'). Since P has shortest
length possible, it passes through any substitute at most twice. (This is true by
the same argument that proves the Cardinality Matching Reduction Principle. It
holds even if ¥' is not an external vertex.) So G contains a path corresponding
to P that makes e(v)<e(v'). Obviously e(v)>e(v'). Thus e(v) =e(v"), and
similarly o{v) = o (v").

(ii) Let v be in a blossom B of tenacity £. So for some w € B, vw is an
unmatched edge of tenacity ¢ (vw) < £. Part (i) implies ¢ (v'w) = t(vw). So Car-
dinality Blossom Property (i) implies both v and w are in the same maximal
blossom of tenacity £, say B'. Clearly v € B’ too.

. (iii) Any vertex v € B is joined to the base of F by a path consisting of
edges of tenacity at most £. So Cardinality Blossom Property (i) implies that all
vertices in the similar path in B’ are in the same maximal blossom of tenacity £.
| ] .

Now we show howito find an sap set on Gy using (. First we give a high-
level description for a phase in the matching algorithm of [MV]: Let an sap have
length 2s+1, -

Step 1. Calculate all levels e(v) and o(v) that are at most s+1. Construct all
blossoms that have tenacity less than 2s +1,

Step 2. Repeat the following steps until the graph does not contain an sap of
length 2s +1:

Step 2a. Use level numbers and blossoms to find an sap P. Augment the
matching along P.

Step 2b. Delete vertices (along with their incident edges) that cannot be in
an sap: First delete allvertices of P. Then repeatedly delete vertices (that
are not in blossoms) whose "predecessor count” (see [MV]) decreases to 0.
Furthermore, whenever the base of a blossom is deleted, delete all vertices
in the blossom. Continue with Step 2.

When Step 2 ends, all vertices and edges of the graph are restored and the
next phase is begun.

Note that Cardindlity Blossom Property (ii) justifies the blossom deletion
policy in Step 2b. It implies that any sep containing a vertex of a blossom B
contains the base of B. Hence B can be deleted when its base occurs on an sap
or becomes unreachable.

Consider how this algorithm works on G';. In a given substitute, at most
two internal edges are:deleted because they are in P. All other deletions in Step
<b remove all internal edges of the substitute. This is true because all internal
edges are in the same maximal blossom, by Lemma 3.3(ii); also "predecessor



counts” are based on level numbers and vertex adjacencies, which are the same
for each internal edge by Lemma 3.3(i).

We can run this algorithm on G, instead of G, and still find an sap set of
G'x. Step 11is the same on both graphs, by Lemma 3.3 (i) and (iii). Step 2 on G,
will simulate Step 2 on G if we make one modification: When P passes through
a substitute whose internal edges are not in a blossom, these internal edges are
not deleted (nor are they rematched in the augment). The reason is that in G,
the substitute has d; —2 other internal edges that can be used in other sap's. We
keep the two internal edges in G, to model these edges. On the other hand, all
other deletions in Step 2 remove all internal edges of a substitute in either path,
and so work the same in G and G/.

Thus we have shown that the matching algorithm (with the slight change
given «above) finds an sop set of G'x. This gives the desired resuilt.

Theorem 3.1. A maximum cardinality UDCS can be found in O(VZw E) time and
O(F) space. =

We turn our attention to the DCS problem. Recall that in this problem each
vertex i has both an upper bound u; and a lower bound ; on its degree. We will
transform DCS so our UDCS algorithm applies. (This problem reduction
approach differs from previous ones [U,S].)

Consider a DCS problem on a graph G. Figure 3.1 shows a corresponding
UDCS problem on a graph G*, G* contains two copies of . Both copies of a ver-
tex % have upper bound w;, the same upper bound as in G. In addition the two
copies of i are joined by u; —I; paths of length three. Each of the R(u; —L) inter-
mediate vertices on these paths has degree two in G* and has upper bound one.

A DCS H on G has a corresponding complete ? UDCS H* on G* H* contains
a copy of H in each copy of ¢. In addition for each vertex 1, w; —dg(i) 3 paths
between the two copies of i have their two extreme edges in H* while the
remaining dy(i)—I; paths have their middle edges in H*

Conversely it is easy to see that a complete UDCS A* on G* induces a DCS H
on &. H does not solve our problem since it need not have maximum cardinal-
ity. However it does satisfy all degree constraints u;, ;.

Now we give our reduction of DCS to UDCS,

Step 1. Construct the UDCS problem G* from G. Find a maximum cardinality
UDCS H* Assume H* is complete {else the DCS problem is infeasible). Let H be
the DCS on G induce d by H*.

Step 2. Run the maximum cardinality UDCS algorithm on G, using H as the ini-
tial solution.

For Step 2, recall that the maximum cardinality matching algorithm of [MV]
can be started with any initial matching. Hence the same is true of our UDCS
algorithm, as required in Step 2. Next recall that the UDCS algorithm works by
augmenting paths. Hence no degree of a vertex is ever decreased. So the algo-
rithm halts with a subgraph that satisfies all upper and lower bounds u;, L. It
has maximum cardinality among all subgraphs that satisfy the upper bounds.
Hence it is a maximum cardinality UDCS.

2 In a complete UDCS, every upper degree bound u; holds with equality.
8 dy (1) denotes the degree of vertex % in subgraph H.



Theorem 3.2. A maximum cardinality DCS can be found in 0(~/Tu; E) time and
0(%) space.

Proof The above discussion shows the algorithm is correct. The resource bounds
follow {from inspecting the size of G* It has BV + 23 (w;—L;) = O(V+E) vertices
and RE + 3)(u;—1;) = 0(EZ) edges. Further, the upper bounds sum to

Ry uy + Y (w—) = 0(Y ). =

4. Maximum Cardinality, Arbitrary Capacity Problems

This section presents algorithms for the maximum cardinality UDCS and
DCS problems, when edges e have arbitrary integral multiplicities u,. The algo-
rithms run in 0( VElogV) time and 0(E) space.

We begin with UDCS. Define the graph G' as usual using the substitutes of
Figure 2.2. An edge ij in G corresponds to uy; distinet edges in (7', each joining
an external vertex in i's substitute to one in 7's. As in Section 3, every internal
vertex of G' is matched.

Our approach is to simulate the cardinality matching algorithm on G'.

Lemma 4.1. At most 3V+1 phases are needed to find a maximum matching on
G

L—1

Proof. If an sap has length 7, it traverses at least

(each edge of G except the last is followed by a substitute pair). The Cardinality
Matching Reduction Principle shows that at most 2V pairs are traversed. Thus

L;i <2V, L <6V+1. Since L is odd and increases every phase, the result fol-

pairs of substitute edges

lows. =

The Lemma implies that for our time bound it suffices to implement a phase
on &' in O(# log V) time. To do this, as in Section 3 it is convenient to work with
graphs 'y and G;. Both are derived from G' and the current matching by using
sparse substitutes. In G4 a substitute has d; internal edges; in G, it has two
internal edges. Furthermore, suppose ij is an edge of &, having m matched
copies and u unmatched copies in the current matching on G'. (So
Mij =m +u.) Then G'; contains m matched copies and « unmatched copies of
ij; G contains min (2,m) matched copies and min (2,u) unmatched copies.

Lemma 3.2 still applies to graph G';. Hence it suffices to find an sap set on
G'%. We will show that this can be done on the smaller graph G, because of
lemma 3.3, First, however, it is convenient to extend the definition of "similar"
vertices. In the current context we say that two external vertices in the same
substitute of & or Gy are similar if they are on copies of the same edge of G,
and both copies are matched or both are unmatched. Substitute vertices that
are matched to external vertices are handled analogously. The rest of the
definition of similarity is unchanged.

It is easy to see that Lemma 3.3 remains valid for &', and G,. In particular,
the definition of G allows the Cardinality Matching Reduction Principle to apply
in the proof of Lemma 3.3{i).
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- Lemma 3.3 allows us to use G, to'calculate levels and blossoms in G'y. Now
we must show how to actually find the sap’s. The algorithm is based on the fol-
lowing property of blossoms. Let an sap have length 25 +1.

lemma 4.2. In G’g, let B be a maximal blossom of tenacity £ < 2s+1, with base
vertex b. Then no other vertex is similar to b .

Proof. Let b’ be similar to b, b’ # b, Both vertices are in 7, by Lemma 3.3(ii).
Both vertices are matched (otherwise two free vertices are in B, which is impos-
sible). Let bc and b'c’ be matched edges. Since b is the base, ¢ £ B and
¢'€ B. But ¢ and c¢' are similar, contradicting Lemma 3.3(ii). =

‘The Lemma and (Cardinality Blossom Property(ii)) implies that at most one
sap passes through any copy of any edge with a vertex in a blossom. So blos-
soms effeclively have multiplicity one. '"Most" sap’s do not pass through any
blossoms. This allows us to ignore blossoms and use the fast techniques for net-
work flows for most sap’s.

To carry out this approach we work with two graphs. The first is a multi-
graph M, that is essentially G';. Let i be an edge of G that has m matched
copies in &' and u unmatched copies. Then M, has a matched icopy of 77 with
multiplicity m and an unmatched copy with multiplicity . {In our data struc-
ture for multigraphs we store each edge and its an integral multiplicity. Thus
M, has size O(E)s My is used for sep’s of multiplicity greater than one. It is
processed with the dynamic tree data structure of Sleator and Tarjan [ST].
(This structure is also used in the fast algorithm for network flows.)

The second graph, U, consists of edges with unit multiplicity. It is used for
sap’s that have multiplicity one. In particular it handles sap's that involve blos-
sorms.

Now we give the algorithm for a phase. It follows the outline of the algo-
rithm of [MV] given in Section 3. Let an sap have length 2s +1.

Step 1. Use the graph G to calculate all levels e(v) and o (v) that are at most
s+1. Construct all blossoms that have/tenacity 2s+1.

Step 2 Construct the multigraph M. Initialize the graph U to be empty.
Transfer from M, to U all blossoms and all edges of multiplicity one. (Comment:
M has no edges or blossoms of tenacity less than 2s+1, It may have edges or
blossoms of tenacity Rs +1.)

Step 3. Repeat the following steps for every edge vw of tenacity 2s +1. When no
more edges vw remain, go to Step 4.

Step 3a. Use the method of dynamic trees [ST] to find a path P, fromv to a
free vertex, and also a path P, from w to a free vertex. P, and P, are
paths defining e{v) and e (w) if vw is unmatched, or o (v) and o (w) other-
wise. Let ,(P,) end in the substitute for vertex i(j) of G. Let d;(6;) be the
largest possible increase in the degree of i(5) in the current UDCS.

Step 3b. If P, and P, are disjoint then let M =min {1, 6;, 6; | e is an edge
on £y, Py, orvwj. Augment u copies of the path B,, vw, Py,. Go to Step 3d.

Step 3c. Otherwise P, and P,, are not disjoint. By the method of dynamic
trees they join at a vertex j, i.e., B, consists of a path from v to j, Py,
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My g
2 '12
edge on Py;, P, or vw; f is an edge on P;}. (Comment: u = 0 if the paths
form a blossom of tenacity 2s+1.) Augment i copies of Py, vw, Py, aug-
“~ment 2u copies of Fj. -

| e is an

followed by a path from j to a free vertex, P;. Similarly, P, consists of P,
and P;. (Possibly P; is a single vertex,) Let u = minfu,, T

Step 3d. Delete all augmented edge from M. Transfer any new blossom (of
tenacity Rs +1) and any edge with new multiplicity one, to U/. Continue with
Step 3.

Step 4. Transfer the remaining edges of M, to U, giving them multiplicity one.
However make two copies of the internal edge of every substitute.

Step 5. Find an sap set on U, using the procedure of Section 3, and augment
along the saps. Stop.

Theorem 4.1. A maximum cardinality UDCS on a multigraph on a multigraph
can be found in O(VE log V) time and O(F) space.

Proof. Correctness of the algorithm follows from the above discussion. For the
time bound, note that Step 3 is implemented with dynamic trees in essentially
the same way as the algorithm for blocking flows [ST]. The main difference is in
Step 3¢ where the join j of P, and P, is computed. Vertex j is the deepest com-
men ancestor of v and w. The dynamic tree data structure finds deepest com-
mon ancestors as fast as its other primitive operations [ST].

Using the same accounting argument as in [ST] for blocking flows, Step 3 is
O(# log V). The rest of the algorithm for a phase is O(£). Now Lemma 4.1
implies the desired time bound. =

The DCS problem is solved in the same way as in Section 3.

Theorem 4.2. A maximum cardinality DCS on a multigraph can be found in
O(VE log V) time and O(F) space. ®

5. Maximum Weight, Unit Capacity Problems

This section presents algorithms for the maximum weight UDCS and DCS
problems that use 0((Zw;)min{# log V, ¥?)) time and O(X) space. We start with
the UDCS problem.

Again our approach is to simulate the weighted matching algorithm on G/,
the graph with vertex substitutes. Recall how this algorithm works [EB5, G,
GMG]: A mop is a maximum weight augmenting path. The algorithm repeatly
finds a map and uses it to augment the matching. This implies that the algo-

rithm finds a maximum weight k-matching,*fork = 1,2, - -
Consider a vertex substitute S in G', as in Figure 2.2. For weighted prob-

lems all edges of a substitute are assigned weight #, the largest edge weight in
G. We can assume that all internal vertices of S are matched, as in Figure 2.2.

4 A k-matching has exactly k edges.
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(Clearly this gives a maximum weight k-matching for some k).

Now we give the principle for sparse substitutes in weighted problems. Let
# be a map. Recall from Section 3 that P traverses a pair of edges in .S in one
of two directions.

Weighted Matching Reduction Principle. There is a map that traverses at most
two pairs of edges from a given substitute, one in each direction.

Proof. Suppose P traverses two pairs in the same direction. So P has the form
oo WYL, VW, L, Y, Y2, ..., Where vertices v and y are in the substitute and
edges uv and zy are matched. Let P' be P with the subpath from v to 2
replaced by edge wz. We claim P' has weight at least that of P, ie.,
w(P)~w(P')=0. Observe that edges vw, vz, yw and yz all have the same
weight. Hence w(P)—w(P') is the weight of the alternating cycle formed by
edge yw and the portion of P from w to y. This weight is nonpositive, since any
alternating cycle in a maximum weight k-matching has nonpositive weight. We

conclude P'is a map, as desired. =

Suppose G' has a maximurm weight k-matching. Define G, by using a sparse
substitute for each vertex, as in Figure 2.3. All edges in the sparse substitute
have weight #.

Lemma 5.1 A map in G, corresponds to a map in G' containing the same edges of
G

Proof. In both graphs a map traverses equal numbers of matched and
unmatched edges from any substitute. Hence substitute edges make no net
cvontribution to path weight.

It is clear that any map in G gives a corresponding augmenting path in G
The converse is a consequence of the Weighted Matching Reduction Principle, ®

This result justifies our approach of using G to find a map. Unfortunately
we cannot merely input G to the matching algorithm and find a map. The
matching algorithm of [E65] and its efficient implementations [G, GMG] are
primal-dual algorithms [D]: A set of dual variables is maintained throughout the
algorithm. We must show how to construct dual variables on G, from those of
Ly—;. This allows us to run the search algorithm on G, and thereby carry out our
approach,

It is convenient to describe the search routine of the matching algorithm in
terms of its input and output. Both of these are in the form of a search graph.
This is a graph with a maximum weight k-matching. The graph has a collection
of disjoint blossoms (see Section 2). Each vertex i has a dual variable y; and
each blossom B has a dual variable zp = 0. In addition these properties hold:

Sewarch Graph Properties

(i) The free vertices have the smallest y;-value, i.e., if 1 is free then
y; =minfy; | j € V3.

(ii) For every edge i,

i +y; + Z Zg = Wy,
ijeB
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Note the summation is over all blossoms B that contain both vertices 4 and 7,
Edge ij need not be in the subgraph B (see Section 2).

~ -(ili) All edges that are matched or in a blossom subgraph are tight, i.e., the
inequality of (ii) holds with equality.

We will use some simple properties of the search algorithm: Throughout its
execution, the algorithm maintains a search graph structure on the given graph.
It forms blossoms by combining existing blossoms 5;, 1 <4 =< 2k+1, into a new
blossom A. These properties hold:

Search Algorithm Properties

(i) When a blossom B is formed, zg = 0. If vertex ¢ is matched to the base
b of B, then ¢ is incident to an unmatched tight edge.

(ii) No dual variable is changed until every blossom of the search graph is
maximal. 2p > 0 only if B is a blossom in a search graph immediately before a
dual variable is changed.

(iii) Suppose the algorithm finds a map P that contains a vertex of a blos-
som B. The portion of P in B is an alternating path that starts with a matched
edge of B, goes to the base of B, and contains only edges of B and its subblos-
soms.

Now we examine graph G,. We begin by specifying the topologies that a
blossom can have within a substitute. These are illustrated in Figure 5.1. A pri-
mary blossom for a substitute S is the smallest blossom containing an edge of
5. The following result is the analog of Lemma 3.3(ii).

Lemma 5.2. Without loss of generality, a vertex of an internal edge of a substi-
tute is not the base of a primary blossom.

Proof. Consider a substitute with internal edges bc, b'c’, and primary blossom
B with base &. We will redefine 5 so its base is not b,d' c orc', yet the rest of
the search graph structure is unchanged.

Figure 5.2 shows the substitute when blossom B is formed. At this peint
2 = 0 (Search Algorithm Property(i)) and no blossom contains an edge of the
substitute (7 is primary). Since edge ob is in B it is tight. These facts show
Yo+ Yo =W =Yy + Yy, S0 Yy =y

Search Algorithm Property (i) also shows there is a tight edge cd. Reason-
ing as in the previous paragraph gives y, > Yo. Since W =y, +y, =y, + Yy, we
conclude 4, =y, and ;' =y,. This implies that edges de', ¢'d’' and b'a are
tight.

It is easy to see that blossoms have a Church-Rosser property., A blossom
can be formed from edges dc’, ¢'b’, b'a, blossom B and edges bec, cd. So con-
sider C, the largest blossom containing B that is formed before dual variables
are changed. Search Algorithm Property (ii) implies that b', ¢’ € C.

Now define a new primary blossom with base d, by starting with B, remov-
ing edge ab and adding edges ab’, b'c’, ¢'d and bc, cd, Again by the Church-
Rosser property we can enlarge this primary blossom to contain the same ver-
tices as C. All other blossoms of the graph are unchanged. All blossom edges

are still tight, by Search Algorithm Property(ii). =

Now it is easy to see that there are three types of primary blossoms, shown
in Figure 5.1. Figure 5.1(a) shows the blossom when the base is not in the
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substitute, and Figure 5.1(b)-(c) show when it is. Observe that these are the only
possibilities, since the Lemma shows the base is not on an internal edge. (Also,
the base is not on an external vertex on the right of the substitute, since a base
Is on at least two unmatched edges. A minor variant of Figure 5.1(a) and 5.1(c)
is when the external vertex on the left is free.)

A primary blossom is an I, v blossom (with respect to a given substitute) if it
contains { edges of G on the left of the substitute and r edges on the right. As
shown in Figure 5.1 the three types of blossoms are 1,1, 2,0 and 0,2.

Figure 5.3 shows edges of a substitute (bc is the internal edge). Notice
from Figure 5.1 that vertices a, b, ¢ and d are in the primary blossom, regard-
less of which type of blossom it is. (This contrasts with vertex e which is not in a
2,0 blossom). Now let ¥, = v and Yo =u. Sou+v + Y zg=W. Since edge

beceB
ab is in the primary blossom it is easy to see that y, =L;L Similarly 44 =v. So
Figure 5.3 gives the pattern of dual variables in a primary blossom.

Now we relate the graphs G, and G +1. Recall G is the substitute graph,
before the £ augment, and Gr+1 1s the substitute graph constructed after this
augment. The two graphs have the same edges except for substitute edges that
are on the map in G, and corresponding edges in Ge+1. More precisely suppose
Figure 5.3 shows a substitute in G, and the map goes along the edges shown.
(These edges are not necessarily in the primary blossom as supposed previously
in this figure.) Figure 5.4 shows the corresponding edges in Gg4+;: vertices a and
¢ have moved to opposite sides of the substitute, and so the old vertex d has
been replaced by a new one d'.

We define a search graph structure on G, by using essentially the same
structure as G.. The blossoms are the same in both graphs, except that when
the map goes through a substitute the new substitute edges of (g4, replace the
old ones of G. The dual variables y;, 2z are the same except (as indicated in
Figure 5.4) a new value yg is computed. The details of this policy, including the
formula for y,; and the proof that a search graph is defined on G4, are now
given.

Suppose a substitute is in a blossom, and the map passes through the sub-
stitute edges of Figure 5.3, giving Figure 5.4 in Gk+1. Let the B be the primary
blossom (in G). Search Graph Property (iii) shows that once the map enters B,
it stays in B until it reaches the base. This implies three cases are possible:

(i) a,b,c,dec B
(i) e £ B, b,c,deB
(ii)a, b,ceB.dg B

Case (i) gives a 1,1 primary blossom in G, case (i) gives a 2,0 blossom and
case (iii) gives a 0,2 blossom. This can be verified by considering nine possbili-
ties - the above three cases for the map and the three types of primary blos-
soms. We will analyze only one possibility - when the map has d £ B (case (iii))
and the primary blossom is 2,0.

Figure 5.5(a) shows (3 before the augment. Let Bp be the primary blossom.
Bg's base is d, which is matched to external vertex ¢ . Vertex d is matched to
external vertex e. Dual variables are indicated next to the vertices. These fol-
low from Figure 5.3, except for the fact that Yo = 1. To see this observe that d
Is obviously not a blossom base. So edges cd and de are in exactly the same
blossoms, by Search Algorithm Property (iii). Now
Ye +Yq + 2 2p= W=y, +yg + 2% zp implies that y, =y, =u. (Notice
B

de € c.den
that in general we do not have the corresponding equality y4 = v.)
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Now consider the map P. Search Algorithm Property (iii) shows P goes
from c¢, through By to 6. It is easy to see that P has the form
e,b,a,..,a" b’ ¢, 6, €. So Gy is as shown in Figure 5.5(b). a and a' are on
unmatched external edges of By and e is the new base: € is on a matched
external edge and is still joined to B,.

It is easy to see that all edges of Figure 5.5(b) are tight. In particular
Yo = u implies that we can set y4 = v, and similarly for a'. y, = u implies that
the edges incident to e are tight. y; = v implies the substitute edge incident to
€ is tight.

This completes the analysis for one case. The others are similar. One point
to note concerns the dual variable y, (of Figure 5.4). Usually d' is in the new
primary blossom {e.g., in case (ii) it is"the base) and so yg = v. The only excep-
tion is a case (iii) augment of a 0,2 blossom. Here vertex a is no longer part of
the primary blossom in G,;. Let C be the set of blossoms containing a's
matched edge in G.. Then in G4y C={F | a,d € blossom Bl={F |c,d ¢
blossom Bj. So yy4 can be taken as the solution to u + yg + 3 ozp=W.

Beg

We conclude that the structure defined for G +1 1s & search graph.

Theorem  5.1. A  maximum  weight UDCS can be found in
0((3 . )min(E log ¥, V?)) time and O(E) space.

Proof. Correctness follows from the above discussion. For the time bound note
that at most > u; map's are found. Fach map requires running the search rou-
tine of the matching algorithm on G, a graph of 0(%) vertices and O(£) edges.
The search routine of [GMG] runs in O(Z log V) time, and gives our first time
bound. The search routine of [G] runs in 0(¥?) time. Minor modifications in the

data structure make this 0{V*) on our graph G, giving our second time bound, #

Observe that our algorithm solves the more general problem of finding a
maximum weight UDCS with a given number of edges k. In particular the algo-
rithm can find a maximum weight complete UDCS. The allows us to solve the
DCS problem.

We reduce the weighted DCS problem to UDCS, using the technique of Sec-
tion 3. Consider a weighted DCS problem on a graph . Construct the graph G*
of Figure 3.1. Assign weights in G* by using the edge weights of & in the two
copies of G, and weights 0 for edges on the length three paths. It is easy to see
that a maximum weight complete UDCS on G* induces a maximum weight DCS
on (either copy of) G.

Theorem 5.2. A maximum weight DCS can be found in 0((} w;)min(& log V, V?))
time and 0(#') space. =

6. Shortest Paths

This section sketches an algorithm for the all-pairs shortest path problem
on an undirected graph. The run time is O(V min (£ log V, V?)).

The algorithm is based on Lawler’'s reduction of the single-pair shortest
path problem to DCS [L, pp. 220-222]. The reduction resembles the bidirected
graph construction of Figure 2.1: Given an undirected graph with edge lengths,
G. Let G* be G where in addition, each vertex has a self loop of length 0.
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Consider a DCS problem on G* where each vertex i has l; =wu; = 2. This problem
is closely related to any shortest path problem on G: If s is the source and ¢ is
the sink, the shortest s —f path corresponds to the DCS where the bounds for s
and ¢ are changed to one. This mottivates the following algorithm:

Step 1. Given G, form G* adn find a minimum weight DCS. (Comment: A
minimum weight DCS consists of all the self-loops, since G has no negative
cycles. Our algorithm finds this solution and more importantly, it constructs
the corresponding dual variables and blossoms.)

Step & Repeat the following steps for each vertex.

Step 2o, Use G* to form G', a copy of G* with a new vertex S and edge Ss.
Let M be the largest dual variable y; in G* Let Ss have length 24 +1 and let
Ys = M. Letls =ug = 1.

Step b, Use the DCS algorithm to search for an augmenting path from S,
(Comment: The search halts unsuccessfully, since there is no DCS. However
it computes dual variables y;.)

Step Ze. Output each vertex ¢ at distance ys + y; —(RM+1) from s.

Theorem 6.1 The all-pairs shortest path problem on an undirected graph with no
negative cycles can be solved in O(V min (£ log V, ¥?)) time and 0(£) space.

Proof. Correctness can be seen by noting that Step 2b simulates the DCS algo-
rithm when G* is modified to make £ the sink. For the timing, Step 1 runs in the
desired time. Each execution of Step 2b uses O(min (£ log V, #)) time. So
Step R is also within the desired time bound. =
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Figure 2.1

(a) Anundirected graph with a path.
(b) Corresponding bidirected graph and path.
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(a) Vertexi in UDCSon G.
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Sparse substitute for 1.
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A blossom.
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Graph G*
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Topologies for primary blossoms.



Figure 5.2

~ Forbidden primary blossom.



Figure 5.3

Dual variables in a primary blossom.

Figure 5.4

Dual variables in G +1.
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Figure 5.5

Augment of a 2,0 blossom.



