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In this paper, we present a theory for general-
ized graph factor problems which is basically equiv-
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Preliminaries

The present paper continues our study of balanced net-
work flows and general matching problems [2, 3, 4].
Problems of finding maximum matchings, minimum-
deficiency matchings, and even factors of graphs have
dual formulations by so-called odd cuts. Minimum-—
maximum results have been derived for various match-
ing problems. However, statements in terms of gen-
eralized matching problems are far less intuitive than
equivalent results in terms of the balanced network flow
approach.

In [2], we stated problems, reduction mechanisms, and
a purely primal maximality result. We do not repeat the
definitions, but refer to Sections 2, 3, 4, 5, and 9 of that
paper. In particular, the cut Q(N, f) := Q(N(f)), which
separates the strictly s-reachable nodes in the residual
network N(f), appears as an optimum dual solution and
plays the central role in what follows.
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23. EDGE CUTS AND DUALITY

Let N be a balanced flow network, and f a balanced
st-flow on N so that no valid st-path in N(f) exists. In
this section, we show that f is maximum balanced by
a convenient duality theorem. The proof is independent
of Theorem 4.1 in [2] (Balanced Flow Decomposition).
Again, Theorem 4.2 (Augmenting Path Theorem) can
be obtained as a corollary. First, we determine the flow
value of f:

For this goal, let d denote the balanced distance la-
bels in N(f), and choose nodes u,v € V(N) with d(u) <
00,d(v) = oo and rescap(u,v) > 0. We have d(u') < oo
and rescap(uv) = 1 since every valid su-path must tra-
verse v'u' (otherwise, v would be reachable). Hence, u is
in a nucleus U of N(f). We know by Theorem 9.13 in [2]
(Base Identity) that v'u’ is the prop of this nucleus and
that rescap(U,T) = 1. We denote the number of nuclei
by k and observe that

rescap(S,T) = rescap(€,T) = k.

If we translate our observations from N(f) to the flow
network N, we have

Theorem 23.1. Let N be a balanced flow network, and
f a balanced flow on N so that there is no valid st-path
in N(f). Then, val(f) = cap(QWN, f)) — k holds.

Proof: Let f be an arbitrary st-flow, and [S,T] an ar-
bitrary st-cut on a flow network N. If we denote by
eW) :== D eam) f@v) = X ucaey fvu) the flow excess
at the node v, we have

val(f) = e(s) = Ze(v)
ves
=D (Y fa) = D> fow) (1)
ueS uveA(N) vueA(N)

8. 1) = f(T,5).



For given subsets X € S, Y < T, we observe that

rescap(X,Y) = Z rescap(u,v)

uex
vey

= S If0,u) + caplu,v) — fuv)]  (2)

uex
vey

= f(Y,X)— f(X,Y) + cap(X,Y).

Taking X = S,Y = T yields val(f) = cap(S,T) —
rescap(S,T). |

Here, we also show that the value of a maximum bal-
anced st-flow is restricted by the costs of a minimum
st-cut. It is easy to construct a network where the dual-
ity gap is strict. Such an example was given in Figure
3 in [2]. It is well known (and easy to see) that an st-
flow f and an st-cut Q with val(f) = cap(Q) exist. In our
special situation, we can close the duality gap artificially.
Let Q =[S, T] be an arbitrary st-cut. We put

HQ) = {vesS:HV eT}
BQ) = {veT:Vv eS}
€ = {ves:v eSs}
920) = {veT: Vv eT}

The set €(Q) is called the core of Q, and the connected
components of N[¢(Q)] are the nuclei of Q. These def-
initions are obvious extensions of the definitions given
in [2]. A nucleus U is called odd iff cap(U,T) is odd.
The total number of odd nuclei is denoted by odd(Q).
A minimum balanced sz-cut is an sf-cut with minimum
balanced capacity

balcap(Q) := cap(Q) — odd(Q).

Before we study cuts in general, we establish the identity
val(f) = balcap(Q), where Q = Q(N, f), and f cannot
be augmented validly.

Lemma 232. ¥ and & are nonadjacent, that Iis,
[€,9] =2,¢] = @.

Proof: Assume an arc vw € [€, 2], which implies that
w' € [9,€]. In particular, we have rescap(v,w) > 0
or rescap(v',w') > 0. In the former case, every d(v)-
path can be extended to a valid sw-path by vw; in the
latter, every d(v')-path can be extended to a valid sw’-
path by v'w'. In either case, we obtain a contradiction to
the choice of w. a

Theorem 23.3. Let N be a balanced-flow network, and f
a balanced flow on N and assume that t is not s-reachable
in N(f). Then, every nucleus is odd.

Proof: For given node sets M, M < V(N), let
Mo := M N Outer(N), M; := M N Inner(N)

and

Fuin := f(Mo,Mp),Guiz := f(M1,Mo).

Let U be a nucleus and & := /’. Recall that nuclei are
self-complementary. Note that B, = /; and Ly = B
so that Fyy = Fgy and Gy = Gyg. By Lemma 0, we
have

fW,T) = Fyp +Gug = Fug + Gau, (3)
fT,U) = Fgu +Ggy = Fyy + Ggu. 4)

Addition of the flow-conservation conditions for the
nodes in Uy yields

0=Fyy +Fuyg +Fyp —Gyuv — Gau — Ggy.  (5)

Since U is a nucleus, we have rescap(U,T) = 1, and by
Eq. (1),

cap(U,T) =1+ f(U,T) - f(T,U). (6)

If we substitute f(U,T) and f(T,U) by the Egs. (3) and
(4) and add Eq. (5), we see that

cap(U, T) =1+ FUU + 2FU@ — GUU — 2GQU (7)

Since [Ug, U] and [U;, U] are self-complementary and
f is balanced, Fyy and Gyy are even. Hence, cap(U,T)
is an odd number. O

Theorem 23.4. (Duality Theorem). Let f be a bal-
anced st-flow and Q an st-cut of the balanced flow net-
work N. Then,

val(f) = balcap(Q)

holds. Furthermore, equality holds iff f is a maximum
balanced st-flow, and Q is a minimum balanced sz-cut.

Proof: Let f be an arbitrary balanced flow, Q = [S,T] an
arbitrary sz-cut, and U an odd nucleus of Q. We use the
notation of the last proof but replace Q(N, f) by Q, taking
A = AQ), B = AQ), € :=%€(Q), and @ := Z(Q).

If U and & are adjacent, we have rescap(u,v) > 0 or
rescap(u’,v') > 0, in particular, rescap(U,T) = 1. So
suppose, otherwise, that [U, 2] = &. Then, we get the
equations (3) and (5) as in the situation of Theorem 0.
Addition yields

fW,T) = Fyy +2Fyg — Gyy + Fya — Ggy.  (8)
If we have f(T,U) = 0, then the right-hand side is even.
But cap(U,T) is odd so that, cap(U,T) — f(U,T) = 1.

In either case, we have

rescap(U,T) = cap(U,T) — f({U,T) + f(T,U) = 1. (9)
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Adding this inequality over all nuclei yields rescap(S, T)
= 0dd(Q), and, hence,

val(f) = f(S,T) — f(T,S) = cap(S,T) — odd(Q). (10)

The strong duality property follows by Theorems 23.1
and 23.3. O

This statement was established by Tutte [10] first. Our
proof generalizes the approach of Kocay/Stone [6] who
introduced a more familiar notation.

24. CANONICAL DECOMPOSITION

In [2, 3, 4], we presented a powerful machinery for solv-
ing various matching problems. We spent much effort
in the design of BNS algorithms which allow one to
augment a given matching in terms of a corresponding
balanced-flow network.

Actually, the BNS algorithms not only provide a sin-
gle solution but give us information about the common
structure of all optimum solutions. The crux is the par-
tition of the node set of a balanced-flow network N
into L(N, f), BN, f), €N, f), and D(N, f) according
to some maximum balanced sz-flow f.

As it turns out, these sets are independent of the spe-
cific flow f. This observation will establish a general-
ization of the well-known Gallai-Edmonds decomposi-
tion (see [8]) which helps to describe the common struc-
ture of all maximum cardinality matchings of a simple
graph.

Lemma 24.1. Let f be a maximum balanced st-flow on
the balanced-flow network N and sw € A(N). Then, w
is strictly s-reachable in N(f) iff there is a maximum
balanced st-flow g on N such that g(sw) < cap(sw) holds.

Proof:

(=) If f(sw) < cap(sw) holds, we just have to put g := f.
Assume, otherwise, that f(sw) and cap(sw) are equal and
that w is reachable in N(f). Let » be a valid sw-path.
Then, p:=rowsisavalidcycleand g:= f + f, + fpy
is a maximum balanced st-flow on N such that g(sw) <
cap(sw) holds.

(<) If f(sw) < cap(sw) holds, then w is strictly s-
reachable in N(f). Now suppose that f(sw) = cap(sw)
and that another maximum balanced flow g on N with
g(sw) < cap(sw) exists. Then, by Theorem 4.1 in [2], a
valid cycle p in N(f) exists which traverses the arc ws.
In particular, we have d(w) < oo. O

The preceding statement concerned only parts of the net-
work, but indicates that reachability is independent of the
choice of a particular maximum balanced flow. The gen-
eral result uses the duality theorem of the last section.
We can characterize the canonical sf-cut Q(N) in terms
of the other minimum balanced cuts:
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Theorem 24.2. Let N be a balanced flow network, and
f a maximum balanced st-flow on N. Then, v € V(N)
is strictly s-reachable with respect to N(f) iff v € S for
every minimum balanced st-cut [S,T] of N.

Proof: Since Q(N, f) is minimum balanced by Theorem
23.4, the backward direction is obvious.

On the other hand, let p be a valid sv-path in N(f); u,
the predecessor of v on p; and Q = [S,T], a minimum
balanced st-cut of N. Assume that v € T and, without
loss of generality, u € S. By Theorem 23.4, we have

val(f) = balcap(Q) = cap(S,T) — odd(Q),

that is, rescap(S,T) = odd(Q). Hence, equality must
hold for all inequalities in the proof of Theorem 23.4
which shows rescap(/,T) = 0. We have rescap(u,v) >
0 so that u is in a nucleus of Q. By Theorem 9.13 in
[2] (Base Identity), we obtain rescap(uv) = 1 and that p
traverses v'u’ also, a contradiction. O

Corollary 243. Let N be a balanced-flow network, and
f a maximum balanced st-flow on N. The minimum bal-
anced st-cut Q(N) := Q(N, f) is well defined, that is,
O(N, f) is independent of the special choice of f.

Proof: Observe that S(N, f) = N{S : [S,T] minimum
balanced st-cut}. O

Let ./ be an instance for the extended matching problem.
Recall that N’fﬂ is the network N7, where cap(s*,t) =
cap(s,t*) = a(V(M)) — def (M) is set. In [2], we showed
that a maximum balanced sz-flow on N*, corresponds to
a minimum-deficiency matching. The sets

AM) = AN V),
BM) = BWNY) V(M)
C) = CWNY) N VM),
DM) = DN*) O V(M)

form the canonical decomposition for /. If upper and
lower-degree constraints coincide, one can exchange in
this definition Nf,, by the network N 4, which is almost
the same. Note that any matching algorithm which de-
pends on augmentation and a balanced network search
will finally compute the canonical decomposition.

As an example, consider the graph G of Figure 1 and
its subgraphs with maximum node degree 3. Obviously,
a 3-factor cannot exist since the number of nodes is odd,
and the matching x that consists of the boldface edges is
maximum. The canonical decomposition is

LM = {1,2,3,5,6,9,11, 12},
BM) = {4,7,8},

€M) = {13,14,15},

(M) = {10}



FIG. 1. An example of a canonical decomposition.

The reader is asked to verify the sets in terms of some
other maximum matching. If we are concerned with the
cardinality matching problem, we write 2/(G), %(G),
%(G), and Z(G). Here, the canonical decomposition is
known as the Gallai-Edmonds decomposition. Since
this problem is purely combinatorial, we have some more
explicit statements. One of the most important is the
Gallai-Edmonds Structure Theorem. But this theorem
can also be formulated for the b-matching problem:

Lemma 244. Let M be an instance for the b-matching
problem. Then, S/(M), €M), and D(M) are pairwise
nonadjacent and (M) is an independent node set.

Proof: Consider Q(N 4), which is a minimum balanced
st-cut. Note that balcap(Q) = balcap(s,V(M)) = b(V).
Since we have cap(u,v') > b(V) for every edge {u,v} €
E(AM), uv' cannot be an arc of the cut Q. But this means
that [, A =€, '] = [A, D' = D and [€,D'] = O
holds by Lemma 23.2. m|

Theorem 24.5. Let M be an instance for the b-matching
problem, b := b(M) and G := G(M). Then, there is a
partition V(M) = o4 W B WJE YD so that the following
Statements hold:

(a) The connected components of G|9] admit perfect b-
matchings.

(b) The connected components of G[€] are factor-critical.

(¢c) Every maximum b-assignment of G|%B, o J €] satu-
rates B.

(d) Every maximum b-matching of G splits into a perfect
b-matching of G|9], near-perfect b-matchings of the
connected components of G|€], and a complete b-
assignment of G|%B, A \J €].

Proof: Let f be a maximum balanced flow on N 4, and
x, the corresponding matching of G. We choose & =

(M), B = BM), € =CM), and D = D(M).

Since every node of %’ but no node of Z is strictly
s-reachable, we have f(2,%’') = 0. By the preceding
lemma, the nodes in & are matched among themselves,
and x[9] is a perfect b-matching of Z. Assertion (a)
follows.

Let U be a nucleus, u := base(U), and observe that
b(u) > 0. If rescap(su) = 0 holds, we exchange f by
the maximum balanced flow f + f, + f,-, where r :=
p o us holds for some valid su-path p. This does not
affect the flow values on U. After this operation, we have
rescap(su) = 1. If {v,w} is an edge of G with v € U,
W & U, then we have w € B and f(wv') = 0, since,
otherwise, w would be reachable.

Hence, the nodes v € Up := UNV(M), v # u are
matched to other nodes of Uy only, and, hence, x[Ug]
is a near-perfect b-matching which is u-deficient. Let
v € Up, v # u, and r := p o vs for some valid sv-path
p in N 4(f). Let x, be the maximum b-matching corre-
sponding to f + f, + f,. Then, x,[Up] is v-deficient and
Uy is factor-critical. This is assertion (b).

By Corollary 24.3, the nodes of & are saturated by
every maximum matching of G. Note that we have
f(B,B) = f(B,P') = 0, which gives (c). Assertion
(d) follows directly by the above discussion. O

Corollary 24.6. (Gallai-Edmonds Structure Theorem).
Let G be a simple graph. Then, there is a partition
V(G) = A WRBYE YD so that the following statements
hold:

(a) The connected components of G| admit 1-factors.

(b) The connected components of G[€] are factor-critical.

(¢) Every maximum assignment of G|%, & €] covers
AB.

(d) Every maximum matching of G splits into a 1-factor
of GlD], near-perfect matchings of the connected
components of G|€], and a complete assignment of

/M ACKAN

It is obvious now that one can define the canonical de-
composition in terms of the underlying matching prob-
lem. This is also possible in the general situation. To see
this, we extend the definitions given in [2], letting

def(x):= Y max{0,a(v) — deg.(v),deg.(v) — b(»)}
veV (M)

be the deficiency of an arbitrary subgraph x of the multi-
graph G(/#). A node v with b(v) < deg,(v) is called
supersaturated. A subgraph x which has minimum de-
ficiency among all subgraphs is called optimal.

Theorem 24.7. There always is an optimal matching.

Proof: Let x be an optimal subgraph. If x is a matching,
we are finished. So assume that deg,(v) > b(v) for some
node v € V(A#), e, an arc incident with v, and w, the
other end node of e.
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Denote by y the subgraph which is obtained from x
by omitting e. If w = v, then we have deg,(v) = b(v) + 1
and a(v) = b(v), since, otherwise, def(y) < def(x) would
result. If w # v, then deg,(w) = a(w) holds for the same
reason. In either case, y is optimal. If we proceed with
such update steps, we finally reach an optimal matching.
O

Corollary 248. A given node is deficient in some mini-
mum deficiency matching iff it is deficient in some optimal
subgraph. |

Theorem 249.

V(M) :={veV):
There are v-deficient optimal subgraphs} = o J €.

Proof: Let v € V(). If a(v) > 0, then apply Corollary
24.8, Lemma 24.1, and Lemma 5.2 of [2] to see that
veV (M) if ve 4 UE.

If a(v) = 0, then no subgraph is v-deficient. Suppose
that f is a maximum balanced s*¢*-flow on N*, and as-
sume the existence of a valid s*v-path in N*/(f). Since
s cannot be traversed, v must be reached by an arc u'v,
u € V(M). But, then, f(v,u’) > 0 and f(s,v) > 0 follow.
So at least one of s and # would be strictly s-reachable,
a contradiction. O

Theorem 24.10.

VM) :={veVv):
There are v-supersaturated optimal subgraphs} = BYE.

Proof:

(<) Let a v-supersaturated optimal subgraph be given.
This subgraph can be turned into an optimal matching
as described in the proof of Theorem 24.7. Even more,
we may assume that v is still supersaturated before the
last deletion step.

Let x be the optimal subgraph just before this ultimate
step, e be the edge deleted and y be the final matching.
We have deg,(v) = b(v) + 1 and deg,(w) = b(w) for
w € V(M) — v. Suppose that y corresponds to the flow
f on N*,. If w is the end node of e other than v, then
y is w-deficient. Hence, (s*,w, V') is a valid s*v'-path in
Nu().

(2) Let f be a maximum balanced s*¢*-flow on N¥, x
be the corresponding matching, and v € V() so that
a valid s*v'-path p in N*(f) exists. Since neither s nor
t is strictly reachable, we have rescap(v',t) = 0. Since
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f is maximum balanced, we have rescap(v',t*) = 1. If
rescap(v',t*) = 1, then p must start with the arc s*v.

If we augment f along po (v, t,s,t") and the comple-
mentary path, the resulting flow g violates the bounds
cap(v',t) and cap(t,t*). If we replace in # the bound
b(v) by b(v) := b(v) + 1, then g is an admissible bal-
anced flow on N, again [this requires us to verify
b(v) = deg(v)].

Note that we have g(v',t*) = a(v) and g(v',1) =
b(v) — a(v) + 1. Actually, g corresponds to a matching
y in the modified problem. In the original problem, y is
v-supersaturated. If p starts with the arc sw, then x is
w-deficient and deg,(w) = deg,(w) + 1. Hence, y is even
optimal. m|

We obtain & = VI (M)\V (M), B =V (M)\V* (M),
C =V (MNVT(M),and D = V(M) (M)UV*(M)).
For sake of completeness, we mention another construc-
tion of the canonical decomposition: o

The complementary subgraph network . results
from # where the degree bounds a and b are replaced
by @ := deg — b and b := deg — a. To a given subgraph
X, the complementary subgraph is X := ¢ — x.

Note that x is v-deficient in ./ iff X is v-supersaturated
in M. Hence, we get V* (M) = V(M) and V~ (M) =
V(). If we translate the situation to the balanced-flow
networks Nfﬂ (respectively, N#%), we have & = B, B =
A, € =%, and 2 = . If follows that the canonical
decomposition can be constructed from the sets V= (#)
and V~ (/) which refer to matchings only.

25. ODD SETS, BARRIERS, AND FACTOR
THEOREMS

We now present some duality theorems which relate
matchings to their dual structures, called barriers. In par-
ticular, we give a defect form of Tutte’s 1-factor theo-
rem [9] as well as a proof of Lovasz’s factor theorem [7]
which is the most general duality statement in terms of
a graph matching problem.

Let G be a simple graph and W < V(G). By odd(W),
we denote the number of components with odd cardinal-
ity in G[W]. Observe odd(Q) = odd(¥), where Q is the
canonical st-cut and € is the core of the network Ng.
Odd sets give a very intuitive condition for the existence
of 1-factors.

Our proof applies the Duality Theorem 23.4 to the
network Ng. Kocay and Stone [6] proved the more gen-
eral f-factor theorem in the same way. A more direct
proof of the 1-factor theorem which depends on Hall’s
Marriage Theorem can be found, for example, in Jung-
nickel [5].

Theorem 25.1. (1-Factor Theorem).
Let G be a simple graph. Then, there is a matching of G



with deficiency at most k iff
|X| +k = odd(Y) (11)
holds for arbitrary partitions V(G) = X W Y.

Proof:

(=) If U is an odd component of G[Y], then at least one
node in U must be either matched to a node not in Y or
unmatched. The assertion follows.

(<) Let f be a maximum balanced st-flow on Ng again,
and Q := Q(Ng) canonical. Suppose there is no matching
with deficiency k or less, that is, balcap(Q) = val(f) <
|[V(G)| — k. We can compute balcap(Q) in terms of the
canonical decomposition & = H(G), B = B(G), € =
¢(G), and Z = 2(G). If Q would be the canonical st-cut
on N 4 where / is arbitrary, we would have

balcap(Q) = cap(A,A') + cap(A,D’) + cap(¥, ')
+cap(PB',t) + cap(€',t) (12)
+cap(s, B) + cap(s, D) — odd(¥).

By Lemma 244, cap(,o') = cap(H,D') =
cap(%,2/') = 0 holds in our situation. Since we have
cap(s,W) = |W| for every W < V(M), one obtains

balcap(Q) = 2|B| + |€| + | 2| — odd(%).

If we replace |V(G)| by || + |B| + |€| + |Z|, we have
the inequality

|B| + k < || + odd(F).

Since & has a 1-factor by Theorem 24.6, it has no odd
components. On the other hand, &/ is an independent
node set, and every element, an odd component of G[.27].
Since &/, €, and & are nonadjacent, we have odd(/ &
CWwD) =o0dd€) +|L|. PutY ;= 4 WE WP and
X := % to obtain a contradiction. O

Actually, this is not the original 1-Factor Theorem of
Tutte but Berge’s defect form which is a simple exten-
sion:

Corollary 25.2. (Berge Formula).
The minimum deficiency of a matching is given by

max{odd(Y) — |X| :V(G) = X W Y}.

Similar results can also be obtained for all the capaci-
tated matching problems (see [9, 7]). Unfortunately, the
statements are just as difficult to read as are the corre-
sponding proofs. This may indicate that the network flow
formulation is more adequate for capacitated matching
problems.

The set system (X, Y) which gives equality in (11) is
usually called a barrier. To generalize the result, one
effectively splits the set Y into two sets:

Let X, Y, and Z be disjoint. Then, Z is called (X, Y)-
odd or simply odd iff a(v) = b(v) for every v € Z and

7(2) := b(Z) + c(Y,Z) is odd. Otherwise, Z is called
even. Unfortunately, this definition is asymmetric. The
number of odd-connected components of G[V \ (X U Y)]
is denoted by odd(X,Y).

In the context of the b-matching problem and Y =
M), X = B(M), we have 7(Z) = b(Z) by Lemma
24.4. In the cardinality matching context, we even have
7(Z) = |Z|. We now investigate the canonical barrier
X =RBUM),Y = AM), Z = EC(M)UD(M) in the general

setting.

Theorem 253, Let X := Band Y = A, Z =6 U D
with 4, B,€,9D the canonical decomposition of M.

(a) Every connected component of G|¥%] is odd.

(b) Every connected component of G|9] is even.

(c) € and 9 are nonadjacent.

(d) 0odd(X,Y) = 0odd(Q), where Q = Q(Nf,l).

(e) Edges joining &/ and & are saturated in any
minimum- deficiency matching.

(f) Edges joining # and & are void in any minimum-
deficiency matching.

Proof:

(a) Let U be a connected component of G[#]. Then,
U := UUU’ is a nucleus of N*,. Neither s nor 7 is strictly
s*-reachable, so we have rescap(v,s) = rescap(V',t) =
0, and, hence, cap(s,v) = b(v) — a(v) = 0 for every node
v € €. Moreover, Theorem 23.3 shows that

cap(U,T) = cap(U, ") + cap(U', t*) 13)

=0, )+ b0) = 7(0)
is odd.

(b) Let 14 _be a connected component of Gl9],
W := W U W', and assume that a(v) = b(v) for every
v € W. Then,

cap(S,W) = cap(,W') + cap(s*, W) (14)

=c(W, ) + b(W) = 7(W).

Since the nodes in & are strictly s*-reachable, but
the nodes in W are not, we have rescap(s*,W) =
rescap(, W’) = 0. For an arbitrary maximum balanced
flow f, this can be written as

cap(S,W) = f(S,W) = Fyw +Ggw
= Fyw + Gwa,

0=fW.S) = Fyy+Gyy 19
= Fgw + Gwy,

where we use the shorthand notations of the proof of
Theorem 23.3 and the sets &/ and & refer to the canon-
ical s*t*-cut again. Adding the mass-balance equations
for the nodes in W’ yields

0 = Gww + Gww + Gwgp — Fww — Fgw — Faw, (16)
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so that

cap(S,W) = Gww + Gww +2Gwgp — Fww — Fgw. (17)
Adding (15), we see that cap(S,W) = Gyw + 2Gwgp —
Fww — 2F aw 1s even.

(c) This is essentially Lemma 23.2.

(d) This follows directly from assertions (a)—(c), and The-
orem 23.3.

(e) Consider the maximum balanced flow f on Nf% cor-
responding to some minimum-deficiency matching. As
in the proof of assertion (b), we obtain f(&/,9') =
cap(AL, D).

(f) Similar to assertion (e). O

One can also prove Lovasz’s factor theorem, and even its
defect form, with the approach given in [6]. To do this,
one applies Theorem 23.4 to the network N* instead of
Ny

Theorem 254. (Factor Theorem).
Let M be a subgraph network. Then, there is a subgraph
of G with deficiency k or less iff

bX)+cY,YUZ)+k =o0ddX,Y)+ a(Y) (18)

holds for arbitrary partitions V(G) = X WY W Z. This
inequality can also be written as

b(X) + b(Y) + k = 0dd(X,Y) + c(X,Y). (19)

Proof: We define an s*t"-cut Q = [S,T] by taking
S=AUBUECUEC U{s*}and T .= B U L' U
DUD U{s,t,t*}, where ==Y, % := X and

% := U{U : U is an odd component of Z},
9 = U{U :U is an even component of Z}.

By choice of €, we have odd(Q) = odd(Z), cap(¥,D') =
0, and cap(%’,t) = 0 since a(¥¢) = b(¥). We obtain

balcap(Q) = cap(A,A") + cap(A,D') + cap(¥, L")
+cap(B',t*) + cap(B',t) + cap(€’,t*)
+cap(s™, B) + cap(s™, D) + cap(s™, 1)
—odd(Q). (20)

We can substitute cap(s*™,t) = a(V) — def (M),
cap(B',t) + cap(B',t*) = b(B), cap(€’,t*) = a(¥), and
cap(A, ")+ cap(A, D)+ cap(@, L") = (A, L UE U
9). Proceeding from the canonical decomposition to the
canonical barrier, we obtain

balcap(Q) = c(Y,Y UZ) + b(X) + a(Z) (21)
+a(X) + a(V) —def (M) — odd(X,Y).
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The value of a maximum balanced s*¢*-flow on N
is 2a(V) — —2def(A), which is a lower bound on
balcap(Q). Comparison with (21) yields inequality (18)
when k := def(M) is chosen. Moreover, equality in (18)
is reached if Q is canonical so that def () is the maxi-
mum value of k£ which applies.

Adding ¢(X,Y) — a(Y) to both sides in (18) yields in-
equality (19). O

26. CAPACITY SCALING ALGORITHMS

We conclude the discussion by a simple application of
the duality relationship between balanced flows and edge
cuts:

The simple augmentation algorithms given in [3] per-
form poorly if the arc capacities grow large. The sim-
plest way to make augmentation algorithms polynomial
is called capacity scaling. Actually, there are two simi-
lar algorithms for the maximum balanced-flow problem
which depend on this idea.

Let U denote an upper bound on the arc capacities
in a balanced-flow network N (with k = [logU] the
length of integer representation for instance). Instead of
N, we can apply an augmentation algorithm to a series
N{,N,,...,N; of balanced-flow networks. These net-
works consist of the original digraph but have arc ca-
pacities cap;(a) := cap(a) mod 2 for every a € A(N).

The respective maximum flows are not computed
from scratch. Instead, the initial flow for the network
N; is f; := 2f;_1, where f;_; is the maximum flow
for N;_;, which has been computed before. We may
choose f := 0 in the very beginning. It is obvious that
the resulting procedure determines a maximum balanced
flow on N = N;. We merely have to consider the total
effort.

Let Q; be a minimum balanced cut for N;, that is,
val(f;) = balcap(Q;) at the end of the (i)-scaling phase.
If we proceed from N; to the network N;.;, then an
arc a with rescapi(a) = 0 has rescap;;(a) = 1 and
an arc a with rescap;(a) = 1 has rescap;;(a) = 3. We
obtain

rescapiy1(Q;) = |Qi| + 20ddi(Q;) = m +2n.  (22)

There are O(m) augmentation steps during one scaling
phase, each of which needs O(ma(m,n)) time. Hence,
the time complexity of this capacity scaling algorithm is
O(m*log Ua(m, n)).

We mention that every but the last scaling phase may
run with a BNS heuristic (like the Kameda/Munro al-
gorithm described in [3] or the Pape/Conradt algorithm
which only finds strictly simple augmenting paths). Then,
correctness is maintained while polynomial performance
cannot be guaranteed any longer.



Another capacity-scaling algorithm runs the BNS on
a modified residual network N(f, A) which consists of
all arcs a with rescap(a) = A. The procedure is started

with A := 2/, i := k — 1. Whenever no augmenting
path can be found, we put i := i — 1 (until i = 0 is
reached).

If we would combine this algorithm with a BNS pro-
cedure, there would be no improvement compared with
the former algorithm. Instead of this, we determine ar-
bitrary augmenting paths p unless A = 1 and augment
on p and p’ simultaneously. Each step increases the flow
value by at least A likewise.

At the end of the (i)-scaling phase, we have
rescap(S,T) < Am for some st-cut [S,T]. Hence, at
most 2m augmentation steps can occur during the (i + 1)-
scaling phase. One gets the bound O(m? log U) as before.

It may turn out that this bound can be improved to
O(nmlogU) by an adaption of labeling techniques de-
scribed for the usual max-flow problem and a corre-
sponding SAP scaling algorithm (see Ahuja et al. [1],
pp- 210-220). Our experience with the phase-ordered
augmentation algorithms in [4] indicates, however, that
unexpected difficulties may arise when max-flow tech-
niques are applied to matching problems.
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