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In this paper, we present a theory for general-
ized graph factor problems which is basically equiv-
alent to Chapter 10 in Lovasz/Plummer [8] but
considerably more intuitive since it uses the lan-
guage of balanced network flows. The highlights
are extensions of the Gallai–Edmonds decomposi-
tion and an intuitive development of Lovasz’s factor
theorem. © 2001 John Wiley & Sons, Inc.

Keywords: capacitated matching problems; network flows;
factor theorems; Gallai–Edmonds decomposition; odd sets; bar-
riers; cuts; duality

Preliminaries

The present paper continues our study of balanced net-
work flows and general matching problems [2, 3, 4].
Problems of finding maximum matchings, minimum-
deficiency matchings, and even factors of graphs have
dual formulations by so-called odd cuts. Minimum–
maximum results have been derived for various match-
ing problems. However, statements in terms of gen-
eralized matching problems are far less intuitive than
equivalent results in terms of the balanced network flow
approach.

In [2], we stated problems, reduction mechanisms, and
a purely primal maximality result. We do not repeat the
definitions, but refer to Sections 2, 3, 4, 5, and 9 of that
paper. In particular, the cut Q(N, f) := Q(N(f)), which
separates the strictly s-reachable nodes in the residual
network N(f), appears as an optimum dual solution and
plays the central role in what follows.
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23. EDGE CUTS AND DUALITY

Let N be a balanced flow network, and f a balanced
st-flow on N so that no valid st-path in N(f) exists. In
this section, we show that f is maximum balanced by
a convenient duality theorem. The proof is independent
of Theorem 4.1 in [2] (Balanced Flow Decomposition).
Again, Theorem 4.2 (Augmenting Path Theorem) can
be obtained as a corollary. First, we determine the flow
value of f:

For this goal, let d denote the balanced distance la-
bels in N(f), and choose nodes u, v ∈ V(N) with d(u) <
∞, d(v) = ∞ and rescap(u, v) > 0. We have d(u′) < ∞
and rescap(uv) = 1 since every valid su-path must tra-
verse v′u′ (otherwise, v would be reachable). Hence, u is
in a nucleus U of N(f). We know by Theorem 9.13 in [2]
(Base Identity) that v′u′ is the prop of this nucleus and
that rescap(U, T) = 1. We denote the number of nuclei
by k and observe that

rescap(S, T) = rescap(C, T) = k.

If we translate our observations from N(f) to the flow
network N, we have

Theorem 23.1. Let N be a balanced flow network, and
f a balanced flow on N so that there is no valid st-path
in N(f). Then, val(f) = cap(Q(N, f)) − k holds.

Proof: Let f be an arbitrary st-flow, and [S, T] an ar-
bitrary st-cut on a flow network N. If we denote by
e(v) :=

∑
uv∈A(N) f(uv) −

∑
vu∈A(N) f(vu) the flow excess

at the node v, we have

val(f) = e(s) =
∑

v∈S

e(v)

=
∑

u∈S

(
∑

uv∈A(N)
f(uv) −

∑

vu∈A(N)
f(vu)) (1)

= f(S, T) − f(T, S).
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For given subsets X ⊆ S, Y ⊆ T, we observe that

rescap(X, Y) =
∑

u∈X
v∈Y

rescap(u, v)

=
∑

u∈X
v∈Y

[f(v, u) + cap(u, v) − f(u, v)] (2)

= f(Y, X) − f(X, Y) + cap(X, Y).

Taking X = S, Y = T yields val(f) = cap(S, T) −
rescap(S, T). !

Here, we also show that the value of a maximum bal-
anced st-flow is restricted by the costs of a minimum
st-cut. It is easy to construct a network where the dual-
ity gap is strict. Such an example was given in Figure
3 in [2]. It is well known (and easy to see) that an st-
flow f and an st-cut Q with val(f) = cap(Q) exist. In our
special situation, we can close the duality gap artificially.

Let Q = [S, T] be an arbitrary st-cut. We put

A(Q) := {v ∈ S : v′ ∈ T}
B(Q) := {v ∈ T : v′ ∈ S}
C(Q) := {v ∈ S : v′ ∈ S}
D(Q) := {v ∈ T : v′ ∈ T}.

The set C(Q) is called the core of Q, and the connected
components of N[C(Q)] are the nuclei of Q. These def-
initions are obvious extensions of the definitions given
in [2]. A nucleus U is called odd iff cap(U, T) is odd.
The total number of odd nuclei is denoted by odd(Q).
A minimum balanced st-cut is an st-cut with minimum
balanced capacity

balcap(Q) := cap(Q) − odd(Q).

Before we study cuts in general, we establish the identity
val(f) = balcap(Q), where Q = Q(N, f), and f cannot
be augmented validly.

Lemma 23.2. C and D are nonadjacent, that is,
[C, D] = [D, C] = ∅.

Proof: Assume an arc vw ∈ [C, D], which implies that
w′v′ ∈ [D, C]. In particular, we have rescap(v, w) > 0
or rescap(v′, w′) > 0. In the former case, every d(v)-
path can be extended to a valid sw-path by vw; in the
latter, every d(v′)-path can be extended to a valid sw′-
path by v′w′. In either case, we obtain a contradiction to
the choice of w. !

Theorem 23.3. Let N be a balanced-flow network, and f
a balanced flow on N and assume that t is not s-reachable
in N(f). Then, every nucleus is odd.

Proof: For given node sets M, M̃ ⊆ V(N), let

MO := M ∩ Outer(N), MI := M ∩ Inner(N)

and

FMM̃ := f(MO, M̃I), GMM̃ := f(MI, M̃O).

Let U be a nucleus and B := A′. Recall that nuclei are
self-complementary. Note that B′

O = AI and A′
O = BI

so that FUA = FBU and GAU = GUB. By Lemma 0, we
have

f(U, T) = FUB + GUB = FUB + GAU, (3)
f(T, U) = FBU + GBU = FUA + GBU. (4)

Addition of the flow-conservation conditions for the
nodes in UO yields

0 = FUU + FUA + FUB − GUU − GAU − GBU. (5)

Since U is a nucleus, we have rescap(U, T) = 1, and by
Eq. (1),

cap(U, T) = 1 + f(U, T) − f(T, U). (6)

If we substitute f(U, T) and f(T, U) by the Eqs. (3) and
(4) and add Eq. (5), we see that

cap(U, T) = 1 + FUU + 2FUB − GUU − 2GBU. (7)

Since [UO, UI] and [UI, UO] are self-complementary and
f is balanced, FUU and GUU are even. Hence, cap(U, T)
is an odd number. !

Theorem 23.4. (Duality Theorem). Let f be a bal-
anced st-flow and Q an st-cut of the balanced flow net-
work N. Then,

val(f) ≤ balcap(Q)

holds. Furthermore, equality holds iff f is a maximum
balanced st-flow, and Q is a minimum balanced st-cut.

Proof: Let f be an arbitrary balanced flow, Q = [S, T] an
arbitrary st-cut, and U an odd nucleus of Q. We use the
notation of the last proof but replace Q(N, f) by Q, taking
A := A(Q), B := A(Q)′, C := C(Q), and D := D(Q).

If U and D are adjacent, we have rescap(u, v) > 0 or
rescap(u′, v′) > 0, in particular, rescap(U, T) ≥ 1. So
suppose, otherwise, that [U, D] = ∅. Then, we get the
equations (3) and (5) as in the situation of Theorem 0.
Addition yields

f(U, T) = FUU + 2FUB − GUU + FUA − GBU. (8)

If we have f(T, U) = 0, then the right-hand side is even.
But cap(U, T) is odd so that, cap(U, T) − f(U, T) ≥ 1.
In either case, we have

rescap(U, T) = cap(U, T) − f(U, T) + f(T, U) ≥ 1. (9)
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Adding this inequality over all nuclei yields rescap(S, T)
≥ odd(Q), and, hence,

val(f) = f(S, T) − f(T, S) ≤ cap(S, T) − odd(Q). (10)

The strong duality property follows by Theorems 23.1
and 23.3. !

This statement was established by Tutte [10] first. Our
proof generalizes the approach of Kocay/Stone [6] who
introduced a more familiar notation.

24. CANONICAL DECOMPOSITION

In [2, 3, 4], we presented a powerful machinery for solv-
ing various matching problems. We spent much effort
in the design of BNS algorithms which allow one to
augment a given matching in terms of a corresponding
balanced-flow network.

Actually, the BNS algorithms not only provide a sin-
gle solution but give us information about the common
structure of all optimum solutions. The crux is the par-
tition of the node set of a balanced-flow network N
into A(N, f), B(N, f), C(N, f), and D(N, f) according
to some maximum balanced st-flow f.

As it turns out, these sets are independent of the spe-
cific flow f. This observation will establish a general-
ization of the well-known Gallai–Edmonds decomposi-
tion (see [8]) which helps to describe the common struc-
ture of all maximum cardinality matchings of a simple
graph.

Lemma 24.1. Let f be a maximum balanced st-flow on
the balanced-flow network N and sw ∈ A(N). Then, w
is strictly s-reachable in N(f) iff there is a maximum
balanced st-flow g on N such that g(sw) < cap(sw) holds.

Proof:
(→) If f(sw) < cap(sw) holds, we just have to put g :≡ f.
Assume, otherwise, that f(sw) and cap(sw) are equal and
that w is reachable in N(f). Let r be a valid sw-path.
Then, p := r ◦ ws is a valid cycle and g := f + fp + fp′

is a maximum balanced st-flow on N such that g(sw) <
cap(sw) holds.

(←) If f(sw) < cap(sw) holds, then w is strictly s-
reachable in N(f). Now suppose that f(sw) = cap(sw)
and that another maximum balanced flow g on N with
g(sw) < cap(sw) exists. Then, by Theorem 4.1 in [2], a
valid cycle p in N(f) exists which traverses the arc ws.
In particular, we have d(w) < ∞. !

The preceding statement concerned only parts of the net-
work, but indicates that reachability is independent of the
choice of a particular maximum balanced flow. The gen-
eral result uses the duality theorem of the last section.
We can characterize the canonical st-cut Q(N) in terms
of the other minimum balanced cuts:

Theorem 24.2. Let N be a balanced flow network, and
f a maximum balanced st-flow on N. Then, v ∈ V(N)
is strictly s-reachable with respect to N(f) iff v ∈ S for
every minimum balanced st-cut [S, T] of N.

Proof: Since Q(N, f) is minimum balanced by Theorem
23.4, the backward direction is obvious.

On the other hand, let p be a valid sv-path in N(f); u,
the predecessor of v on p; and Q = [S, T], a minimum
balanced st-cut of N. Assume that v ∈ T and, without
loss of generality, u ∈ S. By Theorem 23.4, we have

val(f) = balcap(Q) = cap(S, T) − odd(Q),

that is, rescap(S, T) = odd(Q). Hence, equality must
hold for all inequalities in the proof of Theorem 23.4
which shows rescap(A, T) = 0. We have rescap(u, v) >
0 so that u is in a nucleus of Q. By Theorem 9.13 in
[2] (Base Identity), we obtain rescap(uv) = 1 and that p
traverses v′u′ also, a contradiction. !

Corollary 24.3. Let N be a balanced-flow network, and
f a maximum balanced st-flow on N. The minimum bal-
anced st-cut Q(N) := Q(N, f) is well defined, that is,
Q(N, f) is independent of the special choice of f.

Proof: Observe that S(N, f) = ∩{S : [S, T] minimum
balanced st-cut}. !

Let M be an instance for the extended matching problem.
Recall that N#

M is the network N∗
M where cap(s∗, t) =

cap(s, t∗) = a(V(M)) − def(M) is set. In [2], we showed
that a maximum balanced st-flow on N#

M corresponds to
a minimum-deficiency matching. The sets

A(M) := A(N#
M) ∩ V(M),

B(M) := B(N#
M) ∩ V(M),

C(M) := C(N#
M) ∩ V(M),

D(M) := D(N#
M) ∩ V(M)

form the canonical decomposition for M. If upper and
lower-degree constraints coincide, one can exchange in
this definition N#

M by the network NM, which is almost
the same. Note that any matching algorithm which de-
pends on augmentation and a balanced network search
will finally compute the canonical decomposition.

As an example, consider the graph G of Figure 1 and
its subgraphs with maximum node degree 3. Obviously,
a 3-factor cannot exist since the number of nodes is odd,
and the matching x that consists of the boldface edges is
maximum. The canonical decomposition is

A(M) = {1, 2, 3, 5, 6, 9, 11, 12},

B(M) = {4, 7, 8},

C(M) = {13, 14, 15},

D(M) = {10}.
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FIG. 1. An example of a canonical decomposition.

The reader is asked to verify the sets in terms of some
other maximum matching. If we are concerned with the
cardinality matching problem, we write A(G), B(G),
C(G), and D(G). Here, the canonical decomposition is
known as the Gallai–Edmonds decomposition. Since
this problem is purely combinatorial, we have some more
explicit statements. One of the most important is the
Gallai–Edmonds Structure Theorem. But this theorem
can also be formulated for the b-matching problem:

Lemma 24.4. Let M be an instance for the b-matching
problem. Then, A(M), C(M), and D(M) are pairwise
nonadjacent and A(M) is an independent node set.

Proof: Consider Q(NM), which is a minimum balanced
st-cut. Note that balcap(Q) ≤ balcap(s, V(M)) = b(V).
Since we have cap(u, v′) > b(V) for every edge {u, v} ∈
E(M), uv′ cannot be an arc of the cut Q. But this means
that [A, A′] = [C, A′] = [A, D′] = ∅ and [C, D′] = ∅
holds by Lemma 23.2. !

Theorem 24.5. Let M be an instance for the b-matching
problem, b := b(M) and G := G(M). Then, there is a
partition V(M) = A % B % C % D so that the following
statements hold:

(a) The connected components of G[D] admit perfect b-
matchings.

(b) The connected components of G[C] are factor-critical.
(c) Every maximum b-assignment of G[B, A % C] satu-

rates B.
(d) Every maximum b-matching of G splits into a perfect

b-matching of G[D], near-perfect b-matchings of the
connected components of G[C], and a complete b-
assignment of G[B, A % C].

Proof: Let f be a maximum balanced flow on NM, and
x, the corresponding matching of G. We choose A =
A(M), B = B(M), C = C(M), and D = D(M).

Since every node of B′ but no node of D is strictly
s-reachable, we have f(D, B′) = 0. By the preceding
lemma, the nodes in D are matched among themselves,
and x[D] is a perfect b-matching of D. Assertion (a)
follows.

Let U be a nucleus, u := base(U), and observe that
b(u) > 0. If rescap(su) = 0 holds, we exchange f by
the maximum balanced flow f + fr + fr′ , where r :=
p ◦ us holds for some valid su-path p. This does not
affect the flow values on U. After this operation, we have
rescap(su) = 1. If {v, w} is an edge of G with v ∈ U,
W /∈ U, then we have w ∈ B and f(wv′) = 0, since,
otherwise, w would be reachable.

Hence, the nodes v ∈ UO := U ∩ V(M), v /= u are
matched to other nodes of UO only, and, hence, x[UO]
is a near-perfect b-matching which is u-deficient. Let
v ∈ UO, v /= u, and r := p ◦ vs for some valid sv-path
p in NM(f). Let xv be the maximum b-matching corre-
sponding to f + fr + fr′ . Then, xv[UO] is v-deficient and
UO is factor-critical. This is assertion (b).

By Corollary 24.3, the nodes of B are saturated by
every maximum matching of G. Note that we have
f(B, B′) = f(B, D′) = 0, which gives (c). Assertion
(d) follows directly by the above discussion. !

Corollary 24.6. (Gallai–Edmonds Structure Theorem).
Let G be a simple graph. Then, there is a partition
V(G) = A % B % C % D so that the following statements
hold:

(a) The connected components of G[D] admit 1-factors.
(b) The connected components of G[C] are factor-critical.
(c) Every maximum assignment of G[B, A % C] covers

B.
(d) Every maximum matching of G splits into a 1-factor

of G[D], near-perfect matchings of the connected
components of G[C], and a complete assignment of
G[B, A % C].

It is obvious now that one can define the canonical de-
composition in terms of the underlying matching prob-
lem. This is also possible in the general situation. To see
this, we extend the definitions given in [2], letting

def(x) :=
∑

v∈V(M)
max{0, a(v) − degx(v), degx(v) − b(v)}

be the deficiency of an arbitrary subgraph x of the multi-
graph G(M). A node v with b(v) < degx(v) is called
supersaturated. A subgraph x which has minimum de-
ficiency among all subgraphs is called optimal.

Theorem 24.7. There always is an optimal matching.

Proof: Let x be an optimal subgraph. If x is a matching,
we are finished. So assume that degx(v) > b(v) for some
node v ∈ V(M), e, an arc incident with v, and w, the
other end node of e.
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Denote by y the subgraph which is obtained from x
by omitting e. If w = v, then we have degx(v) = b(v) + 1
and a(v) = b(v), since, otherwise, def(y) < def(x) would
result. If w /= v, then degx(w) ≤ a(w) holds for the same
reason. In either case, y is optimal. If we proceed with
such update steps, we finally reach an optimal matching.
!

Corollary 24.8. A given node is deficient in some mini-
mum deficiency matching iff it is deficient in some optimal
subgraph. !

Theorem 24.9.

V−(M) := {v ∈ V(M) :
There are v-deficient optimal subgraphs} = A $ C.

Proof: Let v ∈ V(M). If a(v) > 0, then apply Corollary
24.8, Lemma 24.1, and Lemma 5.2 of [2] to see that
v ∈ V−(M) iff v ∈ A $ C.

If a(v) = 0, then no subgraph is v-deficient. Suppose
that f is a maximum balanced s∗t∗-flow on N#

M and as-
sume the existence of a valid s∗v-path in N#

M(f). Since
s cannot be traversed, v must be reached by an arc u′v,
u ∈ V(M). But, then, f(v, u′) > 0 and f(s, v) > 0 follow.
So at least one of s and t would be strictly s-reachable,
a contradiction. !

Theorem 24.10.

V+(M) := {v ∈ V(M) :
There are v-supersaturated optimal subgraphs} = B$C.

Proof:
(⊆) Let a v-supersaturated optimal subgraph be given.
This subgraph can be turned into an optimal matching
as described in the proof of Theorem 24.7. Even more,
we may assume that v is still supersaturated before the
last deletion step.

Let x be the optimal subgraph just before this ultimate
step, e be the edge deleted and y be the final matching.
We have degx(v) = b(v) + 1 and degx(w) ≤ b(w) for
w ∈ V(M) − v. Suppose that y corresponds to the flow
f on N#

M. If w is the end node of e other than v, then
y is w-deficient. Hence, (s∗, w, v′) is a valid s∗v′-path in
N#

M(f).

(⊇) Let f be a maximum balanced s∗t∗-flow on N#
M, x

be the corresponding matching, and v ∈ V(M) so that
a valid s∗v′-path p in N#

M(f) exists. Since neither s nor
t is strictly reachable, we have rescap(v′, t) = 0. Since

f is maximum balanced, we have rescap(v′, t∗) ≤ 1. If
rescap(v′, t∗) = 1, then p must start with the arc s∗v.

If we augment f along p◦ (v′, t, s, t∗) and the comple-
mentary path, the resulting flow g violates the bounds
cap(v′, t) and cap(t, t∗). If we replace in M the bound
b(v) by b̃(v) := b(v) + 1, then g is an admissible bal-
anced flow on NM again [this requires us to verify
b̃(v) ≤ deg(v)].

Note that we have g(v′, t∗) = a(v) and g(v′, t) =
b(v) − a(v) + 1. Actually, g corresponds to a matching
y in the modified problem. In the original problem, y is
v-supersaturated. If p starts with the arc sw, then x is
w-deficient and degy(w) = degx(w) + 1. Hence, y is even
optimal. !

We obtain A = V+(M) \ V−(M), B = V−(M) \ V+(M),
C = V−(M)∩V+(M), and D = V(M)\(V−(M)∪V+(M)).
For sake of completeness, we mention another construc-
tion of the canonical decomposition:

The complementary subgraph network M results
from M where the degree bounds a and b are replaced
by a :≡ deg − b and b :≡ deg − a. To a given subgraph
x, the complementary subgraph is x :≡ c − x.

Note that x is v-deficient in M iff x is v-supersaturated
in M. Hence, we get V+(M) = V−(M) and V−(M) =
V+(M). If we translate the situation to the balanced-flow
networks N#

M (respectively, N#
M), we have A = B, B =

A, C = C, and D = D. If follows that the canonical
decomposition can be constructed from the sets V−(M)
and V−(M) which refer to matchings only.

25. ODD SETS, BARRIERS, AND FACTOR
THEOREMS

We now present some duality theorems which relate
matchings to their dual structures, called barriers. In par-
ticular, we give a defect form of Tutte’s 1-factor theo-
rem [9] as well as a proof of Lovasz’s factor theorem [7]
which is the most general duality statement in terms of
a graph matching problem.

Let G be a simple graph and W ⊆ V(G). By odd(W),
we denote the number of components with odd cardinal-
ity in G[W]. Observe odd(Q) = odd(C), where Q is the
canonical st-cut and C is the core of the network NG.
Odd sets give a very intuitive condition for the existence
of 1-factors.

Our proof applies the Duality Theorem 23.4 to the
network NG. Kocay and Stone [6] proved the more gen-
eral f-factor theorem in the same way. A more direct
proof of the 1-factor theorem which depends on Hall’s
Marriage Theorem can be found, for example, in Jung-
nickel [5].

Theorem 25.1. (1-Factor Theorem).
Let G be a simple graph. Then, there is a matching of G
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with deficiency at most k iff

|X| + k ≥ odd(Y) (11)

holds for arbitrary partitions V(G) = X " Y.

Proof:
(→) If U is an odd component of G[Y], then at least one
node in U must be either matched to a node not in Y or
unmatched. The assertion follows.

(←) Let f be a maximum balanced st-flow on NG again,
and Q := Q(NG) canonical. Suppose there is no matching
with deficiency k or less, that is, balcap(Q) = val(f) <
|V(G)| − k. We can compute balcap(Q) in terms of the
canonical decomposition A = A(G), B = B(G), C =
C(G), and D = D(G). If Q would be the canonical st-cut
on NM where M is arbitrary, we would have

balcap(Q) = cap(A, A′) + cap(A, D′) + cap(C, A′)
+cap(B′, t) + cap(C′, t) (12)
+cap(s, B) + cap(s, D) − odd(C).

By Lemma 24.4, cap(A, A′) = cap(A, D′) =
cap(C, A′) = 0 holds in our situation. Since we have
cap(s, W) = |W| for every W ⊆ V(M), one obtains

balcap(Q) = 2|B| + |C| + |D| − odd(C).

If we replace |V(G)| by |A|+ |B|+ |C|+ |D|, we have
the inequality

|B| + k < |A| + odd(C).

Since D has a 1-factor by Theorem 24.6, it has no odd
components. On the other hand, A is an independent
node set, and every element, an odd component of G[A].
Since A, C, and D are nonadjacent, we have odd(A "
C " D) = odd(C) + |A|. Put Y := A " C " D and
X := B to obtain a contradiction. !

Actually, this is not the original 1-Factor Theorem of
Tutte but Berge’s defect form which is a simple exten-
sion:

Corollary 25.2. (Berge Formula).
The minimum deficiency of a matching is given by

max{odd(Y) − |X| : V(G) = X " Y}.

Similar results can also be obtained for all the capaci-
tated matching problems (see [9, 7]). Unfortunately, the
statements are just as difficult to read as are the corre-
sponding proofs. This may indicate that the network flow
formulation is more adequate for capacitated matching
problems.

The set system (X, Y) which gives equality in (11) is
usually called a barrier. To generalize the result, one
effectively splits the set Y into two sets:

Let X, Y, and Z be disjoint. Then, Z is called (X, Y)-
odd or simply odd iff a(v) = b(v) for every v ∈ Z and

τ(Z) := b(Z) + c(Y, Z) is odd. Otherwise, Z is called
even. Unfortunately, this definition is asymmetric. The
number of odd-connected components of G[V \ (X ∪ Y)]
is denoted by odd(X, Y).

In the context of the b-matching problem and Y =
A(M), X = B(M), we have τ(Z) = b(Z) by Lemma
24.4. In the cardinality matching context, we even have
τ(Z) = |Z|. We now investigate the canonical barrier
X = B(M), Y = A(M), Z = C(M)∪D(M) in the general
setting.

Theorem 25.3. Let X := B and Y := A, Z := C ∪ D
with A, B, C, D the canonical decomposition of M.

(a) Every connected component of G[C] is odd.
(b) Every connected component of G[D] is even.
(c) C and D are nonadjacent.
(d) odd(X, Y) = odd(Q), where Q = Q(N#

M).
(e) Edges joining A and D are saturated in any

minimum- deficiency matching.
( f) Edges joining B and D are void in any minimum-

deficiency matching.

Proof:
(a) Let Ũ be a connected component of G[C]. Then,
U := Ũ∪Ũ′ is a nucleus of N#

M. Neither s nor t is strictly
s∗-reachable, so we have rescap(v, s) = rescap(v′, t) =
0, and, hence, cap(s, v) = b(v) − a(v) = 0 for every node
v ∈ C. Moreover, Theorem 23.3 shows that

cap(U, T) = cap(Ũ, A′) + cap(Ũ′, t∗)
(13)

= c(Ũ, A) + b(Ũ) = τ(Ũ)

is odd.

(b) Let W̃ be a connected component of G[D],
W := W̃ ∪ W̃′, and assume that a(v) = b(v) for every
v ∈ W̃. Then,

cap(S, W) = cap(A, W̃′) + cap(s∗, W̃)
(14)

= c(W̃, A) + b(W̃) = τ(W̃).

Since the nodes in A are strictly s∗-reachable, but
the nodes in W are not, we have rescap(s∗, W̃) =
rescap(A, W̃′) = 0. For an arbitrary maximum balanced
flow f, this can be written as

cap(S, W) = f(S, W) = FAW + GAW

= FAW + GWB,
(15)0 = f(W, S) = FWA + GWA

= FBW + GWA,

where we use the shorthand notations of the proof of
Theorem 23.3 and the sets A and B refer to the canon-
ical s∗t∗-cut again. Adding the mass-balance equations
for the nodes in W̃′ yields

0 = GWW + GWA + GWB − FWW − FAW − FBW, (16)
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so that

cap(S, W) = GWW + GWA + 2GWB − FWW − FBW. (17)

Adding (15), we see that cap(S, W) = GWW + 2GWB −
FWW − 2FBW is even.

(c) This is essentially Lemma 23.2.

(d) This follows directly from assertions (a)–(c), and The-
orem 23.3.

(e) Consider the maximum balanced flow f on N#
M cor-

responding to some minimum-deficiency matching. As
in the proof of assertion (b), we obtain f(A, D′) =
cap(A, D′).

(f) Similar to assertion (e). !

One can also prove Lovasz’s factor theorem, and even its
defect form, with the approach given in [6]. To do this,
one applies Theorem 23.4 to the network N#

M instead of
NM:

Theorem 25.4. (Factor Theorem).
Let M be a subgraph network. Then, there is a subgraph
of G with deficiency k or less iff

b(X) + c(Y, Y ∪ Z) + k ≥ odd(X, Y) + a(Y) (18)

holds for arbitrary partitions V(G) = X % Y % Z. This
inequality can also be written as

b(X) + b̄(Y) + k ≥ odd(X, Y) + c(X, Y). (19)

Proof: We define an s∗t∗-cut Q = [S, T] by taking
S := A ∪ B′ ∪ C ∪ C′ ∪ {s∗} and T := B ∪ A′ ∪
D ∪ D′ ∪ {s, t, t∗}, where A := Y, B := X and

C := ∪{U : U is an odd component of Z},

D := ∪{U : U is an even component of Z}.

By choice of C, we have odd(Q) = odd(Z), cap(C, D′) =
0, and cap(C′, t) = 0 since a(C) = b(C). We obtain

balcap(Q) = cap(A, A′) + cap(A, D′) + cap(C, A′)

+cap(B′, t∗) + cap(B′, t) + cap(C′, t∗)

+cap(s∗, B) + cap(s∗, D) + cap(s∗, t)

−odd(Q). (20)

We can substitute cap(s∗, t) = a(V) − def(M),
cap(B′, t) + cap(B′, t∗) = b(B), cap(C′, t∗) = a(C), and
cap(A, A′)+cap(A, D′)+cap(C, A′) = c(A, A ∪C∪
D). Proceeding from the canonical decomposition to the
canonical barrier, we obtain

balcap(Q) = c(Y, Y ∪ Z) + b(X) + a(Z) (21)

+a(X) + a(V) − def(M) − odd(X, Y).

The value of a maximum balanced s∗t∗-flow on N#
M

is 2a(V) − −2def(M), which is a lower bound on
balcap(Q). Comparison with (21) yields inequality (18)
when k := def(M) is chosen. Moreover, equality in (18)
is reached if Q is canonical so that def(M) is the maxi-
mum value of k which applies.

Adding c(X, Y) − a(Y) to both sides in (18) yields in-
equality (19). !

26. CAPACITY SCALING ALGORITHMS

We conclude the discussion by a simple application of
the duality relationship between balanced flows and edge
cuts:

The simple augmentation algorithms given in [3] per-
form poorly if the arc capacities grow large. The sim-
plest way to make augmentation algorithms polynomial
is called capacity scaling. Actually, there are two simi-
lar algorithms for the maximum balanced-flow problem
which depend on this idea.

Let U denote an upper bound on the arc capacities
in a balanced-flow network N (with k = 'log U( the
length of integer representation for instance). Instead of
N, we can apply an augmentation algorithm to a series
N1, N2, . . . , Nk of balanced-flow networks. These net-
works consist of the original digraph but have arc ca-
pacities capi(a) := cap(a) mod 2i for every a ∈ A(N).

The respective maximum flows are not computed
from scratch. Instead, the initial flow for the network
Ni is fi :≡ 2fi−1, where fi−1 is the maximum flow
for Ni−1, which has been computed before. We may
choose f0 :≡ 0 in the very beginning. It is obvious that
the resulting procedure determines a maximum balanced
flow on N = Nk. We merely have to consider the total
effort.

Let Qi be a minimum balanced cut for Ni, that is,
val(fi) = balcap(Qi) at the end of the (i)-scaling phase.
If we proceed from Ni to the network Ni+1, then an
arc a with rescapi(a) = 0 has rescapi+1(a) ≤ 1 and
an arc a with rescapi(a) = 1 has rescapi+1(a) ≤ 3. We
obtain

rescapi+1(Qi) ≤ |Qi| + 2oddi(Qi) ≤ m + 2n. (22)

There are O(m) augmentation steps during one scaling
phase, each of which needs O(mα(m, n)) time. Hence,
the time complexity of this capacity scaling algorithm is
O(m2 log Uα(m, n)).

We mention that every but the last scaling phase may
run with a BNS heuristic (like the Kameda/Munro al-
gorithm described in [3] or the Pape/Conradt algorithm
which only finds strictly simple augmenting paths). Then,
correctness is maintained while polynomial performance
cannot be guaranteed any longer.
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Another capacity-scaling algorithm runs the BNS on
a modified residual network N(f, ∆) which consists of
all arcs a with rescap(a) ≥ ∆. The procedure is started
with ∆ := 2i, i := k − 1. Whenever no augmenting
path can be found, we put i := i − 1 (until i = 0 is
reached).

If we would combine this algorithm with a BNS pro-
cedure, there would be no improvement compared with
the former algorithm. Instead of this, we determine ar-
bitrary augmenting paths p unless ∆ = 1 and augment
on p and p′ simultaneously. Each step increases the flow
value by at least ∆ likewise.

At the end of the (i)-scaling phase, we have
rescap(S, T) < ∆m for some st-cut [S, T]. Hence, at
most 2m augmentation steps can occur during the (i+1)-
scaling phase. One gets the bound O(m2 log U) as before.

It may turn out that this bound can be improved to
O(nm log U) by an adaption of labeling techniques de-
scribed for the usual max-flow problem and a corre-
sponding SAP scaling algorithm (see Ahuja et al. [1],
pp. 210–220). Our experience with the phase-ordered
augmentation algorithms in [4] indicates, however, that
unexpected difficulties may arise when max-flow tech-
niques are applied to matching problems.
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