AN TTRODUCLICN TO MATCHING

Jack Edmonds

An Introduction to Matching Tectures

Jack Edmonds Aun Arbor, Spring 1967

I. The Optimum Assignment Problem

For rectangular array (matrix), N, we define a matching
in N to be a subset M of the positions in W such that ench

column and each row of N contains at mosi on~ aember ¢f M.

For any square array N , we define a tranaversal or a perferct
matching M to be a subset of the positions 11 N such that each

column and each row of N contains exactly one member of M .

The optimum ascignment problem is,

®
given any n x n array N of real ®
numbers, find in N a transversal the &
sum of whose entries is maximum, i.e., ®
@

an "optimum" transversal.

A transversel in N "assigns" the rows of N 1o the volwens
of N . Where the columns are people and the rows are Jjcbs, and
where each numerical entry represents the value of the person of that
column at the job of that row, an optimum transversal represents

an optimum assignment of the people to the jobs.

A well-known generalizaetion of the assignment problem is
the integer Hitchcock-transportation problem: Given & rectangular
array N of real numbers, cij , and given an integer 8y >0
for each row i and an integer bj > o for each columm j , assign

a non-negative integer X3 to each position (i,J) so that

(1) for every 1 , PSP
(2) for every j , 1Ty = b, ,

and so that 15551 5%4 3 is minimum (or maximum).

I 8, represents the number of refrigerators aveilable at
factory 1 , and bj represents the number of refrigerators
ordered by dealer J , and Cij represents the cost of shipping a

refrigerator from i to J , then i sz represents the
8 4

13743
total cost of the particular manner [xij] of distributing the

refrigerators.

The assignment problem is where all a; = 1 and all bJ =1 .

A minor varintion of the assignment problem is: given &
rectangular array N of real numbers find in N a matching whose
entries have maximum sum. This variation corresponds to replacing
the equality signs in (1) and (2) by inequality signs. Ofcourse,

g maximum matching will not contain a position whose entry is
negative. In particular if all the entries are negative then the
maximum matching will be the empty matching. It is an interesting
exercise to discover how any meximum transversal problem can be solved

by solving a maximum matching problem, and vice versa.

There are other generalizations and variations of the optimum
assignment problem -- most notably integer network flow problems.
These lectures, after treating the assignment problem itself will

deal (briefly, I'm afraid) with some bizarre variations.

Inan n xn array there are n' different transversals. In
particular there 100! ways to assign 100 people to 100 jobs.
100! 1is very large. If our method for finding an optimum assign-
ment spent one microsecond per possible assignment, it would teke

hundreds of years to optimally assign 100 men.

It is a remarkable fact there exists a consistently good
algorithm. An algorithm good enough that you could actually do as
homework any instance of the assignment problem with 100 people, 100 jobs,
and any collection of 3 digit numbers as values. Good enough to be
used for many thousands of people and Jjobs. Ofcourse you have to

know how, and it is not easy to discover how.

It is an unfortunate fact for most combinatorial problems -=
problems very similar to the assignment problem -- that good algorithms
are not known. For most such problems, though they are ofcourse
finite, the best known methods do considerably worse than one might
expect. Such problems include the bulk of integer linear programming

problems.

Therefore we do what we can. We experiment with the most
promising methods we can find for problems that need answers. And

we also try to find classes of problems for which, using special

methods we can predict computational efficiency. These lectures fall

-3 -

into the latter srea.

For ease in giving an am-waving description of an algorithm,

it is convenlent to represent the assignment problem by a graph.

A bipartite graph G 1is one whose set V of nodes partitions

into two sets Vl and V. so that no edge of G has both ends in

2

the same set. Thus, each edge meets one node in V1 and one node

in VE . Denote the set of edges of G as E .

A matching M in a graph
is subset of its edges such that
no two members meet the same node.

A perfect matching in a graph is a subset of its edges such that

exactly one member meets each node.

The optimum assignment problem (more precisely, a minor

generalization of it) is:

In any given bipertite G , with a real numerical weight o
for each edge ee¢E , find if there is one a2 perfect matching M

which maximizes % €, i.e. "a meximum perfect matching".
eeM

After we treat the above problem, we shall treat the same
problem where G 1is not necessarily bipartite. The latter is a

very substantial generalization.

Where G is bipartite, with "parts" v, and Vs s

of V1 correspond to rows or jobs,the nodes of V2 correspond to

columns or people. FHach edge corresponds to a position in the array.

the nodes

Any perfect matching in G determines an assignment of people to

Jobs, as does a perfect matching in the array.

Where G is any graph not necessarily bipartite, the meximum
perfect matching problem is the problem of optinally pairing-off
& set of objects (the nodes). Admissible pairs and their values

are represented by the edges.

We shall see later that various other ETruioms reduce to the

matching problem.

A feasible nidc-weighting of graph € 1is ¢ voctor [yV]

with a component Y, for each node vV suc. ‘hat, for every

edge e¢E ,

(3) Yy * ¥, >c, where u and w are the cids of e .

Lemma 1. For cny perfect matching M of a graph G and for any
feasible node-weighting [yv] A
(4) DRSS 0 Su
eeM e veV v
Proof: Add up the inequalities (3) which correspnond to the edges

in M.

It follows from Lemma 1 that if we can find a perfect matching M

and a feasible [y] such that equality holds in (4), then

L ¢, must be maximum and ¥ ¥y, must be minimum.
eegM veV

This is true whether or not G 1is bipartite. When one can

get such & node-weighting along with en M , it provides a very

simple guarantee that the M 1s maximum.

If G 1is not bipartite, there does not necessarily exist a

feasible [yV] such that zyv equals the maximum value of § ¢

e
eeM

for G . p ’
"h’ 5— 'Z./';-

|2 3 4%

For any given eéée-ﬁeighted bipartite graph G , tfxe optimum
assignment algorithm, that we will describe, first chooses any
feasible node-weighting [yv] . Then it chooses a matching, not
necessarily perfect. Then it successively finds better node-
weightings and better matchings until
(1) it finds a node-weighting and a perfect matching for which

T e =% VY, O until
eeM veV

(2) 1t finds a way to choose node-weightings such that Py
€

(in which case, by Lemma 1, there is no perfect matching in G).

Thus, the algorithm will prove
Theorem 2. For any edge-weighted bipartite graph G , which contains
a perfect matching, the maximum weight-sum of a perfect matching in G equals

the minimum sum of a feasible node-weighting.

P.8. 1 If G contains no perfect matching, then there is no minimum

feasible node-weight sum.
By using only integer node-weights, if edge-weights are
integers, the algorithm will also prove:

P.S. 2 If the edge-weights are all integers. then a min node-

)
weighting can be chosen to be integers. 22

The two postscript as well as

the theorem, are false for non-

bipartite graphs.

II. A Hungarian Method

We back up now and state Theorem 1, which will be used as
part of the optimum assignment algorithm, to prove Theorem 2

already given.

A subset H of the nodes in a graph G is called hungarian,
relative to G , if no two of them are Joined by an edge of G and
if the set N(H) of neighbors of H has fewer members than H ,
i.e., |N(H)| < |H| . A neighbor of H is a node which is joined

by an edge of G to a node in H .

M

<«—— N(H)

Obviously, & graph which contains a hungarian set H can not
contain a perfect matching M , because the 'H] members of M
which meet the nodes in H would have to meet]Hl different

members of N(H) . This is impossible since !N(H)} < |H] .

A non-bipartite graph does not necessarily contain either a

hungarian set or a perfect matching.

Theorem 1. A bipartite graph G conteins no perfect matching if

and only if G has a hungarian set, contained either in part V1

or part V5 of G .

Subroutine Rl of the algorithm will prove Ttm 1 by finding
in any bipartite graph either a perfect matching or & hungarian
set. Subroutine R2 of the algorithm will prove Thm 2 by using
a huhgarian set of a subgraph of G to improve any non-minimum

node-weighting of G .

Here is the algorithm, Given a bipartite graph G with a

numerical weight ¢ on each edge e¢E .
e

Give to G any feasible node-weighting [yv] . (Make the

node-weights integers if the edge-weights are.)

For the current feasible node-weighting at any stage of the
algorithm, let G' denote the subgraph of which consists of

all nodes of G and those edges e of G s.ich that

(5) Y *¥,=¢, » vhere u and v are the ends of e .

We call G' the equality subgraph of G relative to ryv] .

Using routine Rl, we find either a perfect matching M in G'
or else & hungarian set H' of G' in either part Vl or V2 .

(Since every edge of G has one of its end-nodes in set V1 and
its other end-node in set V2 , the same is true for subgraph G' .
Any perfect matching of G' 1s ofcourse also a perfect matching

of G , since G' contains all the nodes of G . However, a
hungarian set H' of G' 1is not in general a hungarian set of G .

Since G generally has more edges than G', set H' of nodes

generally has more neighbors relative to G +than relative to G'.)

Theorem 1 says that G' has either an M or esn H'. Routine RlL

will be the proof of Theorem 1.

Suppose we find a perfect matching M in G' . Then adding
together equations (5), y, + Vv, =¢c, . for the edges e in M,

we get o C, =T ¥, » end so M is optimum.
eeM veV

Otherwise, we find a hungarian set H' «tf G' contained in,

say, part V2 . In this case, we apply rottire R2:

R2. Suppose that the set N(H') , of neighbors of H' relative to

G', is not the entire set of neighbors of H' relative to G . Then
there are edges e of G which are not in G' and which have one

end in H' and the other end not in N(H') . Iet ¢ = min (y'u+yw - ce)
over all such edges. Clearly, ¢ > 0 . Lowering each node-weight in
H' by e @and raising each node-weight in N(H') by € , we get a

new feasible node-weighting. Tts sum is smaller because [N(H')] < |H]

The equality subgraph G' changes, so we apply Rl again.

Where N(H') is the entire set of neighbors of H', relative

to G as well as G', the set H' is hungarian relative to G and

s0 there is no perfect matching in G . In this cese, we can take ¢

- 10 -

to be as large as we please, and still change node-weights ss above.,

This gives ¥, as small as we please, i.c. IV - - .
v

Assuming Thm 1 holds, i.e., assuming there is a valid routine
Rl, the routine R? just described proves Thm 2 ard PS1. TFor a
node-weighting having min sum, there must be a perfect matching
in the corresponding G' s because otherwise w= can apply Thm 1

and R2 to get a smuller node ~weight sum.

PS2 asserted that if edge-weights are intopers then a min
node-weighting can be chosen to be inte,ers. This follows by
applying the above process to any integer-valued feasible node-
welghting, because whenever edge-weights anda noade-weights are

integers., ¢ is an integer (or arbitrary +.).

Let us now describe routine Rl , thereby proving Thm 1 and
completing the d=scription of an optimum-assignment algorithm. Rl

must find either a perfect matching in G' or a hungarian set of G' .

Rl: Let M be any matching in G' , not necessarily a perfect
matching. To begin it might be the empty matchineg., If M is not
perfect, let r be any node which M does not meet. We shall find
either a hungarian set of G' which contains r , ur else a matching
M' in G' which is better than M in the sense that M' meets

r as well as 8all the nodes which M' meets.

- 11 =

In G', "grow a tree"” T of the kind pictured inside the

bean
-evaY. Node r itself is a tree of type T . Start off with
simply it.
o e Sheariiad
! 'f'
i 0 O
. e " e‘
v u '
o S (A - edge of G' , not In T , and
: / T~ .
| / XA : not in M .
i o .
| \/Z\ - * awwwwwwe edge of M .
i~ - wesmmee cedge of T , not In M .
. /"
i of A | * —) called &n inner node of T .
- s iy o
O * O called an outer node of T .
A X P
i,
®

A1l the outer nodes of T must be in the same part of G' .
Thus, no two of them are joined by a edge of G' . The number of

inner nodes of T 1s exactly one less than the number of outer nodes.

For any T either (a), (b), or (¢) holds. (a) Every edge in G'
which meets an outer node of T meets an inner node of T at its
other end. In this case, the set of outer nodes is a hungarian set H

of G' . The set of inner nodes is N(H) , relative to G' .

- 12 -

Otherwise some edge €, Oof G' meets en outer node, say A
of T and a node, say u, not in T . (b) u meets no edge in M .
In this case obtain M' from M by interchanging the matching

roles of edges in the path P , consisting of u , eo s and the

path from ¥ to r in T . Then forget T and, if there is

stili some node, say r' , in G' which does not meet any edge

of M' , grow in G' another tree rooted at r' . (e) Otherwise,

u meets an edge elgM . In this case, enlarge T by edjoining

e, and él to it, so that u becomes an inner node and the

other end of e1 becomes an outer node.

Suppose the number of nodes in G , and thus in G' , is 2n .
After T 1is enlarged at most n times, either (a) or (b) must occur.
After at most n differently-rooted trees are grown, either (a)

or a perfect matching must occur in Gf

When (a) occurs, we apply R2 to the hungerian set H of G' 5
the set of outer nodes in T . Thus, unless H is also s hungarian
set relative to G , the node weights change and the equality
subgraph G' changes. The outer nodes of T are then not a
hungarian set of the new G' . However, the same matching M is
contained in the new G' and the same tree T 1is contained in the
new G' . Case (b) or (¢) of Rl applies directly to this M and
T in the new G' , and so we can continue growing the same tree in
the new G'. Thus, Rl is iterated a total of at most n2 times
and the "step" of enlarging a tree is iterated a total of at most
n2 times before one obtains either a perfect matching in some equality

subgraph G' or else e hungarian set of G .

- 35

III. Bipartite Matching end Linear Progranms

By polyhedron (strictly speaking convex polyhedron) we mean the

set of all vectors (points) which satisfy some given finite collection

of linear equations and linear inequalities.

Let G be any finite graph, not necessarily bipartite. let E
denote the set of edges of graph G . Let V dcnote the set of nodes

of G .

Let there be a real variable X, for each edge e¢E . Let PG

be the polyhedron of vectors [xe] such that
(1) for every eeE , x, >0, end

(2) for every veVv , 1 x, =1, where the sum is taken over

all edges e which meet node v .

Another way of expressing (1) and (2) is

(1) Xy >0, jeE , and
(2*) jZ By g%y = b, , 3B , iV,
where all bi = 1 , where aij =1 if edge J meets node i , and

where dij = 0Q 1f edge J does not meet node 1 .

Motrix [aij] is called the incidence matrix of graph G . It has
a "row" i for each node 1¢V and a "ecolumn” j for each edge JeE .
Clearly, a matrix is the incidence matrix of some graph if and only if

each of its columns contains exactly two 1's and the rest O's.

- 1k -

We may define a vertex xo of a polyhedron P to be a point
(i.e., & vector [xﬁ} =x°) in P such that, for some linear
function U = ch Jx 3 of the points in P , xO is the only point

in P which maximizes the function.

It is a standard theorem that if a given linear function of
points in polyhedron P has a maximum (i.e., P 1is not empty and
the function is not unbounded above), then the function is maximized
by & vertex of P . Ofcourse, some linear functions on P are

maximized by other points as well.

As you know, the linear programming problem is: For the polyhedron P ,
determined by a given system of linear "constraints", and for a given
linear function U of points in P , find a vertex of P which maximizes

(or minimizes) Uin P .

Any vector [x_] of zeroes and ones is called the incidence vector

of (or simply the vector of) the subset of e's such that x, =1 .

Thus, every subset of edges in G 1is represented by a unique O,1

vector, and conversely.

Clearly, where o is the weight on edge e in G , the weight-sum
of any perfect matching M in G is the value of e X, (e¢E) for the

vector of M .

Clearly, the 0,l1-valued vectors contained in PG (in fact, the
integer-valued vectors contained in PG) are precisely the vectors of

perfect matchings in G .

- 15 -

We shall show that the assignment problem is an instance of

linear programming by showing that

Theorem 3. If G is bipartite, then the vertices of P, are precisely

G
the vectors of perfect matchings in G .

Clearly, even if G 1is not bipartite, thr vector of any perfect
matching M in G 1is a vertex of PG , since we can 4display a
function e Xy which obviously is maximized in PG cnly by the vector

of M . In particular, where T = 1 if and oply if eeM .

The hard part is to show that every vertex of FG is the vector of
a matching. We shall do so using the duality thm of linear programming

and thm 2 wabout node-weightings for an edge-weighted bipartite G .

The g.p. dual of maximizing U = 1zp1x3 . subleet to xj >0 and

j!aijxj = bi yis minimizing W = i?biyi subject tc izaijyi > cJ .

The duality thm says that max U = min W if these extrema exist.

In particular, the dual of maximizing U= ye_x_ (e¢E) in P, 1s
minimizing W = zv_ (veV) subject to ¥V, = ¢, for every e , where
u and w are the end-nodes of e . That is, ninimizing the sum of

feasible node-weights, as in Thm 2.

Thus, it follows from Thm 2 and the g.p. duality thm that if G
is bipartite, then, for any U , the max of U for vectors in PG equals

the max of U for vectors of perfect matchings.

- 16 -

Therefore, since all vectors of perfect matchings are in PG B

U 1is maeximized in PG by the vector of a perfect matching.
For any vertex xo of PG » Suppose that U is a linear function

that is maximized in PG only at x” . Then x° must be the vector

of a perfect matching. So Thm 3 is proved.

Conversely, Thm 3 and the £-P. duality thm immediately imply Thm 2.

So, in view of 4.p. duality, Thm 2 and Thm 3 are equivalent.

Where bipartite graph G 1is a square ariay whose rows 1 and
columns J are the nodes, and whose positions (i,3) are the edges.
Thm 3 is well-known as G. Birkhoff's theorem on " loubly stochastic

matrices" (1946)

An n by n doubly stochastic matrix is defined 1c be an n by n matrix

[xij] such that:

all xiJ >0, and
(3) for every fixed i , jzxiJ =1, and

(4) for every fixed jJ , DXy = 1 . (see page)

Matrices are vectors, indexed differently. The collection of n
by n doubly stochastic matrices is a polyhedron. The Birkhoff thm .
says that the vertices of this polyhedron are the n by n permutation

matrices. A permutation matrix is a matrix such that there is a 1 in

each row, a 1 in each column, and all other entries are zeroes.

Thm 2, essentially, is due to Egervary (1931). The algorithm here

for the assignment problem, essentially, is due to Kuhn and Munkres (1955-5T7).

-]7-

Where the 1 in (3) is replaced by any prescribed integers a, > O

12
and the 1 in (4) is replaced by any prescribed integers bJ >0,
we get the linear constraints of the integer transportation problen,
relations (1) and (2) of section I . These constraints, together

with xiJ >0 forevery i end J , define a polyhedron, say PT .

Theorem 3 readily generalizes to the fact that all the vectices
of PT are integer-valued vectors. Thus ve have the very well-
known fact that the integer transportation problem is an instance

of linear programming.

Indeed, historically the first, and still ihe most prominent,
algorithms for the transportation problem are direct applications

of the simplex method.

Theorem 3, and consequently Theorem 2, ani consequently even
Theorem 1, are readily (and often) prcved using general g.p. techniques
together with fhe special properties of the incidence matrix [aiJ]
of & bipartite graph.

Similarly, extremal (integer) lows in a network can be treated
by epplying general p.p. techniquec to matricen [alJ] which are
the "incidence matrices of directed graphs". And, on the other hand,
the combinatorial algorithm that we described ror the assignment

problem is very closely related tc the combinatorial methods of Ford

and Fulkerson for network flow problems.

Two advantages of these combinatorial methods are (1) for
practical purposes, they are more efficient than simplex methods, and

(2) for theoretical purposes, they provide theoretical bounds on
- 18 -

efficiency of computation that are so for not availeble for simplex

methods. The disadvantage of these combinatorial methods is that
they have not been satisfactorialy extended to general g.p.

problems.

-19 -

IV. Matching in g general grsph

So far these lectures have been small variations on old stuf'f,
Now I would like to show one of the ways in which these combinatorial
methods can be generalized to certain problems which can not be
treated directly as linear brograms -- at least not in the usual
sense. Actually they are linear programs determined implicitly
by astronomical collections of linear conc* . ints. Surprisingly,
these problems are Just as tractable as the essignment problem --
in spite of the traditional views as to whv.:he assignment problem

is so tractable.

We treat the prcblem of finding & maxinwi-we i ght perfect matching
in an edge-weighted graph G which is not weressarily bipartite. In
particular we can take G to be & complet. grapn -- a graph in

which every pair of nodes is Joined by an eape.

Recall that we have already defined & polyhedron PG s for any
graph G , by the linear cont.aints (1) and (2) in seetion TIT. We
have already observed that the only integer-valued vectors contained
in PG are the vectors of perfect matchings in G . That is, an
integer-valued vector [xej is contained in PG if and only irf its
components are O's and 1's > and the l-components correspond to

the edges of a perfect matehing.

We have already observed that where e is the weight on e
in G, the weight-sum of any perfect matching M is the value of

z:cexe(egE) for the vector of M .

Hence, the maximum perfect-matching problem, for any edge-
welighted graph G 1is an instance of "integer linear programming".
Integer linear programming is the problem of maximizing a given

linear function by an integer-valued vector subject to some

given linear constraints.

If all the vertices of polyhedron PG were vectors of matchings,
as in the case where G 1is bipartite, then the maximum matching

problem would be simply an instance of linear procramming. However,

when G 1is not bipartite, PG has vertices which are fractional-

valued.

The picture chows one of the

simplest graplr G such that PG

contains a f.ractional vertex as

well as severul vertices which

are vectors o1 perfect matchings.
The numbers on the edges are the

components of th» fractional vertex

in this PG . Nntice that where the edge-weights are the numbers

on the edges in the picture on page o , the maximum-weight of a

perfect matching is 18. At the fractional vertex of PG » I C.%,
ee¢k

has the value 19, which by no accident is also the min sum

of a feasible node-weighting.

- 21 =-

A main idee in tackling the general perfect-matching problem

is to chop off the fractional vertices of Pé

polyhedron Pé such that all the vectors of perfect matchings are

80 as to obtain a

still contained in Pé and such that Pé

fractional vertices, l.e., all its vertices are vectors of

doesn't have any

perfect matchings. In other words, obtain the convex hull, Pé)

of the vectors of perfect matchings.
Theorem 4. For any graph G , the convex hull of the vectors of

perfect matchings in G is the polyhedron Pé given by the

following linear constraints:

(1) for every edge eeE: x_

20 ;
(2) ror every node veV: z;x% = 1 , where the sum is taken over

all edges e vwhich meet node v .

(3) for every subset s of nodes which has cardinality [s[= 2q5 + 1

for some positive integer Q9 T X

e S 9 o where the sum is taken

over all edges e which have both ends in s .

Any vector of a matching, say M , in G satisfies (3) for
any set s , since no more than q edges of M can have both
ends in s , and since such edges are the only ones in M which
appear in (3). Therefore, every vector of a rerfect matching of

G is in the polyhedron Pé .

It is not so obvious that every vertex of Pé is & vector of
& perfect matching. We prove this by means of an algorithm -- in

& manner analogous to our proof of Thm 3 by means of the assignment

algorithm,

- 22 -

The idea of treating & combinatorial problem by chopping
away at a polyhedron to eliminate undesirable vertices is by no
means new. A long time ago Kuhn and Dantzig and others took this
approach to the traveling salesman problem. I believe Motzkin
tried it for the "3-dimensional assignment problem". Gomery
discovered finite algorithms for integer linear programming which
operate by chopping locally until the answer is a vertex of the
resulting polyhedron. His methods could be adapted to give finite
algorithms for describing the convex hull of the integer vectors in

any given bounded polyhedron.

For the matching problem, and certain cousins, the chopping-
idea has been completely successful in the following senses. (1)
We get a succinct and useful description of precisely the relevant

polyhedra. (2) We get an algorithm that is really good.

Later, I'll describe a representative, "optimum branching", of
one other essentially different class of problems for which polyhedron-

chopping has been completely successful.

Let U=7y cexe(egE) be any linear function of vectors [x],
determined by an arbitrary specification of edge-weights for G .
To maximize U by a vertex of Pé is a linear program, Our
purpose is to solve this g.p. by the vector of a perfect matching.
Since U 1is arbitrary and since for every vertex of P! there is

G
a U which is maximized only by that vertex, this will prove Thm L .

- 23 -

We now describe the dual of our g.p. Like g.p. duals everywhere,
it has a variable for each constraint of the primal, other than
non-negativity, and it haes a constraint for every variasble of the
primal, as well as the non-negative constraint on each dual

variable that corresponds to an inequality-constraint of the primal.

In particular, it has a variable Y, for each node veV , the
"node-weight" for v . And it has variable Jg » @N "odd-set-weight",
for each subset & —~ V such that [sl =2q_+ 1 where Qg is a

positive integer. Recall that |s| means the number of nodes in s .

The variables y, are allowed to go negative since they

correspond to equations of the primal. ¢ constraints of the dual are

(4) for every set s , Yo 203

i

(5) for every edge e , £ .(y) =y + ¥, + vV, 2,
vwhere u and w are the ends of e , and where the summation is

ovey all sets s which econtain both ends of e .

Thus, & dual weighting y = [y _,y] is called feasible if (4)

and (5) hold.

The linear function to be minimized is

(6) W=y, *Zqy, -

The duality theorem tells us that a vector x° = [x:] maximizes
U=3xcx, subject to (1), (2), and (3) if and only if there is
some vector y° = [ys,y:] satisfying (4) and (5), for which U(x°) = W(y°).

(o)

We shall find such an x~ which is the vector of a perfect matching.

-2 -

More directly useful to our purpose is the so-called "comple-
mentary slackness theorem,on duael g.p.'s. For our particular dual
£-P-'s it says that a vector x° = [x:] maximizes U subject to
(1), (2), ana (3), and & vector y° = [ys,ygj minimizes W subject

to (L) and (5), if and only if

H

(7) for every variable Yy » elther yg 0 or else equality holds
in the corresponding constraint (3);

(o]
e

1

(8) for every variable x, , either x O or else equality

holds in the corresponding constraint (5).

Where x° = [x:] is the vector of a perfeot matching M of G ,

(7) says that for every set s of nodes, either y: =0 or

else dg edges of M have both ends in s H

(8) says that for every edge e in M, equality holds in

the corresponding constraint (5).

The matching algorithm finds a perfect matching M and a
vector y° = [yl »¥g] such that (4),(5),(7), and (8) hold. This

guarantees that M is optimum and it also proves Thm L.

Vectors [yv,ysj have an awful lot of components. Fortunately,
however, the ones we deal with have no more non-zero components

than the number of edges in G .

- 25 .

V. A Matching Algorithm

Given any edge-weighted graph G . The algorithm starts out
Just like for the bipartite case. We choose a feasible node-
weighting {yv} s 1.2., values of Yy such that (5) holds with
all y, = O . Let G' be the equality subgraph of G , relative
to this [y,,¥] . That is, G' consists of all nodes of G
and those edges e for which equality holds in the corresponding

constraint (5), ¥, = ¢ .

If we can find a perfect matching in G' then it will be
optimum because then it and the dual weights will satisfy (L), (5),
(7), and (8). Generally we will not be able to find a perfect
matching in this G' or in any other such G' determined by a
node-veighting. However, lets try to, Jjust as in the bipartite

case.

Choose any matching M , not necessarily perfeet, in G' . If
there is a node 1r which M .doesn't meet, start growing in G'

a tree T rooted at r , just as we do for the bipartite case.

Recall that when G is bipartite, either (a), (b), or (c)

must hold for T in G'. (See Section II).

Bipartite or not, when we spot an occurrance of (c), we enlarge
T in G' . Bipartite or not, when we spot an occurrance of (b),
ve get a better matching in G' , we discard the current T in G',

and if the matching is still not perfect we start another tree T .

- 26 -

In case (a), the outer nodes of T comprise a hungarian
set H relative to G; and the inner nodes of T comprise the
set N(H) of neighbors of H relative to G' . Bipartite or
not, when (a) occurs we change the duasl weighting [y&,ys] 80
that other edges of G enter G' . We then continue to treat
the same T relative to the new G' . TIn general, the way the
dual-weighting changes is more complicated than for a bipartite G
where we don't have any positive weights Yg ° Indeed, so far our
weights y, are all zero. We shall have to decceribe how some of
them become positive. We'll do so after we describe the concept

of pseudo-node.

When G is not bipartite, a fourth case (d) can occur:

(d) Two outer nodes, say v, and v, , of T are joined

1

by an edge, say e, , of G'.

1l

When G is bipartite, any two outer nodes of T must be in

the same part, Vl or V2 s, of G, and so (d) can not occur.

One can immediately verify that for any G' (regardless of
whether G 1is bipartite), either (a), (b), (¢), or (d) holds for

T in G' .

- S w

When (d) occurrs, matters get especially tricky. .

Let P1 be the path in T from vy back to r . Tet P2
be the path in T from v, back to r . Paths Pl and P2 to-
gether with the edge &, Jjoining v1 ahd Vs form what we call

& flower,

a8 s

It consists of a stem: the path betweerr r and t ; and a
blossom B : the polygon. Ofcourse if Pl and P2 happen not
to run together until they get back to r , then t = r and
hence the stem is just the node r . Tt is also possil.le for
t = v1 s Oreven t = r = vy o The number of edges and the

number of nodes in blossom B is odd and greater than 1, i.e.,

29 + 1 where q 1is some positive integer.

We now obtain a new graph G » @ new subgraph G' , and a
new tree T , from the ones we've got, by shrinking to a single

seudo-node, v3 > the blossom B and all edges that have both

ends in B .

- 28 -

The edges of the matching M that are not shrunken away do
form a new matching M in the new G' . The new T s formed by
the edges of the 0ld T which are not shrunken avay, is a tree

in the new G' having the correct structure relative to the new M
The pseudo-node v3 is an outer-node of the new T . If t = r ’

then v3 is the root of the new T .

Whenever we shrink a blossom we remember it so that later we
can expand the pseudo-node to recover it. We never bother to
remember the edges of the current matching in a blossom that we
shrink, because they are not likely to be compat.ible with the
matching that is current when we expand the pseudo-node back to

the blossom.

The algorithm continues as before, considering occurrances

of (a), (b), (c), or (4), relative to the new G » G'y M, and T .

Each time we spot an oeccurrance of (d), we shrink the blossom,
thereby obtaining still another G, G', M, and T . A blossom
containing pseudo-nodes might be shrunken into another pPseudo-node,
80 we can have pseudo-nodes "inside" the pseudo-nodes of G' .

The set, say s , of all real nodes inside a pseudo-node always has
odd cardinality, because the sum of an odd number of odd numbers
is odd. We remember every blossom we shrink so that any pseudo-
node can be expanded anytime that it is not inside another pseudo-

node.,

- 29 -

Whenever we spot an occurrance of (c), we enlarge the T in

the current G' .

Whenever we spot an occurrance of (b), we get & new matching
in the current G' such that fewer nodes in G' are left unmet
by the new matching. When this happens we discard T . If there
is another node r in G' still not met by the matching, we start
growing in the same G' another tree rooted at that r . Pseudo-
nodes of G' formed from blossoms of earlier trees may become

inner nodes or outer nodes of this tree. -

Whenever there are no cases of (b), (c), or (d) to spot, we
have case (a), i.e., the outer nodes of T are a hungarian set H
relative to G' and the inner nodes of T are the neighbor set N(H)
of H relative to G'. We must in this case consider changing

the dusl weighting y = [yv,ys] .
In general, for the current feasible dual-weighting, y = [y& ys} 5

a ¥y is posifive only if s is the set of real nodes inside some
pseudo-node, either a pseudo-node of the current G' or a pseudo-
node at any level inside & pseudo-node of the current G' . TFor
every edge e which is either an edge of G' or an edge of a
currently shrunken blossom, we have equality, fe(y) =c, for the
constraint (5) corresponding to e ; conversely, if fe(y) = ¢, holds
for an edge e of the current G , 1.e., for an edge e that is

not inside a current pseudo-node, then e is sn edge of G' . These
are the senses in vhich a pseudo G' is the equality subgraph of

a pseudo G .

- 30 =

Assuming these conditions hold, we now desecribe how, when (a)
holds, to get & new feasible dusl-weighting such that these
conditions continue to hold and such that either we heve a new G'
relative to which (b), (c), or (d) holds for T , or else we
dispose of a pseudo inner node of T s Or else we have W — - » ,
in which case there is no perfect matching in G . We choose ¢
to be as large as possible subject to the following constreints

vith right-hand sides given by the current dual -weighting.

(9) For every edge e of G, not in G’ s such that one end of e
is an outer node of T and the other end of e is not in T ,

€<t (y) - c, -

(10) For every edge e of G, not in @' » such that both ends

of e are outer nodes of T , 2¢ < fe(y) -c, -

(11) For every s which is the set of all real nodes inside a

pseudo inner node of T , 2¢ <Yy -

(The pseudo inner nodes that we refer to here are nodes of the

current G , not pseudo nodes inside of pseudo nodes.)

We assume for the moment that at least one such constraint

exists, so that ¢ has a maximum.

Now we change the dual weighting [y»,ysj as follows. For
every real node v which is either an outer node of T or else

inside a pseudo outer node of T s lower y& by € . For every s

-3 -

which is the set of all real nodes inside a pseudo outer node of T,
raise ¥y by 2¢ . For évery real node v which is either an
inner node of T or else inside an inner node of T , raise

¥, by ¢ . For every s vhich is the set of all real nodes

inside a pseudo inner vertex of T , lower Ye by 2¢ .

Suppose that the size of ¢ was determined by equality in
some instance of either (9) or (10). Let & denote the corresponding
edge. After the ¢-adjustment of the dual-weighting, the new G'
is a certain different subgraph of the same .G (perhaps having
pseudo-nodes). Subgraph G' is determined by G and the new
dual-weighting. The seme T and M are in this new G' . The
edge e enters G' . If only one end of e 1s an outer node of T
(and the other end not in T), then we have immediately an occurrance
of either (b) or (c¢). If both ends of e are outer nodes of T ,
then we immediately have an occurrance of (d), & blossom to shrink

as previously described.

Suppose the size of ¢ was determined by equality in some
instance of (11) . Tet v denote the corresponding pseudo inner
node. Let el denote the edge of the current matching which meets v .
Edge ey is in T . Let e denote the other edge of T which
meets v . After the ¢-adjustment of the dual-weighting, we expand Vv
to the blossom, say B , whose shrinking introduced v . This expansion
gives rise toanew G end G' . It is easy to verify that B is

part of the new G' . That is, fe(y) = c_ holds for the edges e

of B . Let v1 denote the node of B which edge el meets ;

-32 -

let Vs denote the node of B whieh e, meets. The only node

of B which is met by the current matehing is vy 3 ve are able

€y
to 8dd to the matching certain edges of B so es to get 8 new
matching M,in the new G' , which meets all the nodes of B . e
The edges of the current T remain in the new G' . Unless e’*
vl =V, they do not form a tree in the new G' , However, they,
(&_certain one of the two paths in B joinin Va 1o V3
together with 5

¥ 5 do form our new tree T . This new T does have the correct

structure relative to the new G' and new M . Relative to this
new T ,M,G'", G, and [y&,yéj » we now return to looking for
further occurrances of (a), (b), (e), or (4a). Incidentally, in
the situation we Just treated, i.e., where the size of € was
determined by equality in an instance of (11), it might be that

€ =0 . This isn't relevant to the treatment.

We have finished describing a1l situations of the algorithm,

except the two terminal situations.

One Qf the terminal situstions is when we obtain in some G' ,
perhaps with pseudo nodes, a matching M which is perfect. We
then expand pseudo nodes v » one after another, to the polygons B
that they represent. Immediately before a pseudo node v is
expanded, the matching M » that we have, is perfect in thergraph G!
with with node v , that we have. TLet e denote the unigue edge
of M which, in that G' , meets node v. Expanding v to polygon B

gives us a larger G containing B instesd of v . In this G° R

- 33 -

e 1is the only edgé of M that meets a node of B , By edjoining
to M certain edges of B » Ve obtain a perfect matching M for
this larger G' . Unless there are no more pseudo-nodes, we then

treat some pseudo-node of this @' » perhaps one in B, in the

same way.

Eventually, we get a perfect matching M in the original
graph G . It will be an optimum perfect matching, because it and
the dual-weighting, that we have, together satisfy conditions (4,

(5), (1), ana (8).

The other terminel situstion is an occurrance of (a) for
which there are no constraints (9), (10), or (11). 1In this case,
€ can be chosen as large as ve Please. By using ¢ - o to change
the dual weighting [yv,ys] » as already described, we get a
feasible [y&,ys] such that W = - o . Hence, there can be no

verfect matehing in G .

This completes the deseription of the aigorithm. Just as when
G 1is biﬁartite, we can ocbserve & bound, relative to the size of G ,
on the number of operations in'applying the algorithm to G , which
shows the algoritim to be not only finite, but very good. At the

same time, Theorem 4 is proved.

- 3h -

VI. Theorems of Tutte, Peterson, and Konig

The algorithm also provides proof of the following theorem
of W.T. Tutte (1947), anslogous to Theorem 1. We define a
Tutte family in a graph G to be a family of disjoint connected
subgraphs Gi of G such that each Gi contains an odd number
of nodes (perheps one node) and such that, upon shrinking every

Gi to a node Vi the set of nodes v, 1is & hungarian set of

i
the resulting graph. (Tutte does not describe the family in this

way.)

Theorem 5. A graph contains a perfect matching if and only if it

does not contain a Tutte family.

The "only if" part is fairly easy. If G contains a Tutte
family of subgraphs Gi and also a perfect matching M , then,
because Gi has an odd number of nodes, at least one edge say e »

of M has one end in G1 and the other end not in G After

=
1 meet the nodes vy oo and have distinct

nodes at their other ends. This is impossible, however, since

shrinking, the edges e

the set of nodes vi is hungarian.

To prove the "if" part recall the terminal situation of the
algorithm where, for an occurrance of (a), there are no constraints
(9), (10), and (11). The absence of a constraint (11), means that
no inner node of T is pseudo. Since the outer nodes of T sare

a hungarian set H of G' , the .absence of constraints (9) and (10)
means that H is also & hungarien set of G . Its neighbor set

- 35 -

N(H) consists of the inner nodes of T , ell real. The nodes

in H, call them nodes fi s are obtained by shrinking disjoint
connected subgraphs Gi of the orig;nal, reael-noded, G . Each G1
contains an odd number of nodes. Therefore, the original, real-

noded, G contains a Tutte family.

The only alternative is the other terminal situation of the
elgorithm, and it yields a perfect matching. Thus, Tutte's theorem

is proved.

Ofcourse, a much more pleasant proof can be obtained by
stripping-down the algorithm to one for simply finding in any G
elther a perfect matching or & Tutte family. Indeed, finding an
algorithm for the latter was & main hurdle in finding the algorithm
that maximizes weight-sum. Tutte's original proof of Theorem S is
fascinatingly unalgorithmic, and it prompted & number of

progremmatic efforts on the subject.

The subject of matchings started over 75 years ago with the
4.color fns.p conjecture. The conjJecture, still unproved, seys that
for any way of dividing up the plane into & "map", by a connected
graph (a "planar" one) embedded in the plane so that every edge
lies on the boundary of two different regions, the regions can be
colored with only four colors so that any two regions having an
edge in common are colored differently. The property of every
edge lying on the boundary of two different regions of the map is

equivalent to the planar graph containing no isthmus. An isthmus

- 36 -

of a connected graph, planar or not, is an edge whose deletion

leaves the graph unconnected..

By "perturbing"at each node the conjecture essily reduces to
the case where the graph has degree 3 at each node. The degree
of & graph G at & node is the number of edge-ends in G thet

meet the node.

An interesting theorem, which we won't prove, is that:
A planar mep having degree 3 at every node cen be colored (properly)
with 4 colors if and only if the graph of the map contains three
mutually disJoint perfect matchings. Thus, the L-color conjecture
is equivalent to the statement that any 3-degree, connected, plenar

graph with no isthmus contains 3 mutuslly disjoint perfect matchings.

In 1891, Peterson made the following contribution toward proving

the lLi-color conjecture.

Theorem 6. A 3-degree, connected graph G with no isthmus, vhether

planar or not, contains a perfect matching.

Let's prove this using Tutte's theorem. Suppose & graph G
as described in Theorem 6 contains no perfect matching. Then it
contains a Tutte family of subgraphs Gi . Since Gi contains an
odd number of nodes, since each node has odd degree, and since the
collection of edges meeting nodes in Gi has collectively an even
number of edge-ends, the number of edges of G having one end in G

i
and one end not in Gi s 1s odd.

- 37 -

b

Not every Gi can have as many as 3 such edges, since the
shrunken Gi's are a huﬁgarian set whose smaller neighbor set
mst meet all such edges, and no node in the neighbor set can meet
more than 3 such edges. Therefore, there is at least one subgraph
Gi such that exactly one edge, say e , has one end in Gi and
one end not in Gi - Edge e 1is then an isthmus of G , contradictin

the hypothesis. So Theorem 6 is proved.

By deleting. the edges of a perfect matching M from the ¢
of Theorem 6, we are left with simply & collection of mutually
disjoint polygons. Clearly, the set of edges in this collection
of polygons can be partitioned into two perfect matcﬁings if and
only if each of the Polygons contains an even number of edges.
Considerable effort has been spent on trying to prove that when G
ig planar, there exists an M such that G-M consists of even

polygons.

If the G of Theorem 6 1is bipartite, then, for any M, @-M
consists of even Polygons, because it is easy to show that every
polygon in a bipartite graph is even. Thus, the L-color conjecture
is proved for any planar map whose graph G is 3-degree and

bipartite.

Indeed, though little is known about partitiioning the edges
of & general k-degree graph into k rerfect matchings, we do have
the following theorem sbout k-degree bipartite graphs. The
elementary theory of bipartite graphs, inecluding this fheorem and

Theorem 1, is due to Konig (circa 1925).

- 38 -

Theorem 7. The edges of any k-degree bipartite graph can be

partitioned into k perfect matchings.

For any perfect matching M 1in e k-degree bipartite gresph G ,
clearly G-M is a (k-1) degree bipertite graph. Hence, it suffices
to show that any k-degree bipsrtite G containsen M . If G
doesn't contain an M , then , by Theorem 1, it contains & hungarian
set H . Together the |H| nodes in H meet k- |H| different
edges. At the other ends of all these edges is N(H). But this
is impossible, since the degree of each node in N(H) is only k ,

and N(H) < |H| . So Theorem 7 is proved.

The mystery of the lW-color conjecturé seems not due to mystery
about planar graphs and maps. The subject of "planarity" is very
well understood. The mystery is due to the lack of a satisfactory
theory about the combinatorics of ecoloring, i.e., partitioning.

If you could find & good slgorithm for deciding, for any given
3-degree graph G , whether the edges of G can be partitioned

into 3 perfect matchings, then you could probably settle the

h-color conjecture.

- 39 -

VII. Degree-Constrained Subgraphs

Given any graph G with & real nume;ical weight cy for each
edge e¢E and an integer bv for each node veV , find in G ,
if there is one, a subgraph M which has degrees bv at nodes v
end whose edges have maximum weight-sum. This is called the
"optimum b-matching problem" or the "optimum degree-constrained

subgreph problem" (for "undirected graphs").

Where b = Ebv] s VeV , & b-matching M .in G 1is a subset
M cE of edges such that bv edge-ends of edges in M meet node v .
(Tutte and many other suthors in graph theory would say "b-factor”
rather than "b-matching".) Obviously there is a 1-1 correspondence
between the b-matchings in & graph G and the b-degree subgraphs

of G that contain all the nodes of ¢ .

We allow G , and hence M , to contain loops and multiple
parallel edges. A loop is an edge such thet both of its ends meet
the same node. Several edges are said to be perallel to each other
if they all meet the same one or two nodes. Loops and multiple

parallel edges are superfluous in‘the l-matching problem.

Tutte (1954) generalized his Theorem 5 of the last section to
a characterization of graphs G which, for given b = [bv] » do not
contain & b-matching. Using similar devices we shall show how to

get a good algorithm for optimum b-matching

- 40 -

In fact, we shall generalize further, thereby including directly
the integer network flow of problem of Ford and Fulkerson. The
letter may be regarded as the following: Given eny directed graph
(network) G with a real numerical ﬁeight (cost) c, for each
edge (arc) eeE end with an integer b~ for eech node veV ,
find in G , if there is one, a subset M c E of edges such that,
for every veV , the number of edge-ends of M directed towerd v
minus the number of edge-ends of M directed away from v equals
b, , and such that Z;M c, 1is meximum .(or minimum). A negative b
is called a source, :gd a positive bv is called a sink.

To get the appropriate common generalization of undirected
graph and directed graph, we introduce the concept of "bidirected
graph". A graph G 1is called bidirected if each edge-end of G
has either a +1 or & -1 on it. Equivalently, each edge-end is
directed either towsrd or away from the node it meets, independently
of how the other end of the same edge is directed. Eguivelently,

each end of an edge is either a front-end or a rear end, independently

of what the other end of the same edge is.

The degree of & node v in a bidirected graph G is the
number of front-ends in G that meet v minus the number of rear
ends in G that meet v . With this new definition of degree,

the optimum degree-constrained subgraph problem is the same as stated

above.

A bidirected G 1s directed if every edge of G has a front
end and a rear end. A bidirected G is undirected if every edge

of G has two front ends. Another interesting case is where every

- 41 -

edge has either two front ends or two rear ends.

Another generalizatim is obteined by introducing single ended
obJects called slacks, positive slacks and negative slacks, 1l.e.,
front slacks and rear slacks. A slack in a graph meets only one
node. A greph G with slacks is fegarded es undirected when all

ends in G including those of slacks are front ends.

Slacks conveniently represent upper and lower bound degree-
constraints. Suppose we wish to find a maximgm weight subgraph
M of G such that the degree of M at node v 1is at least
bi and at most bs . In other words, suppose we wish to find in

G a maximum weight b-matching where b = [bv] and where each

bv is in the interval bi s'bv S.bs . Obtain from G & new graph

Go by introducing at each node v of G , b2 - bs

v
1
v

negative slacks

and b° - b
v

1 2
bv and bv é

positive slacks where b: is some integer between
Give these slacks weight zero. Finding & meximum
weight b: - matching in Go is equivalent to finding a meximum

weight bY-matching in G .

You mey esk why I don't introduce "edges" with 3 ends. I would

if I knew a good algorithm for handling them.

Another valueble generalization, suggested by the transportation
and integer flow problems, is to maximize U = z;cexe(eeE) by en
integer-valued vector x = [x,] that satlsfies
(1) for every element e¢E , either an edge e or a slack e ,

O<x, <a

-2 -

(2) for every node v ¢ V,

la,x =b, (e€E), where

0 if e does not meet v,

Bev =

By = 1 if e bas one front end at v,

8y = -1 1f e has one rear end at v,

By = 2 if e is a loop with two front ends at v, and
&, = -2 if e is a loop with two rear ends at v.

Matrix [aev] is called the incidence matrix of bidirected graph
G. BSet V is the set of nodes in G. Set E is the set of edges, includ-
ing loops, and also the slacks in G. The integer bv is the degree-
constraint at v. The integer ae is called the capacity on e.

When every Q. is 1, this problem is simply the b-matching
problem relative to graph G. When the ae‘s are any positive integers,
the problem is the b-matching problem relative to the graph obtained
from G by replicating ae times the element e. We also permit
Ote = e, Of course, if the problem has & solution it must be possible
to replace ‘ae = ® by a large ae. However, as a matter of fact,
infinite capacities are much easier to handle than finite capacities.

We now describe how any optimum b-matching problem can be
reduced to an optimum l-matching problem.

We describe first how any b-matching problem on a bidirected
graph G can be reduced to a b¥-matching problem on an undirected
graph G¥. For each node v in G, let there be two nodes, say u and W,
in G*, Let all the front ends at v be front ends at u in G*. Let
all the rear ends at v be front ends at w in G¥. Let there be in G*

&8 new edge e with a front end at u, a front end at w, and any

43

%

appropriately large capacity. Let the degree constraints b: and b:
be appropriately large an@ such that b: - b: = bv‘ Let every edge or
slack in G have the same weight in G¥ as in G. Let the new edges in
G* have weight zero.

One can verify that if G is directed then G¥ is bipartite.

We next describe how any b-matching problem on an undirected
graph G can be reduced to a b¥-matching problem on an undirected graph
G* such that the edge capacities are all ® and such that there are no
slacks.

For each edge e of G having finite capacity'ae, and meeting say
nedes u and w in G, replace e by a path Pe of three edges joining u
to w; give the two new nodes, interior to Pe, degree constraints egqual
to e, Give one of the non-middle edges of Pe the weight that e had;
give zero weights to the other two edges of Pe' Let r denote a
special new node. For each slack e of G, having capacity a%, and
meeting say node v in G, replace e by a path Pe of two edges joining
v to r; give the new node, interior to path Pe’ a degree-constraint
equal to ae or bv’ whichever is smaller. Give the edge of Pe that
meets v thHe weight that slack e had; give zero weight to the other
edge of P . Let there be a zero-weighted loop with both (front) ends
at r. Give r any eppropriately large degree-constraint whose parity
is such that the sum of the degree-constraints on all nodes is even.
The result of this construction is the desired b¥-matching problem.

an undirected

Next we describe how to reduce any b-matching problem on,d graph

G, such that there are no slacks and such every edge e has capacity

aé = @, to a perfect matching problem (like treated in section V) on

il

