
Algorithmica (1996) 15:521-549 Algorithmica
�9 1996 Springer-Verlag New York Inc.

Algorithms for Dense Graphs and Networks on the
Random Access Computer 1

J. Cheriyan 2 and K. Mehlhorn 3

Abstract. We improve upon the running time of several graph and network algorithms when applied to
dense graphs. In particular, we show how to compute on a machine with word size L = f2 (log n) a maximal
matching in an n-vertex bipartite graph in time O (n 2 + n2"5/~.) = O (n2"5/log n), how to compute the transitive
closure of a digraph with n vertices and m edges in time O(n 2 + nm/,k), how to solve the uncapacitated
transportation problem with integer costs in the range [0..C] and integer demands in the range [-U..U] in
time O ((n 3 (log log / log n) 1/2 + n 2 log U) log nC), and how to solve the assignment problem with integer costs
in the range [0..C] in time O(n 2"5 lognC/(logn/loglogn)l/4).

Assuming a suitably compressed input, we also show how to do depth-first and breadth-first search and how
to compute strongly connected components and biconnected components in time O(n~. + n2/L), and how to
solve the single source shortest-path problem with integer costs in the range [0..C] in time O (n 2 (log C)/log n).
For the transitive closure algorithm we also report on the experiences with an implementation.

Key Words. Graph, Network, Algorithm, Dense graph, Dense network.

1. Introduction. We improve upon the running time of several graph and network
algorithms when applied to dense graphs and networks by exploiting the parallelism
on the word level available in random access computers [AV]. In particular, the bounds
shown in Table 1 can be obtained for graphs and networks with n vertices and m edges on
machines with word size ~. = f2 (log n). For several graph algorithms, we show that the
previously best bounds can be improved by a factor)~ on dense graphs; e.g., a maximum
matching in a bipartite graph can be computed in time O (n 2 § n25/)~) = O (n2 ' 5 / l og n).
For problems on networks, e.g., the shortest-path problem, the assignment problem, and
the transportation problem, assuming that all the numeric parameters Of the network are
integers, we obtain improvements by a fractional power of log n..

There is a simple common principle underlying all our improvements. This principle
was introduced by Cheriyan et al. [CHM] in their O (n3/log n) maximum-flow algorithm.
Altet al. [ABMP] showed later that the technique can also be applied to the bipartite
matching problem. They obtained a running time of O (n2"5/~/l-6g n). In this paper we
further exploit the principle and show that it can be applied to a large number of graph
and network problems.

1 Most of this research was carried out while both authors worked at the Fachbereich Informatik, Universit~tt
des Saarlandes, Saarbriicken, Germany. The research was supported in part by ESPRIT Project No. 3075
ALCOM. The first author acknowledges support also from NSERC Grant No. OGP1N007.
2 Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada.
3 Max-Planck-Institut fiir Informatik and Universit~it des Saarlandes, D-66123 SaarbriJcken, Germany.

Received September 5, 1993i revised November 24, 1994. Communicated by R. Sedgewick.

522 J. Cheriyan and K, Mehlhorn

Table 1. Survey of results, l

Problem Running time Input Prev!ous bound

Depth-first search
Breadth-first search
Strongly connected

components
Biconnected components

O(n)~ + n2/)~) c O(n 2)

Maximum matching O(n 2 -1- n25/~,) s O(n zS) [HK]
in bipartite graphs

Transitive closure O(n 2 + nm/~,) s . O(nm)

Single source shortest O(n2(log C/logn)) c O(n 2) [D1]
paths with edge
weights in [0..C]

Assignment problem O(n2"5(lognC) �9 s O(n 2"5 lognC) [GT], [OA]
with edge
weights in [0..C]

Transportation O((n3y + n 2 log U) log nC) s 0 ((n 3 + n 2 log U) log nC)
problem with [AGOT]
edge costs
in [0..C] and
demands in [0..U]

I The first column specifies the problem, the second column states the running time obtained in this paper (/3 denotes
(log log n/log n) 1/4 and y denotes (log log n~ log n) I/2), the third column states whether the input is standard (s) or compressed
(c), and the fourth column states the best previous bound.)~ denotes the word size of the machine.

The technique is most easily described in the case of depth-first search (DFS). DFS
is a recursive procedure which explores a graph starting from a source s. Initially, all
vertices are unlabeled and DFS(s) is called. A call DFS(v) labels v andthen scans the
edges (v, w) starting at v until an unlabeled vertex w is found. Then DFS(w) is called.
The crucial observation is that, although up to n 2 edges are examined by DFS, only n - 1
of them lead to recursive calls. Suppose now that the adjacency matrix of the graph is
available in "compressed form," i.e., t, t <)~, bits of the adjacency matrix are stored
in a single computer word. Suppose also that we maintain the compressed bit-vector
of unlabeled vertices. Then taking the componentwise AND of corresponding words of
v's row of the adjacency matrix and the bit-vector of unlabeled vertices and testing the
result for zero checks simultaneously for t vertices whether one of them is unlabeled
and reachable from v b y a n edge. In this way the adjacency lists of all vertices can be
scanned in O(nZ/t) time. Only n times will an edge leading to an unlabeled vertex be
detected and a recursive call be required. This adds O(nt) to the running time.

The details for DFS are given in Section 2.2. Breadth-first search is discussed in
Section 2.3, the computation of strongly connected and biconnected components in Sec-
tion 2.4, the matching problem in Section 2.5, and the computation of transitive closures
in Section 2.6. We mention that Feder and Motwani [FM] independently obtained an
O (n2"5/log n) bipartite matching algorithm. Their approach is quite different from ours.

Algorithms for Dense Graphs and Networks on the Random Access Computer 523

The algorithms for the computation of strongly and biconnected components given in
Section 2.4 are alternatives to the algorithms in [T]. We find that the correctness proofs
in Section 2.4 are more intuitive. For tile transitive closure algorithm we also report on
experiences with an implementation.

Section 3 is devoted to algorithms on networks; the shortest-path problem is dis-
cussed in Section 3.1, the transportation problem in Section 3.2, and the assignment
problem in Section 3.3. For network algorithms, the compression technique requires the
precomputation of tables and therefore typically the full word size cannot be exploited.

The machine model used in this paper is essentially the RAC (random access com-
puter) of Angluin and Valiant [AV]. Let X be an integer. A)~-RAC consists of M = 2 x
registers, each of which can hold an integer in the range [0..M - 1]. The instruction set
of a ~.-RAC consists of arithmetic operations (addition, subtraction, multiplication, and
integer division (all modulo M)) and boolean operations (AND, OR, EXCLUSIVE-OR,
Negation). For the boolean operations an integer is interpreted as a bitstring o f length)~;
all boolean operations work bitwise, i.e., on all X bits in parallel. In contrast to Angluin
and Valian[[AV], we do not postulate that the word size)~ is logarithmic in the size of
the input. Rather, we treat word size and length of input as independent quantities and
only require that the word size is at least logarithmic in the size of the input. Following
Kirkpatrick and Reisch [KR], we call an algorithm conservative, if it uses only a word
size which is logarithmic in the size of the input (although the actual word size of the
machine in use may be larger).

2. Graph Algorithms

2.1. Basics. For an integer t and 0-1-valued vector L[O..n - 1] the t-compression (or
t-compressed version) oL of L is a vector oL[0.. Fn/t] - 1] such that, for 0 < k < rn/t],

oL[k] = ~ L [k . t + l]2 t-t,
O<_l<t

where L[v] = 0 for v > n is assumed for simplicity. The entries of a t-compression take
values in T = [0..U - 11.

For integers x 6 T and l, 0 < l < t, we use (X)I to denote the lth bit of x, i.e.,
x = ~0<<t(x) t - 21 and (x)r c {0, 1} for 0 _< l < t. For0 < l < t let El denote the
integer 2 ?- .

For x 6 T, X 5~ 0, [log xj is the index of the highest numbered nonzero bit in x. In
our graph algorithms we frequently have to compute [log x]. We assume that [log xJ is
not available as a machine instruction. The simplest algorithm is linear search.

l +- t - 1; while (xAND El) = 0 do I <-- l - 1 od

It takes time 0 (t) and needs no precomputation. A faster method is binary search. It
takes 0 (log t) time and requires the precomputation of 0 (t) masks. Finally, Freedman
and Willard [FW] have recently found a method which works in time 0(1) with 0(~)
precomputation. In the algorithms below we always state the time bounds in terms of
linear search.

524 J. Cheriyan and K. Mehlhorn

For a graph G = (V, E) with n nodes we identify the vertices with the integers
0, 1 n - 1 and we also use E to denote the adjacency matrix of G, i.e., E[v, w] = 1
iff (v, w) ~ E, and E[v, w] ---- 0, otherwise. The t-compressed adjacency matrix <>Eis
a matrix <>E[O..n - 1, 0.. In~t] - 1] such that the vth row of <>E is the t-compression of
the vth row of E, 0 < v < n.

2.2. Depth-First Search. Depth-first search (DFS) is a useful method for the system-
atic exploration of a graph. DFS visits the nodes of a graph in depth-first order, i.e., DFS
always follows an unexplored edge (if any) out of the most recently reached vertex. Pro-
gram 1 specifies DFS as a recursive procedure dfs(node v). This program also computes
two node labelings dfsnum and compnum and a list of tree edges. The labeling dfsnum
numbers the nodes by the time of the call of dfs, compnum numbers the nodes by the time
of the completion of the call of dfs, and tree contains the set of edges whose exploration
leads to recursive calls. DFS runs in time and space O(n 2) on an n-vertex graph.

We now describe the compression technique. Let <>E be the t-compressed adjacency
matrix. We also store the bit-vector reached in its t -compressed form oreached and
represent a node v by the pair (i, j) with i = [v/tJ and j = v m o d t . The crucial
observation is now that, for 0 < h < [n/t] - 1, <> E[v, k] A --, <> reached[k] # 0 iff some
edge in {(v, w); kt < w < (k + 1)t} leads to an unreached node, i.e., one operation
checks t edges. The details are given in Program 2.

LEMMA 1. Given the t-compressed adjacency matrix <>E o f an n-vertex graph, t <)~,
depth-first search runs in time O(nZ/t + nt) and space O(nZ/t) on a)~-RAC.

PROOF. The time spent outside line 5c is clearly O (n2/t). Also, a single execution of
line 5c takes time O(t) and there are at most n - 1 executions of it since there are

(1) procedure dfs(node v)
(2) begin reached[v] <-- 1;
(3) dfsnum[v] +-- dfs_countl +-- dfs_countl +1;
(4) for w E V
(5) do if E[v, w] and -~ reached[w]
(6) then T. append((v, w));
(7) dfs(w)
(8) fi
(9) od;

(10) compnum[v] +-- dfs_count2 + 1
(11) end
(12) T +-- empty list of edges
(13) for v ~ V do reached[v] +-- 0 od;
(14) dfs_countI <-- dfs_count2 ~- - 1 ;
(15) f o r v ~ V
(16) do if --, reached[v] then dfs(v) fi od

Program 1. Depth-first search.

Algorithms for Dense Graphs and Networks on the Random Access Computer 525

(la)
(lb)
(2a)
(3a)
(4a)
(Sa)
(Sb)
(5c)
(6a)
(7a)
(7b)
(8a)
(9a)

(10a)
(l la)
(12a)
(13a)
(14a)
(15a)
(15b)
(16a)
(17a)

procedure dfs(integers i, j)
beg in v ~-- it + j ;

(reached[i])j +- 1;
dfsnum[v] +-- dfs_countl ~ dfs_countl +1;
for k c [0.. In~t] - 1]
do X +-- <>E[v, k] A --, <> reached[k];

whi l e X ~ 0
do l +-- t - 1; wh i l e (X)I = 0 do 1 +-- l - 1 or;

T. append((v, kt + l));
dfs(k, I);
X +-- <>E[v, k] A --, <> reached[k]

od
od;

compnum[v] +- dfs_count2 +-- dfs_count2 +1
end;
T +-- empty list of edges
for i 6 [0.. rn/t] - 1] do o reached[i] +-- 0 or;
dfs_countl +-- dfs=count2 ~-- - 1 ;
for i ~ [0.. In~t] - 1]
do for l ~ [0..t - 1]

do if --,(reached[i])t then dfs(i, l) fi od
od

Program 2. Depth-first search with compressed adjacency matrix.

at most n - 1 calls to dfs in line 7a. This proves the time bound. The space bound is
obvious. []

REMARK. Line 5c computes [logXJ by linear search in time O(t). In view of Sec-
tion 2.1, we may also use binary search or the constant time method of Fredman and
Willard provided that we add O (t) and O (~.) preprocessing time, respectively. This gives
a running time of O(n2/t + n log t 4- t) and O(n2/t + ~.), respectively. We prefer to state
our time bounds in terms of linear search because it uses the weakest machine model.

DFS can be used to partition the edges of a graph into tree, forward, back, and cross
edges. The tree edges have already been collected in the list L in Program 1. We now
show how to construct the submatrices of <>E corresponding to the three other classes
of edges. All three classes can be characterized in terms of the two labelings dfsnum
and compnum, see [T] and Section IV.5 of [M], e.g., an edge (v, w) is a cross edge if
dfsnum[v] > dfsnum[w] and compnum[v] > compnum[w]. We can therefore extract
the submatrix of cross edges by deleting all edges which violate one of the two defining
conditions. The following simple strategy deletes for example all edges (v, w) with
dfsnum[v] < dfsnum[w]. We step through the vertices in increasing order ofdfs number
and maintain the t-compresssion <>smaller of a bit-vector smaller with smaller[w] = 1
iff dfsnum[w] < dfsnum[v]. The AND of <>E[v, ,] and <>smaller then deletes all edges

526 J. Cheriyan and K. Mehlhorn

(v, to) with dfsnum[v] < dfsnum[to]. The program follows:

for v e V do ord[dfsnum[v]] +-- vod ;
for i c [0, . .[n/tl - 1] do smaller[i] +- 0 od;
for h from 0 to n - 1
d o v +-ord[h]; i +-- v d i v t ; j <-- v m o d t ;

for k E [0.. [n/t] - 1]
do <>C[v, k] +- <>E[v, k] A <>smaller[k] od;
(<> smaIler[i])j +- 1

od

LEMMA 2. Under the hypothesis o f Lemma 1, the t-compressed adjacency matrices for
the forward, back, and cross edges can be computed in time O(n2/t + nt) on a ~.-RAC.

2.3. Breadth-First Search. Breadth-first search (BFS) computes the shortest distances
of all nodes from a given set S of nodes, i.e., a node labeling d with

d(v) = min{k; 3v0, U1 V k such that v0 6 S, Vk 6 V,

and (vi, vi+l) ~ E for 0 < i < k},

seeProgram 3. BFS takes time O(n 2) on an n-vertex graph. With the methods of Sec-
tion 2.2 (the details are left to the reader) this can be improved to O (n2/t + nt) time on
a X-RAC, provided that t <)~ and the t-compressed adjacency matrix is given.

The layeredsubgraph of a graph G consists of all edges (v, to) with d[to] = d[v] + 1.
It is needed in several applications of BFS, e.g., to matching or flow problems; see

for all v ~ V do Reached[to] +-- 0 od;
Q +-- empty queue;
for all s ~ S do Q. append(s); Reached[s] ~ 1; od; Q. append(#); d +-- 0;
while Q ~ 13
do v ~-- Q. pop() ;

if v = # and Q --fi 13
then Q.append(#); d +-- d + 1
else d[v] +- d;

for all to E V
do if E[v, w] and --, Reached[to]

then Reached[to] ~ 1;
Q. append(to)

fi
od

fi
od

Program 3. Breadth-first search; Q. append(x) appends x to the rear of Q, Q. pop() deletes the first element

of Q and returns it.

Algorithms for Dense Graphs and Networks on the Random Access Computer 527

Section 2.5. We now discuss how to construct the compressed adjacency matrix of the
layered subgraph. For k, 0 ___ k < n, let oLk be the t-compression of the bit-vector Lk
where Lk[v] = 1 iff d[v] = k for all v 6 V. These vectors can be computed in time
O(n2/t + n); namely O(n2/t) time to initialize them to zero and O(1) time for each
vertex. Next observe that the vth row of the t-compressed adjacency matrix oD of the
layered subgraph is given by the AND of oE[v, .] and LdM+I. We summarize in:

LEMMA 3. Given the t-compressed adjacency matrix of an n-vertex graph, t <)~, and
a subset S of the vertices, BFS and the construction of the layered subgraph of G take
time O(n2/t + nt) on a)~-RAC.

2.4. Strongly Connected and Biconnected Components. A digraph G = (V, E) is
strongly connected if for any two vertices v, w 6 V there is a path from v to w. A
strongly connected component (scc) is a maximal strongly connected subgraph. An
undirected graph G = (V, E) is biconnected if for any two edges e and e' there is a
simple cycle containing e and e'. A biconnected component (bcc) is a mammal
biconnected subgraph.

Tarjan [T] has given linear-time algorithms for the computation of scc's and bcc's.
Both algorithms are based on the computation of so-called lowpoints. Since lowpoint
values can change f2 (m) times, his algorithms do not seem amenable to the techniques
described in the previous sections. Another linear-time algorithm for the computation
of scc's was given by Sharir [Sh]. It uses DFS on G and Grev, the graph obtained
from G by reversal of all edges. Section 2.2 implies that Sharir's algorithm runs in
time O(n2/t 4- nt) provided that the t-compressed adjancency matrix of G and Grev are
given. Unfortunately, Sharir's algorithm cannot be usedto Compute bcc's of undirected
graphs.

In this section we describe an O(m) algorithm for the computation of scc's which
is as fast as Tarjan's algorithm (Sharir's is slower by about a factor of two), is simple
(maybe even simpler than Tarjan's algorithm), can be modified to compute bcc's, and
can be made to run in time O(n2/t + nt) given the t-compressed adjacency matrix.
Our algorithm is similar to an algorithm described by Dijkstra [D2] which has however
running time f2 (n2).

Our algorithm is based on DFS and constructs the scc's of G incrementally. Let Gcur
be the subgraph of G consisting of all vertices reached by DFS and all edges explored
by DFS. An scc of Gcur is called completed if the call dfs(v) is completed for all vertices
v of the component, and uncompleted, otherwise. Let unfinished = (Vl, v2 v~) be
the sequence of vertices of G~,r in uncompleted components of Gc,r ordered according
to increasing DFS number. For each scc C call the node with the smallest DFS number
the root of C, and let roots = (v i i , v i2 , . . . , v ik) with 1 = il < i2 < --- < ix be the
subsequence of unfinished consisting of the roots of the uncompleted components. We
maintain the following three invariants.

�9 II: There are no edges (x, y) of Gc, r with x belonging to a completed component and
y belonging to an uncompleted component.

�9 I2: The nodes in roots lie on a single tree path, i.e., vi~ -~ . vit+l for 1 < l < k, and

we are currently exploring edges out of Vp where p > ik.

528 J. Cheriyan and K. Mehlhorn

i

Fig. 1. A graph Gcur; tree (back, cross, forward) edges are shown thick solid (thin solid, thin dashed, thick
dashed). Nodes for which the call of dfs is completed are shaded. The shrunken graph is also shown. Completed
components are shaded.

�9 13: The nodes in the uncompleted scc with root vi~ are the nodes vii, vi~+l vit+~-a
(with the convention ik+l -- s § 1). Moreover, all these nodes are tree descendants of
the root v;,.

EXAMPLE. Assume that Gc,r is as shown in Figure 1. We assume that DFS reaches
the vertices in the order a, b, c, d, e, f , g, h, that the calls dfs(a) , dfs(e), dfs(d) , dfs(g)
are completed, and that we are currently exploring edges out of vertex h. We have
unfinished = (b, c, d, f , g, h) and roots = (b, c, f , h).

We now consider the exploration of edges and the completion of calls. If (v, to) is the
edge to be explored, let G~cur = (Vcur U {w}, Ec,r tA {(v, to)}) be the new graph spanned
by the explored edges. Of course, to ~ Vcur if (v, w) is not a tree edge.

EXPLORATION OF A TREE EDGE (1), tO). In G'cu r the node tO is a scc by itself and, of
course, an uncompleted one; all other scc's stay the same. We can reflect this change by
adding the node tO at the end of sequences unfinished and roots. Note that this preserves
all our invariants. 13 is preserved since tO is a scc by itself. I1 is preserved since the node
v belongs to an uncompleted component according to 13; I2 is preserved since v is a tree
descendant of the last element of sequence roots according to I2, 13, and the fact that
(v, w) is a tree edge. Also, the sequences unfinished and roots are still ordered by DFS
number.

In Program 4 lines 3 and 4 implement the actions described above. The sequence
roots and unfinished are realized as pushdown stores; in addition, unfinished is also
represented as a boolean array in_unfinished.

EXPLORATION OF A NONTREE EDGE (v , w) . We have to distinguish two cases: either w
belongs to a completed component or it does not. The case distinction is made in line 8
of Program 4.

Algorithms for Dense Graphs and Networks on the Random Access Computer 529

(1) p r o c e d u r e dfs(v: node);
(2) countl +- countl +1; dfsnum[v] +-- count1; reached[v] +- true;
(3) push v onto unfinished; in_unfinished[v] <--- true;
(4) push v onto roots;
(5) for all w with (v, w) c E
(6) do ff -', reached[w]
(7) then dfs(w)
(8) else i f in_unfinished[w]
(9) then co we now merge components oe

(10) while dfsnum[top (roots)] > dfsnum[w]
(11) do pop(roots) od

02) fi
(13) fi
(14) od;
(15) i f v = top(roots)
(16) then r epea t w +--pop(unfinished); in_unfinished[w] +- false;
(17) e o w is an element of the scc with root v o e

(18) until v = w;
(19) pop(roots)
(20) fi
(21) end;

(22) begin eo main program oe

(23) unfinished +-- roots +-- emptyjtack;
(24) countl +- 0;

(25) for all v 6 V do in_unfinished[v] <---false; reached[v] +-false; od;
(26) for all v ~ V do i f --, reached[v] then dfs(v) fi od
(27) end.

Program 4. An scc algorithm.

Case 1: w belongs to a completed component. In this case no path exists from w to
v, since v belongs to an uncompleted component of G~u~ according to I2 and no edge
exists from a node in a completed component to a node in an uncompleted component
according to I1. Thus Gtc,r and Gcu~ have the same scc's and no action is required. The
three invariants are clearly preserved.

Case 2: w belongs to an uncompleted component. Let unfinished = (vl, v2 vs)
and let roots = (vi~, vi2 vi~), where 1 = il < i2 < �9 �9 �9 < ik. Let v = re, where
p > ik according to I2, and w = Vq where it < q < ii+1, i.e., vi~ is the root of the scc
containing w. Then the scc's of G'cu r can be obtained by merging the scc 's of Gcu,. with
roots vi~, vi,+~ vlk into a single scc with root vi~ and leaving all other scc's unchanged.
This can be seen as follows. Note first that completed scc's remain the same according
to I1. Next consider any node z in an uncompleted component, i.e., z = Vr for some r.

530 J. Cheriyan and K. Mehlhom

If r > it, say ih _< r < ih+l with l < h < k, then

Oil)'* lJih - - - - ~ * l) r >*12 h ?'*13ik - > * l) ?, 113) * Vil ~
Ecur Ecur Ecur Ecur Ecur Ecur

where the existence of the first, the fourth, and the fifth path follows from 12 and I3, the
existence of the second and third path follows from the fact that vih and vr belong to
the same scc, and the existence of the seventh path follows from the fact that w and vii
belong to the same scc. Thus vr and vi, belong tO the same scc of G'c,,r i f r _> it.

I f r < i l , s a y ih < r < ih+l W i t h h < l , t h e n vr > * vi~ - - - - - -~ * t) b ~* w, since
Ecur Ecur ' Ecur

vr and vih (vi~ and w respectively) belongto the same scc and vih -----+* vi~ according to
Ecur

I2. Since h < 1 no path exists fi'om vii to v~ in Gcu~. If there were such a path in Gt~,~,
then it would have to use the edge (v, w) and hence there would have to be a path from
w to v~ in Gcur. Thus w and v~ would belong to the same scc of Gc~r, a contradiction.
This shows that uncompleted scc's with roots vih, h < l, remain unchanged,

We have now shown that the scc's of G'~,~ can be obtained from the scc's of Gcur
by merging the scc's with roots vii vit ~ into a single scc. The newly formed scc has
root v~ t and hence the merge can be achieved by simply deleting the roots v#+~ vik
from roots. Next note that it < q < il+l < --" < ik, where w = Vq and hence
dfsnum[vil] < dfsnum[w] < dfsnum[vi,+,] < . . . < dfsnum[vk] since unfinished and
roots are ordered according to DFS number. This shows that the merge can be achieved
by popping all roots from roots which have a DFS number larger than w. That is exactly
what lines 10 and 11 of Program 4 do. The three invariants are preserved by the arguments
above. This finishes the description of how edges are explored. We now turn to the
completion of calls.

COMPLETION OF A CALL d,/~'(v). According to I2 the node v is a tree descendant of
the last vertex of roots, ik = top(roots). If it is a proper tree descendant, i.e., v
top(roots) , then the completion of dfs(v) does not complete an scc. We return to dfs(w)
where w is the parent of v. Clearly, w is still a tree descendant of top(roots) and also
w ~ * v ~ * top(roots) belong to the same scc. This shows that 12 and I3 are

Eeur Ecur
preserved; I1 is also preserved since we do not complete a component.

If v = top(roots), then we complete a component. According to I3 this component
consists of exactly those nodes in unfinished which do not precede top(roots) and hence
these nodes are easily enumerated as shown in lines t6 -18 of Program 4. Of course,
top(roots) ceases to be a root of an uncompleted scc and hence has to be deleted from
roots; line 19. We still need to prove that the invariants are preserved. For I1 this follows
from the fact that all edges leaving the just completed scc must terminate in previously
completed scc's, since the uncompleted scc's form a path according to I2. The invariants
I2 and 13 are also maintained by a similar argument as in the case v r top(roots).

We have now proved the correctness of Program 4 and summarize in:

THEOREM 1. Program 4 computes the strongly connected components o f a digraph in
time 0 (n + m).

Algorithms for Dense Graphs and Networks on the Random Access Computer 531

PROOF. Having already proved correctness, we still have to prove the time bound. The
time bound follows directly from the linear time bound for DFS and the fact that every
node is pushed onto and hence popped from unfinished and roots exactly once. This
implies that the time spent in lines 11 and 16 is O(n). The time spent in all other lines
is O(n + m). []

We next discuss a more efficient implementation of this algorithm for dense graphs.
It is based on the observation that at most 2(n - 1) edges lead to a recursive call or to a
merge of existing components. Our goal is therefore to identify these edges quickly. For
each root r of an uncompleted component let Br be a bit-vector such that Br [v] = 1 iff
v belongs to the uncompleted component with root v. The exploration of an edge (v, w)
leads to a recursive call dfs(w) if reached[w] = 0 and it causes some components to be
merged if in_ unfinished[w] = 1 and Btop(roots~[w] = 0, i.e., if w lies in an uncompleted
component which is not the component of top(roots). If all bit-vectors are stored in
t-compressed form, then this condition can be tested in time O (1) for a block of t edges
and hence the time spent on scanning adjacency lists is O(n2/t +nt) . When a new vertex
w is reached and dfs(w) is called we create a new t-compressed vector <>Bw and initialize
it such that Bw [x] = 1 iff w = x. This takes time O (n/t) for each call and hence O (n2/t)
in total. When two components are merged, we also need to update the B-vectors, i.e.,
line 11 is changed into

B 4 - Btop(roots) ;

pop roots;

Btop(roots) +- Btop(roots) V B

This takes time O (n/t) for each merge step and hence O (n2/t) in total. We summarize
in:

THEOREM 2. Given the t-compressed adjacency matrix of an n-vertex graph, t <)~,
the strongly connected components of G can be computed in time O(n2/t + nt) on a
)~-RAC.

We next turn to the computation o f biconnected components of undirected graphs
which we assume to be given by their (symmetric) adjacency matrix. For a bcc C we
call the vertex with the second smallest DFS number the center of C, and for each vertex
w let parent[w] be the parent of w in the DFS tree. A bcc C is called completed if the
call dfs(v) where v is the center of C is completed. As before, let unfinished denote the
sequence of vertices belonging to uncompleted bcc's of Gc,r in increasing order of DFS
number. Note that a vertex can belong to several bcc's; it stays in unfinished until all
of them are completed. Finally, centers is the subsequence of centers in unfinished. The
invariants are now:

�9 I1: For all edges (x, y) of Gc,r, x and y belong to the same bcc of G

Let unfinished = (vl~ v2 Vk) and centers = (vi~, vi2 vi,), where il < i2 <
. . . <ik .

532 J. Cheriyan and K. Mehlhorn

�9 I2: The vertices in centers lie on a single tree path and we are currently exploring
edges out of vp where p > ik.

�9 I3: The vertices in the uncompleted bcc with center vit are the vertices vi~, vi~+l
vi,+l (with the convention ik = s) together with the vertex father[vi~]. All but the
vertexfather[vit] are tree descendants of l)i,.

In the program line 4 is changed into

(4a) push v onto centers,

lines 10 and 11 into

(10a) while dfsnum[father[top(centers)]]
(1 la) do pop(centers) od

and lines 15-20 into

(15a)
(16a)
(17a)
(18a)
(19a)
(20a)

> dfsnum[w]

if v = top(centers)
t h e n r e p e a t w ~- pop(unfinished); in_ unfinished[w] +-false

u n t i l w = v;

pop(centers);
(*father[v] and the vertices just popped from the bcc with center c *)

ft.

THEOREM 3. The program above computes the biconnected components of an undi-
rected graph in time 0 (n + m). Given the t-compressed adjacency matrix, t < ~, it can
be made to run in time O(n2/t + nt) on a X-RAC.

PROOF. Analogous to the proofs of Theorems 1 and 2. []

The strongly connected components algorithm (without compression) described above
and Tarjan's algorithm using lowpoints are part of the LEDA platform of combinatorial
and geometric computing [MN], IN]. The running times of both algorithms are about
the same.

2.5. Maximum Bipartite Matching. Th e maximum bipartite matching problem (MPM
problem) is to find a maximum cardinality matching in a bipartite graph. An undirected
graph G = (V, E) is bipartite if there is a partition of the vertex set V into disjoint sets
A and B such that ever 3, edge e ~ E has exactly one endpoint in each of the two sets. A
matching M is a subset of E such that every vertex is incident to at most one edge in M.

Hopcroft and Kal~ [HK] have shown how to solve the MPM problem in time
O(n 1/2 �9 m). W'e give an implementation of their algorithm which runs in t ime
O(nl/Z(nZ/)~ + n)O) on a L-RAC. Thus the MPM problem can be solved in time
0 (n25/log n) by a conservative algorithm. For dense graphs, this improves upon [HK]
and [ABMP].

The algorithm of Hopcroft and Karp works in O (~/'ff) phases. In each phase, which
takes O (m) time, a maximal set (with respect to set inclusion) of shortest augmenting
paths is determined by BFS and subsequent DFS.

An alternating path is a path in G which alternately uses edges in M and E - M.

Algorithms for Dense Graphs and Networks on the Random Access Computer 533

An augmenting path with respect to a matching M is an alternating path connecting two
free vertices in V, i.e., vertices which are not incident to an edge in M. Interchanging
the matching and nonmatching edges of an augmenting path increases the cardinality of
the matching by one.

We can now describe a phase of their algorithm in more detail. Let M be the matching
at the beginning of the phase. Let GM = (V, EM) be a directed graph with edge set
E M = { (v , w) ; { v , w } ~ E \ M , v E A , w c B} U {(w, v); {v, w} ~ M, v E A , w ~ B } ,
i.e., the edges in M are directed from B to A and the edges outside M are directed from
A to B. Clearly, the paths from free vertices in A to free vertices in B are in one-to-one
correspondence to the augmenting paths with respect to M. In each phase a BFS of GM
starting from the free vertices in A is carried out first. Let d be the minimal distance label
of a free vertex in B, let GL consist of the layers 0 through d of the layered subgraph
of GM, and let D be the adjacency matrix of GL. Clearly, all shortest augmenting paths
with respect to M can be found in GL. A maximal set of vertex-disjoint augmenting
paths can be determined by a variant of DFS, see Program 5. It maintains a set L of
vertex-disjoint augmenting paths (initially empty) and a set of reached vertices. A call
search_path(v), where v 6 A is free, constructs an augmenting path from v to a free node
in B (if any) and adds it to L. Also, all nodes visited by the search are added to the set
of reached vertices. Having determined a maximal set L of vertex-disjoint augmenting
paths, the matching M is updated by reversing the direction of all edges of all paths in
LI Program 5 describes the search for augmenting paths, and the procedure search_path,
used by the search, is described in Program 6.

We nov,, discuss how to implement a phase in time O(n2/)` + n)O on a)`-RAC. We
assume inductively that the).-compressed adjacency matrix of GM is available at the
beginning of a phase. (For M = t3, it takes time O(n 2) to establish this assumption). We
first construct the).-compressed adjacency matrix <>D of GL using BFS as described in
Section 2.2 in time O(n2/)` + n)`), and then search for augmenting paths as described
above. Also, we maintain the array reached as a compressed array. Since search_path is
called at most once for each vertex and Since the total length of the augmenting paths
found in one phase is at most n, the time spent for the search is O (n) except for the three
lines marked by (<>) in Program 6. Replacing them by

k ~-- 0; P +-- nil;
while P 7~ nil and k < In~k]
do X +-- <>D[v, k] A --, ~ reached[k]

i f x # o
then l ~-- O; whi le (X)z = 0 do I ~-- l + 1 od;

w + - - k .) ` + l ;

e l s e k + - k + 1
fi

od

brings the cost of these lines down to O(n2/)~ + n)`). Finally, reversing the direction of
all edges of all paths in L takes time O(n).

534 J. Cheriyan and K. Mehlhorn

L +- empty set of paths;
for all v E V do reached[v] +-- 0 od;
for all v ~ A, v free
do (* L is a set of vertex-disjoint augmenting paths; reached[v] = 1 implies

that either v lies on a path in L or there is no path from v to a free vertex
in B disjoint from the paths in L *)

P +- search_path(v);
if P ~ nil then L.append(P) fi

od

Program 5. Searching for augmenting paths.

We summarize in:

THEOREM 4.

(a) On a X-RAC a maximum matching in an n-vertex bipartite graph can be computed
in time O(n 1/2 �9 (n2/)~ + nX)).

(b) The maximum-cardinality bipartite matching problem can be solved in time
0 (n25/log n) by a conservative algorithm.

2.6. Transitive Closure of Acyclic Graphs. In this section we discuss the computation
of transitive closures. We restrict ourselves to acyclic (directed) graphs because acyclicity
makes the problem more difficult; for general graphs the strongly connected components
can always be computed first and then shrunk to obtain an acyclic graph. We assume

procedure search_path(node v);
(* when search_path(v) is called, the recursion stack contains a path from a

free node in A to v which is disjoint from the paths in L. The call either finds
a path from v to a free node in B and then returns this path or, otherwise,
returns nil *)
w ~-- O; P +- nil;

while P = nil and w < n (o)
do if-~ reached[w] and D[v, w] (o)

then if w is free
then P +- ((v, w))
else P 4-- search_path(w);

if P ~ nil then P.append((v, w)) fi
fi
reached[w] ~-- 1;

fi
w +-- w + 1 (<>)

od
return P
end

Program 6. Procedure search_path.

Algorithms for Dense Graphs and Networks on the Random Access Computer 535

our graphs to be topologically sorted, i.e., V = {0 n - 1 } and (v, w) 6 E implies
v < w. The transitive closure E* of E consists of all pairs (v, w) such that there is a
path from v to w using only edges in E. The transitive reduction Ere~ of E consists of
all edges (v, w) 6 E such that there is no path of length at least two from v to w. Let
tared =]Ered[.

Goralcikova and Koubek [GK] have shown how to compute E* in time O (mred " n).
The algorithm is quite simple. It steps through the vertices of G in decreasing order.
When vertex v is considered it first initializes E* Iv, v] = 1 and E*[v, w] = 0 for w 5~ v,
and then considers the edges (v, w) 6 E in increasing order of w. When (v, w) 6 E
is considered, and E*[v, w] = 0 at that time, then E*[v, ,] ~ E*[v, .] v E*[w, ,] is
performed.

The crucial observation is that the OR of the vth and the wth row of E* is computed
precisely for the edges (v, w) c Ered; this implies the O(mred " n) time bound. There-
fore, if the L-compression of E* is computed instead, then the time bound reduces to
O(n 2 + mred " n/L) where the n 2 term accounts for the computation of <>E from E
and of E* from <>E*.

LEMMA 4. On a L-RAC the transitive closure of an n-vertex graph can be computed in
time O(n 2 + mredn/L).

A random acyclic digraph is defined as follows. Let e, 0 < e < 1, be a fixed real
number. For v < w, prob((v, w) E E) = e, and the different events (v, w) 6 E are
independent.

LEMMA 5 [Si]. E(mred) < 2n log n for all e, 0 < e < 1.

THEOREM 5. The transitive closure of an acyclic digraph can be computed by a deter-
ministic and conservative algorithm whose expected running time on the class of random
acyclic digraphs is O(n2).

PROOF. This is a direct consequence of the two preceding lemmas. []

We compared the algorithm described above with the transitive closure algorithm of
LEDA [MN]. The algorithm in LEDA computes the strongly connected components
using the algorithm of Section 2.4, shrinks the components to obtain an acyclic graph,
computes the transitive closure of the acyclic graph by means of the algorithm of Simon
[Si] (this algorithm is also described in Section IV.3 of [M]), and finally translates the
result back to the input graph. We modified the third step of the algorithm by using
the algorithm of Goralcikova and Koubek [GK] together with bit-compression and then
compared the running times of the two implementations on a SPARC workstation with
32 bit words. For random graphs and random acyclic graphs the running times of the
two implementations are about the same (within 10% of each other). For graphs with
mrea = m = f2 (n2), e.g., graphs with three groups of f2 (n) nodes each and edges from
each vertex in the first group to each vertex in the second group and from each vertex
in the second group to each vertex in the third group, the bit-compression technique

536 J. Cheriyan and K. Mehlhorn

led to significant savings in running time. For n = 400 we measured an improvement
of about four. Also, on the same input the Goralcikova-Koubek algorithm without bit-
compression is about eight times slower than the algorithm with bit-compression.

3. Network Algorithms

3.1. An O(n2(logC/logn)) Shortest-Path Algorithm. Let N = (V, E, c,s) be an
edge-weighted network with source s, i.e., (V, E) is a directed graph, c: E --+ {0 i C }
is an integer-valued cost function on the edges and s c V is a distinguished vertex. The
goal is to compute arrays dist and pred, where, for all v ~ V, dist[v] is the length of a
shortest path from s to v and pred[v] is the predecessor of v on a shortest path.

We solve the shortest-path problem in two phases; in the first phase we compute
the dist-array and in the second phase we compute the pred-array. Both phases are
based on Dijkstra's algorithm [D1]. We use two data structures, namely an integer d
and an array Q: V ~ { -1 , 0 C, cx~} that serves as a priority queue. Assume
that, for any x ~ {0 C}, we have - t - x = - 1 and oe - x = e~. During the
execution, a vertex v is in one of two states; scanned (Q[v] = - 1) or unscanned
(Q[v] 6 {0, 1 C} u {~z}). We maintain the invariant that the distance to every
scanned vertex from s has been correctly computed, and that, for every unscanned vertex
v, Q[v] + d is the length of a shortest path from s to v, subject to the restriction that every
vertex in the path (except v) is scanned. In each iterationan unscanned vertex v with
minimal value Q[v] is selected. Then dist[v] = d + Q[v] according to the invariant. For
later use in Phase 2 the value distmod[v] = dist[v] mod(C + 1) is also stored. Also, d is
increased by Q[v], Q[w] is decreased by Q[v] for all unscanned vertices w, and all edges
emanating from v are inspected and cheaper paths are recorded. The details are given
in Program 7. The proof of correctness is standard, see, for example, Section IV.7.2 of
[M]. Note that all values computed are bounded by Cn = 2 l~176 and hence require
O (Flog C/log hi) digits in base 2 [l~ . Hence Dijkstra's algorithm can be made to run
in time O(n 2 [log C/lognT) by representing all Q - a n d dist-values in base 2 kl~ . I f
[log(3 + C)7 > (log n)/3, then our main claim is established: the shortest-paths problem
can be solved in time O(n 2 log C/logn).

For the remainder of this subsection assume that Flog(3 + C)] _< (tog n)/3. We show
how to achieve a running time of O (n 2 log C/log n). Let b = [log(3 + C)] and let t ~ N
be such that t - b < tog n. The exact value of t will be specified later. Also interpret
c as a V x V matrix with entries in {0 C}. We partition Q and each row o f c
into blocks of length t and represent each block as a single integer. More precisely, for
a ~ D := { - 1 , 0 C, cx~} let

! + 2 if a = - - l ,
a = + 1 if a = e c ,

if O < a < C ,

and for a0 at-1 6 D let Comp(ao a t - l) : Y~,o<i<t ai(C q- 3)i" Then clearly
0 <_ Comp(ao a t - l) < (C + 3) t _< 2 bt < n. The t-compressed representation of a
sequence a0 an-1 of values in D, where for simplicity we assume t to be a divisor of

Algorithms for Dense Graphs and Networks on the Random Access Computer 537

(1) d +- Q[s] +--0;
(2) for all v # s do Q[v] ~- 0o od;
(3) while 3 unscanned vertex
(4) do let v be an unscanned vertex with minimal entry Q[v];
(5) d +- dist[v] 4-- d + Q[v]; distmod[v] +-- d mod(C -t- 1);
(6) for all unscanned w
(7) do Q[w] +- O[w] - Q[v] od (* ~x~ - Q[v] = ~x~ *)
(8) Q[v] <- - 1 ; (* v is now scanned*)
(9) for all unscanned w with (v, w) c E

(10) d o i f c (v , w) < Q[wl
(11) then Q[w] +- c(v, w)
(12) fi
(13) od
(14) od

Program 7. Shortest paths: phase 1.

n, is the sequence Comp(ao a t - l) , Comp(at a2t-1) We assume from now
on that c and Q are available in t-compressed form and show next how the row-scans
implicit in lines 4, 6, 7, and 9-11 can be done in time O(n/t) each.

For integers A , B , fi w i t h 0 _< A , B < (C + 3) t - 1,0 _< h < C + I , A =
Comp(ao a t - l) , and B = Comp(bo, . . . , b t - l) let select_rain(B) = (i, [~) where
0 _< i _< t - t and/; i = min(/)o, [~1 [~t-l), decrease(A, h) = A', where A' =
Comp(ao - a at-1 - a) if 0 < fi < C, and A' = A otherwise, and component-
wise_ min(A, B) = A' where A' = Comp(d o a~_l) and

, [b i , if bi < ai < C + 1,
ai = i ai otherwise.

LEMMA 6.

(a) The function tables fo r functions select_ min, decrease, and componentwise_ min can
be computed in time O(t . 22bt).

(b) Given tables for functions select_rain, decrease, and componentwise_min, phase 1
runs in time O(n2/t). '

PROOF. (a) The tables have at most 2 bt, 2 b . 2 bt, and 22bt entries, respectively. Each
entry can be computed in time O(t).

(b) Each execution of lines 4, 6, 7, and 9-11 is tantamount to n/t evaluations of
functions select_ min, decrease, and componentwise_ min, respectively, and each eval-
uation takes constant time by table look-up. Finally, an execution of line 5 takes time
O (log n/log C) = O (log n) since 0 < d < nC, and an execution of line 8 takes constant
time using an appropriate table. Also, initialization takes linear time O(n). []

LEMMA 7. Let t = [(log n)/3b J. Given the distance matrix c in t-compressed form the

538 J. Cheriyan and K. Mehlhorn

shortest distances from a given vertex s in an n-vertex graph can be computed in time
O (n 2 (log max(2, C)) / log n).

PROOF. For t = [(logn)/3bJ we have O(t �9 2 2bt) = O (n l o g n) and O(n2/t) =
O (nZ(log max(2, C)) / log n). The claim now follows from the preceding lemma. []

We next turn to the computation of the shortest-path tree. In the standard implemen-
tation.of Dijkstra's algorithm the pred-array is computed together with the dist-array by
adding the assignment pred[w] +- v in line 11. We cannot do that here because each
such assignment requires us to write log n bits and therefore several of these assignments
cannot be compressed into a single assignment. We propose computing the predecessor
information m a second phase. The program for the second phase is the same as for the
first phase except that line 5 is replaced by

(5a) dmod +-- (dmod + Q[v]) mod (C + 1)

and line 1 t is replaced by

(t l a) Q[w] +- c (v , w)
(i lb) if (dmod + Q[w]) mod (C + 1) = distmod[wl
(1Ic) thenpred[w] +- v fi

LEMMA 8. Phase 2 computes the pred-array correctly. Also, given a t-compressed c
for t = [(log n)/3b J it can be made to run in time O(nZ(log max(2, C))/ log n).

PROOF. We first prove correctness. Phase 1 computes distmod[w] = dist[w] mod
(C + 1) for all vertices w. Also, dist[w] < d + Q[w] and d < dist[w] for all unscanned
nodes w, and dmod = d mod(C + 1) throughout execution of phase 2. Thus, whenever
line l l a is executed we have d < dist[w] < d + Q[w] < d + C and hence whenever
line 11c is executed we have dist[w] = d + Q[w] and thus all assignments in line 11c
are valid. Next consider for any vertex w 7~ s the last assignment to Q[w] in line 1 la.
At this point, we have d + Q[w] = dist[w] and hence there will be an assignment to
pred[w]. Finally observe that for any unscanned vertex w the value d + Q[w] never
increases, and decreases in every execution of line 1 la. Thus there will be at most one
assignment topred[w]. This proves correctness and also that line 1 lc is executed at most
n times.

We next turn to the running time. For0 _< A, B, D < (C + 3) t - I , A = Comp(ao
at- t) , B = Comp(bo bt-l) , D = Comp(do dr-i) , and 0 _< d _< C let

= = ' . , a t _ l) a s ext_ min(A, B, d, D) (A', k) where A ~ Comp(ao, .. t is defined in the
case of componentwise_ min(A, B), k = ~0<i<t ki 2i, and

10 ~ --- bi < ai and d -q- bi = di mod(C + 1), ki = if a i
otherwise

We can use function ext_ min in lines 1 la-c as follows: For t vertices v0 , . . . , vr-i
let A = Comp(Q[vo], Q[vt-1]), B = Comp(c[v, v0] c[v, vt-l]), and D =
Comp(distmod[vo], . . . , distmod[vt-1]). Then ext_ min(A, B, dmod, D) = (A ~, k) where

Algorithms for Dense Graphs and Networks on the Random Access Computer 539

A' is the new content of Q and k codes all indices for which line 1 lc has to be executed.
Thus lines 1 l a -c can be executed for t vertices in time O (1) plus the number of execu-
tions of line 1 lc, which amounts to O (nZ/t + n) overall, Finally, a table for ext_ min can
be computed in time O(t �9 2 b. 23bt) --= O(n4/3(log n)2). []

THEOREM 6. Let b = Flog(3 + C)] < (log n)/3 and t -- [log n/3b]. Given the distance
matrix c in t-compressed form the shortest-path problem on an n-vertex graph with edge
weights in {0 C} U {oo} can be solved in O(n 2 logmax(2, C)llogn) time.

PROOF, Obvious from Lemmas 7 and 8. []

3.2. The Uncapacitated Transportation Problem. Let (V, W, E) be a symmetric di-
rected bipartite graph, i.e., E __c (V x W) U (W x V) and (v, w) E E iff (w, v) 6 E, let
b: V U W --+ [- U �9 �9 �9 U] be a supply-demand function on the vertices (Y]~vuw b(x) =
0), and let c: E --+ [- C . -. C] be a cost function on the edges (c(v, w) = - c (w , v) and
c(v, w) >_ 0 for (v, w) ~ E n
and cap(w, v) = 0 for (v, w)
solution for the transportation
on the edges such that:

(V x W)). Let cap: E ~ {0, oo} with cap(v, w) = oo
E E O (V x W) be a capacity function on the edges. A
problem (V, W, E, b, c) is an integer-valued function f

(1) f (x , y) = - f (y , x) and f (x , y) < cap(x, y), for all (x, y) c E.
(2) b(x) = ~](x,y~cE f (x , y), for all x c V U W.
(3) cost(f) = ~f(x,y)>o f (x, y) . c(x, y) is minimized.

Ahuja et aL [AGOT] have shown how to solve the uncapacitated transportation problem
in time O((nm + nZtog U) lognC) ; see also [AMO]. We take the latter paper as the
basis of our exposition. We need the following definitions. A function f satisfying (1)
is called a pseudoflow. The imbalance of a vertex x with respect to a pseudoflow f
is given by imb(x) = b(x) - ~(x,>.)~ f (x, y), and the residual capacity of an edge
(x, y) is given by rescap(x, y) = cap(x, y) - f (x , y). A dual function rr is any function
re: V u W ~ R. A pseudoflow f is e-optimal with respect to real number e > 0 and
dual function rr if g(x, y) := c(x, y) + Jr(x) - Jr(y) > - e for all (x, y) ~ E with
rescap(x, y) > 0; ?(x, y) is called the reduced cost of edge (x, y). A pseudoflow is a
flow if it satisfies (1) and (2).

FACT 1.

(a) Let e <_ lln and let f be a flow which is e-optimal with respect to some dual function
Jr. Then f is optimal.

(b) Let f be any flow and let re(x) = O for all x c V U W. Then f is C-optimal with
respect to re.

Ahuja et al. solve the uncapacitated transportation problem by log nC iterations of
a procedure improve_ approximation. This procedure takes as input a dual function 7r'
and an e > 0 and returns a flow f and a dual function rc such that f is (e/2)-optimal
with respect to Jr. The procedure requires the precondition that there is an e-optimal
flow .f~ with respect to rr',.although it need not know this flow. For e = C, the constant

540 J. Cheriyan and K. Mehlhom

procedure improve_ approximationQr r, e);
f (x , y) +- 0 for all (x, y) ~ E
re(v) +-- zc'(v) for all v c V
7r(w) ~ - - n " (w) - e for all w o W
A +- 2 [l~ UJ

while 3x c V U W with imb(x) ~ 0
do S (A) + - {x E V U W; imb(x) > A}

while S (A) = 0

do (* f is a (e/2)-optimal pseudoflow with respect to Jr and every finite
rescap(x, y) is an integer multiple of A for all (x, y) 6 E *)

select and delete a vertex v 6 S(A);
determine an admissible path P from x to some node y with imb(y) <
0;
augment A units of flow along the path P and update f

od;
A <--A12

od

Program 8. Going from g-optimality to (g/2)-optimality.

zero dual function has this property by part (b) of Fact I. After log nC applications of
improve_approximation an (l/n)-optimal flow is obtained, tt is optimal according to
part (a) of Fact 1. The procedure improve_ approximation (see Program 8) starts with
the pseudoflow f (x , y) = 0 for all (x, y) c E and a dual function zr such that f
is (e/2)-optimal (in fact, 0-optimal) with respect to ~r. It then turns f into a flow by
successive augmentations along so-called admissible paths. An admissible path consists
of admissible edges and leads from a vertex x with positive imbalance to a vertex y
with negative imbalance. An edge is admissible, if its residual capacity is positive and
its reduced cost is negative. An admissible path starting in a vertex x (with imb(x) > O)
is constructed iteratively. Suppose that we already have an admissible path from x to
some other node y. If imb(y) < 0, then we are finished. If imb(y) >_ 0 and there is an
admissible edge (y, z), then z is added to P (advance). if there is no such edge, then
7r(y) is decreased by el2 and y (if different from x) is removed from P (retreat).

FACT 2. Improve_ approximation executes 0 (n 2 log U) advance and retreat steps and
runs in time O(n 2 log U) plus the time needed to identify admissible edges. Moreover,
re(x), x E V U W, is changed only O(n) times within a call of improve_ approximation.

The O(nm) term in the running time of the Ahuja et al. algorithm results from the
fact that the adjacency list of each vertex v is scanned O(n) times, once for each change
of the dual value zr (v). We now discuss how to speed up the search for admissible edges
in dense graphs.

Define the truncated reduced cost g(X, y) of an edge (x, y) 6 E by

~(x, y) 1
~(x, y) ---- k (e--77~_1.

Algorithms for Dense Graphs and Networks on the Random Access Computer 541

LEMMA 9. (x, y) ~ E is admissible/flY(x, y) = - 1 and rescap(x, y) > O.

PROOF. (~) flY(x, y) = - - 1 , then Y(x, y) < 0 .
(=~) If (x, y) is admissible, then g(x, y) < 0 and mscap(x, y) > 0. By (s/2)-

optimality, we also have Y(x, y) > -e l2 . Thus Y(x; y) = -1 . []

We maintain a matrix D which approximates Y. We have D[x, y] ~ [- z . . . z] U
{ - ~ , c~}, where z is a constant to be fixed later, and D[x, y] = - 1 iff (x, y) ~ E and
Y(x, y) = - 1. Let b > [log(2z + 3)], i.e., b bits suffice to encode an entry of D, and
let t ~ N be such that t2b < logn. We partition D into t x t submatrices and store each
submatrix in a single RAC-word.

The invariant D [x, y] = - 1 iff Y(x, y) = - 1 is maintained by updating the entries in
row and column x after every z/2 changes ofx ' s dual value, i.e., D[x, y] is set to Y(x, y)
if (x, y) c E and Y(x, y) c [- z , z], and to +oo or - o o otherwise. This takes time O(n)
for each update and hence time O(n3/z) in total.

For the search for admissible edges we also maintain a (compressed) matrix R with
R[x, y] c {0, 1} and R[x, y] = 1 iff rescap(x, y) > O. R[x, y] can be updated in
time O(t) per change of the preflow f and hence in time O(n21og U) totally. Also,
given appropriate tables, a scan of an adjacency list takes time O (n/t) plus the number
of admissible edges found. The total time for scanning adjacency lists is therefore
O(n3/t + n 2 log U). Finally, the tables required can be precomputed in time O(2Zr:b).

With the choice t = z = [(log n~ log log n)1/2j, we obtain a running time of

\ log n + na log U

for each call of improve_ approximation. We summarize in:

THEOREM 7. The uncapacitated transportation problem (V, W, E, b, c) with b and c
integral, I Vt = [W[= n, absolute values of supplies and demands bounded by U, and
absolute values of costs bounded by C can be solved in time

\]-o~- + n2 log

3.3. The Assignment Problem. Let (U, W, E) be a bipartite graph and let c: E --+
[0..C] be a cost function on the edges. We assume that the edge costs are nonnegative
integers; also, we assume that the graph has a perfect matching, since this can be checked
using the algorithm in Section 2.5. Let n denote [U [= [W I. A solution to the assignment
problem is a perfect matching M that maximizes c(M) = ~uw~M c(uw); throughout
this section we use uw to denote the unordered edge {u, w}. We show how to implement
a variant of the O (n 2'5 log n C) algorithm of Orlin and Ahuja [OA] so that it runs in time
O(n 25 log nC �9 (log log n/logn)l/4). The same speed-up can also be obtained for the
Gabow and Tarjan [GT] assignment algorithm.

As most assignment algorithms do, the Ortin and Ahuja algorithm computes not only a
perfect matching of maximum cost, but also a near-optimal dual solution y: U U W -~ Z.

542 J. Cheriyan and K. Mehlhorn

A dual solution is required to be dominating with respect to the cost function c, i.e.,

y(u) + y(w) > c(uw), Vuw C E.

(Indeed~ if we formulate the assignment problem as a linear program and write down the
dual, then the dual variables are y(v), v e U U W, and the dual constraints are that y be
dominating.) An edge uw is called tight with respect to y if y(u) + y(w) = c(uw).

FACT 3. A perfect matching M has maximum cost if there is a dominating dual solution
y such that every edge in M is tight.

The fact follows since every edge of M is tight, so c(M) = Y~u y(u) + ~-~w y(w);
moreover, for every matching M / each edge u'w' ~ M' has c(u'w I) <y(u ') + y(w~), so

c(M') <_ }-~u y(u) + ~ w y(w).
For a constant ot > O, a dominating dual solution y is called o~-tight with respect to c

if a perfect matching M exists such that every edge uw in M is or-tight, i.e.,

y(u) + y(w) < c(uw) + a, u c M.

(If M is known, then we say that y is a-tight with respect to c and M.) The dual solution
(y(u) = O, Yu e U, y(w) = C, Vw e W), where C >_ maxuw~E c(uw), is dominating
and C-tight with respect to c.

LEMMA 10 [B]. Let M be a perfect matching such that there is a dominating dual
solution y which is a-tight with respect to c and M.

(i) For every perfect matching M', c(M') < c(M) + an.
(ii) If there is an integer k, k > an, such that every edge cost c(u w) is an integer multiple

of k, then M is a matching of maximum cost.

PROOF. Part (i) fOllows since

c (M ') = E c(uw) < ~ y (u) + ~ . . y (w) <_ Z (c (u w) + a) = c (M) + a n .
u w E M ~ u to u t o E M

Part (ii) follows since, for every perfect matching M', c(M') is an integer multiple of
k > an, but then by part (i) no M' with c(M') > c(M) exists. []

A high-level description of the assignment algorithm is given in Program 9. The
algorithm works iteratively, scaling the cost function in every iteration. If every edge has
zero cost, then the algorithm returns an arbitrary perfect matching by using the algorithm
of Section 2.5. Otherwise, the algorithm scales the edge costs c(uw) to Lc(uw)/2J,
and recursively solves the smaller problem, finding a dominating dualsolution ~ and

~

a matching M such that ~ is 1-tight with respect to kc(uw)/2J and M. We obtain a
dominating dual solution y' with respect to the original costs c by taking y'(u) = 2~(u)
for each u 6 U, and taking y'(w) ---- 1 + 2~(w) for each w c W. Then a combination of
Bertsekas's auction algorithm [B] and the shortest augmenting paths algorithm is used
with inputs y', the original costs c, and graph (U, W, E) to find a new dominating dual

Algorithms for Dense Graphs and Networks on the Random Access Computer 543

procedure assignment(U, W, E, c), returns (M, y);
precondition: (U, W, E) has a perfect matching, and c(uw) >__ 0 for all

u w c E .
postcondition: M is a perfect matching and y: (U t5 W) --+ Z is a dominating

dual solution that is 1-tight with respect to c and M.

begin if c(uw) = 0 for all uw ~ E
then return (M, y) where M is any perfect matching, and (y(u) = O,

Yu ~ U, y(w) = 0 ,u ~ W);
else let?(uw) = [c(uw)/2J forall uw ~ E;

(M, ~) +-- assignment(U, W, E, ?);.
let y'(u) = 2~(u), Yu 6 U, and y'(w) = 1 + 2~(w), Yw 6 W;
(* y ' is dominating and 3-tight with respect to original costs c *)
(M, y) +-- auction(U, W, E, c, y');
(*y is dominating and 1-tight with respect to M *)
return (M, y);

fi
end

Program 9. The assignment algorithm.

solution y and a new perfect matching M such that y is 1-tight with respect to c and
M. The above subroutine, which we call auction, turns out to be quite efficient because
the starting dual solution y' is nearly optimal: Lemma 11 shows that y ' is 3-tight with
respect to the original costs c.

LEMMA 1 1. The dual solution y' is dominating and 3-tight with respect to the original
costs c.

PROOE
uw C E,

y'(u) +y ' (w) = 2(~(u) + y(w)) + 1 > 2?(uw) + 1 ~ c(uw);

moreover, if u w c M, then

y'(u) + y'(w) = 2(y(u) + y(w)) + 1 < 2(~(uw) + 1) + 1 < c(uw) + 3.

Since ~ is dominating and 1-tight with respect to ~ and M, for every edge

[]

LEMMA 12 [OA]. Let 0 < c(uw) < C for all uw ~ E. A call assignment(U, W, E,
(n + 1) . c) returns an optimal matching and runs in time O((Zauctio n "~ n) l o g n C +
n2"5/log n), where Taucao, is the time complexity of a call of the auction subroutine.

Assume that the procedure auction returns M, y such that y is 1-tight with respect to
(n + 1). c and M. Then the above lemma follows from Lemma 10, and the fact that the
depth of recursion in our assignment algorithm is log nC, where each level of recursion
has time complexity O(Taucaon + n). If every edge uw has c(uw) = 0, then a perfect
matching can be found in time O (n2"5/log n), according to Section 2.5.

544 J. Cheriyan and K. Mehlhorn

The procedure auction is defined by Program 10; y > 1 is a constant to be fixed later.
We use Uf~ee (Wyree) to denote the set of free vertices in U (W) with respect to the current
matching M, i.e., Ufr~ = {u ~ U; 3uw ~ M}. Auction consists of two phases. The
first phase uses Bertsekas's bidding heuristic to find quickly a "l-tight" (not necessarily
perfect) matching M such that few nodes are free with respect to M. The second phase
repeatedly uses the classical Hungarian search to adjust dual variables and find "l-tight"
augmenting paths, and augments M using these paths.

For ease of description of phase 1, we transform the edge costs to ?(uw) = c(uw) -
j (u) - y '(w), Vuw E E, where y' is the initial dual solution, and we introduce a new dual
solution z: (U U W) ~ Z that is dominating with respect to ~. Since y' is dominating
with respect to c, we have ?(uw) < O, Yuw ~ E. Initially, the matching M is empty, and
z(v) = O, Yv E U U W. In each iteration of bidding, we choose a u 6 U with sufficiently
large z(u) and either decrease z(u) or add a "tight" edge uw to M. In the latter case,
we immediately increase z(w) by one, since edges in M are allowed to be "l-tight." An
important point is that there are only O (4%-]-2) free vertices with respect to M when
phase t terminates (Lemma !3(c)).

In phase 2 we revert back to the originals costs c, and combine the two dual solutions
y' and z to obtain a dual solution y that is dominating with respect to c. Moreover, y is
near optimal in the sense that the gap g = ~ , y(u) + ~ w y(w) - c(M*), where M*
is an optimal assignment, is 54n. Call an edge uw eligible with respect to the current
y if y(u) + y(w) < c(uw) + 1. To augment M to a perfect matching consisting of
eligible edges, we repeatedly find an augmenting path P of eligible edges by applying
the Hungarian search: Using only the eligible edges, we construct an alternating forest
F whose root nodes are the nodes w, w ~ Wfree. If F contains a node u, u ~ Ufree, then
we have the desired augmenting path. Otherwise, we repeatedly adjust y and extend F
until F contains a node u, u ~ UT,.~. To adjust y, we compute

----- min{y(u) + y(w) - c(uw): w E W n V (F) and u ~ U - V(F)}.

For each w ~ W O V(F) , we decrease y(w) by 3, and for each u ~ U n V(F),
we increase y(u) by 6. Clearly, eligible edges with both ends in F stay eligible after
adjusting y; moreover, at least one edge uw, w E W N V (F) , u ~ U - V(F) , that was not
eligible before adjusting y becomes eligible. We extend F by adding uw and u. Consider
the overall time complexity of computing ~ between two consecutive augmentations of
M. By using a heap to store an appropriate key for each u ~ U - V(F) , a bound of
O (IEI log n) is easily achieved. However, this can be improved to O (tEl + n) by using
a "bucket-based" data structure (as in Dial's implementation of Dijkstra's algorithm).
This follows since every adjustment of y by 6 decreases Y = ~ u y(u) + ~ w y(w) by
81Wr and Y decreases by at most the gap g < 4n, hence, ~ 6 over all adjustments of
y between two consecutive augmentations of M is at most 4n. See Section 2.1 of [GT]
for details.

LEMMA 13. In the procedure auction:

(a) (i) Initially, z is dominating and 3-tight with respect to ~.
(ii) Throughout phase 1, z is dominating with respect to ~, and, for every edge

uw E M, z(u) + z(w) <_ ~(uw) + 1.

Algorithms for Dense Graphs and Networks on the Random Access Computer 545

procedure auction(U, W, E, c, y ') returns (M, y);
precondition: y ' is a dominating and 3-tight dual solution with respect to c;
postcondition: M is a perfect matching and y: (U U W) ~ Z is a dominating

dual solution that is 1-tight with respect to c and M.

begin
let E(uw) = c (uw) - J (u) . y ' (w) for all edges uw ~ E;
M +-0;
let (z(u) = O, Vu e U, z (w) = 0, Vw ~ W);

(* E(uw) < O, V u w C E, andz: (UUW) --+ Zis a dominating dual solution
with respect to E*)

(* Phase 1: bidding *)
while 3u E Ufree: Z(u) 2> - /y~/-~j + 1
do let u be such a vertex;

if 3w e W: E(uw) = z(u) + z (w)
then let w r W be such a vertex;

if w is matched by M to u' ~ U (i.e., 3u' : u 'w ~ M)
then M +- M - {u'w} U {uw};
fi
z (w) 4-- z (w) + 1;

z(u) ~ z(u) - 1; else
fi

od

let (y(u) = y ' (u) + z(u), Vu e U, y (w) = y ' (w) + z (w) , Vw e W);

(* y is a dominating dual solution with respect to original costs c, for each
u w ~ M, y(u) + y (w) = c(uw) + 1, and iUj>e~l = IWfreel ~ 8%/rn/~ / (see
Lemma 13) *)

(* Phase 2: Hungarian search *)
while 3w c Wfree
do (* call an edge uw eligible i fy(u) + y (w) < c(uw) + l *)

adjust the dual solution y until an augmenting path P with respect to
M is found such that each edge in P is eligible;

y is adjusted using the Hungarian search, such that y stays dominating
with respect to c, and every" edge uw in the current matching M stays
eligible;

augment M along path P, i.e., replace M by the symmetric difference
of M and P;

od

(* M is a perfect matching, and y is dominating and 1-tight with respect to
c and M *)

end

Program 10. The auction algorithm,

546 J. Cheriyan and K. Mehlhorn

(b) There are at most 27'n 3/2 executions of the while-loop in phase 1.
(c) IUf~eel = IWfreet < 8~/'ff/?/ at the end o f phase 1.
(d) At the start o f phase 2, y is a dominating dual solution with respect to c such that

~ y(u) + Y~w y (w) - c(M*) < 4n, where M* is an optimal assignment.
(e) The total time complexity o f phase 2 is O(nZS/g).

PROOF. (a) Initially, since y' is dominating and 3-tight with respect to c, (z(v) = O,
Vv E U U W) is dominating and 3-tight with respect to & Part (ii) follows by induction
on the number of steps in phase 1 (bidding).

(b) Clearly, 1 - [_g~/-ffJ. < z(u) <_ 0 for every u ~ U and z(w) > 0 for all w E W
throughout phase l. Also, after every increase of z(w) , w ~ W, there is a vertex u 6 U
such that ?(uw) + 1 = z(u) + z(w) . Thus z(w) < ?(uw) + 1 - z(u) _< 1 + Iv ~/-ffJ - 1 <
y ~/-ff. Since each iteration of the while-loop either increments z(w) for some w 6 W or
decrements z(u) for some u E U, the bound follows.

(c) Let M and z be the matching and the dual solution (with respect to ~) at the end
of phase 1, respectively, and let M be an optimal assignment with respect to ~. Then

- 3 n < ?(M)

uEU wEW

= Z (z(u)+ z(w))+ S z(u)+
uweM uEUfree w~Wfree

_< (e(uw) + 1) +
uwEM

_ I M I - IUfreel(k?/~/-~J),

where the first inequality follows from part (a), the second by domination, the third
equation by rearranging terms, the fourth inequality from the facts that z(u) + z (w) <_
?(uw) + 1, Vuw ~ M, and that z(u) = - [v ~ J for u E Ufree and z(w) = 0 for
w ~ Wf and the last inequality from the fact that g(uw) <_ 0 for all uw E E. Thus
IWfreel --= IUf~eel < 4nl(Lg~/-ffJ) < 8V'-fflg forn > 16.

I u I l l) (d) To seethat ~ , y (u) - t - ~ w y (w) - c (M *) < 4n, notethat ~ , y () + ~ w y () -
c(M*) < 3n, for each edge uw ~ M, z(u) + z (w) < g(uw) + 1 < 1, and, for each

U E Ufree U Wfree, Z(U) ~_ O.
(e) Each iteration of the while-loop in phase 2 takes time O(m) = O(n2); see

Section 2.1 of [GT] for details. []

We now discuss the implementation of phase 1. We call an edge u w z-tight if g(u w) =
z (u) +z (w). Clearly, an edge u w that is not z-tight can become z-tight only by a decrement
of z(u). Therefore, the search for z-tight edges in phase 1 can be done as follows: For
each vertex u ~ Ufree we maintain a pointer into u's adjacency list such that no edge to
the "left" of the pointer is z-tight. If u is selected in phase 1 the pointer is advanced until
a z-tight edge, say uw, is found. This edge is added to M and becomes non-z-tight by
the increment of z(w) . If no z-tight edge is encountered, then z(u) is decreased and u's

Algorithms for Dense Graphs and Networks on the Random Access Computer 547

pointer is reset to the first edge on u's adjacency list. In this way, each adjacency list is
scanned at most V~ff times for a total cost of ~.,n 2"5. Note, however, that only O(yn 3/2)
z-tight edges are found in phase 1 according to Lemma 13(b). Therefore, we may hope
to speed up the search for z-tight edges by the compression method. The details are as
follows:

Let duw = g(uw) - z(u) - z(w). We maintain a matrix D[u, w], (u, w) ~ U x W,
that approximates duw. More precisely, D[u, w] ~ [-q..O] U {-oo}, where the value of
q = O(logn) is to be fixed later, and D[u, w] = 0 if and only i f uw ~ E and d,w = 0.
Let b > [log(q + 2)], i.e., b bits suffice to encode an entry of D[u, w], and let t c IN be
such that t 2 �9 b < log n. The actual value of t will be fixed later. We partition the matrix
D into t x t submatrices and store each submatrix in a single word of the RAC.

We now show how to maintain the invariant that D[u, w] = 0 if and only if uw ~ E
and d,~ = 0, and how to search for z-tight edges. In order to maintain the invariant,
we recompute for each v c U U W the row (if v 6 U) or column (if v c W) of D
corresponding to v after every q/2 changes of z(v) according to the following rules:

D[v,w] = I d (v , w) if v w c E and d (v , w) > - q / 2 ,
if vw q_ E or d(v, w) < ,q /2 .

D[u, v] = [d(u ,v) if uv c E and d(u, v) > -q /2 .
if uv r E or d(u, v) < -q /2 .

If v E U , then

If y E W , then

This takes time O(n) for each recomputation and hence O(yn25]q) time throughout
phase 1.

Whenever z(u), u ~ U, or z(w), w c W, is changed and the above recomputation
of (the compressed) D is not done, then the appropriate row or column of D has to
be updated word by word using table lookup. We assume that - o o + 1 = - o r , and
- q - 1 = - q . Given appropriate tables, updating one row or column takes time O (n/t)
for a total time of O(n 25 . y/t) throughout phase 1.

Finally, we turn to the search for z-tight edges. Since the matrix D reflects the zero
values of d correctly, we only need to search the (compressed) matrix D for entries of
value zero. Given appropriate tables, for each scan of an adjacency list this takes time
O(n/t + ge), where ~e denotes the number of z-tight edges found. Therefore, the total
time in Phase 1 for searching for z-tight edges is O(nZ'5y/t + ~,n3/2).

The various tables required for scanning/updating rows or columns of the compressed
matrix D word by word certainly can be computed in time 0(227b).

We summarize in:

LEMMA 14. The time complexity of a call of auction is

(5) Tauctio n = 0 22tZb + t + + ~/nl" '
q

where the constants b, t, and q must satisfy b >_ [log(q + 2)] and tZb < logn.

The choices t = q = L(logn/21oglogn)l/zJ and]},2 = t yield

Tauction = 0 (n 2"5 (l o g l o g n ~1/4~
\ logn } }"

548 J. Cheriyan and K. Mehlhorn

We have thus proved:

THEOREM 8. An optimal assignment in a bipartite network (U, W, E, c), where [U[=
IW[= n and edge costs c(uw) c [O..C]for all uw E E, can be computed in time
O (n 2'5 (log log n~ log n) 1/4 log(nC)) by a conservative algorithm.

4. Conclusions and Open Problems. We showed that the parallelism at the word-
level available in random access computers can be used to speed up many graph
algorithms. In particular, we showed that a bipartite matching can be computed in time
0 (n2"5/log n) and that the transitive closure of an acyclic digraph can be computed in
time O(n 2 + n �9 mred/lOgn).

For the transitive closure problem we also included some experimental evidence that
the improvements are not only theoretical but also translate into smaller running times
for practical problem sizes. We expect these improvements to become larger as the word
size of machines increases.

Our methods easily extend to a few other algorithms for problems on graphs and
networks: Prim's algorithm for finding minimum spanning trees [CLR, Section 24.2]
can be accelerated to O (n 2 log max(2, C)/log n), assuming that the matrix of edge costs
is available in Compressed form, using the method of Section 3.1. The scan-first search
algorithm of [CKT] can be accelerated to O (n2/t + nt), assuming that the t-compressed
adjacency matrix is available, hence, a sparse certificate for the k-connectivity of an undi-
rected graph can be computed in time O(k(nZ/t + nt)) under the same assumption; see
[CKT] and Section 2.3 for details. Some interesting open questions are whether the fastest
algorithms known for maximum-cardinality nonbipartite matching, finding 3-connected
components, and constructing Gomory-Hu multiterminal flow trees, respectively, can
be accelerated on the)~-RAC. We leave it as an open problem to characterize the class
of graph problems and network problems for which bit-compression yields speed ups.

[ABMP]

[AGOT]

[AMO]

[AV]

[B]

[CHM]

[CKT]

References

H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum cardinality matching in a

bipartite graph in time O (n 1"5 ~) . Inform. Process. Len., 37:237-240, 1991.
R. K. Ahuja, A. V. Goldberg, J. B. Odin, and R. E. Tarjan. Finding minimum-cost flows by double
scaling. Math. Programming, 53:243-266, 1992.
R. K. Ahuja, R. L. Magnanti, and J. B. Odin. Network flows. Handbook in Oper. Res. Management
Sci., 1:211-360, 1991.
D. Angluin and L. G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and matching.
J. Comput. Systems Sci., 18:155-193, 1979.
D. P. Bertsekas. A new algorithm for the assignment problem. Math. Programming, 21:152-171,
1981.
J. Cheriyan, T. Hagemp, and K. Mehlhorn. Can a maximum flow be computed in o(nm) time. Proc.
17th ICALP Conference, pp. 235-248. Lecture Notes in Computer Science, vol. 443. Springer-
Verlag, Berlin, 1990. The full version is available as Technical Report MPI-I-91-120, Max-Planck-
Institut ftir Informatik, Saarbrijcken.
J. Cheriyan, M. Y. Kao, and R. Thurimella. Scan-first search and sparse certificates: an improved
parallel algorithm for k-vertex connectivity. SIAM J. Comput., 22:157-174, 1993.

Algorithms for Dense Graphs and Networks on the Random Access Computer 549

[CLR]

[D1]
[D2]

[FM]

[FW]

[GK]

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw-Hill/The
MIT Press, New York/Cambridge, MA, 1990.
E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1:269-271, 1959.
E. W. Dijkstra. Selected Writings in Computing: A Personal Perspective. Springer-Verlag, Berlin,
1982.
T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up algorithms. Proc.
23rdACMSTOC~ pp. 123-133, 1991.
M. L. Fredman and D. E. Willard. Blasting through the information theoretic barrier with fusion
trees. Proc. 22ndACMSTOC, pp. 1-7, 1990.
A. Goralcikova and V. Koubek. A reduct and closure algorithm for graphs. Proc. Mathematical
Foundations of Computer Science, pp. 301-307. Lecture Notes in Computer Science, vol. 74.
Springer-Verlag, Berlin, 1979.

[GT] H.N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems. SlAM J. Comput.,
18:1013-1036, 1989.

[HK] J.E. Hopcroft and R. M. Karp. An n 5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput., 2:225-231, 1973.

[KR] D. Kirkpatrick and S, Reisch. Upper Bounds for Sorting Integers on Random Access Machines.
EATCS Monographs on Theoretical Computer Science, vol. 28, pp. 263-276. Springer-Verlag,
Berlin, 1984.

[M] K. Mehlhorn. Data Structures and Efficient Algorithms, vol. I-IlL Springer-Verlag, Berlin, 1984.
[MN] K. Mehlhorn and St. Naher. LEDA: A platform for combinatorial and geometric computing. Comm.

ACM, 38(1):96-102, 1995.
[N] St. N~iher. LEDA manual. Technical Report MPI-I-93-109, Max-Planck-Institut fur Informatik,

1993.
[OA] J.B. Orlin and R. K. Ahuja. New scaling algorithms for the assignment and minimum mean cycle

problems. Math. Programming, 54:41-56, 1992.
[Sh] M. Sharir. A strong-connectivity algorithm and its application in data flow analysis. Comput. Math.

Appl., 7(1):67-72, 1981.
[Si] K. Simon. An improved algorithm for transitive closure on acyclic digraphs. Proc. 13th 1CALP

Conference, pp. 376-386. Lecture Notes in Computer Science, vol. 226. Springer-Verlag, Berlin,
1986.

[T] R.E. Tarjan. Depth-first search and linear graph algorithms. SlAM J. Comput., 1:146-160, 1972.

