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Abstract

The cutting plane approach to optimal matchings has been discussed by several authors over
the past decades [21, 14, 17, 25, 10], and its convergence has been an open question. We prove
that the cutting plane approach using Edmonds’ blossom inequalities converges in polynomial
time for the minimum-cost perfect matching problem. Our main insight is an LP-based method
to retain/drop candidate cutting planes. This cut retention procedure leads to a sequence of
intermediate linear programs with a linear number of constraints whose optima are half-integral
and supported by a disjoint union of odd cycles and edges. This structural property of the
optima is instrumental in finding violated blossom inequalities (cuts) in linear time. Further,
the number of cycles in the support of the half-integral optima acts as a potential function to
show efficient convergence to an integral solution.

1 Introduction

Integer programming is a powerful and widely used approach to modeling and solving discrete
optimization problems [19, 22]. Not surprisingly, it is NP-complete and the fastest known algorithms
are exponential in the number of variables (roughly nO(n) [16]). In spite of this intractability,
integer programs of considerable sizes are routinely solved in practice. A popular approach is the
cutting plane method, proposed by Dantzig, Fulkerson and Johnson [7] and pioneered by Gomory
[11, 12, 13]. This approach can be summarized as follows:

1. Solve a linear programming relaxation (LP) of the given integer program (IP) to obtain a
basic optimal solution x.

2. If x is integral, terminate. If x is not integral, find a linear inequality that is valid for the
convex hull of all integer solutions but violated by x.

3. Add the inequality to the current LP, possibly drop some other inequalities and solve the
resulting LP to obtain a basic optimal solution x. Go back to Step 2.

∗This work was supported in part by NSF award AF0915903. This work was done while the second author was
affiliated with the College of Computing, Georgia Institute of Technology, supported by NSF Grant CCF-0914732.
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For the method to be efficient, we require the following: (a) an efficient procedure for finding a
violated inequality (called a cutting plane), (b) convergence of the method to an integral solution
using the efficient cut-generation procedure and (c) a bound on the number of iterations to conver-
gence. Gomory gave the first efficient cut-generation procedure and showed that the the cutting
plane method implemented using his cut-generation procedure converges to an integral solution [13].
There is a rich theory on the choice of cutting planes, both in general and for specific problems
of interest. This theory includes interesting families of cutting planes with efficient cut-generation
procedures [11, 1, 4, 2, 5, 20, 3, 18, 24], valid inequalities, closure properties and a classification
of the strength of inequalities based on their rank with respect to cut-generating procedures [6]
(e.g., the Chvátal-Gomory rank [4]), and testifies to the power and generality of the cutting plane
method.

To our knowledge, however, there are no polynomial bounds on the number of iterations to
convergence of the cutting plane method even for specific problems using specific cut-generation
procedures. The best bound for general 0-1 integer programs remains Gomory’s bound of 2n [13].
It is possible that such a bound can be significantly improved for IPs with small Chvátal-Gomory
rank [10]. A more realistic possibility is that the approach is provably efficient for combinatorial
optimization problems that are known to be solvable in polynomial time. An ideal candidate could
be a problem that (a) has a polynomial-size IP-description (the LP-relaxation is polynomial-size),
and (b) the convex-hull of integer solutions has a polynomial-time separation oracle. Such a problem
admits a polynomial-time algorithm via the Ellipsoid method [15]. Perhaps the first such interesting
problem is minimum-cost perfect matching: given a graph with costs on the edges, find a perfect
matching of minimum total cost.

A polyhedral characterization of the matching problem was discovered by Edmonds [8]: Basic
solutions of the following linear program (extreme points of the polytope) correspond to perfect
matchings of the graph.

min
∑
uv∈E

c(uv)x(uv) (P)

x(δ(u)) = 1 ∀u ∈ V
x(δ(S)) ≥ 1 ∀S ( V, |S| odd, 3 ≤ |S| ≤ |V | − 3

x ≥ 0

The relaxation with only the degree and nonnegativity constraints, known as the bipartite relaxation,
suffices to characterize the convex-hull of perfect matchings in bipartite graphs, and serves as a
natural starting relaxation. The inequalities corresponding to sets of odd cardinality greater than 1
are called blossom inequalities. These inequalities have Chvátal rank 1, i.e., applying one round of
all possible Gomory cuts to the bipartite relaxation suffices to recover the perfect matching polytope
of any graph [4]. Moreover, although the number of blossom inequalities is exponential in the size
of the graph, for any point not in the perfect matching polytope, a violated (blossom) inequality
can be found in polynomial time [21]. This suggests a natural cutting plane algorithm (Figure 1),
proposed by Padberg and Rao [21] and discussed by Lovász and Plummer in their classic book on
matching theory [17]. Experimental evidence suggesting that this method converges quickly was
given by Grötschel and Holland [14], by Trick [25], and by Fischetti and Lodi [10]. It has been open
to rigorously explain their findings. In this paper, we address the question of whether the method
can be implemented to converge in polynomial time.
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The known polynomial-time algorithms for minimum-cost perfect matching are variants of Ed-
monds’ weighted matching algorithm [8]. It is perhaps tempting to interpret the latter as a cutting
plane algorithm, by adding cuts corresponding to the shrunk sets in the iterations of Edmonds’
algorithm. However, there is no correspondence between the solution x of the LP given by non-
negativity and degree constraints and a family F of blossom inequalities, and the partial matching
M in the iteration of Edmonds’ algorithm when F is the set of shrunk nodes. In particular, the
next odd set S shrunk by Edmonds’ algorithm might not even be a cut for x (i.e., x(δ(S)) ≥ 1).
It is even possible, that the bipartite relaxation already has an integer optimal solution, whereas
Edmonds’ algorithm proceeds by shrinking and unshrinking a long sequence of odd sets.

1. Start with the bipartite relaxation. nodes.

2. While the current solution is fractional,

(a) Find a violated blossom inequality and add it to the LP.

(b) Solve the new LP.

Figure 1: Cutting plane method for matchings

The bipartite relaxation has the nice property that any basic solution is half-integral and its
support is a disjoint union of edges and odd cycles. This makes it particularly easy to find violated
blossom inequalities – any odd component of the support gives one. This is also the simplest
heuristic that is employed in the implementations [14, 25] for finding violated blossom inequalities.
However, if we have a fractional solution in a later phase, there is no guarantee that we can find
an odd connected component whose blossom inequality is violated, and therefore sophisticated and
significantly slower separation methods are needed for finding cutting planes, e.g., the Padberg-Rao
procedure [21]. Thus, it is natural to wonder if there is a choice of cutting planes that maintains
half-integrality of intermediate LP optimal solutions.

Graph G The starting optimum x0 Basic feasible solution obtained
and the cut to be imposed after imposing the cut

Figure 2: Counterexample to the half-integrality conjecture. All edge costs are one.

At first sight, maintaining half-integrality seems to be impossible. Figure 2 shows an example
where the starting solution consists of two odd cycles. There is only one reasonable way to impose
cuts, and it leads to a non half-integral basic feasible solution. Observe however, that in the
example, the bipartite relaxation also has an integer optimal solution. The problem here is the
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existence of multiple basic optimal solutions. To avoid such degeneracy, we will ensure that all
linear systems that we encounter have unique optimal solutions.

This uniqueness is achieved by the simple deterministic perturbation of the integer cost function,
which increases the input size polynomially. We observe that this perturbation is only a first step
towards maintaining half-integrality of intermediate LP optima. More careful cut retention and
cut addition procedures are needed to maintain half-integrality.

1.1 Main result

To state our main result, we first recall the definition of a laminar family: A family F of subsets
of V is called laminar, if for any X,Y ∈ F , one of X ∩ Y = ∅, X ⊆ Y , Y ⊆ X holds.

Next we define a perturbation to the cost function that will help avoid some degeneracies. Given
an integer cost function c : E → Z on the edges of a graph G = (V,E), let us define the perturbation
c̃ by ordering the edges arbitrarily, and increasing the cost of edge i by 1/2i.

We are now ready to state our main theorem.

Theorem 1.1. Let G = (V,E) be a graph on n nodes with edge costs c : E → Z and let c̃ denote
the perturbation of c. Then, there exists an implementation of the cutting plane method that finds
the minimum c̃-cost perfect matching such that

(i) every intermediate LP is defined by the bipartite relaxation constraints and a collection of
blossom inequalities corresponding to a laminar family of odd subsets,

(ii) every intermediate LP optimum is unique, half-integral, and supported by a disjoint union of
edges and odd cycles and

(iii) the total number of iterations to arrive at a minimum c̃-cost perfect matching is O(n log n).

Moreover, the collection of blossom inequalities used at each step can be identified by solving an LP
of the same size as the current LP. The minimum c̃-cost perfect matching is also a minimum c-cost
perfect matching.

To our knowledge, this is the first polynomial bound on the convergence of a cutting plane
method for matchings. It is easy to verify that for an n-vertex graph, a laminar family of nontrivial
odd sets may have at most n/2 members, hence every intermediate LP has at most 3n/2 inequalities
apart from the non-negativity constraints.

1.2 Cut selection via dual values

The main difficulty that we have to overcome is the following: ensuring unique optimal solutions
does not suffice to maintain half-integrality of optimal solutions upon adding any sequence of blos-
som inequalities. In fact, even a laminar family of blossom inequalities is insufficient to guarantee
the nice structural property on the intermediate LP optimum. Thus a careful choice is to be made
while choosing new cuts and it is also crucial that we eliminate certain older ones that are no longer
useful.

At any iteration, inequalities that are tight for the current optimal solution are natural candi-
dates for retaining in the next iteration while the new inequalities are determined by odd cycles in
the support of the current optimal solution. However, it turns out that keeping all tight inequal-
ities does not maintain half-integrality. Our main algorithmic insight is that the choice of cuts
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for the next iteration can be determined by examining optimal dual solutions to the current LP
– we retain those cuts whose dual values are strictly positive. Since there could be multiple dual
optimal solutions, we use a restricted type of dual optimal solution (later called positively-critical
dual in this paper) that can be computed either by solving a single LP of the same complexity or
combinatorially. Moreover, we also ensure that the set of cuts imposed in any LP are laminar and
correspond to blossom inequalities.

Eliminating cutting planes that have zero dual values in any later iteration is common in most
implementations of the cutting plane algorithm; although this is done mainly to keep the number
of inequalities from blowing up, another justification is that a cut with zero dual value is not a
facet contributing to the current LP optimum.

1.3 Algorithm C-P-Matching

Let G = (V,E) be a graph, c : E → R a cost function on the edges, and assume G has a perfect
matching. The primal bipartite relaxation polytope and its dual are specified as follows.

min
∑
uv∈E

c(uv)x(uv) (P0(G, c))

x(δ(u)) = 1 ∀u ∈ V
x ≥ 0

max
∑
u∈V

π(u) (D0(G, c))

π(u) + π(v) ≤ c(uv) ∀uv ∈ E

We call a vector x ∈ RE proper-half-integral if x(e) ∈ {0, 1/2, 1} for every e ∈ E and supp(x) is
a disjoint union of edges and odd cycles. The bipartite relaxation of any graph has the following
well-known property.

Proposition 1.2. Every basic feasible solution x of P0(G, c) is proper-half-integral. �

Let O be the set of all odd subsets of V of size at least 3, and let V denote the set of one element
subsets of V . For a family of odd sets F ⊆ O, consider the following pair of linear programs.

min
∑
uv∈E

c(uv)x(uv) (PF (G, c))

x(δ(u)) = 1 ∀u ∈ V
x(δ(S)) ≥ 1 ∀S ∈ F

x ≥ 0

max
∑

S∈V∪F
Π(S) (DF (G, c))∑

S∈V∪F :uv∈δ(S)

Π(S) ≤ c(uv) ∀uv ∈ E

Π(S) ≥ 0 ∀S ∈ F

For F = ∅, PF (G, c) is identical to P0(G, c), whereas for F = O, it is identical to (P). Every
intermediate LP in our cutting plane algorithm will be PF (G, c) for some laminar family F . We
will use Π(v) to denote Π({v}) for dual solutions.

Assume we are given a dual feasible solution Γ to DF (G, c). We say that a dual optimal solution
Π to DF (G, c) is Γ-extremal, if it minimizes

h(Π,Γ) =
∑

S∈V∪F

|Π(S)− Γ(S)|
|S|
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among all dual optimal solutions Π. A Γ-extremal dual optimal solution can be found by solving
a single LP if we are provided with the primal optimal solution to PF (G, c) (see Section 5.3).

The cutting plane implementation that we propose is shown in Figure 3. From the previous
set of cuts, we retain only those which have a positive value in an extremal dual optimal solution;
let H′ denote this set of cuts. The new set of cuts H′′ correspond to odd cycles in the support of
the current solution. However, in order to maintain laminarity of the cut family, we do not add
the vertex sets of these cycles but instead their union with all the sets in H′ that they intersect.
We will show that these unions are also odd sets and thus give blossom inequalities. In the first
iteration, there is no need to solve the dual LP as F will be empty.

1. Let c denote the cost function on edges after perturbation (i.e., after ordering the
edges arbitrarily and increasing the cost of edge i by 1/2i).

2. Starting LP. Let F be the empty set, so that the starting LP, PF (G, c), is the
bipartite relaxation and the starting dual Γ is identically zero.

3. Repeat until x is integral:

(a) Solve LP. Find an optimal solution x to PF (G, c).

(b) Choose old cutting planes. Find a Γ-extremal dual optimal solution Π to
DF (G, c). Let

H′ = {S ∈ F : Π(S) > 0}.

(c) Choose new cutting planes. Let C denote the set of odd cycles in supp(x).
For each C ∈ C, define Ĉ as the union of V (C) and the maximal sets of H′
intersecting it. Let

H′′ = {Ĉ : C ∈ C}.

(d) Set the next F = H′ ∪H′′ and Γ = Π.

4. Return the minimum-cost perfect matching x.

Figure 3: Algorithm C-P-Matching

1.4 Overview of the analysis

Our analysis to show half-integrality is based on the intimate relationship that matchings have with
factor-critical graphs (deleting any node leaves the graph with a perfect matching): for example,
contracted sets are factor-critical both in the unweighted [9] and weighted [8] matching algorithms
by Edmonds. We define a notion of factor-criticality for weighted graphs that also takes a laminar
odd family F into account. This notion will be crucial to guarantee half-integrality of intermediate
solutions.

We use the number of odd cycles in the support of an optimal half-integral solution as a potential
function to show convergence. We first show odd(xi+1) ≤ odd(xi), where xi, xi+1 are consecutive
LP optimal solutions, and odd(.) is the number of odd cycles in the support. We further show that
the cuts added in iterations where odd(xi) does not decrease continue to be retained until odd(xi)
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decreases. Since the maximum size of a laminar family of nontrivial odd sets is n/2, we get a bound
of O(n log n) on the number of iterations.

The proof of the potential function behavior is quite intricate. It proceeds by designing a half-
integral version of Edmonds primal-dual algorithm for minimum-cost perfect matching, and arguing
that the optimal solution to the extremal dual LP must correspond to the one found by this primal-
dual algorithm. We emphasize that this algorithm is used only in the analysis. Nevertheless, it
is rather remarkable that even for analyzing the cutting plane approach, comparison with a new
extension of Edmonds’ classic algorithm provides the answer.

2 Factor-critical sets

In what follows, we formulate a notion of factor-critical sets and factor-critical duals, that play a
central role in the analysis of our algorithm and are extensions of concepts central to the analysis
of Edmonds’ algorithm.

Let H = (V,E) be a graph and F be a laminar family of subsets of V . We say that an edge set
M ⊆ E is an F-matching, if it is a matching, and for any S ∈ F , |M ∩ δ(S)| ≤ 1. For a set S ⊆ V ,
we call a set M of edges to be an (S,F)-perfect-matching if it is an F-matching covering precisely
the vertex set S.

A set S ∈ F is defined to be (H,F)-factor-critical or F-factor-critical in H, if for every node
u ∈ S, there exists an (S \ {u},F)-perfect-matching using the edges of H. For a laminar family
F and a feasible solution Π to DF (G, c), let GΠ = (V,EΠ) denote the graph of tight edges. For
simplicity we will say that a set S ∈ F is (Π,F)-factor-critical if it is (GΠ,F)-factor critical,
i.e., S is F-factor-critical in GΠ. For a vertex u ∈ S, corresponding matching Mu is called the
Π-critical-matching for u. If F is clear from the context, then we simply say S is Π-factor-critical.

A feasible solution Π to DF (G, c) is an F-critical dual, if every S ∈ F is (Π,F)-factor-critical,
and Π(T ) > 0 for every non-maximal set T of F . A family F ⊆ O is called a critical family, if F is
laminar, and there exists an F-critical dual solution. This will be a crucial notion: the set of cuts
imposed in every iteration of the cutting plane algorithm will be a critical family. The following
observation provides some context and motivation for these definitions.

Proposition 2.1. Let F be the set of contracted sets at some stage of Edmonds’ matching algo-
rithm. Then the corresponding dual solution Π in the algorithm is an F-critical dual. �

We call Π to be an F-positively-critical dual, if Π is a feasible solution to DF (G, c), and every
S ∈ F such that Π(S) > 0 is (Π,F)-factor-critical. Clearly, every F-critical dual is also an
F-positively-critical dual, but the converse is not true. The extremal dual optimal solutions found
in every iteration of Algorithm C-P-Matching will be F-positively-critical, where F is the family
of blossom inequalities imposed in that iteration.

The next lemma summarizes elementary properties of Π-critical matchings.

Lemma 2.2. Let F be a laminar odd family, Π be a feasible solution to DF (G, c), and S ∈ F be a
(Π,F)-factor-critical set. For u, v ∈ S, let Mu, Mv be the Π-critical-matchings for u, v respectively.

(i) For every T ∈ F such that T ( S,

|Mu ∩ δ(T )| =

{
1 if u ∈ S \ T,
0 if u ∈ T.

7



(ii) Assume the symmetric difference of Mu and Mv contains an even cycle C. Then the sym-
metric difference Mu∆C is also a Π-critical matching for u.

Proof. (i) Mu is a perfect matching of S \ {u}, hence for every T ( S,

|Mu ∩ δ(T )| ≡ |T \ {u}| (mod 2).

By definition of Mu, |Mu ∩ δ(T )| ≤ 1 for any T ( S, T ∈ F , implying the claim.
(ii) Let M ′ = Mu∆C. First observe that since C is an even cycle, u, v 6∈ V (C). Hence M ′ is a

perfect matching on S \{u} using only tight edges w.r.t. Π. It remains to show that |M ′∩δ(T )| ≤ 1
for every T ∈ F , T ( S. Let γu and γv denote the number of edges in C ∩ δ(T ) belonging to Mu

and Mv, respectively. Since these are critical matchings, we have γu, γv ≤ 1. On the other hand,
since C is a cycle, |C ∩ δ(T )| is even and hence γu + γv = |C ∩ δ(T )| is even. These imply that
γu = γv. The claim follows since |M ′ ∩ δ(T )| = |Mu ∩ δ(T )| − γu + γv.

The following uniqueness property is used to guarantee the existence of a proper-half-integral
solution in each step. We require that the cost function c : E → R satisfies:

For every critical family F , PF (G, c) has a unique optimal solution. (*)

The next lemma shows that an arbitrary integer cost function can be perturbed to satisfy this
property. The proof of the lemma is presented in Section 7.

Lemma 2.3. Let c : E → Z be an integer cost function, and c̃ be its perturbation. Then c̃ satisfies
the uniqueness property (*).

3 Analysis outline and proof of the main theorem

The proof of our main theorem is established in two parts. In the first part, we show that half-
integrality of the intermediate primal optimum solutions is guaranteed by the existence of an
F-positively-critical dual optimal solution to DF (G, c).

Lemma 3.1. Let F be a laminar odd family and assume PF (G, c) has a unique optimal solution
x. If there exists an F-positively-critical dual optimal solution, then x is proper-half-integral.

Lemma 3.1 is shown using a basic contraction operation. Given Π, an F-positively-critical
dual optimal solution for the laminar odd family F , contracting every set S ∈ F with Π(S) > 0
preserves primal and dual optimal solutions (similar to Edmonds’ primal-dual algorithm). This
is shown in Lemma 4.1. Moreover, if we had a unique primal optimal solution x to PF (G, c), its
image x′ in the contracted graph is the unique optimal solution; if x′ is proper-half-integral, then
so is x. Lemma 3.1 follows: we contract all maximal sets S ∈ F with Π(S) > 0. The image x′

of the unique optimal solution x is the unique optimal solution to the bipartite relaxation in the
contracted graph, and consequently, half-integral.

Such F-positively-critical dual optimal solutions are hence quite helpful, but their existence
is far from obvious. We next show that if F is a critical family, then the extremal dual optimal
solutions found in the algorithm are in fact F-positively-critical dual optimal solutions.
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Lemma 3.2. Suppose that in an iteration of Algorithm C-P-Matching, F is a critical family with Γ
being an F-critical dual solution. Then a Γ-extremal dual optimal solution Π is an F-positively-critical
dual optimal solution. Moreover, the next set of cuts H = H′ ∪H′′ is a critical family with Π being
an H-critical dual.

To show that a critical family F always admits an F-positively-critical dual optimum, and
that every extremal dual solution satisfies this property, we need a deeper understanding of the
structure of dual optimal solutions. Section 5 is dedicated to this analysis. Let Γ be an F-critical
dual solution, and Π be an arbitrary dual optimal solution to DF (G, c). Lemma 5.1 shows the
following relation between Π and Γ inside sets S ∈ F that are tight for a primal optimal solution
x: Let ΓS(u) and ΠS(u) denote the sum of the dual values of sets containing u that are strictly
contained inside S in solutions Γ and Π respectively, and let ∆ = maxu∈S(ΓS(u)− ΠS(u)). Then,
every edge in supp(x) ∩ δ(S) is incident to some node u ∈ S such that ΓS(u) − ΠS(u) = ∆. Also
(Lemma 5.8), if S ∈ F is both Γ- and Π-factor-critical, then Γ and Π are identical inside S.

If Π(S) > 0 but S is not Π-factor-critical, the above property (called consistency later) en-
ables us to modify Π by moving towards Γ inside S, and decreasing Π(S) so that optimality is
maintained. Thus, we either get that Π and Γ are identical inside S thereby making S to be
Π-factor-critical or Π(S) = 0. A sequence of such operations converts an arbitrary dual optimal
solution to an F-positively-critical dual optimal one, leading to a combinatorial procedure to ob-
tain positively-critical dual optimal solutions (Section 5.2). Moreover, such operations decrease the
secondary objective value h(Π,Γ) and thus show that every Γ-extremal dual optimum is also an
F-positively-critical dual optimum.

Lemmas 3.1 and 3.2 together guarantee that the unique primal optimal solutions obtained
during the execution of the algorithm are proper-half-integral. In the second part of the proof of
Theorem 1.1, we show convergence by considering the number of odd cycles, odd(x), in the support
of the current primal optimal solution x.

Lemma 3.3. Assume the cost function c satisfies (*). Then odd(x) is non-increasing during the
execution of Algorithm C-P-Matching.

We observe that similar to Lemma 3.1, the above Lemma 3.3 is also true if we choose an
arbitrary F-positively-critical dual optimal solution Π in each iteration of the algorithm. To show
that the number of cycles cannot remain the same and has to strictly decrease within a polynomial
number of iterations, we need the more specific choice of extremal duals.

Lemma 3.4. Assume the cost function c satisfies (*) and that odd(x) does not decrease between
iterations i and j, for some i < j. Let Fk be the set of blossom inequalities imposed in the k’th
iteration and H′′k = Fk \ Fk−1 be the subset of new inequalities in this iteration. Then,

j⋃
k=i+1

H′′k ⊆ Fj+1.

We prove this progress by coupling intermediate primal and dual solutions with the solutions
of a Half-integral Matching algorithm, a variation of Edmonds’ primal-dual weighted matching
algorithm that we design for this purpose.

We briefly describe this next, assuming familiarity with Edmonds’ algorithm [8]. Our argument
needs one phase of this algorithm and this is what we analyze in detail in Section 6.1. Although
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we introduce it for analysis, we note that the algorithm can be extended to a strongly-polynomial
combinatorial algorithm for minimum-cost perfect matching. Unlike Edmonds’ algorithm, which
maintains an integral matching and extends the matching to cover all vertices, our algorithm
maintains a proper half-integral solution.

The half-integral matching algorithm starts from a partial matching x in G, leaving a set W of
nodes exposed, and a dual Π whose support is a laminar family V ∪F with F ⊆ O; x and Π satisfy
primal-dual slackness conditions. The algorithm transforms x to a proper-half-integral perfect
matching and Π to a dual solution with support contained in V ∪ K, satisfying complementary
slackness. Before outlining the algorithm, we show how we apply it to prove Lemmas 3.3 and 3.4.

Let us consider two consecutive primal solutions xi and xi+1 in the cutting plane algorithm, with
duals Πi and Πi+1. We contract every set S ∈ O with Πi+1(S) > 0; let Ĝ be the resulting graph.
By Lemma 3.1 the image x′i+1 of xi+1 is the unique optimal solution to the bipartite relaxation

in Ĝ. The image x′i of xi is proper-half-integral in Ĝ with some exposed nodes W ; let Π′i be the
image of Πi. Every exposed node in W corresponds to a cycle in supp(xi). We start in Ĝ with
the solutions x′i and Π′i, and we prove that it must terminate with the primal solution x′i+1. The
analysis of the half-integral matching algorithm reveals that the total number of exposed nodes and
odd cycles does not increase; this will imply Lemma 3.3.

To prove Lemma 3.4, we show that if the number of cycles does not decrease between phases i
and i+ 1, then the algorithm also terminates with the extremal dual optimal solution Π′i+1. This
enables us to couple the performance of Half-integral Matching between phases i and i + 1 and
between i+ 1 and i+ 2: the (alternating forest) structure built in the former iteration carries over
to the latter one. As a consequence, all cuts added in iteration i will be imposed in all subsequent
phases until the number of odd cycles decreases.

Let us now turn to the description of the Half-integral Matching algorithm. In every step of the
algorithm, we maintain z to be a proper-half-integral partial matching with exposed set T ⊆W , Λ
to be a dual solution satisfying complementary slackness with z, and the support of Λ is V ∪ L for
some L ⊆ F . We start with z = x, T = W , Λ = Π and L = F . We work on the graph G∗ resulting
from the contraction of the maximal sets of L.

By changing the dual Λ, we grow an alternating forest of tight edges in G∗, using only edges e
with z(e) = 0 or z(e) = 1. The forest is rooted at the exposed set of nodes T . The solution z will
be changed according to the following three scenarios. (a) If we find an alternating path between
two exposed nodes, we change z by alternating along this path as in Edmonds’ algorithm. (b) If
we find an alternating path P from an exposed node to a 1/2-cycle C in supp(z), we change z by
alternating along P , and replacing it by a blossom (an alternating odd cycle) on C. (c) If we find
an alternating path P from an exposed node to a blossom C, then we change z by alternating along
P and replacing the blossom by a 1/2-cycle on C. If none of these cases apply, we change the dual
Λ in order to extend the alternating forest. If Λ(S) decreases to 0 for some S ∈ L, then we remove
S from L and unshrink it in G∗.

The modifications are illustrated on Figure 4. Note that in case (c), Edmonds’ algorithm would
instead contract C. In contrast, we do not perform any contractions, but allow 1/2-cycles in the
half-integral matching algorithm. For the special starting solution x ≡ 0, Π ≡ 0, our half-integral
matching algorithm will return a proper-half-integral optimum to the bipartite relaxation.

The main theorem can now be proved using the above lemmas.

Proof of Theorem 1.1. We use Algorithm C-P-Matching given in Figure 3 for a perturbed cost
function. By Lemma 2.3, this satisfies (*). Let i denote the index of the iteration. We prove by
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Figure 4: The possible modifications in the Half-integral Matching algorithm.

induction on i that every intermediate solution xi is proper-half-integral and (i) follows immediately
by the choice of the algorithm. The proper-half-integral property holds for the initial solution x0 by
Proposition 1.2. The induction step follows by Lemmas 3.1 and 3.2 and the uniqueness property.
Further, by Lemma 3.3, the number of odd cycles in the support does not increase.

Assume the number of cycles in the i’th phase is `, and we have the same number of odd cycles
` in a later iteration j. Between iterations i and j, the set H′′k always contains ` cuts, and thus

the number of cuts added is at least `(j − i). By Lemma 3.4, all cuts in
⋃j
k=i+1H

′′
k are imposed

in the family Fj+1. Since Fj+1 is a laminar odd family, it can contain at most n/2 subsets, and
therefore j − i ≤ n/2`. Consequently, the number of cycles must decrease from ` to ` − 1 within
n/2` iterations. Since odd(x0) ≤ n/3, the number of iterations is at most O(n log n).

Finally, we show that optimal solution returned by the algorithm using c̃ is also optimal for
the original cost function. Let M be the optimal matching returned by c̃, and assume for a
contradiction that there exists a different perfect matching M ′ with c(M ′) < c(M). Since c is
integral, it means c(M ′) ≤ c(M) − 1. In the perturbation, since c(e) < c̃(e) for every e ∈ E, we
have c(M) < c̃(M) and since

∑
e∈E(c̃(e) − c(e)) < 1, we have c̃(M ′) < c(M ′) + 1. This gives

c̃(M ′) < c(M ′) + 1 ≤ c(M) < c̃(M), a contradiction to the optimality of M for c̃.

4 Contractions and half-integrality

We define an important contraction operation and derive some fundamental properties. Let F be a
laminar odd family, Π be a feasible solution to DF (G, c), and let S ∈ F be a (Π,F)-factor-critical
set. Let us define

ΠS(u) :=
∑

T∈V∪F :T(S,u∈T
Π(T )

to be the total dual contribution of sets inside S containing u.
By contracting S w.r.t. Π, we mean the following: Let G′ = (V ′, E′) be the contracted graph

on node set V ′ = (V \ S) ∪ {s}, s representing the contraction of S. Let V ′ denote the set of
one-element subsets of V ′. For a set T ⊆ V , let T ′ denote its contracted image. Let F ′ be the set
of nonsingular images of the sets of F , that is, T ′ ∈ F ′ if T ∈ F , and T ′ \ {s} 6= ∅. Let E′ contain
all edges uv ∈ E with u, v /∈ S and for every edge uv with u ∈ S, v ∈ V − S add an edge sv. Let
us define the image Π′ of Π to be Π′(T ′) = Π(T ) for every T ′ ∈ V ′ ∪F ′ and the image x′ of x to be
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x′(u′v′) = x(uv). Define the new edge costs

c′(u′v′) =

{
c(uv) if uv ∈ E[V \ S],

c(uv)−ΠS(u) if u ∈ S, v ∈ V \ S.

Figure 5: Contraction operation: image of dual and new cost function

Lemma 4.1. Let F be a laminar odd family, x be an optimal solution to PF (G, c), Π be a feasible
solution to DF (G, c). Let S ∈ F be a (Π,F)-factor-critical set, and let G′, c′,F ′ denote the graph,
costs and laminar family respectively obtained by contracting S w.r.t. Π and let x′,Π′ be the images
of x,Π respectively. Then the following hold.

(i) Π′ is a feasible solution to DF ′(G
′, c′). Furthermore, if a set T ∈ F , T \ S 6= ∅ is (Π,F)-

factor-critical, then its image T ′ is (Π′,F ′)-factor-critical.

(ii) Suppose Π is an optimal solution to DF (G, c) and x(δ(S)) = 1. Then x′ is an optimal solution
to PF ′(G

′, c′) and Π′ is optimal to DF ′(G
′, c′).

(iii) If x is the unique optimum to PF (G, c), and Π is an optimal solution to DF (G, c), then x′

is the unique optimum to PF ′(G
′, c′). Moreover, x′ is proper-half-integral if and only if x is

proper-half-integral. Further, assume C ′ is an odd cycle in supp(x′) and let T be the pre-image
of V (C ′) in G. Then, supp(x) inside T consists of an odd cycle and matching edges.
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Proof. (i) For feasibility, it is sufficient to verify∑
T ′∈V ′∪F ′:u′v′∈δ(T ′)

Π′(T ′) ≤ c′(u′v′) ∀u′v′ ∈ E′.

If u, v 6= s, this is immediate from feasibility of Π to DFi(G, c). Consider an edge sv′ ∈ E(G′). Let
uv be the pre-image of this edge.∑

T ′∈V ′∪F ′:sv′∈δ(T ′)

Π′(T ′) = Π(S) +
∑

T∈F :uv∈δ(T ),T\S 6=∅

Π(T ) ≤ c(uv)−ΠS(u) = c′(sv′).

We also observe that u′v′ is tight in G′ w.r.t Π′ if and only if the pre-image uv is tight in G w.r.t
Π.

Let T ∈ F be (Π,F)-factor-critical with T \ S 6= ∅. It is sufficient to verify that T ′ is (Π′,F ′)-
factor-critical whenever T contains S. Let u′ ∈ T ′ be the image of u ∈ V , and consider the
projection M ′ of the Π-critical-matching Mu. The support of this projection is contained in the
tight edges with respect to Π′. Let Z ′ ( T ′, Z ′ ∈ F ′ and let Z be the pre-image of Z ′. If u′ 6= s,
then |M ′ ∩ δ(Z ′)| = |Mu ∩ δ(Z)| ≤ 1 and since |Mu ∩ δ(S)| = 1 by Lemma 2.2, the matching
M ′ is a (T ′ \ {u′},F ′)-perfect-matching. If u′ = s, then u ∈ S. By Lemma 2.2, Mu ∩ δ(S) = ∅
and hence, M ′ misses s. Also, |Mu ∩ δ(Z)| ≤ 1 implies |M ′ ∩ δ(Z ′)| ≤ 1 and hence M ′ is a
(T ′ \ {s},F ′)-perfect-matching.

(ii) Since x(δ(S)) = 1, we have x′(δ(v)) = 1 for every v ∈ V ′. It is straightforward to verify
that x′(δ(T ′)) ≥ 1 for every T ′ ∈ F ′ with equality if x(δ(T )) = 1. Thus, x′ is feasible to PF ′(G

′, c′).
Optimality follows as x′ and Π′ satisfy complementary slackness, using that the image of tight
edges is tight, as shown by the argument for part (i).

(iii) For uniqueness, consider an arbitrary optimal solution y′ to PF ′(G
′, c′). Let Mu be the

Π-critical matching for u in S. Define αu = y′(δ(u)) for every u ∈ S, i.e., αu is the total y′ value
on the images of edges uv ∈ E with v ∈ V − S. Note that

∑
u∈S αu = y′(δ(S)) = 1. Take

w =
∑

u∈S αuMu and

y(uv) =

{
y′(u′v′) if uv ∈ E \ E[S],

w(uv) if uv ∈ E[S].

Then, y is a feasible solution to PF (G, c) and y satisfies complementary slackness with Π. Hence,
y is an optimum to PF (G, c) and thus by uniqueness, we get y = x. Consequently, y′ = x′.

The above argument also shows that x must be identical to w inside S. Suppose x′ is proper-
half-integral. First, assume s is covered by a matching edge in x′. Then αu = 1 for some u ∈ S
and αv = 0 for every v 6= u. Consequently, w = Mu is a perfect matching on S − u. Next,
assume s is incident to an odd cycle in x′. Then αu1 = αu2 = 1/2 for some nodes u1, u2 ∈ S, and
w = 1

2(Mu1 + Mu2). The uniqueness of x implies the uniqueness of both Mu1 and Mu2 . Then by
Lemma 2.2(ii), the symmetric difference of Mu1 and Mu2 may not contain any even cycles. Hence,
supp(w) contains an even path between u1 and u2, and some matching edges. Consequently, x is
proper-half-integral. The above argument immediately shows the following.

Claim 4.2. Let C ′ be an odd (even) cycle such that x′(e) = 1/2 for every e ∈ C ′ in supp(x′) and
let T be the pre-image of the set V (C ′) in G. Then, supp(x)∩E[T ] consists of an odd (even) cycle
C and a (possibly empty) set M of edges such that x(e) = 1/2 ∀ e ∈ C and x(e) = 1 ∀ e ∈M . �
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Next, we prove that if x is proper-half-integral, then so is x′. It is clear that x′ being the image
of x is half-integral. If x′ is not proper-half-integral, then supp(x′) contains an even 1/2-cycle, and
thus by Claim 4.2, supp(x) must also contain an even cycle, contradicting that it was proper-half-
integral. Finally, if C ′ is an odd cycle in supp(x′), then Claim 4.2 provides the required structure
for x inside T . then the same argument as above shows that the pre-image of C ′ is an even cycle
C in the support of x, a contradiction.

Corollary 4.3. Assume x is the optimal solution to PF (G, c) and there exists an F-positively-critical
dual optimum Π. Let Ĝ, ĉ be the graph, and cost obtained by contracting all maximal sets S ∈ F
with Π(S) > 0 w.r.t. Π, and let x̂ be the image of x in Ĝ.

(i) x̂ and Π̂ are the optimal solutions to the bipartite relaxation P0(Ĝ, ĉ) and D0(Ĝ, ĉ) respectively.

(ii) If x is the unique optimum to PF (G, c), then x̂ is the unique optimum to P0(Ĝ, ĉ). If x̂ is
proper-half-integral, then x is also proper-half-integral.

Proof of Lemma 3.1. Let Π be an F-positively-critical dual optimum, and let x be the unique
optimal solution to PF (G, c). Contract all maximal sets S ∈ F with Π(S) > 0, obtaining the
graph Ĝ and cost ĉ. Let x̂ be the image of x in Ĝ. By Corollary 4.3(ii), x̂ is unique optimum
to P0(Ĝ, ĉ). By Proposition 1.2, x̂ is proper-half-integral and hence by Corollary 4.3(ii), x is also
proper-half-integral.

5 Structure of dual solutions

In this section, we show two properties about positively-critical dual optimal solutions – (1) an
optimum Ψ to DF (G, c) can be transformed into an F-positively-critical dual optimum (Section
5.2) if F is a critical family and (2) a Γ-extremal dual optimal solution to DF (G, c) as obtained in
the algorithm is also an F-positively-critical dual optimal solution (Section 5.3). In Section 5.1, we
first show some lemmas characterizing arbitrary dual optimal solutions.

5.1 Consistency of dual solutions

Assume F ⊆ O is a critical family, with Π being an F-critical dual solution, and let Ψ be an
arbitrary dual optimal solution to DF (G, c). Note that optimality of Π is not assumed. Let x be
an optimal solution to PF (G, c); we do not assume uniqueness in this section. We shall describe
structural properties of Ψ compared to Π; in particular, we show that if we contract a Π-factor-
critical set S, the images of x and Ψ will be primal and dual optimal solutions in the contracted
graph.

Consider a set S ∈ F . We say that the dual solutions Π and Ψ are identical inside S, if
Π(T ) = Ψ(T ) for every set T ( S, T ∈ F ∪ V. We defined ΠS(u) in the previous section; we also
use this notation for Ψ, namely, let ΨS(u) :=

∑
T∈V∪F :T(S,u∈T Ψ(T ) for u ∈ S. Let us now define

∆Π,Ψ(S) := max
u∈S

(ΠS(u)−ΨS(u)) .

We say that Ψ is consistent with Π inside S, if ΠS(u)−ΨS(u) = ∆Π,Ψ(S) holds for every u ∈ S that
is incident to an edge uv ∈ δ(S) ∩ supp(x). The main goal of this section is to prove the following
lemma.
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Lemma 5.1. Let F ⊆ O be a critical family, with Π being an F-critical dual solution and let Ψ be
an optimal solution to DF (G, c). Let x be an optimal solution to PF (G, c). Then Ψ is consistent
with Π inside every set S ∈ F such that x(δ(S)) = 1. Further, ∆Π,Ψ(S) ≥ 0 for all such sets.

Consistency is important as it enables us to preserve optimality when contracting a set S ∈ F
w.r.t. Π. Assume Ψ is consistent with Π inside S, and x(δ(S)) = 1. Let us contract S w.r.t. Π to
obtain G′ and c′ as defined in Section 4. Define

Ψ′(T ′) =

{
Ψ(T ) if T ′ ∈ (F ′ ∪ V ′) \ {s},
Ψ(S)−∆Π,Ψ(S) if T ′ = {s}

Lemma 5.2. Let F ⊆ O be a critical family, with Π being an F-critical dual solution and let Ψ be
an optimal solution to DF (G, c). Let x be an optimal solution to PF (G, c). Suppose Ψ is consistent
with Π inside S ∈ F and x(δ(S)) = 1. Let G′, c′,F ′ denote the graph, costs and laminar family
obtained by contraction. Then the image x′ of x is an optimum to PF ′(G

′, c′), and Ψ′ (as defined
above) is an optimum to DF ′(G

′, c′).

Proof. Feasibility of x′ follows as in the proof of Lemma 4.1(ii). For the feasibility of Ψ′, we have
to verify

∑
T ′∈V ′∪F ′:uv∈δ(T ′) Ψ′(T ′) ≤ c′(uv) for every edge uv ∈ E(G′). This follows immediately

for every edge uv such that u, v 6= s since Ψ is a feasible solution for DF (G, c). Consider an edge
uv ∈ E(G), u ∈ S. Let sv ∈ E(G′) be the image of uv in G′, and let ∆ = ∆Π,Ψ(S).

c(uv) ≥
∑

T∈V∪F :uv∈δ(T )

Ψ(T )

= ΨS(u) + Ψ(S) +
∑

T∈F :uv∈δ(T ),T−S 6=∅

Ψ(T )

= ΨS(u) + ∆ +
∑

T ′∈V ′∪F ′:sv∈δ(T ′)

Ψ′(T ′).

In the last equality, we used the definition Ψ′(s) = Ψ(S)−∆. Therefore, using ΠS(u) ≤ ΨS(u)+∆,
we obtain ∑

T ′∈V ′∪F ′:sv∈δ(T ′)

Ψ′(T ′) ≤ c(uv)−ΨS(u)−∆ ≤ c(uv)−ΠS(u) = c′(uv). (1)

Thus, Ψ′ is a feasible solution to DF ′(G
′, c′). To show optimality, we verify complementary slackness

for x′ and Ψ′. If x′(uv) > 0 for u, v 6= s, then x(uv) > 0. Thus, the tightness of the constraint
for uv w.r.t. Ψ′ in DF ′(G

′, c′) follows from the tightness of the constraint w.r.t. Ψ in DF (G, c).
Suppose x′(sv) > 0 for an edge sv ∈ E(G′). Let uv ∈ E(G) be the pre-image of sv for some u ∈ S.
Then the tightness of the constraint follows since both the inequalities in (1) are tight – the first
inequality is tight since uv is tight w.r.t. Ψ, and the second is tight since ΠS(u) − ΨS(u) = ∆(S)
by the consistency property. Finally, if Ψ′(T ′) > 0 for some T ′ ∈ F ′, then Ψ(T ) > 0 and hence
x(δ(T )) = 1 and therefore, x′(δ(T ′)) = 1.

Lemma 5.3. Let F be a critical family with Π being an F-critical dual, and let x be an optimal
solution to PF (G, c). If x(δ(S)) = 1 for some S ∈ F , then x(δ(T )) = 1 for every T ( S, T ∈ F ,
and all edges in supp(x) ∩ E[S] are tight w.r.t. Π.

Proof. Let αu = x(δ(u, V \ S)) for each u ∈ S, and for each T ⊆ S, T ∈ F , let α(T ) =
∑

u∈T αu =
x(δ(T, V \S)). Note that α(S) = x(δ(S)) = 1. Let us consider the following pair of linear programs.
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min
∑

uv∈E[T ]

c(uv)z(uv) (PF [S])

z(δ(u)) = 1− αu ∀u ∈ S
z(δ(T )) ≥ 1− α(T ) ∀T ( S, T ∈ F
z(uv) ≥ 0 ∀ uv ∈ E[S]

max
∑

T(S,T∈V∪F
(1− α(T ))Γ(T ) (DF [S])

∑
T(S,T∈V∪F
uv∈δ(T )

Γ(T ) ≤ c(uv) ∀uv ∈ E[S]

Γ(Z) ≥ 0 ∀Z ( T,Z ∈ F

For a feasible solution z to PF [S], let xz denote the solution obtained by replacing x(uv) by
z(uv) for edges uv inside S, that is,

xz(e) =

{
x(e) if e ∈ δ(S) ∪ E[V \ S],

z(e) if e ∈ E[S].

Claim 5.4. The restriction of x inside S is feasible to PF [S], and for every feasible solution z to
PF [S], xz is a feasible solution to PF (G, c). Consequently, z is an optimal solution to PF [S] if and
only if xz is an optimal solution to PF (G, c).

Proof. The first part is obvious. For feasibility of xz, if u /∈ S then xz(u) = x(u) = 1. If u ∈ S,
then xz(u) = z(u) + x(δ(u, V \ S)) = 1 − αu + αu = 1. Similarly, if T ∈ F , T \ S 6= ∅, then
xz(δ(T )) = x(T ) ≥ 1. If T ⊆ S, then xz(δ(T )) = z(δ(T )) + x(δ(T, V \ S)) ≥ 1− α(T ) + α(T ) = 1.

Optimality follows since cTxz =
∑

uv∈E[S] c(uv)z(uv) +
∑

uv∈E\E[S] c(uv)x(uv).

Claim 5.5. Let Π̄ denote the restriction of Π inside S, that is, Π̄(T ) = Π(T ) for every T ∈ V ∪F ,
T ( S. Then Π̄ is an optimal solution to DF [S]. and w(δ(T )) = 1−α(T ) for every T ( S, T ∈ F .

Proof. Since Π is an F-critical dual and S ∈ F , we have a Π-critical-matching Mu inside S for each
u ∈ S. Let w =

∑
u∈S αuMu. The claim follows by showing that w is feasible to PF [S] and that w

and Π̄ satisfy complementary slackness. w and Γ are primal and dual feasible solutions satisfying
complementary slackness, and hence both are optimal.

The degree constraint w(δ(u)) = 1 − αu is straightforward and using Lemma 2.2, if T ( S,
T ∈ F , then w(δ(T )) =

∑
u∈S\T αu = 1 − α(T ). The feasibility of Π to DF (G, c) immediately

shows feasibility of Π̄ to DF [S].
Complementary slackness also follows since by definition, all Mu’s use only tight edges w.r.t. Π

(equivalently, w.r.t. Π̄). Also, for every odd set T ( S, T ∈ F , we have that w(δ(T )) = 1 − α(T )
as verified above. Thus, all odd set constraints are tight in the primal.

By Claim 5.4, the solution obtained by restricting x to E[S] must be optimal to PF [S] and
thus satisfies complementary slackness with Π̄. Consequently, every edge in E[S] ∩ supp(x) must
be tight w.r.t. Π̄ and equivalently w.r.t. Π. By the definition of the F-critical-property, every
non-maximal set T of F satisfies Π(T ) > 0, and in particular, every set T ( S, T ∈ F satisfies
Π̄(T ) = Π(T ) > 0. Thus, complementary slackness gives x(δ(T )) = 1.

We need one more claim to prove Lemma 5.1.
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Claim 5.6. Let S ∈ F be an inclusionwise minimal set of F . Let Λ and Γ be feasible solutions
to DF (G, c), and suppose S is (Λ,F)-factor-critical. Then ∆Λ,Γ(S) = maxu∈S |ΛS(u) − ΓS(u)|.
Further, if ∆Λ,Γ(S) > 0, define

A+ := {u ∈ T : Γ(u) = Λ(u) + ∆Λ,Γ(S)},
A− := {u ∈ T : Γ(u) = Λ(u)−∆Λ,Γ(S)}.

Then |A−| > |A+|.

Proof. Let ∆ = maxu∈S |ΛS(u)−ΓS(u)|, and define the sets A− and A+ with ∆ instead of ∆Λ,Γ(S).
Since S is (Λ,F)-factor-critical, for every a ∈ S, there exists an (S \ {a},F) perfect matching Ma

using only tight edges w.r.t. Λ, i.e., Ma ⊆ {uv : Λ(u) + Λ(v) = c(uv)} by the minimality of S.
Further, by feasibility of Γ, we have Γ(u) + Γ(v) ≤ c(uv) on every uv ∈ Ma. Thus, if u ∈ A+,
then v ∈ A− for every uv ∈ Ma. Since ∆ > 0, we have A+ ∪ A− 6= ∅ and therefore A− 6= ∅,
and consequently, ∆ = ∆Λ,Γ(S). Now pick a ∈ A− and consider Ma. This perfect matching Ma

matches each node in A+ to a node in A−. Thus, |A−| > |A+|.

Proof of Lemma 5.1. We prove this by induction on |V |, and subject to this, on |S|. Let S be a
(Π,F)-factor-critical set. First, consider the case when S is an inclusion-wise minimal set. Then,
ΠS(u) = Π(u), ΨS(u) = Ψ(u) for every u ∈ S. By Claim 5.6, we have that ∆ := ∆Π,Ψ(S) ≥ 0. We
are done if ∆ = 0. Otherwise, define the sets A− and A+ as in the claim using ∆Π,Ψ(S).

Now consider an edge uv ∈ E[S]∩supp(x). By complementary slackness, we have Ψ(u)+Ψ(v) =
c(uv). By dual feasibility, we have Π(u) + Π(v) ≤ c(uv). Hence, if u ∈ A−, then v ∈ A+.
Consequently, we have

|A−| =
∑
u∈A−

x(δ(u)) = x(δ(A−, V \ S)) + x(δ(A−, A+))

≤ 1 +
∑
u∈A+

x(δ(u)) = 1 + |A+| ≤ |A−|.

Thus, we should have equality throughout. Hence, x(δ(A−, V \ S)) = 1. This precisely means that
Ψ is consistent with Π inside S. A+ = ∅ implies |A−| = 1 and hence |T | = 1, a contradiction that
T is a non-trivial odd set. This completes the proof of the base case.

Next, let S be a non-minimal set. Let T ∈ F be a maximal set strictly contained in S. By
Lemma 5.3, x(δ(T )) = 1, therefore the inductional claim holds for T : Ψ is consistent with Π inside
T , and ∆(T ) = ∆Π,Ψ(T ) ≥ 0.

We contract T w.r.t. Π and use Lemma 5.2. Let the image of the solutions x, Π, and Ψ be x′, Π′

and Ψ′ respectively and the resulting graph be G′ with cost function c′. Then x′ and Ψ′ are optimum
to PF ′(G

′, c′) and DF ′(G
′, c′) respectively, and by Lemma 4.1(i), Π′ is an F ′-critical dual. Let t be

the image of T by the contraction. Now, consider the image S′ of S in G′. Since G′ is a smaller
graph, it satisfies the induction hypothesis. Let ∆′ = ∆Π′,Ψ′(S

′) in G′. By induction hypothesis,
∆′ ≥ 0. The following claim verifies consistency inside S and thus completes the proof.

Claim 5.7. For every u ∈ S, ΠS(u)−ΨS(u) ≤ Π′S′(u
′)−Ψ′S′(u

′), and equality holds if there exists
an edge uv ∈ δ(S) ∩ supp(x). Consequently, ∆′ = ∆.
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Proof. Let u′ denote the image of u. If u′ 6= t, then Π′S′(u
′) = ΠS(u),Ψ′S′(u

′) = ΨS(u) and therefore,
ΠS(u)−ΨS(u) = Π′S′(u

′)−Ψ′S′(u
′). Assume u′ = t, that is, u ∈ T . Then ΠS(u) = ΠT (u) + Π(T ),

ΨS(u) = ΨT (u) + Ψ(T ) by the maximal choice of T , and therefore

ΠS(u)−ΨS(u) = ΠT (u)−ΨT (u) + Π(T )−Ψ(T )

≤ ∆(T ) + Π(T )−Ψ(T )

= Π′(t)−Ψ′(t) (Since Π′(t) = Π(T ), Ψ′(t) = Ψ(T )−∆(T ))

= Π′S′(t)−Ψ′S′(t). (2)

Assume now that there exists a uv ∈ δ(S)∩ supp(x). If u ∈ T , then using the consistency inside T ,
we get ΠT (u)−ΨT (u) = ∆(T ), and therefore (2) gives ΠS(u)−ΨS(u) = Π′S′(t)−Ψ′S′(t) = ∆′.

Claim 5.6 can also be used to derive the following important property.sets.

Lemma 5.8. Given a laminar odd family F ⊂ O, let Λ and Γ be two dual feasible solutions to
DF (G, c). If a subset S ∈ F is both (Λ,F)-factor-critical and (Γ,F)-factor-critical, then Λ and Γ
are identical inside S.

Proof. Consider a graph G = (V,E) with |V | minimal, where the claim does not hold for some
set S. Also, choose S to be the smallest counterexample in this graph. First, assume S ∈ F is a
minimal set. Then consider Claim 5.6 for Λ and Γ and also by changing their roles, for Γ and Λ.
If Λ and Γ are not identical inside S, then ∆ = maxu∈S |ΛS(u)− ΓS(u)| > 0. The sets A− and A+

for Λ and Γ become A+ and A− for Γ and Λ. Then |A−| > |A+| > |A−|, a contradiction.
Suppose now S contains T ∈ F . It is straightforward to see that T is also (Λ,F)-factor-critical

and (Γ,F)-factor-critical by definition. Thus, by the minimal choice of the counterexample S, we
have that Λ and Γ are identical inside T . Now, contract the set T w.r.t. Λ, or equivalently, w.r.t.
Γ. Let Λ′, Γ′ denote the contracted solutions in G′, and let F ′ be the contraction of F . Then, by
Lemma 4.1(i), these two solutions are feasible to DF ′(G

′, c′), and S′ is both Λ′-factor-critical and
Γ′-factor-critical. Now, Λ′ and Γ′ are not identical inside S′, contradicting the minimal choice of G
and S.

5.2 Finding a positively-critical dual optimal solution

Let F ⊆ O be a critical family with Π being an F-critical dual. Let Ψ be a dual optimum solution
to DF (G, c). Our goal is to satisfy the property that for every S ∈ F , if Ψ(S) > 0, then Ψ and Π
are identical inside S. By Lemma 5.8, it is equivalent to showing that Ψ is F-positively-critical.
We modify Ψ by the algorithm shown in Figure 6.

The correctness of the algorithm follows by showing that the modified solution Ψ̄ is also dual
optimal, and it is closer to Π.

Lemma 5.9. Let F ⊆ O be a critical family with Π being an F-critical dual and let Ψ be a dual
optimum solution to DF (G, c). Suppose we consider a maximal set S such that Π and Ψ are not
identical inside S, take λ = min{1,Ψ(S)/∆Π,Ψ(S)} if ∆Π,Ψ(S) > 0 and λ = 1 if ∆Π,Ψ(S) = 0 and
set Ψ̄ as in (3). Then, Ψ̄ is also a dual optimal solution to DF (G, c), and either Ψ̄(S) = 0 or Π
and Ψ are identical inside S.

Proof. Let x be an optimal solution to PF (G, c). Since Ψ(S) > 0, we have x(δ(S)) = 1 and by
Lemma 5.1, we have ∆ = ∆Π,Ψ(S) ≥ 0. Now, the second conclusion is immediate from definition:
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1. Repeat while Ψ is not F-positively-critical dual.

(a) Choose a maximal set S ∈ F with Ψ(S) > 0, such that Π and Ψ are not identical inside
S.

(b) Set ∆ := ∆Π,Ψ(S).

(c) Let λ := min{1,Ψ(S)/∆} if ∆ > 0 and λ := 1 if ∆ = 0.

(d) Replace Ψ by the following Ψ̄.

Ψ̄(T ) :=


(1− λ)Ψ(T ) + λΠ(T ) if T ( S,

Ψ(S)−∆λ if T = S,

Ψ(T ) otherwise .

(3)

2. Return F-positively-critical dual optimum Ψ.

Figure 6: Algorithm Positively-critical-dual-opt

if λ = 1, then we have that Π and Ψ̄ are identical inside S; if λ < 1, then we have Ψ̄(S) = 0. For
optimality, we show feasibility and verify the primal-dual slackness conditions. x(δ(T )) = 1.

The solution Ψ̄ might have positive components on some sets T ( S, T ∈ F where Π(T ) > 0.
However, x(δ(T )) = 1 for all such sets by Lemma 5.3. The choice of λ also guarantees Ψ̄(S) ≥ 0.
We need to verify that all inequalities in DF (G, c) are maintained and that all tight constraints in
DF (G, c) w.r.t. Ψ are maintained. This trivially holds if uv ∈ E[V \S]. If uv ∈ E[S] \ supp(x), the
corresponding inequality is satisfied by both Π and Ψ and hence also by their linear combinations.
If uv ∈ E[S]∩ supp(x), then uv is tight for Ψ by the optimality of Ψ, and also for Π by Lemma 5.3.

It remains to verify the constraint corresponding to edges uv with u ∈ S, v ∈ V \ S. The
contribution of

∑
T∈F :uv∈δ(T ),T\S 6=∅Ψ(T ) is unchanged. The following claim completes the proof of

optimality.

Claim 5.10. Ψ̄S(u) + Ψ̄(S) ≤ ΨS(u) + Ψ(S) with equality whenever uv ∈ supp(x).

Proof.

Ψ̄(T )−Ψ(T ) =

{
λ(Π(T )−Ψ(T )) if T ( S,

−∆λ if T = S.

Thus,

Ψ̄S(u) + Ψ̄(S) = λ(ΠS(u)−ΨS(u)) + Ψ̄(S)−Ψ(S) + ΨS(u) + Ψ(S)

= λ(ΠS(u)−ΨS(u)−∆) + ΨS(u) + Ψ(S).

Now, ΠS(u)−ΨS(u) ≤ ∆, and equality holds whenever uv ∈ supp(x) ∩ δ(S) by the consistency of
Ψ and Π inside S (Lemma 5.1).

Corollary 5.11. Let F be a critical family with Π being an F-critical dual feasible solution. Al-
gorithm Positively-critical-dual-opt in Figure 6 transforms an arbitrary dual optimal solution Ψ to
an F-positively-critical dual optimal solution in at most |F| iterations.
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Proof. The correctness of the algorithm follows by Lemma 5.9. We bound the running time by
showing that no set S ∈ F is processed twice. After a set S is processed, by Lemma 5.9, either
Π and Ψ will be identical inside S or Ψ(S) = 0. Once Π and Ψ become identical inside a set, it
remains so during all later iterations.

The value Ψ(S) could be changed later only if we process a set S′ ) S after processing S.
Let S′ be the first such set. S′ is processed after S and Ψ(S) changed during the iteration when
S′ was processed. At the iteration when S was processed, by the maximal choice it follows that
Ψ(S′) = 0. Hence Ψ(S′) could become positive only if the algorithm had processed a set Z ) S′,
Z ∈ F between processing S and S′, a contradiction to the choice of S′.

5.3 Extremal dual solutions

In this section, we prove Lemma 3.2. Assume F ⊆ O is a critical family, with Π being an F-critical
dual. Let x be the unique optimal solution to PF (G, c). Let Fx = {S ∈ F : x(δ(S)) = 1} the
collection of tight sets for x. A Π-extremal dual can be found by solving the following LP.

minh(Ψ,Π) =
∑

S∈V∪Fx

r(S)

|S|
(D∗F )

−r(S) ≤ Ψ(S)−Π(S) ≤ r(S) ∀S ∈ V ∪ Fx∑
S∈V∪Fx:uv∈δ(S)

Ψ(S) = c(uv) ∀uv ∈ supp(x)

∑
S∈V∪Fx:uv∈δ(S)

Ψ(S) ≤ c(uv) ∀uv ∈ E \ supp(x)

Ψ(S) ≥ 0 ∀S ∈ Fx

The support of Ψ is restricted to sets in V ∪ Fx. Primal-dual slackness implies that the feasible
solutions to this program coincide with the optimal solutions of DF (G, c), hence an optimal solution
to D∗F is also an optimal solution to DF (G, c).

Lemma 5.12. Let F ⊂ O be a critical family with Π being an F-critical dual. Then, a Π-extremal
dual is also an F-positively-critical dual optimal solution.

Proof. We will show that whenever Ψ(S) > 0, the solutions Ψ and Π are identical inside S.
Assume for a contradiction that this is not true for some S ∈ F . Let λ = min{1,Ψ(S)/∆Π,Ψ(S)}
if ∆Π,Ψ(S) > 0 and λ = 1 if ∆Π,Ψ(S) = 0. Define Ψ̄ as in (3). By Lemma 5.9, Ψ̄ is also optimal to
DF (G, c) and thus feasible to D∗F . We show h(Ψ̄,Π) < h(Ψ,Π), which is a contradiction.

For every T ∈ V ∪ Fx, let τ(T ) = |Ψ(T )−Π(T )| − |Ψ̄(T )−Π(T )|. With this notation,

h(Ψ,Π)− h(Ψ̄,Π) =
∑

T∈V∪Fx

τ(T )

|T |
.

If T \ S = ∅, then Ψ̄(T ) = Ψ(T ) and thus τ(T ) = 0. If T ( S, T ∈ V ∪ F , then |Ψ̄(T ) − Π(T )| =
(1 − λ)|Ψ(T ) − Π(T )|, and thus τ(T ) = λ|Ψ(T ) − Π(T )|. Since Ψ̄(S) = Ψ(S) − ∆λ, we have
τ(S) ≥ −∆λ.
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Let us fix an arbitrary u ∈ S, and let γ = maxT(S:u∈T,T∈V∪Fx |T |.

h(Ψ,Π)− h(Ψ̄,Π) =
∑

T∈V∪Fx

τ(T )

|T |

≥
∑

T(S:u∈T,T∈V∪Fx

τ(T )

|T |
+
τ(S)

|S|

≥ λ

γ

∑
T(S:u∈T,T∈V∪Fx

|Ψ(T )−Π(T )| − ∆λ

|S|

≥ λ

γ
(ΠS(u)−ΨS(u))− ∆λ

|S|
.

Case 1: If ∆ > 0, then pick u ∈ S satisfying ΠS(u)−ΨS(u) = ∆. Then the above inequalities give

h(Ψ,Π)− h(Ψ̄,Π) ≥ ∆λ

(
1

γ
− 1

|S|

)
> 0.

The last inequality follows since |S| > γ.
Case 2: If ∆ = 0, then λ = 1 and therefore,

h(Ψ,Π)− h(Ψ̄,Π) ≥ 1

γ

∑
T(S:u∈T,T∈V∪Fx

|Ψ(T )−Π(T )|

Now, if Π and Ψ are not identical inside S, then there exists a node u ∈ S for which the RHS is
strictly positive. Thus, in both cases, we get h(Ψ̄,Π) < h(Ψ,Π), a contradiction to the optimality
of Ψ to D∗F .

Proof of Lemma 3.2. By Lemma 3.1, the unique optimal x to PF (G, c) is proper-half-integral.
Lemma 5.12 already shows that a Γ-extremal dual solution Π is also F-positively-critical. We
need to show that the next family of cuts is a critical family. Recall that the set of cuts for the
next round is defined as H′ ∪ H′′, where H′ = {T ∈ F : Π(T ) > 0}, and H′′ is defined based on
some cycles in supp(x). We need to show that every set of H′ ∪ H′′ is Π-factor-critical. This is
straightforward for sets of H′ by the definition of the F-positively-critical property. Lemma 4.1(ii).

It remains to show that the sets of H′′ are also Π-factor-critical. These are defined for odd
cycles C ∈ supp(x). Now, Ĉ ∈ H′′ is the union of V (C) and the maximal sets S1, . . . , S` of H′
intersecting V (C). We have Π(Sj) > 0 for each j = 1, . . . , ` and hence x(δ(Sj)) = 1.

Let u ∈ Ĉ be an arbitrary node; we will construct the Π-critical matching M̂u. Let us contract
all sets S1, . . . , S` to nodes s1, . . . , s` w.r.t. Π. We know by Lemma 4.1(iii) that the image x′ of
x is proper-half-integral and that the cycle C projects to a cycle in x′. The proper-half-integral
property guarantees that C is contracted into an odd cycle C ′ in supp(x′). Let u′ be the image of
u; the pre-image of every edge in C ′ is a tight edge w.r.t. Π in the original graph since Π is an
optimum to the dual problem DF (G, c). Since C ′ is an odd cycle, there is a perfect matching M ′u′
that covers every node in V (C ′) \ {u′} using the edges in C ′.

Assume first u ∈ Sj for some 1 ≤ j ≤ `. Then u′ = sj . The pre-image M̂ of M ′u′ in the original
graph contains exactly one edge entering each Sk for k 6= j and no edges entering Sj . Consider the
Π-critical matching Mu for u in Sj . For k 6= j, if akbk ∈ M̂ ∩ δ(Sk), ak ∈ Sk, then, let Mak be the
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Π-critical matching for ak in Sk. The union of M̂ , Mu and the Mak ’s give a Π-critical matching for
u inside Ĉ.

If u ∈ Ĉ \ (∪`j=1Sj), then similarly there is a Π-critical matching Mak inside every Sk. The

union of M̂ and the Mak ’s give the Π-critical matching for u inside Ĉ. We also have Π(S) > 0 for
all non-maximal sets S ∈ H′ ∪H′′ since the only sets with Π(S) = 0 are those in H′′, and they are
all maximal ones.

6 Convergence

The goal of this section is to prove Lemmas 3.3 and 3.4. The first shows that the number of
odd cycles in the support is nonincreasing, and the second shows that in a sequence of iterations
where the number of cycles does not decrease, all the new cuts added continue to be included
in subsequent iterations (till the number of cycles decreases). These structural properties are
established as follows. First, we give an extension of Edmonds’ primal-dual algorithm to half-
integral matchings. Next, we argue that applying this algorithm to the current primal/dual solution
leads to an optimal solution of the next LP. The analysis of the algorithm shows that the number
of odd cycles is nonincreasing. Finally, we prove the extremal dual solution of the next LP must
be the same as the one found by this combinatorial algorithm, and therefore the LP solution we
use also satisfies the required properties.

As mentioned in the introduction, our extension of Edmonds’ algorithm to the half-integral
setting and its application are for the purpose of analysis. We describe this algorithm first, derive
its properties, then use it in the main proof of convergence of the cutting plane algorithm.

6.1 The half-integral matching algorithm

The next algorithm will be applied in certain contractions of G, but here we present it for a general
graph G = (V,E) and cost c. We use the terminology of Edmonds’ weighted matching algorithm
[8] as described by Schrijver [23, Vol A, Chapter 26].

Let W ⊆ V , and let F ⊂ O be a laminar family of odd sets that are disjoint from W . Let VW
denote the set of one-element subsets of V \W . The following primal PWF (G, c) and dual DW

F (G, c)
programs describe fractional matchings that leave the set of nodes in W exposed (unmatched) while
satisfying the blossom inequalities corresponding to a laminar family F . The primal program is
identical to PF (G \W, c) while optimal solutions to DF (G \W, c) that are feasible to DW

F (G, c) are
also optimal solutions to DW

F (G, c).

min
∑
uv∈E

c(uv)x(uv) (PWF (G, c))

x(δ(u)) = 1 ∀u ∈ V −W
x(δ(u)) = 0 ∀u ∈W
x(δ(S)) ≥ 1 ∀S ∈ F

x ≥ 0

max
∑

S∈VW∪F

Π(S) (DW
F (G, c))

∑
S∈VW∪F :uv∈δ(S)

Π(S) ≤ c(uv) ∀uv ∈ E

Π(S) ≥ 0 ∀S ∈ F

The algorithm is iterative. In each iteration, it maintains a set T ⊆W , a subset L ⊆ F of cuts,
a proper-half-integral optimal solution z to P TL (G, c), and an L-critical dual optimal solution Λ to
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DT
L(G, c) such that Λ(S) > 0 for every S ∈ L. In the beginning T = W , L = F and the algorithm

terminates when T = ∅.
We work on the graph G∗ = (V∗, E∗), obtained the following way from G: We first remove

every edge in E that is not tight w.r.t. Λ, and then contract all maximal sets of L w.r.t. Λ. The
node set of V∗ is identified with the pre-images. Let c∗ denote the contracted cost function and z∗

the image of z. Since E∗ consists only of tight edges, Λ(u) + Λ(v) = c∗(uv) for every edge uv ∈ E∗.
Since F is disjoint from W , the nodes in L will always have degree 1 in z∗.

In the course of the algorithm, we may decrease Λ(S) to 0 for a maximal set S of L. In this
case, we remove S from L and modify G∗, c∗ and z∗ accordingly. This operation will be referred
as ‘unshrinking’ S. New sets will never be added to L.

The algorithm works by modifying the solution z∗ and the dual solution Λ∗. An edge uv ∈ E∗ is
called a 0-edge/1

2 -edge/1-edge according to the value z∗(uv). A modification of z∗ in G∗ naturally
extends to a modification of z in G. Indeed, if S ∈ L∗ is a shrunk node, and z∗ is modified so
that there is an 1-edge incident to S in G∗, then let u1v1 be the pre-image of this edge in G, with
u1 ∈ S. Then modify z inside S to be identical with the Λ-critical-matching Mu1 inside S. If there
are two half-edges incident to S in G∗, then let u1v1, u2v2 be the pre-image of these edges in G, with
u1, u2 ∈ S. Then modify z inside S to be identical with the convex combination (1/2)(Mu1 +Mu2)
of the Λ-critical-matchings Mu1 and Mu2 inside S.

A walk P = v0v1v2 . . . vk in G∗ is called an alternating walk, if every odd edge is a 0-edge and
every even edge is a 1-edge. If every node occurs in P at most once, it is called an alternating path.
By alternating along the path P , we mean modifying z∗(vivi+1) to 1− z∗(vivi+1) on every edge of
P . If k is odd, v0 = vk and no other node occurs twice, then P is called a blossom with base v0.
The following claim is straightforward.

Claim 6.1 ([23, Thm 24.3]). Let P = v0v1 . . . v2k+1 be an alternating walk. Either P is an alter-
nating path, or it contains a blossom C and an even alternating path from v0 to the base of the
blossom. �

The algorithm is described in Figure 7. The scenarios in Case I are illustrated in Figure 4. In
Case II, we observe that T ∈ B+ and further, B+∩B− = ∅ (otherwise, there exists a T−T alternating
walk and hence we should be in case I). The correctness of the output follows immediately due to
complementary slackness. We show the termination of the algorithm along very similar lines as the
proof of termination of Edmonds’ algorithm.
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Half-integral Matching

Input. A subset W ⊆ V , a critical family F ⊂ O with all sets in F disjoint from W , a
proper-half-integral optimal solution w to PWF (G, c), and an F-critical dual optimal solution
Γ to DW

F (G, c).
Output. A proper-half-integral optimal solution z to PL(G, c) and an L-critical dual optimal
solution Λ to PL(G, c) for some L ⊆ F .

1. Initialize z = w, L = F , Λ = Γ, and T = W . Let G∗ = (V∗, E∗), where E∗ ⊆ E are
edges that are tight w.r.t. Λ, and all maximal sets of L w.r.t. Λ are contracted; c∗

and z∗ are defined by the contraction. Let R ⊇ T be the set of exposed nodes and
nodes incident to 1

2 -edges in z∗.

2. While T is not empty,
Case I: There exists an alternating T -R-walk in G∗. Let P = v0 . . . v2k+1 denote a
shortest such walk.

(a) If P is an alternating path, and v2k+1 ∈ T , then change z by alternating along P .

(b) If P is an alternating path, and v2k+1 ∈ R − T , then let C denote the odd cycle
containing v2k+1. Change z by alternating along P , and replacing z on C by a
blossom with base v2k+1.

(c) If P is not a path, then by Claim 6.1, it contains an even alternating path P1 to a
blossom C. Change z by alternating along P1, and setting z∗(uv) = 1/2 on every
edge of C.

Case II: There exists no alternating T -R-walk in G∗. Define

B+ := {S ∈ V∗ : ∃ an even alternating path from T to S},
B− := {S ∈ V∗ : ∃ an odd alternating path from T to S}.

For some ε > 0, reset

Λ(S) :=

{
Λ(S) + ε if S ∈ B+,

Λ(S)− ε if S ∈ B−.

Choose ε to be the maximum value such that Λ remains feasible.

(a) If some new edge becomes tight, then E∗ is extended. B− may be removed from
E∗.

(b) If Λ(S) = 0 for some S ∈ L ∩ B− after the modification, then unshrink the node
S. Set L := L \ S.

Figure 7: The Half-integral Matching Algorithm
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Before we proceed to analyze the above algorithm, we briefly digress to note that it can be
extended to a complete algorithm to find a minimum-cost perfect matching where the intermediate
solutions are half-integral and satisfy the degree constraints for all vertices. We next describe this
combinatorial half-integral algorithm and then return to our main analysis.

In the combinatorial half-integral algorithm, we make one modication to the Half-integral
Matching subroutine. Namely, in Case II(b) we keep track of the dual values on vertices in W
and if one of them decreases to zero, then the corresponding vertex is uncontracted and the vertex
is removed from W .

The overall algorithm starts with the empty solution w = 0,Γ = 0,W = V,F = ∅ and applies
the following iteration repeatedly.

1. [z,Λ,L] = Half-integral Matching(W,F , w,Γ).

2. Contract cycles in z w.r.t. Λ; let the new W be the set of contracted vertices.

3. For each vertex of the original W that is incident to a single edge in z, uncontract the vertex,
extend z and Λ using the uncontracted edges and earlier dual values, and recurse this way
till there are no contracted vertices incident to matching edges in z. Set the new primal and
dual solutions to be the ones at the end of this procedure. Include each uncontracted set in
the new F .

We can prove the following about this algorithm.

Theorem 6.2. Combinatorial Half-Integral is a strongly polynomial algorithm for minimim-cost
perfect matching.

The proof builds on that of the main subroutine and is deferred to the end of this section.
Returning to the analysis of the Half-integral Matching algorithm, let β(z) denote the number

of exposed nodes plus the number of cycles in supp(z). We first note that β(z) = β(z∗). This
can be derived from Lemma 4.1(iii) (We apply this Lemma in G \ T , observing that P TL (G, c) is
identical to PL(G \T, c)). Our next lemma (Lemma 6.3) shows that β(z) is non-increasing. If β(z)
is unchanged during a certain number of iterations of the algorithm, we say that these iterations
form a non-decreasing phase. We say that the algorithm itself is non-decreasing, if β(z) does not
decrease anytime. In the next section, we investigate properties of non-decreasing phases. These
results will also show that every non-decreasing phase may contain at most |V |+ |F| iterations and
therefore the algorithm terminates in strongly polynomial time.

Lemma 6.3. Let z be an arbitrary solution during the algorithm, and let α be the number of odd
cycles in supp(w) that are absent in supp(z). Then |W | + odd(w) ≥ β(z) + 2α. At termination,
|W |+ odd(w) ≥ odd(z) + 2α.

Proof. Initially, β(z) = |W |+odd(w). Let us check the possible changes in β(z) during an iteration
of the algorithm. In Case I(a), the number exposed nodes decreases by two. In Case I(b), both the
number of exposed nodes and the number of cycles decrease by one. In Case I(c), the number of
exposed nodes decreases by one, but we obtain a new odd cycle, hence β(z) remains unchanged.
In Case II, z is not modified.

The only way to remove a cycle from supp(z) is by performing the operation in Case I(b). This
must be executed α times, therefore β(z) ≤ β(w)− 2α. Further, there are no exposed nodes at the
end of . Thus, on termination β(z) = odd(z), and the claim follows.
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6.1.1 The non-decreasing scenario

Let us now analyze the first non-decreasing phase P of the algorithm, starting from the input w.
These results will also be valid for later non-decreasing phases as well. In this case, we say that the
algorithm is non-decreasing. Consider an intermediate iteration with z, Λ being the solutions, L
being the laminar family and T being the exposed nodes. Recall that R ⊇ T is the set of exposed
nodes and the node sets of the 1/2-cycles. Let us define the set of outer/inner nodes of G∗ as
those having even/odd length alternating walk from R in G∗. Let No and Ni denote their sets,
respectively. Clearly, B+ ⊆ No, B− ⊆ Ni in Case II of the algorithm.

Lemma 6.4. If P is a non-decreasing phase, then if a node in V∗ is outer in any iteration of phase
P, it remains a node in V∗ and an outer node in every later iteration of P. If a node is inner
in any iteration of P, then in any later iteration of P, it is either an inner node, or it has been
unshrunk in an intermediate iteration.

Proof. Since P is a non-decreasing phase, Cases I(a) and (b) can never be performed. We show
that the claimed properties are maintained during an iteration.

In Case I(c), a new odd cycle C is created, and thus C is added to R. Let P1 = v0 . . . v2` denote
the even alternating path with v0 ∈ T , v2` ∈ C. If a node u ∈ V∗ had an even/odd alternating
walk from v0 before changing the solution, it will have an even/odd walk alternating from v2` ∈ R
after changing the solution.

In Case II, the alternating paths from T to the nodes in B− and B+ are maintained when the
duals are changed. The only nontrivial case is when a set S is unshrunk; then all inner and outer
nodes maintain their inner and outer property by the following: if u1v1 is a 1-edge and u2v2 is a
0-edge entering S after unshrinking, with u1, u2 ∈ S, we claim that there exists an even alternating
path inside S from u1 to u2 using only tight edges wrt Λ. Indeed, during the unshrinking, we
modify z to Mu1 inside S. Also, by the Λ-factor-critical property, all edges of Mu2 are tight w.r.t.
Λ. Hence the symmetric difference of Mu1 and Mu2 contains an alternating path from u1 to u2.

We have to check that vertices in No − B+ and Ni − B− also maintain their outer and inner
property. These are the nodes having even/odd alternating paths from an odd cycle, but not from
exposed nodes. The nodes in these paths are disjoint from B− ∪ B+ and are thus maintained.
Indeed, if (B− ∩No) \ B+ 6= ∅ or (B+ ∩Ni) \ B− 6= ∅, then we would get an alternating walk from
T to an odd cycle, giving the forbidden Case I(b).

The termination of the algorithm is guaranteed by the following simple corollary.

Corollary 6.5. The non-decreasing phase P may consist of at most |V |+ |F| iterations.

Proof. Case I may occur at most |W | times as it decreases the number of exposed nodes. In Case
II, either Ni is extended, or a set is unshrunk. By Lemma 6.4, the first scenario may occur at most
|V | times and the second at most |F| times.

In the rest of the section, we focus on the case when the entire algorithm is non-decreasing.

Lemma 6.6. Assume the half-integral matching algorithm is non-decreasing. Let Γ be the initial
dual and z, Λ be the terminating solution and L be the terminating laminar family. Let No and Ni
denote the final sets of outer and inner nodes in G∗.

• If Λ(S) > Γ(S) then S is an outer node in V∗.

26



• If Λ(S) < Γ(S), then either S ∈ F \ L, (that is, S was unshrunk during the algorithm and
Λ(S) = 0) or S is an inner node in V∗, or S is a node in V∗ incident to an odd cycle in
supp(z).

Proof. If Λ(S) > Γ(S), then S ∈ B+ in some iteration of the algorithm. By Lemma 6.4, this
remains an outer node in all later iterations. The conclusion follows similarly for Λ(S) < Γ(S).

Lemma 6.7. Assume the half-integral matching algorithm is non-decreasing. Let z, Λ be the
terminating solution, L be the terminating laminar family and G∗ the corresponding contracted
graph, No and Ni be the sets of outer and inner nodes. Let Θ : V∗ → R be an arbitrary optimal
solution to the dual D0(G∗, c∗) of the bipartite relaxation. If S ∈ V∗ is incident to an odd cycle
in supp(z), then Λ(S) = Θ(S). Further S ∈ No implies Λ(S) ≤ Θ(S), and S ∈ Ni implies
Λ(S) ≥ Θ(S).

Proof. For S ∈ No ∪ Ni, let `(S) be the length of the shortest alternating path. The proof is by
induction on `(S). Recall that there are no exposed nodes in z, hence `(S) = 0 means that S is
contained in an odd cycle C. Then Θ(S) = Λ(S) is a consequence of Lemma 5.8: both Θ and Λ
are optimal dual solutions in G∗, and an odd cycle in the support of the primal optimum z is both
Λ-factor-critical and Θ-factor-critical.

For the induction step, assume the claim for `(S) ≤ i. Consider a node U ∈ V∗ with `(U) = i+1.
There must be an edge f in E∗ between S and U for some S with `(S) = i. This is a 0-edge if i is
even and a 1-edge if i is odd.

Assume first i is even. By induction, Λ(S) ≤ Θ(S). The edge f is tight for Λ, and Θ(S)+Θ(U) ≤
c∗(f). Consequently, Λ(U) ≥ Θ(U) follows. Next, assume i is odd. Then Λ(S) ≥ Θ(S) by induction.
Then, Λ(U) ≤ Θ(U) follows as f is tight for both Λ and Θ.

6.2 Proof of convergence

Let us consider two consecutive solutions in Algorithm C-P-Matching. Let x be the unique proper-
half-integral optimal solution to PF (G, c) and Π be an F-positively-critical dual optimal solution
to DF (G, c). We define H′ = {S : S ∈ F ,Π(S) > 0} and H′′ based on odd cycles in x, and use the
critical family H = H′∪H′′ for the next iteration. Let y be the unique proper-half-integral optimal
solution to PH(G, c), and let Ψ be an H-positively-critical dual optimal solution to DH(G, c). We
already know that Π is an H-critical dual feasible solution to DH(G, c) by Lemma 3.2.

Let us now contract all maximal sets S ∈ H with Ψ(S) > 0 w.r.t. Ψ to obtain the graph
Ĝ = (V̂ , Ê) with cost ĉ. Note that by Lemma 5.8, Π and Ψ are identical inside S, hence this is the
same as contracting w.r.t. Π. Let x̂, ŷ, Π̂, and Ψ̂ be the images of x, y, Π, and Ψ, respectively.

Let H̄′′ = {S : S ∈ H′′,Ψ(S) > 0}, and let W = ∪H̄′′ denote the union of the members of H̄′′.
Let Ŵ denote the image of W . Then Ŵ is the set of exposed nodes for x̂ in Ĝ, whereas the image of
every set in H′′ \H̄′′ is an odd cycle in x̂. Let N = {T ∈ H′ : T ∩W = ∅}, K = {T ∈ N : Ψ(T ) = 0}
and N̂ and K̂ be their respective images. All member of N \ K are contracted to single nodes in
Ĝ; observe that K̂ is precisely the set of all sets in N̂ of size at least 3. sets T̂ in Ĝ disjoint from
Ŵ ; let K denote the collection of these sets.

Using the notation above, we will couple the solutions of the half-integral matching algorithm
and the solutions of our cutting plane algorithm. For this, we will start the Half-integral Matching
algorithm in Ĝ with Ŵ , from the initial primal and dual solutions x̂ and Π̂. Claim 6.8(ii) justifies
the validity of this input choice for .
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Claim 6.8. (i) For every L̂ ⊆ K̂, ŷ is the unique optimal solution to PL̂(Ĝ, ĉ) and Ψ̂ is an

optimal solution to DL̂(Ĝ, ĉ).

(ii) x̂ is a proper-half-integral optimal solution to P ŴK̂ (Ĝ, ĉ) and Π̂ is a K̂-positively-critical dual

optimal solution to DŴ
K̂ (Ĝ, ĉ).

Proof. (i) For L̂ = ∅, both conclusions follow by Corollary 4.3 – y is a unique optimal solution to
PH(G, c) and Ψ is an H-positively-critical dual optimum.

For an arbitrary L̂ ⊆ K̂, since y(δ(S)) ≥ 1 for every S ∈ H′ in the pre-image of L̂, ŷ is a feasible
solution to PL̂(Ĝ, ĉ). Since ŷ is optimum to the bipartite relaxation, this implies optimality of ŷ

to PL̂(Ĝ, ĉ). Now, Ψ̂ is optimum to DL̂(Ĝ, ĉ) since Ψ̂ satisfies complementary slackness with ŷ.

Uniqueness follows since a different optimal solution to PL̂(Ĝ, ĉ) would also be optimal to P0(Ĝ, ĉ),

but ŷ is known to be the unique optimum to P0(Ĝ, ĉ).

(ii) We will use Lemma 4.1 on an appropriate graph. We first setup the parameters that we
will be using to apply this Lemma. First observe that x is the unique optimum to PF (G, c) as well
as to PH′(G, c) and Π is an optimum to DH′(G, c).

Let GW denote the graph G \W , cW denote the cost function restricted to this graph. Let
ΠW denote Π restricted to the set N and xW denote the solution x restricted on GW . Since
x(δ(W,V \ W )) = 0, xW is the unique optimal solution to PN (GW , cW ). By complementary
slackness, ΠW is optimum to DN (GW , cW ).

We now apply Lemma 4.1(iii) by considering the graph GW with cost cW , and the laminar odd
family N . As noted above, xW and ΠW are primal and dual optimal solutions. Let S ∈ N \K, that
is, Ψ(S) > 0. Since S ∈ N ⊆ H′, we also have Π(S) = ΠW (S) > 0 and hence S is a ΠW -factor-
critical set. Let us contract all such sets S w.r.t. ΠW . Then, by the conclusion of the Lemma, we

have that x̂W is the unique proper-half-integral optimum to PN̂ (ĜŴ , ĉŴ ). Since K̂ is the set of

nonsingular elements of N̂ , it is equivalent to saying that x̂ is the unique optimum to P ŴK̂ (Ĝ, ĉ).

By Lemma 4.1(ii), we also have that Π̂W is optimum to DK̂(ĜŴ , ĉŴ ) = DK̂(Ĝ \ Ŵ , ĉ). Recall that

every optimal solution to DK̂(Ĝ \ Ŵ , ĉ) that is feasible to DŴ
K̂ (Ĝ, ĉ) is also optimal to DŴ

K̂ (Ĝ, ĉ).

Observe that Π̂ is 0 on every node and subset of Ŵ . Consequently, all nonzero values of Π̂ and Π̂W

coincide. Since Π̂ is feasible to DŴ
K̂ (Ĝ, ĉ), we get that Π̂ is also optimum to DŴ

K̂ (Ĝ, ĉ). Further, Π̂

is K̂-positively-critical by definition of K̂.

Lemma 6.9. Suppose we start the Half-integral Primal-Dual algorithm in Ĝ, ĉ, K̂, Ŵ , from the
initial primal and dual solutions x̂ and Π̂. Then the output ẑ of the algorithm is equal to ŷ.

Proof. Since ẑ is the output of the Half-integral Matching algorithm, it is an optimal solution to
PL̂(Ĝ, ĉ) for some L̂ ⊆ K̂. By Claim 6.8(i), ŷ is the unique optimal solution to this program, and
consequently, ẑ = ŷ.

Proof of Lemma 3.3. Using the notation above, let us start the Half-integral Matching algorithm
in Ĝ, ĉ, K̂, Ŵ , from the initial primal and dual solutions x̂ and Π̂. Let ẑ be the output of the
half-integral matching algorithm.

By Lemma 6.9, ẑ = ŷ. We first observe that odd(x) = |W | + odd(x̂). This easily follows by
Lemma 4.1(iii), applied in G\W . Let α = |H′′\H̄′′|. There is an odd cycle in supp(x) corresponding
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to each set of H′′ \ H̄′′. None of these cycles may be contained in supp(ẑ) = supp(ŷ) as otherwise
the corresponding cut in H′′ would be violated by y. Thus Lemma 6.3 implies odd(ŷ) = odd(ẑ) ≤
|W |+ odd(x̂)−2α and Lemma 4.1(iii) implies odd(y) = odd(ŷ). Hence, odd(y) ≤ odd(x)−2α.

The next claim formulates a simple consequence of the above proof.

Claim 6.10. If odd(y) = odd(x), then H′′ = H̄′′. Further, the Half-integral Matching algorithm
applied in Ĝ, ĉ, K̂, Ŵ , with starting solution x̂, Π̂ is non-decreasing. �

This claim already implies Lemma 3.4 for j = i+ 1. To analyze the scenario odd(x) = odd(y),
the results in Section 6.1.1 are applicable since the algorithm was non-decreasing. Let us start the
half-integral matching algorithm in Ĝ, ĉ, K̂, Ŵ , from the initial primal and dual solutions x̂ and
Π̂. Consider the final dual solution Λ̂ with corresponding laminar family L̂ and define Λ in G as
follows.

If S ( T for some T ∈ H, Ψ(T ) > 0, then set Λ(S) = Ψ(S) (this defines the dual solutions for
sets and nodes inside T that were contracted to obtain Ĝ). If Ŝ ∈ L̂ ∪ V̂, then set Λ(S) = Λ̂(Ŝ)
for its pre-image S (this defines the dual solutions for sets and nodes on or outside T that were
contracted to obtain Ĝ).

Claim 6.11. Λ is an optimal solution to DH(G, c).

Proof. We show feasibility here. Optimality follows by complementary slackness with y and the
definition of shrinking. The nontrivial part to show feasibility is to verify that Λ(S) ≥ 0 if S ∈ H.
This is straightforward if S ⊆ T for some T ∈ H, Ψ(T ) > 0, or if Ŝ ∈ L̂. Let S ∈ H be a maximal
set with Ψ(S) > 0, and let s denote its image in Ĝ. Then during the Half-integral Matching
algorithm, Λ̂(s) might have decreased below 0. We show that this cannot be the case.

By Claim 6.8(i), Ψ̂ is an optimal solution to the bipartite relaxation D0(Ĝ, ĉ). If Λ̂(s) < 0, then
Λ̂(s) < 0 < Π̂(s). We started the algorithm with the dual solution Γ = Π̂, therefore by Lemma 6.6,
either (1) s is an inner node or (2) s ∈ V∗ and s is incident to an odd cycle in supp(z). In both
cases, by Lemma 6.7, we get that Λ(S) = Λ̂(s) ≥ Ψ̂(s) = Ψ(S) ≥ 0.

Lemma 6.12. Assume odd(x) = odd(y) for the consecutive solutions x and y. Then Λ̂ = Ψ̂ and
hence Λ = Ψ. solution. Then Λ = Πi+1.

Proof. By Lemma 5.8, if S is such that Ψ(S) > 0, then Ψ is identical to Π inside S, and so by
definition, also to Λ. Therefore, it suffices to prove Λ̂ = Ψ̂. By Claim 6.8(i), Ψ̂ is an optimal
solution to D0(Ĝ, ĉ). The following claim completes the proof by showing that h(Λ,Π) ≤ h(Ψ,Π),
and equality can hold only if Λ and Ψ are identical.

Claim 6.13. For every S ∈ V̂ ∪ K̂, |Λ̂(S) − Π̂(S)| ≤ |Ψ̂(S) − Π̂(S)| and equality holds only if
Λ̂(S) = Ψ̂(S).

Proof. The claim will follow by showing that for every S ∈ V̂ ∪ K̂, either Π̂(S) ≤ Λ̂(S) ≤ Ψ̂(S)
or Π̂(S) ≥ Λ̂(S) ≥ Ψ̂(S). By Claim 6.10, odd(x) = odd(y) implies that the half-integral matching
algorithm was non-decreasing. Let ẑ be the terminating primal solution, and let G∗ = (V∗, E∗), c∗
be the corresponding contraction of maximal sets of L̂ in Ĝ, ĉ. Note that Ψ̂(S) = 0 if S ∈ L̂. Let
Θ : V∗ → R be defined as follows:

Θ(S∗) =

{
Ψ̂(S)−∆Λ̂,Ψ̂(S) if S ∈ L̂,
Ψ̂(S) if S ∈ V∗ \ L̂.
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Claim 6.14. Θ is an optimal solution to D0(G∗, c∗). Further, Θ(S) ≤ 0 holds for every S ∈ L̂.

Proof. If S ∈ L̂, then Λ̂(S) > 0 and hence ŷ(δ(S)) = 1. L̂ is a proper odd family in Ĝ with Λ̂
being an L̂-critical dual (by definition of the algorithm). By Claim 6.8(i), ŷ and Ψ̂ are optimal
solutions to PL̂(Ĝ, ĉ) and to DL̂(Ĝ, ĉ), respectively. Hence, by Lemma 5.1, Ψ̂ is consistent with Λ̂

inside every set S ∈ L̂ such that ŷ(δ(S)) = 1. Further, ∆Λ̂,Ψ̂(S) ≥ 0 for every S ∈ L̂. Thus, by

Lemma 5.2, Θ is an optimum dual solution to D0(G∗, c∗). The second part follows since Ψ̂(S) = 0
and ∆Λ̂,Ψ̂(S) ≥ 0 if S ∈ L.

Now consider S ⊆ V. If Λ̂(S) > Π̂(S), then by Lemma 6.6, we have that S ∈ V∗ and S ∈ No.
Consequently, by Lemma 6.7, Θ(S) ≥ Λ̂(S). If S ∈ L̂, then 0 ≥ Θ(S∗) ≥ Λ̂(S), a contradiction to
Λ̂(S) > 0. Thus, S = {s} for some s ∈ V̂. Hence, Ψ̂(s) = Θ(s) ≥ Λ̂(s) > Π̂(s).

If Λ̂(S) < Π̂(S), then by Lemma 6.6, we have that either (1) S ∈ K̂ \ L̂, that is, Λ̂(S) = 0 and
S was unshrunk or (2) S ∈ Ni or (3) S ∈ V∗ and S is incident to an odd cycle C in supp(z). If (1),
then Ψ̂(S) = 0 = Λ̂(S) < Π(S). In both cases (2) and (3), Lemma 6.7 gives Θ(S) ≤ Λ̂(S). If S ∈ L̂,
then Ψ̂(S) = 0 ≤ Λ̂(S) < Π̂(S). If S = {s} for some s ∈ V̂ , then Ψ̂(s) = Θ(s) ≤ Λ̂(s) ≤ Π̂(s).

Proof of Lemma 3.4. Let xi be the solution in the i’th iteration (above, we used x = xi and
y = xi+1). Assume the number of odd cycles does not decrease between iterations i and j. By
Claim 6.10, if we run the half-integral matching algorithm between xk and xk+1, for i ≤ k < j, it
is always non-decreasing.

We first run on the contracted graph Ĝ = Ĝi starting from primal solution x̂ = x̂i and dual
solution Π̂ = Π̂i. Lemmas 6.9 and 6.12 show that it terminates with the primal optimal solution
ŷ = x̂i+1 and dual optimal solution Λ̂ = Ψ̂.

For j = i + 1, the statement follows by Claim 6.10 since H̄′′ = H′′ means that all cuts added
in iteration i have positive dual value in iteration i+ 1. Further, all sets in H′′ were contracted to
exposed nodes in x̂i. By Lemma 6.6, these will be outer nodes on termination of the half-integral
matching algorithm as well. Let G∗ be the contracted graph upon termination of the Half-Integral
Primal-Dual algorithm.

Let J = J ′∪J ′′ be the set of cuts imposed in the (i+2)’th round, with J = {S ∈ H : Ψ(Z) > 0},
and let J ′′ be defined according to odd cycles in xi+1. Let Φ be the extremal dual optimal solution
to DJ (G, c).

Let us run the half-integral matching algorithm from xi+1 to xi+2. We start the algorithm with
the contracted graph Ĝi+1, which results by contracting all sets with Φ(S) > 0, S ∈ J . Let Ĝ∗i+1

be the initial contraction of Ĝi+1 used by the algorithm.
The key observation is that while the underlying graphs Ĝi and Ĝi+1 are different, Ĝ∗i+1 can

be obtained from G∗ by contracting those odd cycles corresponding to the sets of J ′′. Every other
node that was inner or outer node in G∗ will also be inner or outer node in Ĝ∗i+1, including the
members of H′′. By Lemma 6.6, the members of H′′ will be outer nodes at termination, along with
the new outer nodes J ′′.

Iterating this argument one can show that every set that was imposed based on an odd cycle
between iterations i and k will be outer nodes at the termination of the Half-integral Matching
algorithm from xk to xk+1.

We conclude this section with a proof of convergence of the combinatorial half-integral algorithm
(Theorem 6.2).
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Proof of Theorem 6.2. We need to verify two things. First that the inputs to the main subroutine in
each iteration are valid, and second that the algorithm makes progress towards an integral solution.

To see the first, we simply use the contraction properties, namely any set that is uncontracted
has a half-integral cycle, which can then be adjusted to maintain a half-integral solution after
uncontraction. Moreover, the dual values for vertices inside will be the values at the point of
contraction. An argument similar to the proof of Lemma 6.9 establishes the validity of this dual
solution.

To show progress, we use odd(x) as in the analysis of the cutting plane algorithm. In the
cutting plane analysis, in a non-decreasing phase, the cuts that are added in each iteration remain
in all iterations until the end of the non-decreasing phase. Instead, what we argue here is that the
number of contracted vertices plus the size of the laminar family at the end of a phase is at least
the total number of half-integral cycles encountered during the course of the non-decreasing phase.
To see this, we first note that each half-integral cycle at the end of a phase is contracted. Next,
when a vertex is uncontracted, the corresponding set is added to the laminar family. Now we need
to verify that when a set is added to the laminar family it remains in the family till the end of the
phase. This is similar to the proof of Lemma 3.4. Therefore the length of a non-decreasing phase
is bounded, and polynomiality of the algorithm follows.

7 Uniqueness

In Section 5.2, we proved that if F is a critical family, then there always exists an F-positively-
critical optimal solution (Corollary 5.11). This argument did not use uniqueness. Indeed, it will
also be used to derive Lemma 2.3, showing that a perturbation of the original integer cost function
satisfies our uniqueness assumption (*). We will need the following simple claim.

Claim 7.1. For a graph G = (V,E), let a, b : E → R+ be two vectors on the edges with a(δ(v)) =
b(δ(v)) for every v ∈ V . If a and b are not identical, then there exists an even length closed walk
C such that for every odd edge e ∈ C, a(e) > 0 and for every even edge e ∈ C, b(e) > 0.

Proof. Due to the degree constraints, z = a − b satisfies z(δ(v)) = 0 for every v ∈ V , and since a
and b are not identical, z has nonzero components. If there is an edge uv ∈ E with z(uv) > 0 then
there must be another edge uw ∈ E with z(uw) < 0. This implies the existence of an alternating
even closed walk C where for every odd edge e ∈ C, 0 < z(e) = a(e) − b(e), and for every even
edge, 0 > z(e) = a(e)− b(e). This proves the claim.

Proof of Lemma 2.3. Let c̃ denote the perturbation of the integer cost c : E → Z. Consider a
graph G = (V,E), perturbed cost c̃ and critical family F where (*) does not hold. Choose a
counterexample with |F| minimal. Let x and y be two different optimal solutions to PF (G, c̃).
Since F is a critical family, by Corollary 5.11, there exists an F-positively-critical dual optimal
solution, say Π.

First, assume F = ∅. Then x and y are both optimal solutions to the bipartite relaxation
P0(G, c̃). As they are not identical, Claim 7.1 gives an even closed walk C such that x(e) > 0 on
every even edge and y(e) > 0 on every odd edge. Let γ1 and γ2 be the sum of edge costs on even
and on odd edges of C, respectively. Then for some ε > 0, we could modify x by decreasing x(e)
by ε on even edges and increasing on odd edges, and y the other way around. These give two other
optimal matchings x̄ and ȳ, with c̃T x̄ = c̃Tx+ (γ2 − γ1)ε and c̃T ȳ = c̃T y + (γ1 − γ2)ε. Since x̄ and
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ȳ are both optimal, this gives γ1 = γ2. However, the fractional parts of γ1 and γ2 must be different
according to the definition of the perturbation, giving a contradiction.

If F 6= ∅, after modifying x, y to non-identical optimal solutions a, b respectively (if necessary),
we will similarly identify an alternating closed walk C in supp(a) ∪ supp(b) with the additional
property that if C intersects δ(S) for some set S ∈ F , then it does so in exactly one even and one
odd edge. The modifications ā and b̄ defined as above would again be feasible, implying γ1 = γ2.

We first claim that Π(S) > 0 must hold for all S ∈ F . Indeed, if Π(S) = 0 for some S ∈ F , then
x and y would be two different optimal solutions to PF\{S}(G, c̃), contradicting the minimal choice
of F . Let T ∈ F ∪ {V } be a smallest set with the property that x(δ(u, V − T )) = y(δ(u, V − T ))
for every u ∈ T , but x and y are not identical inside T . Note that V trivially satisfies this property
and hence such a set exists. Let S denote the collection of maximal sets S in F such that S ( T
(S could possibly be empty).

Inside each maximal set S ∈ S, we modify x and y such that they are still both optimal and
different from each other after the modification. Since Π(S) > 0, we have x(δ(S)) = 1, y(δ(S)) = 1
and S is Π-factor-critical. For u ∈ S, let Mu denote the Π-critical matching for u inside S. Let
αu := x(δ(u, V − S)), α′u = y(δ(u, V − S)) and w :=

∑
u∈S αuMu, w

′ :=
∑

u∈S α
′
uMu. If x and y

are not identical inside S and αu = α′u for every u ∈ S, then S contradicts the minimality of T .
Hence, for each maximal set S ∈ S we have two cases – either (1) x and y are identical inside S,
and thus for every u ∈ S, αu = α′u or (2) αu 6= α′u for some u ∈ S.

Fix S ∈ S. The following modified solutions

a(e) :=

{
x(e) if e ∈ δ(S) ∪ E[V \ S],

w(e) if e ∈ E[S],

b(e) :=

{
y(e) if e ∈ δ(S) ∪ E[V \ S],

w′(e) if e ∈ E[S],

are also optimal solutions since we used only tight edges w.r.t. Π for these modifications.

Claim 7.2. Consider two edges u1v1 ∈ δ(S) ∩ supp(a), u2v2 ∈ δ(S) ∩ supp(b), u1, u2 ∈ S. Then
there exists an even alternating path PS inside S between u1 and u2 such that a(e) > 0 for every
even edge and b(e) > 0 for every odd edge. Also, consider the extended path P ′S = u1v1PSu2v2. If
there exists a set Z ( S,Z ∈ F such that V (P ′S) ∩ Z 6= ∅, then P ′S intersects δ(Z) in exactly one
even and one odd edge.

Proof. By the modification, supp(a)∩E[S] contains the Π-critical-matching Mu1 and supp(b)∩E[S]
contains the Π-critical-matching Mu2 . Then the symmetric difference of Mu1 and Mu2 contains an
u1 − u2 alternating path satisfying the requirements (by Lemma 2.2).

We perform the above modifications inside every S ∈ S, and denote by a and b the result of all
these modifications. Let us now contract all sets in S w.r.t. Π; let G′, c̃′,F ′ denote the resulting
graph, costs and laminar family respectively. By Lemma 4.1(ii), the images a′ and b′ are both
optimal solutions in P ′F ′(G

′, c̃′).
We claim that a′ and b′ are still not identical inside T ′. Indeed, assume a′ and b′ are identical

inside T ′. Then we must have had case (1) for every S ∈ S. Note that we only modified x and y
on the edge set ∪S∈SE[S], and hence the contracted images must be identical: x′ = a′ and y′ = b′,
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and consequently, x′ = y′. As x and y are not identical inside T , they must differ inside at least
one S ∈ S. This contradicts the fact that case (1) applied for every S ∈ S.

By the assumption on T , we also have a′(δ(u′, V ′ − T ′)) = b′(δ(u′, V ′ − T ′)) for every u′ ∈ T ′.
Hence Claim 7.1 is applicable, giving an alternating closed walk C ′ with a′(e) > 0 on every even
edge and b′(e) > 0 on every odd edge. Now, we can extend C ′ to an even alternating closed walk
C in the original graph using the paths PS as in the above claim. The resulting closed walk C will
have the property that if there exists a set Z ( S,Z ∈ F such that V (C)∩Z 6= ∅, then C intersects
δ(Z) in exactly one even and one odd edge.

8 Open Questions

Our initial motivation was to bound the number of iterations of the cutting plane method using
the Padberg-Rao procedure. This question remains open and any analysis would have to deal with
non-half-integral solutions.

Within our algorithm, Lemma 3.1 shows that it is sufficient to use positively-critical dual
optimal solutions to maintain proper-half-integrality. Can we prove efficient convergence of our
cutting plane algorithm using positively-critical dual optimal solutions (without using extremal dual
solutions)? We believe that such a proof of convergence should depend on whether the following
adversarial variation of Edmonds’ algorithm for perfect matching is polynomial time. Suppose
we run the Edmonds’ perfect matching algorithm, but after every few iterations, the adversary
replaces the current dual solution with a different one, still satisfying complementary slackness
with the (unchanged) primal solution.

Given the encouraging results of this paper, it would be interesting to prove efficient convergence
of the cutting plane method for other combinatorial polytopes. For example, one could try a similar
approach for finding an optimal solution for b-matchings. Another direction could be to try this
approach for optimizing over the subtour elimination polytope.
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