
Mathematical Programming 42 (1988) 203-243 203
North-Holland

DUAL COORDINATE STEP M E T H O D S FOR
LINEAR NETWORK FLOW PROBLEMS

D i m i t r i P. B E R T S E K A S a n d J o n a t h a n E C K S T E I N
Laboratory for Information and Decision Systems and Operations Research Center, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA

Received 12 August 1987
Revised manuscript received 2 June 1988

We review a class of recently-proposed linear-cost network flow methods which are amenable to
distributed implementation. All the methods in the class use the notion of e-complementary
slackness, and most do not explicitly manipulate any "global" objects such as paths, trees, or
cuts. Interestingly, these methods have stimulated a large number of new serial computat ional
complexity results. We develop the basic theory of these methods and present two specific methods,
the e-relaxation algorithm for the minimum-cost flow problem, and the auction algorithm for the
assignment problem. We show how to implement these methods with serial complexities of
O (N 3 log NC) and O(NA log NC), respectively. We also discuss practical implementat ion issues
and computational experience to date. Finally, we show how to implement e-relaxation in a
completely asynchronous, "chaotic" environment in which some processors compute faster than
others, some processors communicate faster than others, and there can be arbitrarily large
communicat ion delays.

Key words: Network flows, relaxation, distributed algorithms, complexity, asynchronous
algorithms.

I. Introduction

This paper considers a number of recent developments in network optimization, all
of which originated from efforts to construct parallel or distributed algorithms. One

obvious idea is to have a processor (or virtual processor) assigned to each node of
the problem network. The intricacies of coordinating such processors makes it
awkward to manipulate the "global" objects- -such as cuts, trees, and augmenting
pa ths- - tha t are found in most traditional network algorithms. As a consequence,
algorithms designed for such distributed environments tend to use only local infor-
mation: the dual variables associated with a node and its neighbors, and the flows
on the arcs incident to the node. For reasons that will become apparent later, we
call this class of methods dual coordinate step methods. Their appearance ,Jas also
stimulated a flurry of advances in serial computat ional complexity results for network

optimization problems.

Supported by Grant NSF-ECS-8217668 and by the Army Research Office under grant DAAL03-86-K-
0171. Thanks are due to David Castafion, Paul Tseng, and Jim Orlin for their helpful comments.

204 D.P. Bertsekas, 3". Eckstein / Dual coordinate step methods

Another feature of these algorithms is that they all use a notion called e-complemen-
tary slackness. As we shall see, this idea is essential to making sure that a method
that uses only local information does not " jam" or halt at a suboptimal point.
However, e-complementary slackness is also useful in the construction of scaling
algorithms. The combination of scaling and e-complementary slackness has given
rise to a number of computational complexity results, most of them serial. Some of
the algorithms behind these results use only local information, but others use global
data, usually to construct augmenting paths.

Here, we will concentrate on local algorithms, since they are the ones which hold
the most promise of efficient parallel implementation, and show how they can be
regarded as approximate coordinate ascent or relaxation methods in an appropri-
ately-formulated dual problem. Section 2 of this paper gives an overview and partial
history of these methods. Section 3 examines in detail what is perhaps the generic
algorithm of the class, the e-relaxation method [7]. Section 4 develops some basic
serial complexity analysis tools for this algorithm [28, 29, 8], also addressing the
special case of maximum flow problems. Section 5 combines this analysis with the
notion of scaling [30-32, 19, 24, 41, 5], yielding a polynomial (O(N 3 log NC)) serial
algorithm for the minimum-cost flow problem (N is the number of nodes, and C
the largest absolute value of the arc cost coefficients). In Section 6, we introduce
the auction algorithm [9] for the assignment problems, and show how it may be
regarded as an implementation of a special form of e-relaxation in which nodes
are processed in a particular order. In view of this connection, we indicate how the
auction algorithm can be implemented in O(NAlog NC) time, where A is the
number of arcs in the network. We present computational results indicating that
the practical performance of the auction algorithm is competitive with state-of-the-art
codes (unfortunately, the same cannot yet be said of e-relaxation). In Section 7,
we present an implementation of e-relaxation that works in a completely asyn-
chronous, chaotic environment [10]. Finally, Section 8 presents conclusions and
discusses some of the open questions regarding this class of algorithms.

2. History and overview

We first introduce the minimum-cost flow problem and its dual. Consider a directed
graph with node set N and arc set A, with each arc (i,j) having a cost coefficient
a~j. Letting f~ be the flow of the arc (i,j), the classical rain-cost flow problem [39,
Ch. 7] may be written

minimize ~ ai~fj (MCF)
(i,j)cA

subject to

Z f # - E fji=si Vi~N, (1)
(i,j)~A (.j,i)~A

b~<~fj<~c o V(i,j)~A, (2)

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 205

where ao, bgj, cgj and s~, are given integers. In order for the constraints (1) to be
consistent, we require that ~i~N s~ = 0. We also assume that there exists at most one
arc in each direction between any pair of nodes, but this assumption is for notational
convenience and can be easily dispensed with. We denote the numbers of nodes
and arcs by N and A, respectively. Also, let C denote the maximum absolute value
of the cost coefficients, max(~.j~ala~jI.

In this paper, a f l o w f will be any vector in ~a, with elements denoted f j , (i,j) c A.
A capacity-feasible flow is one obeying the capacity constraints (2). If a capacity-
feasible flow also obeys the conservation constraints (1), it is a feasible flow.

We formulate a dual problem to (MCF) by associating a Lagrange multiplier pg
with each conservation of flow constraint (1). Letting f be a flow and p be the vector
with elements p~, i c N, we can write the corresponding Lagrangian function as

L (f p) = • (a~ +pj -p ,) f j + Y~ s,p,. (3)
(i,j)cA i~N

One obtains the dual function value q(p) at a vector p by minimizing L(f, p) over
all capacity-feasible flows f This leads to the dual problem

maximize q(p) (4)

subject to no constraint on p, with the dual functional q given by

q(p) = mini{L(f p)lb~j <~f~ <~ c~, (i,j) ~ A}

= • q!i(P~-Pj) + Z sgp~ (5a)
(i,j)~A i~lN

where

q~ (Pi -P j) = minjij{(aq + Pj - Pi) f j l bo <~ f i <~ c~ }. (5b)

The function qo is shown in Fig. 1. This formulation of the dual problem is consistent
with conjugate duality frameworks [42], [43] but can also be obtained via linear
programming duality theory [35], [39]. We henceforth refer to (MCF) as the primal
problem, and note that standard duality results imply that the optimal primal cost
equals the optimal dual cost. We refer to the dual variable pi as the price of node i.

Naive coordinate ascent and the jamming phenomenon

We have now obtained a dual problem which is piecewise-linear and unconstrained.
A straightforward approach to distributed unconstrained optimization is to have
one processor responsible for maximization along each coordinate direction. This
approach leads to an iterative algorithm, called naive coordinate ascent, that chooses
at each iteration a node i, and maximizes the dual function q with respect to p~,
while keeping all other prices constant. Unfortunately, as shown in Fig. 2, this
algorithm does not always work as desired, due to the nondifferentiability of q. In
particular, there may be suboptimal price vectors p from which q cannot be improved
by changing any single price coordinate. If naive coordinate ascent encounters such
a point, it will loop infinitely without improving the dual objective; we call this
phenomenon jamming.

206 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

Primal
cost
for arc
(i,j)

| ,

* i

I I

bi I qJ

slope aij

fii

Dual
cost
for arc
(i,j)

slope - b, i

slope - ~ Pi -

k

Fig. 1. Primal and dual costs for arc (i,j).

c
7 " - - V ' - " - - - ~ _ ~ - - of equal s

dual-cost

Pl

Fig. 2. Illustration of jamming. At the indicated point, it is impossible to improve the cost by changing
any single price.

J a m m i n g and the R E L A X approach

One way o f avoiding the j amming problem is embodied in the R E L A X family ol

serial computer codes (see [12, 17, 46]). Essentially, these codes make dual ascent,

along directions that have a minimal number o f non-zero components , which mean',
that they select coordinate directions whenever possible. Only when j amming occur~

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 207

do they select more complicated ascent directions. These codes have proved remark-
ably efficient in practice; however, adapting them to exploit a massively parallel
computing environment appears to be a very intricate task, due to the difficulties
of coordinating many simultaneous multiple-node price change and labeling
operations.

Note that jamming would not occur if the dual cost were differentiable. If the
primal cost function is strictly convex, then the dual cost is indeed differentiable,
and application of coordinate ascent is straightforward and well-suited to parallel
implementation. Proposals for methods of this type include [44, 20, 38, 22 and 36].
[48] contains computational results on a simulated parallel architecture, and [47]
results on an actual parallel machine. [14] and [15] contain convergence proofs.

The auction approach

A different, more radical approach to the jamming problem is to allow small price
changes, say by some amount e, even if they worsen the dual cost. This idea dates
back to the 1979 auction algorithm [9, 10, 11], a procedure for the assignment
(bipartite matching) problem that predates the RELAX family of algorithms. (An
extension to the transportation problem is given in [13].) In this algorithm, one
considers the nodes on one side of the bipartite graph to be "people" or agents
placing bids for the "objects" representing the nodes on the other side of the graph.
The dual variables pj corresponding to the "object" nodes may then be considered
to be the actual current prices of the objects in the auction. The phenomenon of
jamming in this context manifests itself as two or more people submitting the same
bid for an object. In a real auction, such conflicts are resolved by people submitting
slightly higher bids, thus raising the price of the object, until all but one bidder
drops out and the conflict is resolved (we give a more rigorous description of the
auction algorithm later in this paper).

e-relaxation and e-complementary slackness

This idea of resolving jamming by forcing (small) price increases even if they worsen
the dual cost is also fundamental to the central algorithm of this paper, which we
call e-relaxation. This algorithm was first introduced in [7]; [8] is a revision of [7]
which includes a (non-polynomial) complexity analysis of the algorithm without
the use of scaling.

To develop this algorithm, we introduce the classical complementary slackness
conditions, and a relaxation of them which we call e-complementary slackness. The
classical complementary slackness conditions for minimum-cost network flow prob-
lem may be expressed as

f /<cij ~ pi-Pj<~a~ V(i , j) eA , (6a)

bij <f: ~ pi -p j >~ a~j V(i,j) ~ A. (6b)

208 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

Standard linear programming duality theory gives that f and p are jointly optimal
for the primal and dual problems, respectively, if and only if they satisfy complemen-
tary slackness and f is feasible.

Appealing to conjugate duality theory [42, 43], there is a useful interpretation of
the complementary slackness conditions (6a-b). Referring to Fig. 1, the complemen-
tary slackness conditions on (i, j) and the capacity constraint bu ~<f~j <~ c~ are precisely
equivalent to requiring that -f~j be a supergradient of the dual function component
qij at the point p~-pj. This may be written -f~j e a q~j (p ~ - p j). Adding these conditions
together for all arcs incident to a given node i and using the definition of the dual
functional (5a), one obtains that for any pair (f, p) obeying complementary slackness,
the surplus of node i, defined to be

g~:- ~ f j i - ~ f~j+si, (7)
(j,i)~A (i,j)EA

is in fact a supergradient of q(p) considered as a function of p~, with all other node
prices held constant. We may express this as g~ e aq~(p~ ; p), where q~(- ; p) denotes
the function of a single variable obtained from q by holding all prices except the
ith fixed at p. The surplus also has the interpretation as the flow into node i minus
the flow out of i given by the (possibly infeasible) flow f. Thus a flow f is feasible
if and only if the corresponding surpluses g~ are zero for all i e N. (Note that the
sum of all the surpluses is zero for any flow.)

We make a few further definitions: we say that an arc (i , j) is

Inactive if p~ < a~j + pj, (8a)

Balanced if p~ = a~j + pj, (8b)

Active if pg > aii+ pj. (8c)

The combined condition - f j c aq<j(p~-pj) may then be reexpressed as

f~j = bij if (i , j) active, (9a)

b U <~f~j<~ c U if (i , j) balanced, (9b)

f j = c/j if (i , j) active. (9c)

Figure 3 displays the form of the dual function along a single price coordinate Pi.

Dual functional q(p)

Pi

Fig. 3. The dual functional q(p) graphed with respect to a single price coordinate.

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 209

The breakpoints along the curve correspond to points where one or more arcs
incident to node i are balanced. If one wishes to maintain complementary slackness,
only at the breakpoints is there any freedom in choosing arc flows; on the linear
portions of the graph, all arcs are either active or inactive, and all flows are determined
exactly by (9a) and (9c).

Now consider the classical complementary slackness conditions relaxed by a
nonnegative amount e, thus:

f j < Cij =::> Pi -- Pj <~ aij q- e, (10a)

bv < f i ~ pi - p j ~> a U - e. (10b)

A flow-price pair (f p) obeying these relaxed conditions is said to obey e-
complementary slackness. The notion of e-complementary slackness was used in
[9, 10], and introduced more formally in [15, 17]. It was also used in the analysis
of [45] (Lemma 2.2) in the special case where the flow vector f is feasible. Figure
4 compares the "kilter diagrams" for conventional and e-complementary slackness.

P i -P j

aij

t i j
cij

fij

P i -P j

aij - e

• v

bij cij
fij

(a) (b)
Fig. 4. Kilterdiagramsfor(a)conventionalcomplementaryslacknessand(b) e-complementaryslackness.

The e-relaxation algorithm works by maintaining a flow-price pair (f, p), with f
integral, that obeys e-complementary slackness, but not necessarily regular com-
plementary slackness. It repeatedly selects nodes i whose surplus gi is positive, and
sets the corresponding price pi to a value which is within e of some maximizer
of the dual cost with respect to Pi, with all other prices held constant (usually this
value is e plus the largest maximizer of the dual cost if such a maximizer exists).
This operation is called an up iteration. Because p~ is not set to the maximizing
value, the method does not necessarily obtain an improvement in the dual objective
at each iteration; thus we call it a dual coordinate step method as opposed to a
coordinate ascent method. With each up iteration, the flow vector is adjusted to
maintain integrality and e-complementary slackness. As we shall prove below, this
process will eventually drive all the nodes' surpluses to zero, resulting in a final

210 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

flOW f that is optimal if e < d / N , where d is the greatest common divisor of the

arc costs. It avoids jamming by following paths such as those depicted in Fig. 5. If

e >~ d / N , the algorithm will still terminate with a feasible flow, but this flow may

not be optimal.

The Goldberg-Tarjan max imum flow method

Another important algorithm belonging to the dual coordinate step class is the
maximum flow method of Goldberg and Tarjan [28,29]. This algorithm was

developed roughly concurrently with, and entirely independently from, the auction

algorithm and the RELAX family of codes. The original motivation for this algorithm

seems to have been quite different from the theory we emphasize in this paper; it

appears to have been originally conceived of as a distributed, approximate computa-

tion of the "layered" representation of the residual network that is common in

maximum flow algorithms [24]. However, it turns out that the first phase of this
two-phase algorithm, in its simpler implementations, is virtually identical to e-

relaxation as applied to a specific formulation of the maximum flow problem. This

connection will become apparent later. Basically, the distance estimates of the

maximum flow algorithm may be interpreted as dual variables, and the method in

fact maintains e-complementary slackness with e = 1.

The connection between the Goldberg-Tarjan maximum flow and e-relaxation

provides two major benefits: e-relaxation gives a natural, straightforward way of
reducing the maximum flow method to a single phase, and much of the maximum

flow method's complexity analysis can be applied to the case of e-relaxation.

Complexity analysis

There are several difficulties in adapting the maximum flow analysis of [28] and

[29] to the case of e-relaxation. The first is in placing a limit on the amount that

prices can rise. The approach taken here synthesizes the ideas of [8] with those of

, ~ , Surfaces of equal dual cost
m

Pl Pl

Fig. 5. When the ith price Pi is chosen for relaxation, it is changed to p~+ e, where p~ is a value of the
ith price that maximizes q(p) with all other prices held fixed. When e is small, it is possible to approach
the optimal solution even if each step does not result in a dual cost improvement. The method eventually
stays in a small neighborhood of the optimal solution.

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 211

[30]-[32]. This methodology can also be applied directly to solving maximum flow
problems with arbitrary initial prices, as opposed to initial prices satisfying Pi <~ Pj + 1
for all arcs (i,j), as in [28] and [29].

Another problem is that of flow looping. This is discussed in Section 4 (see Fig.
7), and refers to a phenomenon whereby small increments of flow move an exponen-
tial number of times around a loop without any intermediate price changes. To
overcome this difficulty one must initialize the algorithm in a way that the subgraph
of arcs along which flow can change is acyclic at all times. In the max-flow problem
this subgraph is naturally acyclic, so the difficulty does not arise. Flow looping is
also absent from the assignment problem because all arcs may be given a capacity
of 1, and (as we shall see) the algorithm changes flows only by integer amounts.

Section 4 also discusses the problem of relaxing nodes out of order. The acyclic
subgraph mentioned above defines a partial order among nodes, and it is helpful
to operate on nodes according to this order. This idea is central in the complexity
analysis of [8], and leads to a simple and practical implementation that maintains
the partial order in a linked list. We call this the sweep implementation. This analysis,
essentially given in [8], provides an O(N2~/e) complexity bound where fl is a
parameter bounded by the maximum simple path length in the network where the
length of arc (i,j) is taken to be]a~i]. Maximum flow problems can be formulated
so that f l /e = O(N), giving an O(N 3) complexity bound for essentially arbitrary
initial prices. For other minimum cost flow problems, including the assignment
problem, the complexity is pseudopolynomial, being sensitive to the arc cost
coefficients. The difficulty is due to a phenomenon which we call price haggling.
This is analogous to the ill-conditioning phenomenon in unconstrained optimization,
and is characterized by an interaction in which several nodes restrict one another
from making large price changes (see Sections 5 and 6).

Developments in scaling

e-complementary slackness is also useful in constructing scaling algorithms, which
conversely help to overcome the problem of price haggling. We first distinguish
between two kinds of scaling: cost scaling and e-scaling. In cost scaling algorithms
(which have their roots in [24]), one holds e fixed and gradually introduces more
and more accurate cost data; in e-scaling, the cost data are held fixed and e is
gradually reduced. In both cases, the solutions obtained at the end of each scaling
phase (except the last) may not be optimal for the cost data used for that phase,
because e may be greater than or equal to d /N . e-scaling is mentioned in [9] as a
method for improving the performance of the auction algorithm, based on computa-
tional experimentation. The method of e-scaling was first analyzed in [30], where
an algorithm with O(NA log(N) log(NC)) complexity was proposed, and a contrast
with the method of cost scaling was drawn. The complexity of this algorithm was
fully established in [31] and [32], where algorithms with O(NS/3A 2/3 log(NC)) and
O (N 3 log NC) complexity were also given, and parallel versions were also discussed.

212 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

The first two algorithms use complex, sophisticated data structures, while the
O (N 3 log(NC)) algorithm makes use of the sweep implementation. Both also employ
a variation of e-relaxation we call broadbanding, which will be described later in
this paper. Independent discovery of the sweep implementation, following the
appearance of [8], is claimed in [32] (where it is called the wave implementation).
These results improved on the complexity bounds of all alternative algorithms for
(MCF), which in addition are not as well suited for parallel implementation as the
e-relaxation method. Scaling analyses similar to [30] appeared later in such works
as [26], [27], and [2].

In this paper we show how to moderate the effect of price haggling by using a
similar but more traditional cost scaling approach in place of e-scaling. This
approach, given in [5], in conjunction with the sweep implementation, leads to a
simple algorithm with an O (N 3 log(NC)) complexity. It also bypasses the need for
the broadbanding modification to the basic form of the e-relaxation method, intro-
duced in [30-32] in conjunction with e-scaling.

Usually the most challenging part of scaling analysis [19, 24, 30-32, 37, 41, 45]
is to show how the solution of one subproblem can be used to obtain the solution
of the next subproblem relatively quickly. Here, the main fact is that the final
price-flow pair (p,f) of one subproblem violates the e-CS conditions for the next
one by only a small amount. A way of taking advantage of this was first proposed
in Lemmas 2-5 of [30] (see also [31, 32]). A key lemma is Lemma 5 of [30], which
shows that the number of price changes per node needed to obtain a solution of
the next subproblem is O(N) . There is a similar lemma in [19] that bounds the
number of maximum flow computations in a scaling step in an O(N41og C)
algorithm based on the primal-dual method. Our Lemma 5 of this paper is a
refinement of Lemma 5 of [30], and is also an extension of Corollary 3.1 of [8],
which bounds the number of price rises per node in the case where scaling is not
used. We introduce a measure/3 (p°) of suboptimality of the initial price vector p0,
whereas [30-32] use an upper bound on this measure. This extension allows the
lemma to be used in contexts other than scaling.

Other recent developments in scaling include Gabow and Tarjan's [27], which is
also a cost scaling method. Furthermore, analysis in [32], drawing on some ideas
of Tardos [45], shows that a strongly polynomial bound (that is, one polynomial in
N and A) may be placed on a properly implemented scaling algorithm.

3. The ~-relaxation method in detail

To discuss e-relaxation in detail, we must further develop the theory of e-
complementary slackness. We introduce some further terminology that will be useful
later. We say that the arc (i,j) is

e- Inactive if Pi < % + p / - e, (11 a)

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 213

e -Balanced if pi = a~ +pj - e, (1 lb)

e-Balanced i fao+pj-e<~p~<~a~+pj+e, (l l c)

e+-Balanced i f p i = a ~ + p j + e , (l l d)

e-Active i f p~>ao+pj+e . (l l e)

Note that e - -ba lanced and e+-balanced are both special cases of e-balanced. The
e-complementary slackness conditions (combined with the arc capacity conditions)
may now also be expressed as

f j = b~ if (i , j) is e-inactive,

b~ <~fj <~ c~j if (i , j) is e-balanced,

f i = c/j if (i , j) is e-active.

(12a)

(lZb)

(12c)

The usefulness of e-complementary slackness is evident in the following proposition:

Proposition 1. I f e < 1/N, f is primal feasible (it meets both constraints (1) and (2)),
and f and p jointly satisfy e- CS, then f is optimal for (MCF).

Proof. I f f is not optimal then there must exist a simple directed cycle along which
flow can be increased while the primal cost is improved. Let Y+ and Y- denote
the sets of arcs of forward and backward arcs in the cycle, respectively. Then we

must have

a!j- ~ ao <O , (13a)
(i,j)~ Y+ (i,j)~ Y

f j < cij for (i , j) c Y+, (13b)

bo<f j for (i , j)~ Y . (13c)

Using (10a-b), we have

pi<~pj+a~+e for (i , j)~ Y+, (14a)

pj<~pi -ao+e f o r (i , j) c Y - . (14b)

Adding all the inequalities (14a) and (14b)together and using the hypothesis e < 1 / N

yields

Z ai j - ~ a i j > l - N e > - l .
(i,j)c Y+ (i,j)~ Y

Since the a~ are integral, this contradicts (13a). []

A strengthened form of Proposition 1 also holds when the arc cost coefficients
and flow bounds are not integer, and is obtained by replacing the condition e < 1 / N
with the condition

I } e < min Length of Y < 0 (15)
All directed cycles Y~ Number of arcs in Y ' ~

214

where

D.P. Bertsekas, J. Eekstein / Dual coordinate step methods

Length of cycle Y = 5~ a~j- Y, a0.
(i,j)~ Y+ (i,j)c Y

obtained by suitably The proof is modifying the last relation

(16)

in the proof of
Proposition 1. A very useful special case is t h a t f is optimal if e < d/N, where d is
the greatest common divisor of all the arc costs. When all arc costs are integer, we
are assured that d >~ 1.

A useful way to think about e-complementary slackness is that if the pair (f, p)
obey it, then the rate of decrease in the primal cost to be obtained by moving flow

around a directed cycle Y without violating the capacity constraints is at most I Yle.
It limits the steepness of descent along the elementary directions (using the ter-
minology of [42]) of the primal space.

The admissible graph

When the e-relaxation algorithm is performing an iteration at some node i, it can
only change the flow on two kinds of arcs: outgoing e+-balanced arcs (i,j) with

f j < co, and incoming e -balanced arcs (j, i) with fji > bji. We call these two kinds
of arcs admissible. The admissible graph G* corresponding to a pair (f, p) is the
directed graph with node set N, an arc (i,j) for each e+-balanced arc (i,j) in A

with f j < cij, and a reverse arc (j, i) for each e - -ba lanced arc (i,j) in A with f j > bij.
It is similar to the residual graph corresponding to the flow f which has been used
by many other authors (see [39], for example), but only contains arcs that are

admissible. Note that it is possible for the admissible graph to contain two distinct
copies of the arc (i,j), one corresponding to (i,j) in the original network, and the
other to (L i).

Push lists

To obtain an efficient implementation of e-relaxation, one must store a representation
of the admissible graph. We use a simple "forward star" scheme in which each

node i stores a linked list containing all the arcs of the original network corresponding
to arcs of the admissible graph outgoing from i - - tha t is, all arcs whose flow can
be changed by iterations at i without any alteration in p. We call this list a push list.
Although it is possible to maintain all push lists exactly at all times, doing so requires
manipulating unnecessary pointers; it is more efficient to allow some inadmissible
arcs to creep onto the push lists. However, all push lists must be complete: that is,
though it may contain some extra arcs, i's push list must contain every arc whose

flow can be altered by iterations at i without a price change.
The complexity results in most of the earlier work on the dual coordinate step

class of algorithms [28, 29, 8, 30] implicitly require push lists or something similar.

The first time push lists seem to have been discussed explicitly is in [32], where
they are called edge lists.

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 215

The Exact form of up iteration

We now give a precise implementa t ion of the up iteration. Assume that f is a
capaci ty-feas ible flow, the pair (f, p) obeys e - complemen ta ry slackness, a push list

co r responding to (f p) exists at each node, and all these lists are complete . Let
i c N be a node with posit ive surplus (gi > 0).

Up iteration

Step 1 (Find Admissible Arc): Remove arcs f rom the top of r s push list until
finding one which is still admissible (this arc is not deleted f rom the list). I f gi > 0

and the arc so found is an outgoing arc (i , j) , go to Step 2. I f gi > 0 and the arc
found is an incoming arc (j, i), go to Step 3. I f the push list has b e c o m e empty, go
to Step 4. I f an arc was found but gi = 0, stop.

Step 2 (Decrease surplus by increasing f j) : Set

L:=f , j+8,

gi := gi -- t~,

g~:=gj+6,

where 6 = min{g~, c i j - f j } . I f 6 = c i j - f j , delete (i , j) f rom i's push list (it must be
the top item). Go to Step 1.

Step 3 (Decrease surplus by reducing f/~): Set

£, := £ , - 6,

g~ := gi - 6,

gj:=gj+6,

where 6 = min{g i ,£~- bii}. I f 6 =f/~-bj~, delete (L i) f rom i's push list (it must be
the top item). Go to Step 1.

Step 4 (Scan/Pr ice Increase) : By scanning all arcs incident to i, set

Pi := min{{pj + aii + e l (i , j) c A and f i < cii}

{Pj - aii + e](j, i) ~ A and bji <f/i}} (17)

and construct a new push list for i, containing exactly those incident arcs which are

admiss ible with the new value of p,. Go to Step 1. (Note: I f the set over which the
m i n i m u m in (17) is t aken is empty and gi > 0, halt with the conclus ion that the

p rob l em is in feas ib le - - see the comments below. I f this set is empty and gi = 0,
increase p~ by e and stop.)

The serial e - re laxat ion a lgor i thm consists of repea ted ly selecting nodes i with
gi > 0, and per forming up iterations at them. The me thod terminates when gi <~ 0
for all i ~ N, in which case it follows that g~ = 0 for all i ~ N, and that f is feasible.

216 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

Basic lemmas

To see that execut ion o f Step 4 must lead to a price increase note that when it is

entered, we have

f j = ci: for all (i , j) such that Pi >~Pj + au + e, (18a)

bji =fji for all (j, i) such that pi>~pj-aj~+e. (18b)

Therefore , when Step 4 is entered we have

p, < min{pj + a~j + e [(i , j) c A and f: < c~/}, (19a)

p~ < min{pj - aj~ + e I(J, i) c A and big <~i}. (19b)

It follows that Step 4 must increase p~, unless g~ > 0 and the set over which the
m i n i m u m is taken is empty. In that case, f,:i = cu for all (i ,j) outgoing f rom i and
bji =~i for all (j, i) incoming to i, so the m a x i m u m possible flow is going out o f i
while the m i n i m u m possible is coming in. I f g~ > 0 under these circumstances, then
the p rob lem instance must be infeasible.

Lemma 1. The e-relaxation algorithm preserves the integrality o f f the e-complementary
slackness conditions, and the completeness of all push lists at all times. All node prices
are monotonically nondecreasing throughout the algorithm.

Proof. By induct ion on the n u m b e r of up iterations. Assume that all the condit ions

hold at the outset o f an i teration at node i. F rom the fo rm of the up iteration, all
changes to f are by integer amounts and e - complemen ta ry slackness is preserved.
By the above discussion, the i teration can only raise the price of i. Only inadmissible
arcs are r emoved f rom i's push list in Steps 1, 2 and 3, and none of these steps

change any prices; therefore, Steps 1, 2, and 3 preserve the comple teness of push
lists. In Step 4, i 's push list is constructed exactly, so that push list remains complete.
Finally, we must show that the price rise at i does not create any new admissible
arcs that should be on other nodes ' push lists. First, suppose (j, i)6 A becomes
e+-ba lanced as a result o f a price rise at i. Then (j, i) must have been former ly
e-active, hence fji = cji, and (j, i) cannot be admissible. A similar a rgument applies

to any (i , j) that becomes e -ba lanced as a result o f a price rise at i. We have thus
shown that all arcs added to the admiss ible graph by Step 4 are outgoing f rom i. []

Lemma 2. Suppose that the initial prices pi and the arc cost coefficients a~ are all integer
multiples ore. Then every execution of Step 4 results in a price rise of at least e, and
all prices remain multiples of e throughout the e-relaxation algorithm.

Proof. It is clear f rom the fo rm of the up i teration that it preserves the divisibility
o f all prices by e. Thus any price increase must be by at least e, and the above

discussion assures that every execut ion of Step 4 results in a price increase. The
l emma follows by induct ion on the n u m b e r of up iterations. []

D.P. Bertsekas, J. Eekstein / Dual coordinate step methods 217

We hencefor th assume that all arc costs and initial prices are integer multiples

o f e. A straightforward way to do this, considering the s tanding assumpt ion that

the a~ are integer, is to let e = 1/k, where k is a positive integer, and assume that

all pi are multiples o f 1/k. I f we wish to satisfy the condit ions o f Proposi t ion 1, a

natural choice for k is N + 1.

Lemma 3. An up iteration at node i can only increase the surplus of nodes other than
i. Once a node has nonnegative surplus, it continues to do so for the rest of the algorithm.
Nodes with negative surplus have the same price as they did at the outset of the algorithm.

Proof. The first statement is a direct consequence o f the form of Steps 2 and 3 o f

the up iteration. The second then follows because each up iteration cannot drive

the surplus o f node i below zero, and can only increase the surplus o f adjacent

nodes. For the same reasons, a node with negative surplus can never have been the
subject o f an up iteration, and so its price must be the same as at initialization,

proving the third claim. []

Finiteness

We now prove that the e-relaxation algori thm terminates finitely. Since we will be

giving an exact complexi ty estimate in the next section, this p r o o f is not strictly

necessary. However, it serves to illuminate the workings o f the algori thm without
getting involved in excessive detail.

Proposition 2. I f problem (MCF) is feasible, the pure form of the e-relaxation method
terminates with (f, p) satisfying e-CS, and with fbe ing integer and primal feasible.

Proof. Because prices are nondecreasing (Lemma 1), there are two possibilities:

either (a) the prices o f a nonempty subset N °~ of N diverge to + ~ , or else (b) the
prices o f all nodes in N remain bounded f rom above.

Suppose that case (a) holds. Then the algori thm never terminates, implying that

at all times there must exist a node with negative surplus which, by Lemma 3, must

have a constant price. Thus, N ~ is a strict subset o f N. To preserve e-CS, we must

have after a sufficient number o f iterations

f j = c ~ for all (i , j) ~ A with i c N ~, j ~ N ~, (20a)

fji=bji fo r a l l (j , i) c A with i o N ~, j ~ N ~, (20b)

while the sum of surpluses o f the nodes in N ~ is positive. This means that even

with as much flow as arc capacities allow coming out o f N ° to nodes j ~ N ~, and

as little flow as arc capacities allow coming into N ~ f rom nodes j ~ N °, the total

surplus Y~ {gi] i ~ N ~} of nodes in N ~ is positive. It follows that there is no feasible

flow vector, contradict ing the hypothesis. Therefore case (b) holds, and all the node

prices stay bounded.

218 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

We now show that the algorithm terminates. If that were not so, then there must

exist a node i c N at which an infinite number of iterations are executed. There

must also exist an adjacent e--balanced arc (j, i), or e+-balanced arc (i,j) whose

flow is decreased or increased (respectively) by an integer amount during an infinite

number of iterations. For this to happen, the flow of (j, i) or (i,j) must be increased

or decreased (respectively) an infinite number of times due to iterations at the

adjacent node j. This implies that the arc (j, i) or (i , j) must become e+-balanced
or e--balanced from e--balanced or e+-balanced (respectively) an infinite number
of times. For this to happen, the price of the adjacent node j must be increased by

at least 2e an infinite number of times. It follows that pj ~ oo which contradicts the

boundedness of all node prices shown earlier. Therefore the algorithm must

terminate. []

Degenerate price rises

Note that when the push list is empty, the price p~ of the current node may be raised

at the end of an up iteration even when g~ = 0. We call any price rise performed at

i when g~ = 0 degenerate. Such price rises can be viewed as optional, and do not

affect the finiteness or complexity of the algorithm. It is possible to omit them

completely, and halt the up iteration as soon as g~ = 0. However, our computational

experience has shown that degenerate price rises are a good idea in practice. Similar

price changes have proved useful in the RELAX family of algorithms.
The reasons for this are not entirely clear, but some insight is obtained if we view

degenerate steps as an attempt to increase the size of the price increases. The

complexity analysis of the next section suggests that the algorithm terminates faster
when the price increases are as large as possible.

Partial iterations

Actually, it is not strictly necessary to approximately maximize the dual cost with

respect to p~. One can also construct methods that work by repeatedly selecting

nodes with positive surplus and applying partial up iterations to them. A partial up
iteration is the same as an up iteration, except that it is permitted to halt following

any execution of Step 2, 3, or 4. Thus, such algorithms are not constrained to

reducing gi to zero before turning their attention to other nodes. It turns out that

these algorithms retain the finiteness and most of the complexity properties of
e-relaxation. They become important when one analyzes synchronous parallel

implementations of e-relaxation.

Broadbanding

Another useful variation on the basic up iteration, which we call broadbanding, is
due to Goldberg and Tarjan [30-32]. In our terminology, broadbanding amounts
to redefining the admissible arcs to be those that are active and have f j < % alone

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 219

Dual functional

Pl "als Ps P2 +as2 P3"a3s • + =P'+a° 4 Price of node s

(a)

Price Level

P3"a3s (~Price r i s e ? P4*as4

Io,2oI~,/to,3ol

/-~ ~ P 2 +as2
Pl "% ~ [o,lo]

[0,201 Ps

Flow decrease from 20 to 10

Flow increase from 0 to 10

(b) (c) (d)

Fig. 6. Illustration of an up iteration involving a single node s with four incident arcs (1, s), (3, s), (s, 2),
and (s, 4), with feasible arc flow ranges [1, 20], [0, 20], [0, 10], and [0, 30], respectively.

(a) Form of the dual functional along Ps for given values of Pl, P2, P3, and P4. The breakpoints
correspond to the levels of p.~ for which the corresponding arcs become balanced. For values of p~
between two successive breakpoints there are no balanced arcs incident to node s. The corresponding
slope of the dual cost is equal to the surplus g~ resulting when all active arc flows are set to their upper
bounds and all inactive arc flows are set to their lower bounds; compare with (5).

(b) Illustration of a price rise of Ps from a value between the first two breakpoints to a value e above
the breakpoint at which (s, 2) becomes balanced (Step 4).

(c) Price rise of Ps to a value e above the breakpoint at which arc (3, s) becomes balanced. When
this is done, arc (s, 2) has changed from C-balanced to e-active, and its flow has increased from 0 to
10, maintaining e-CS.

(d) Step 3 of the algorithm reduces the flow of arc (3, s) from 20 to 10, driving the surplus of node
s to zero.

220 D.P. Ber t sekas , 3". Ecks t e in / D u a l coord ina te s tep m e t h o d s

with those that are inactive and have f j > b~j. Using e-complementary slackness
(6a-b), it follows that the admissible arcs consist of

(i,j) such that f j < c~ and p~ -p~ c (a~, a 0 + e], (21a)

(j, i) such that fji > bji and pj -Pi c [aj~- e, aij). (21b)

We use the name broadbanding because arcs admissible for flow changes from their

"start" nodes can have reduced costs anywhere in the band [- e , 0), whereas in
regular e-relaxation the reduced cost must be exactly - e . A similar observation
applies to admissible arcs eligible for flow changes from their "end" nodes.

Broadbanding makes it possible to drop the condition that e divide all the arc
costs and initial prices, yet still guarantee that all price rises are at least e, which
is useful in e-scaling.

Down iterations

It is possible to construct a down iteration much like the above up iteration, which
is applicable to nodes with gi < 0, and reduces (rather than raises) pi. Unfortunately,
if one allows arbitrary mixing of up and down iterations, the e-relaxation method
may not even terminate finitely. Although experience with the RELAX methods
[12, 17, 15] suggests that allowing a limited number of down iterations to be mixed

with the up iterations might be a good idea in practice, our computational experi-
ments with down iterations in e-relaxation have not been conclusive.

4. Basic complexity analysis

We now commence a complexity analysis of e-relaxation. We will develop a general

analysis that will apply both the (pure) e-relaxation algorithm we have already
introduced, and to the scaled version we will discuss later.

The price bound fl(p)

We develop the price bound f l (p) , which is a function of the current price vector
p, and serves to limit the amount of further price increases. For any path H, let
s(H) and t(H) denote the start and end nodes of H, respectively, and let H + and

H - be the sets of arcs that are positively and negatively oriented, respectively, as
one traverses the path from s(H) to t(H). We call a path simple if it is not a circuit

and has no repeated nodes. For any price vector p and simple path H we define

dH(p)=max{O, }~ (pi--pj--au)- ~ (p~--pj--a~;)}
(i , j) e H + " (i , j) e H -

=max{O, ps(H)--pt(H)-- ~ ao+ ~ ao}. (22)
(i , j)~ H + (i , j)c H

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 221

Note that the second term in the maximum above may be viewed as a "reduced
cost length of H " , being the sum of the reduced costs (Pi -Pj - a~) over all arcs

(i , j) c H + minus the sum of (p i - p j - a i j) over all arcs (i , j) 6 H - . For any f l o w f
we say that a simple path H is unblocked with respect to f if we have f j < c U for all
arcs (i , j) c H +, and we have f j > bij for all arcs (i , j) ~ H- . In words, H is unblocked
with respect to f if there is margin for sending positive flow along H (in addition
to f) from s (H) to t (H) without violating the capacity constraints.

For any price vector p, and feasible flow f define

D (p , f) = m a x { d ~ (p) [H is a simple unblocked path with respect to f}.
(23)

In the exceptional case where there is no simple unblocked path with respect to f
we define D (p , f) to be zero. In this case we must have bo = eli for all (i,j), since
any arc (i , j) with b~ < c~ gives rise to a one-arc unblocked path with respect t o f Let

f l (p) = m i n { D (p , f) [f c ~A is feasible flow}. (24)

There are only a finite number of values that D (p , f) can take for a given p, so
the minimum in (24) is attained for some f The following lemma shows that f l (p)
provides a measure of suboptimality of the price vector p. The computational
complexity estimate we will obtain shortly is proportional to fl(pO), where p0 is the

initial price vector.

Lemma 4. (a) I f for some 7 ~> 0, there exists a feasible flow f satisfying y-CS together
with p then

0 ~ / 3 (p) ~< (S - l)y. (25)

(b) p is dual optimal if and only if ~ (p) =0.

Proof. (a) For each simple path H which is unblocked with respect to f and has
[HI arcs we have, by adding the y-CS conditions given by (6a-b) along H and using

(22),

dH(p) <~ IH[7 ~< (N - 1)3, (26)

and the result follows from (23) and (24).
(b) I f p is optimal then it satisfies complementary slackness together with some

primal optimal vector f so from (26) (with y = 0) we obtain f l (p) - - 0 . Conversely
if f l (p) = 0 , then from (24) we see that there must exist a primal feasible f such
that D (p , f) = 0. Hence d n (p) = 0 for all unblocked simple paths H with respect
to f Applying this fact to single-arc paths H and using the definition (16) we obtain

that f together with p satisfy complementary slackness. Hence p and f are

optimal. []

2 2 2 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

Price rise lemmas

We have already established that f l (p) is a measure of the optimality of p that is
intimately connected with e-complementary slackness. We now show that fl (p) also
places a limit on the amount that prices can rise in the course of the e-relaxation
algorithm. Corollary 3.1 of [8] gives such a limit for the unscaled algorithm, but a
more powerful result is required for the analysis of scaling methods. The first such
result is contained in Lemmas 4 and 5 of [30], but does not use a general suboptimality
measure like f l (p) . The following lemma combines the analysis of [30] with that
of [8], and is useful in both the scaled and unscaled cases.

Lemma 5. I f (MCF) is feasible, the number of price increases at each node is
O (f i (p °) / e + N) .

Proof. Let (f, p) be a vector pair generated by the algorithm prior to termination,
and let f o be a flow vector attaining the minimum in the definition (24) of /3(p°) .
The key step is to consider y = f _ f o , which is a (probably not capacity-feasible)
flow giving rise to the same surpluses {gi, i c N} as f If g, > 0 for some node t, there
must exist a node s with gs < 0 and a simple path H with s (H) = s, t (H) = t, and
such that y~j > 0 for all (i , j) c H + and YiJ < 0 for all (i , j) c H - . (This follows from
the Conformal Realization Theorem [42, p. 104]. See also [25].)

By the construction of y, it follows that H is unblocked with respect to f0. Hence,
from (23) we must have dH(p °) <~ D (p ° , f °) = el(p°), and by using (22),

0 0 p ~ - p , - ~ a~j+ Y~ a~j <~lg(p°). (27)
(i , , j)~ H + (i , j) ~ H -

The construction of y also gives that the reverse of H must be unblocked with
respect to f Therefore, e-complementary slackness (6a-b) gives Pi <~Pi - a!j + e for
all (i , j) c H + and pi <~ pj + aq + e for all (i , j) ~ H - . By adding these conditions along
H we obtain

-p.~+p,+ ~. a o - Y~ ao<~{H{e<~(N-1)e , (28)
(i,.j)~ H + (i,j)c H -

where IH[is the number of arcs of H. We have pO=p~ since the condition gs < 0
implies that the price of s has not yet changed. Therefore, by adding (27) and (28)
we obtain

p, _pO<~ fl(p0) + (N - 1)e (29)

throughout the algorithm for all nodes t with g ,> 0. From the assumptions and
analysis of the previous section, we conclude that all price rises are by at least e,
so there are at most ~9(p°)/e + (N - 1) price increases at each node through the last
time it has positive surplus. There may be one final degenerate price rise, so the
total number of price rises i s /3 (p°) /e + N per node. []

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 223

In some cases, more information can be extracted from f _ f o than in the above
proof. For instance, Gabow and Tarjan [27] have shown that in assignment problems
it is not only possible to bound the price of the individual nodes, but also the sum
of the prices of all nodes with positive surplus. They use this refinement to construct
an assignment algorithm with complexity O(N~/2A log NC); however, the scaling

subroutine used by this algorithm is a variant of the Hungarian method, rather than
a dual coordinate step method. Ahuja and Orlin [2] have adapted this result to
construct a hybrid assignment algorithm that uses the auction algorithm as a
subroutine, but has the same complexity as the method of [27]. Their method
switches to a variant of the Hungarian method when the number of nodes with
positive surplus is sufficiently small. This bears an interesting resemblance to a

technique used in the RELAX family of codes [12, 17, 46], which, under certain
circumstances typically occurring near the end of execution, occasionally use descent
directions corresponding to a more conventional pr imal-dual method.

Work breakdown

Now that a limit has been placed on the number of price increases, we must limit
the amount of work associated with each price rise. The following basic approach

to accounting for the work performed by the algorithm dates back to Goldberg and
Tarjan's max-flow analysis [28, 29]. We define:

Scanning work to be the work involved in executing Step (4) of the up iteration - -
that is, computing new node prices and constructing the corresponding push lists.
We also include in this category all work performed in removing items from push lists.

Saturating pushes are executions of Steps 2 and 3 of the up iteration in which an

arc is set to its upper or lower flow bound (that is, 3 = co - f j in Step 2, or 3 =~i - bJi
in Step 3).

Nonsaturating pushes are executions of Steps 2 and 3 that set an arc to a flow
level strictly between its upper and lower flow bounds.

Limiting the amount of effort expended on the scanning and saturating pushes
is relatively easy. From here on we will write/3 for/3(p0) to economize on notation.

Lemma 6. The amount of work expended in scanning is O(A(fl/ e + N)).

Proof. We already know that O(/3/e + N) price rises may occur at any node. At

any particular node i, Step 4 can be implemented so as to use O(d(i)) time, where
d(i) is the degree of node i. The work involved in removing elements from a push
list built by Step 4 is similarly O(d(i)). Thus the total (sequential) work involved
in scanning for all nodes is

[] (30)

224 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

Supply = _ ~

Feas. Row Range = [0 , 1 |

1 C o s t = 2 Fea~. Flow Range . [O,R]
Cost - -1

Feats. Flow Range ,,, [0 ~])
Cost ,, -1 Feas. Flow Range = [0,1]

Cost = 2

R~=I" Large Integer ~ ~)

Demand = 1

Fig. 7. Example showing the importance of keeping the admissible graph acyclic. Initially, we choose
f = 0, p = 0, which do satisfy e-complementary slackness, but imply a cyclic initial admissible graph.
The algorithm will push one unit of flow R times around the cycle 2-3-2, taking 12(R) time.

Lemma 7. The amount of work involved in saturating pushes is also O(A(f l / e + N)) .

Proof. Each push (saturating or not) requires O(1) time. Once a node i has performed
a saturating push on an arc (i ,j) or (j, i), there must be a price rise o f at least 2e

by the node j before another push (necessarily in the opposi te direction) can occur

on the arc. Therefore, O (f l / e + N) saturating pushes occur on each arc, for a total

of O (A (f l / e + N)) work. []

Node ordering and the sweep algorithm

The main challenge in the theoretical analysis o f the algorithm is containing the
amount o f work involved in nonsaturating pushes. There is a possibility of flow
looping, in which a small amount o f flow is " p u s h e d " repeatedly a round a cycle o f

very large residual capacity. Figure 7 illustrates that this can in fact happen. As we

shall see, the problem can be avoided if the admissible graph is kept acyclic at all

times. One way to assure this is by having e < 1 /N. In that case, one can easily

prove that the admissible graph must be acyclic by an argument similar to Proposi t ion

1. However , we also have the following:

Lemma 8. I f the admissible graph is initially acyclic, it remains so throughout the
executions of the e-relaxation algorithm.

Proof. All " p u s h " operat ions (executions o f Steps 2 and 3) can only remove arcs

f rom the admissible graph; only price rises can insert arcs into the graph. Note also

that in Lemma 1, we proved that when arcs are inserted, they are all directed out

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 225

of the node i at which the price rise was executed. Consequently, no cycle can pass
through any of these arcs. []

Thus, it is only necessary to assure that the initial admissible graph is acyclic.
I f it is acyclic, the admissible graph has a natural interpretation as a partial order

on the node set N. A node i is called a predecessor of node j in this partial order
if there is a directed path from i to j in the admissible graph. I f i is a predecessor
of j, then j is descendant of i. Each push operation moves surplus from one node
to one of its immediate descendents, and surplus only moves "down" the admissible
graph in the intervals between price changes.

The key to controlling the complexity of nonsaturating pushes is the interaction
between the order in which nodes are processed and the order imposed by the
admissible graph. The importance of node ordering was originally recognized in

the max-flow work of [28] and [29], but the particular ordering used there does not
work efficiently in the minimum-cost flow context.

To proceed with the analysis, we must first prohibit partial up iterations: every
up iteration drives the surplus of its node to zero. Secondly, we assume that the
algorithm is operated in cycles. A cycle is a set of iterations in which all nodes are
chosen once in a given order, and an up iteration is executed at each node having
positive surplus at the time its turn comes. The order may change from one cycle
to the next.

A simple possibility is to maintain a fixed node order. The sweep implementation,
given except for some implementation details in [8], is a different way of choosing
the order, which is maintained in a linked list. Every time a node i changes its price,

it is removed from its present list position and placed at the head of the list (this
does not change the order in which the remaining nodes are taken up in the current
cycle; only the order for the subsequent cycle is affected). We say that a given (total)
node order is compatible with the order imposed by the admissible graph if no node
appears before any of its predecessors.

Lemma 9. I f the initial admissible graph is acyclic and the initial node order is compatible
with it, then the order maintained by the sweep implementation is always compatible
with the admissible graph.

Proof. By induction over the number of flow and price change operations. Flow
alterations only delete arcs from the admissible graph, so they preserve compatibility.
After a price rise at node i, i has no predecessors (by the proof of Lemma 1), hence
it is permissible to move it to the first position. So price rises also preserve compati-
bility. []

Lemma 10. Under the sweep implementation, if the initial node order is acyclic and
the initial node order is compatible with it, then the maximum number of cycles is
O(N()8 /e+ N)) .

226 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

Proof. Let N + be the set of nodes with positive surplus that have no predecessor
with positive surplus, and let N O be the set of nodes with nonpositive surplus that

have no predecessor with positive surplus. Then, as long as no price increase takes
place, all nodes in N o remain in N °, and the execution of a complete up iteration

at a node i 6 N + moves i from N + to N °. I f no node changed price during a cycle,
then all nodes of N + will be added to N o by the end of the cycle, implying that the
algorithm terminates. Therefore there will be a node price change during every cycle
except possibly for the last cycle. Since the number of price increases per node is
O(/3/e + N) , this leads to an estimate of a total of O(N(CJ/e + N)) cycles. []

Lemma 11. Under the same conditions as Lemma 10, the total complexity of non-
saturating pushes is O(N2(~ / e + N)).

Proof. Nonsaturating pushes necessarily reduce the surplus of the current node i
to zero, so there may be at most one of them per up iteration. There are less than
N iterations per cycle, giving a total of O (N 2 (~ / e + N)) possible nonsaturating
pushes, each of which takes O(1) time. []

Figure 8 depicts the sweep implementation.

Proposition 3. Under the sweep implementation, if the initial admissible graph is acyclic
and the initial node order is compatible with it, then the total complexity of the sweep
implementation is O(N2(fl / e + N)).

Proof. Combining the results of Lemma 6, 7 and 11, we find that the dominant
term is O (N 2 (f l / e + N)) , corresponding to the nonsaturating pushes (since we
assume at most one arc in each direction between any pair of nodes, A = O(N2)).

The only other work performed by the algorithm is in maintaining the linked list,
which involves only O(1) work per price rise, and scanning down this list in the

4- 4-

Direction of sweeping
o o

0

- +

Fig. 8. Illustration of the admissible graph. A " + " (or " - " or "0") indicates a node with positive (or
negative or zero) surplus. The algorithm is operated so that the admissible graph is acyclic at all times.
The sweep implementation, based on the linked list data structure, processes high ranking nodes (such
as nodes 1 and 2) before low ranking nodes (such as node 3).

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 227

course of each cycle, which involves O (N) work per cycle. As there are O(N2(fl/e +
N)) price rises and O(N(f l /e + N)) cycles, both these leftover terms work out to

O(N2(/3/e+ N)). []

A straightforward way of meeting the conditions of Proposition 3 is to choose p

arbitrarily and set f j -- c~i for all active (as opposed to e-active) arcs and f j = b,j for
all inactive ones. Then there will be no admissible arcs, and the initial admissible
graph will be trivially acyclic. The initial node order may then be chosen arbitrarily.

The above proof also gives insight into the complexity of the method when other
orders are used. At worst, only one node will be added to N o in each cycle, and
hence that there may be S2(N) cycles between successive price rises. In the absence
of further analysis, one concludes that the complexity of the algorithm is a factor

of N worse.
An alternate approach is to eschew cycles, and simply maintain a data structure

representing the set of all nodes with positive surplus. [32] shows that a broad class
of implementations of this kind have complexity O(NA(/3/e + N)). (Actually, these
results are embedded in a scaling analysis, but the outcome is equivalent.)

We now give an upper bound on the complexity of the pure (unscaled) e-relaxation
algorithm, using the sweep implementation. Suppose we set the initial price vector
p0 to zero and choose f so that there are initially no admissible arcs. Then a crude
upper bound on/3 is NC, where C is the maximum absolute value of the arcs costs,
as in Section 2. Letting e = 1/(N + 1) to assure optimality upon termination, we get
an overall complexity bound of O(N4C). Figure 9 demonstrates that the time taken

by the method can indeed vary linearly with C, so the algorithm is exponential.
Note also that any upper bound/3* on/3 provides a means of detecting infeasibil-

ity: I f the problem instance (MCF) is not feasible, then the algorithm may abort in
Step 4 of some up iteration, or some group of prices may diverge to +co. I f any

price increases by more than/3* + Ne, then we may conclude that such a divergence
is happening, and halt with a conclusion of infeasibility. Thus, the total complexity
may be limited to O(N:(/3*/e + N)), even without the assumption of feasibility.

NC is always a permissible value for/3*.

Application to maximum flow

For classes of problems with special structure, a better estimate o f / 3 (p °) may be
possible. As an example, consider the max-flow problem formulation shown in Fig.
10. The artificial arc (t, s) connecting the sink t with the source s has cost coefficient

- 1 , and flow bounds b,s = 0 and c,~ = Y.i~N Csi. We assume that a o = 0 and bii = 0 < co
for all other arcs (i,j), and that si = 0 for all i. We apply the e-relaxation algorithm
with initial prices and arc flows satisfying e-complementary slackness, where e =

1 / (N + 1). The initial prices may be arbitrary, so long as there is an O(1) bound on
how much they differ. Then we obtain dH(p °) = O(1) for all paths H,/3(p0) = O(1),
and an O (N 3) complexity bound. Note we may choose any positive value for e and

228 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

a12=0
- c ~ 3 Flow range for arcs:

Arc (1,2): [0,21
%~=1 =c Arc (2,3): [0,1]

Arc (3,1): [0,11

(a) Problem Data

o.o o.o

f= 1 ~ f=O f= 1 ' ~ f=O

p=O p=O
(b) Initial flows and prices (c) Flows and prices after 1st

iteration at node 1

f = i ~ # / f = O = f=l f=O

p=O p=O
(d) Flows and prices after 2nd (e) Flows and prices after 3rd
iteration at node 2 iteration at node 1

Fig. 9. Example showing that the computation required by the pure form of the e-relaxation algorithm
can be proportional to the cost-dependent factor C. Here, up iterations at node 1 alternate with up
iterations at node 2 until the time when Pt rises to the level C - 1 + e and arc (3, 1) becomes e--balanced,
so that a unit of flow can be pushed back along that arc. At this time, the optimal solution is obtained.
Since prices rise by increments of no more than 2e, the number of up iterations is 12(C/E).

Source t Sink
Price = 1 Price = 0

4

Fig. 10. Formulation of the max-flow problem.

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 229

negative values for a , , as long as e = - a t s / (N + l) (more generally e =
-a,s/(1 + Largest number of arcs in a cycle containing (t, s))).

Applied like this to the maximum flow problem, e-relaxation yields an algorithm
resembling the maximum flow algorithm of [28-29], and having the same complexity.
However, it has only one phase. The first phase of the procedure of [28-29] may
in hindsight be considered an application of e-relaxation with e = 1 to the (infeasible)
formulation of the maximum flow problem in which one considers all arcs costs to
be zero, s~ = - ~ , and s, = + ~ .

5. Scaling procedures

In general, some sort of scaling procedure [19, 24, 41] must be used to make the
e-relaxation algorithm polynomial. The basic idea is to divide the solution of the
problem into a polynomial number of subproblems (also called scales or phases) in
which e-relaxation is applied, with ~(p°) / e being polynomial within each phase.
The original analysis of this type, as we have mentioned, is due to Goldberg ([30]
and, with Tarjan, [32]), who used e-scaling. In order to be sure that all price rises
are by J2 (e) amounts, both these papers use the broadbanding variant of e-relaxation
as their principal subroutine (though they also present alternatives which are not
dual coordinate step methods). Here, we will present an alternative cost scaling
procedure, given in [4], that results in an overall complexity of O (N 3 log NC) and
does not require broadbanding.

Cost scaling

Consider the problem (SMCF) obtained from (MCF) by multiplying all arc costs
by N + 1, that is, the problem with arc cost coefficients

al j=(N+l)a! i for all (i,j). (31)

If the pair (f ' , p ') satisfies 1-complementary slackness (namely e-complementary
slackness with e = 1) with respect to (SMCF), then clearly the pair

(f, p) = (f', p ' / (N + 1)) (32)

satisfies (N + 1)-l-complementary slackness with respect to (MCF). Hence, if f ' is
feasible, it is optimal for (MCF) by Proposition 1. In the scaled algorithm, we seek
a solution to (SMCF) obeying 1-complementary slackness.

Let

M = [log2(N + 1)C] + 1 = O(log(NC)) . (33)

In the scaled algorithm, we solve M subproblems, in each case using the sweep
implementation of e-relaxation. The ruth subproblem is a minimum cost flow
problem where the cost coefficient of each arc (i,j) is

ao(m) = Trunc(a ~j/(2 M - - m)), (34)

230 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

where Trunc(.) denotes integer rounding in the direction of zero, that is, down for
positive and up for negative numbers. Note that au(m) is the integer consisting of
the m most significant bits in the M-bit binary representation of a~. In particular,

each a0(1) is 0, +1, or - 1 , while a ~ (m + l) is obtained by doubling ao(m) and
adding (subtracting) one if the (m + 1)st bit of the M-bit representation of a,~ is a
one and ab is positive (negative). Note also that

ao(M) =ali, (35)

so the last problem of the sequence is (SMCF).

For each subproblem, we apply the unscaled version of the algorithm with e = 1,
yielding upon termination a pair (f'(m), p~(m)) satisfying 1-complementary slack-
ness with respect to the cost coefficients a~(m).

The starting price vector for the (m + 1)st problem (m = 1, 2 , . . . , M - 1) is

p°(m + 1) = 2p ' (m) . (36)

Doubling p'(m) as above roughly maintains complementary slackness since ai~(m)
is roughly doubled when passing to the (m + 1)st problem. Indeed it can be seen
that every arc that was 1-balanced (1-active, 1-inactive) upon termination of the
algorithm for the ruth problem will be 3-balanced (1-active, 1-inactive, respectively)
at the start of the (m + 1)st problem.

The starting flow vector f ° (m + l) for the (m + 1)st problem may be obtained
from f ' (m) in any way that obeys 1-complementary slackness, keeps the admissible
graph acyclic, and allows straightforward construction of a compatible node order.
The simplest way to do this is to set

f°(m + 1) = f ~ (m) for all balanced arcs (i,j), (37a)

f ° (m+ 1)= co for all active arcs (i,j), and (37b)

f°(m + 1) = bo for all inactive arcs (i,j). (37c)

This procedure implies that the initial admissible graph for the (m + 1)st problem
has no arcs, and so an arbitrary node order (such as the one from the end of the
last subproblem) may be used. A procedure that does not alter as many arc flows
(and hence is likely to generate fewer nodes with nonzero surplus) is to set

f°(m + 1) = ci~

f°(m + 1) = bij

f°(m + 1) = c!i

f°(m + l) = b o

f°(m + l) = f b (m)

for all 1-active arcs (i,j),

for all 1-inactive arcs (i,j),

for all l+-active arcs (i,j) that were not admissible at the
end of the previous phase,

for all 1--active arcs (i,j) that were not admissible at the
end of the previous phase, and

for all other arcs (i,j).

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 231

In this case, the arc set of the new admissible graph will be a subset of that prevailing
at the end of subproblem m, hence the new graph will be acyclic. Furthermore, the
node order at the end of phase m will be compatible with the new admissible graph,
and may be used as the starting node order for phase m + 1. For thefirst subproblem,
however, there is no prior admissible graph, so the procedure (37a-c) must be used,
and the initial node order can be arbitrary. The starting prices may be arbitrary so
long as there is an O(N) bound o n h o w much they can differ .

Analysis

Using the analysis of Section 4, it is now fairly straightforward to find the complexity
of the scaled form of the algorithm as outlined above.

Proposition 4. The complexity of the scaled form of the e-relaxation algorithm is
O (N 3 log NC).

Proof. Using Proposition 3 and e = 1, the complexity of the scaled form of the
algorithm is O(N2B + N3M) where

M

B= 2 flm(P°(m)) (38)
r n = l

and t im(') is defined by (22)-(24) but with the modified cost coefficients ao(m)
replacing aij in (22). We show that

flm(p°(m)) = O (N) for all m, (39)

thereby obtaining an O (N 3 log NC) complexity bound, as M = O(log NC).
At the beginning of the first subproblem, we have

pi-pj=O(1) , a0(1) =O(1) for all arcs (i,j), (40)

so we obtain dH(p°(1))=O(N) for all H, and f l l(p°(1))=O(N). The final flow
v e c t o r f ' (m) obtained from the m-th problem is feasible, and together with pO(m + 1)
it may be easily seen to satisfy 3-complementary slackness. It follows from Lemma
4(a) that

flm+l(p°(m + 1)) <~ 3 (N - 1) = O(N) . (41)

It then follows that B = O(NM), and the overall complexity is O (N 3 log NC). []

Practical experience with scaled e-relaxation

Despite the good theoretical complexity bounds available for the scaled form of
e-relaxation and its relatives, dual coordinate algorithms have not yet proven
:hemselves to be good performers in practice. Although nonsaturating pushes are
:he theoretical bottleneck in the algorithm, they present little problem in practice.
We have observed that typically there are only a few flow alterations between

232 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

successive price rises. The real problem with the algorithm is the tendency of prices
to rise at the theoretically minimum rate--by only e or 2e per price change. This
is the phenomenon of price haggling. Essentially, the algorithm is following a
"staircase" path in the dual (such as in Fig. 5), where the individual steps are very
small.

Without scaling, the amount of price haggling can be exponential (as in Fig. 9),
so scaling is clearly necessary to make e-relaxation efficient. However, even with
scaling, our computational experiments have shown that price haggling is still a
serious difficulty. It often manifests itself in a prolonged "endgame" at the close of
each subproblem, in which only a handful of nodes have positive surplus at any
given time. Our experiments have also shown that degenerate price rises often cause
a dramatic decrease in price haggling.

Even with scaling and degenerate steps, however, we have found e-relaxation to
be much slower than state-of-the-art sequential codes such as RELAX for large
problems. We have not yet experimented with broadbanding and e-scaling as
opposed to cost scaling; although these techniques may offer some speed-up, we
suspect it will not be dramatic. Also, the potential speed-up obtainable by a parallel
implementation, as roughly indicated by the average number of nodes that simul-
taneously have positive surplus, appears to be only an order of magnitude or less.
To make e-relaxation algorithms viable, even on massively parallel machines, more
work will need to be done to overcome price haggling.

6. The auction algorithm

The auction algorithm for the assignment problem, however, when combined with
scaling, seems to have only limited difficulties with price haggling, and appears
competitive with state-of-the-art codes even without any benefit from parallelism.
Indeed, it has proved faster on a limited set of test problems.

Constructing auction from e-relaxation

We now develop the auction algorithm as a variant of e-relaxation. Note that th~
converse is also possible: by converting a minimum-cost flow problem to an assign
ment problem, and applying the auction algorithm, one may obtain a generic versior
of e-relaxation. For a derivation of the auction method from first principles, refe
to [10] and [11].

Consider a feasible assignment problem with n sources, n sinks, and an arbitrar,
set A of source-to-sink arcs. We say that source i is assigned to sink j if (i , j) ha
positive flow. All arcs are given capacity 1, So a flow change always sets an arc tq
its upper or lower bound, and all pushes ale saturating. Thus, if one keeps trac
of the set of positive-surplus nodes such that the work of finding a node to iterat
upon is always O(1), then the complexity of the pure e-relaxation algorithm (usin
push lists) is reduced to O (A (~ / e + N)) , regardless of the order in which node

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 233

are processed. Scaling therefore yields an O (N A log N C) algorithm. We now con-
sider an algorithm in which up iterations are paired into "bids". Between bids (and
also at initialization), only source nodes i can have positive surplus. Each bid does
the following:

(I) Finds any unassigned source i (that is, one with positive surplus), and
performs an up iteration at i.

(II) Takes the sink j to which i was consequently assigned, and performs an up
iteration at j , even i f j has zero surplus. If j has zero surplus, such an up iteration
may just consist of a degenerate price rise. If the presence of an admissible arc on
j ' s push list indicates that no price rise is possible, then this step takes just O(1)
time, aside from the work of removing inadmissible arcs from j ' s push list, which
may be "charged" against earlier scanning steps.

More specifically, a bid by node i works as follows:

(a) Source node i sets its price to pj + aij + e, where j minimizes Pk -F aik + e over
all k for which (i, k) c A. It then sets f j = 1, assigning itself to j.

(b) Node i then raises its price to pj,+ au,+ e, where j ' minimizes Pk + aik -t- 6 for
k # j , (i, k) ~ A .

(c) I f s i n k j had a previous assignment fi,j = 1, it breaks the assignment by setting
f~,j := 0 (one can show inductively that if this occurs, pj = P u - auj+ e).

(d) Sink j then raises its price pj to

pi - au + e = Pr + a u' - au + 2e. (42)

It is possible to rewrite the description of the bidding operation so that the prices
of sinks do not explicitly appear. For compatibility with [10] and [11], we also
formulate the assignment problem as a m a x i m i z a t i o n by reversing the signs of all
the a u. Let y = 2 e , and define the value v u of a s i n k j to a source i to be a u - P ; .

The rewritten bid iteration becomes

(1) Choose a person i who is unassigned.
(2) Find an object j* that offers maximum value to i, that is

a u . - p : * = max(id)~a{a/j - P i } . (43)

Also, find the best value offered by objects other than j*, namely

wu. = max(i , j)~a. j~j .{a u --pj}. (44)

(3) Compute the bid price

bu. = a u . - wu. + 31, (45)

md raise the price p j. of j* to this level. Assign i to j*, and break any prior
tssignment that j* may have had.

What we have just described is the Gauss-Seidel or sequential version of the
Luction algorithm of [10, 11]. Those papers also show that several source nodes
aay place bids simultaneously. In that case, each sink node that receives more than
,ne bid awards itself (provisionally) to the highest bidder. Hence the name "auction
lgorithm".

234 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

We may think of each node i as an agent who is trying to assign itself to an object
j that comes within 3' of offering the highest value to i. Once i has found the most
desirable object j*, it bids j* ' s price up to the highest level that still satisfies this
criterion. In an actual auction involving real money, doing this would be foolish;
however, we believe that this feature is instrumental in reducing price haggling and

is precisely what makes the algorithm perform well in practice.

Push lists and complexity

I f we implement the auction algorithm as a variation of e-relaxation with a special
node ordering scheme, as described above, then proper attention to push lists will
insure an O (A (1 3 / e + N)) unscaled complexity. The only detail one must worry

about is that up iterations begun at nodes with zero surplus (as in (II) above) do
not add to the overall effort. The discussion in (II) above establishes this. Applying
scaling then gives a complexity of O (N A log NC) .

However, as in (a-d), it is possible to state the auction algorithm without reference
to any of the source node prices Pi. We now present an implementation of auction
that does not maintain source node prices, yet retains the complexity O (N A log NC).

Given any price vector p for the sink nodes, define an artificial price 7ri of each
source node i by

7ri = - max {ai: -pj}. (46)
(i ,j)~A "

The reader may confirm that the prices ~r, p and the current flow (assignment) j
always obey y-complementary slackness. The reader may also refer to [11] for a
proof that i f f is feasible (that is, it is a complete assignment) and (f, ~r,p) satisf)
y-complementary slackness with 3' < 1/n = 2 /N, then f is optimal. This accor&,
with Proposition 1 and the definition y = 2e.

Suppose there is a limit 13" on the amount that any single pj can rise. From (a-dl
above, all price rises are at least y, so there are at most j3*/3' price rises at any sink
or by (46)--a t any source.

Each source node i maintains a push list consisting of all nodes except j* tha
were tied for offering the value w : the last time i scanned its incident arcs. Alonl

with each node is stored the price pj that prevailed for j at the time the last sca
was done. The bids are performed as follows (note that, as in e-relaxation, all price
are nondecreasing):

(1) Locate an unassigned source node i.
(2) Examine the elements (j, pj) of the push list of i, starting at the top. Discar

any for which p} < p:. Continue until reaching the end of the list, or the secon
element for which pj = p:. I f the end is reached, go to Step (4).

(3) Let j* be the first element on the list for which pj =p/. Discard the conten~
of the list up to, but not including, the second such element. Place a bid on j*

price level p: + y, assigning i to j* and breaking any prior assignment of j*. Stol

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 235

(4) Scan the incident arcs of i, determining an element j* with maximum value,

the next best value wu. , as defined above, and all elements (other than j*) tied at
value level wo.. Let the new push list of i be a list of all nodes j other than j* tied
at value level wu. , coupled with their present prices. Submit a bid for j* at price
level bo., assigning i to j* and breaking any prior assignment of j*. Stop.

This method has complexity O(Afl*/y). We omit the details of the proof, but
the key observation is that (4) can be performed in O(d(i)) time, and that between
every two consecutive executions of (4) at a given node i, there must be an increase
in the artificial price ~r~ of i. Placed in a scaling context where prices cannot rise

by more than fl*/y = O(n) times per node in each subproblem, one can derive an
overall complexity of O(NA log NC). However, it is doubtful that the overhead of
keeping push lists in the auction algorithm is justified in practice. A simpler
implementation that requires i to scan its incident arcs once per bid, whether or
not there has been a change in 7ri, can be shown to have complexity 0 (N 3 log NC).

Computational results

In this section we discuss limited computational experience with a public domain
serial FORTRAN code called AUCTION, which implements the auction algorithm
using e-scaling. The initial sink prices were pj -- mini a u for all j ; this is a common

choice for dual assignment algorithms. At the end of the kth subproblem, A U C T I O N
checks the current assignment to see if it is optimal for the subproblem k + 1, using
the current prices ~r, p. I f the current assignment does not obey e-complementary
slackness with or, p using the new value of e, all assignments along e-inactive arcs
are deleted, and the auction is run again. After some experimentation, we found
that we obtained the best performance by reducing e by a factor of 5 between
subproblems (using a factor other than 2 makes no significant difference in the

complexity analysis). The initial value of e was taken to be nC/2. A U C T I O N does
not use push lists; every time a node bids, it simply scans all its incident arcs.

A U C T I O N implements a Gauss-Seidel version of the auction algorithm, in which
only one node bids at a time. For computational results with a Jacobi version of
AUCTION, which simulates all unassigned nodes bidding simultaneously, refer to
[11]. The Gauss-Seidel version is somewhat faster, but not as amenable to parallel
implementation.

Test problems were generated using the 1987 release version of the widely-used
/

public domain generator N E T G E N [34]. We generated problems with 800 to 12 000
total nodes, and an average node degree of 10. We compared the run times for
A U C T I O N to those of the preexisting state-of-the-art public domain assignment
code due to Jonker and Volgenant [33], also written in FORTRAN. This code
implements a two-phase algorithm; the first phase is an initialization based on

relaxation ideas of the type discussed in [12], while the second phase is a Hungarian
laethod employing shortest path calculations. Both codes were run on a MicroVAX

II CPU under the VMS 4.6 operating system.

236 D.P. Bertsekas, J. Eekstein / Dual coordinate step methods

Our results are summarized in Fig. 11. AUCTION appears faster to the Jonker-
Volgenant code for problems having more than 1000 source nodes. Furthermore,
the factor of superiority increases with problem size. Thus, the preliminary indication
is that the auction algorithm is at least competitive with other serial methods for
sparse assignment problems. This is consistent with the fact that the complexity
O(NA log NC) of the auction algorithm is superior to the complexity O (N 3) of
Hungarian-type methods for sparse problems.

The results of Fig. 11 are typical of those obtained for sparse problems. When
the problem to be solved is dense, the relative performance of the Jonker and
Volgenant code improves markedly. The reason is that a substantial portion of the
computation in the second phase of this code involves finding the minimum of a
node-length array. The time to execute this operation is independent of problem
density. We note that there are some unexpected features in AUCTION's perform-
ance on dense problems. We found that the algorithm with ~-scaling sometimes
performs worse than the unscaled auction algorithm (where e is fixed at 1/(n + 1)),
particularly for large (!) C. It seems that for dense problems, price haggling typically

80

o
o
o 60

.o

X

> 40
c
o

"o
t-
o
o a)

¢n 20

Q.
0

0 7000

) ,
Number of Arcs = 10 * [Number of Nodes] /

/
Scaled Auction /

1000 2000 3000 4000 5000 6000

Number of "Person" Nodes (= 1/2 of total nodes)

Fig. 11. Solution times for AUCTION and the Jonker-Volgenant assignment code on a VAXStatio~
2000, which uses the MicroVAX I1 CPU. All problems were created using NETGEN. Times do nc
include problem input or solution output.

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 237

becomes less of a difficulty when there is a lot of variation in the values of the arc
cost coefficients. A related and somewhat surprising phenomenon is that the unscaled
algorithm's performance for relatively small values of C may be worse than for

large values of C.
Preliminary work on parallel implementations of the Jacobi auction algorithm is

still in progress. While results by other researchers (quoted in [11]) for small numbers
of processors appear encouraging, there are as yet no results for massively parallel
environments. A central problem, as with all dual coordinate step algorithms, is
that it is difficult to guarantee that a substantial fraction of the nodes will have
positive surplus (that is, be unassigned) at any given time, and hence that a large
number of processors can simultaneously be active. Indeed, experimental results
have so far indicated that the average number of unassigned nodes is generally
quite small. Thus, it may prove difficult to obtain massive speed-ups through

parallelization.

7. Asynchronous implementation of e-relaxation

So far as we know, nobody has been able to show how a true theoretical speed-up

of either the auction or e-relaxation algorithms may be obtained by a simple
synchronous parallel implementation. The essential problem is that it is difficult to
guarantee that more than one node will have positive surplus at any given time.

In this section, we will do something quite different: we demonstrate that there
is a version of the e-relaxation algorithm that converges even in a completely chaotic,

asynchronous environment. Because the assumptions made in this model are so
loose, it is not possible to come up with anything comparable to a complexity
estimate. The real point is to show that the algorithm is resilient to the imperfections
and inhomogeneities that may characterize some real-life distributed computing
environments. The formulation involves a far more flexible type of asynchronism
that can be obtained with the use of synchronizers [4]. Algorithmic convergence is
often difficult to establish for chaotic models, but powerful results are now available
to aid in this process [14, 18, 21]. The algorithm given here is more complex than

a related algorithm for strictly convex arc costs [14], and requires a novel method
of convergence proof.

We now return to the ordinary e-relaxation method and assume that each node
i is a processor that updates its own price and incident arc flows, and exchanges

information with its " forward" adjacent nodes

F~ = { j l (i , j) c A}, (47)

and its "backward" adjacent nodes

Bi = {j[(j, i) e a}. (48)

Fhe following distributed asynchronous implementat ion applies to both the pure
algorithm and to the subproblems of the scaled method. The information available

238 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

at node i for any t ime t is as follows:

p~(t): The price of node i,

pj(i, t): The price of node j c Fi w B~ communica t ed by j at some earlier
t ime,

f j (i , t): The est imate of the flow o f arc (i , j) , j ~ F~, available at node i
at t ime t,

fj~(i, t): The est imate of the flow o f arc (j, i), j c B~, available at node i
at t ime t,

g~(t): The est imate of the surplus of node i at t ime t given by

gi(t)= Y. ~i(i, t) - Y~ f j(i , t)-s~. (49)
(j,i)~A (i,2j)~A

A more precise descr ipt ion is possible, but for brevity we will keep our discussion
somewha t informal . We assume that, for every node i, the quanti t ies above do not
change except possibly at an increasing sequence of t imes to, tl , • • •, with tm ~ co.

At each of these times, generical ly denoted t, and at each node i, one of three events
happens :

Event 1. N o d e i does nothing.
Event 2. N o d e i checks g~(t). I f g~(t) <~ 0, node i does nothing further. Otherwise

node i executes either a comple te or par t ia l up i teration based on the available
price and flow informat ion

pi(t), p j (i , t) , j c F i u B , , f j (i , t) , j c F i , f j~(i , t) , j~Bi ,

and accordingly changes

pi(t), f j (i , t) , j 6F , . , f j i (i , t) , j cB , .

Event 3. N o d e i receives, f rom one or more adjacent nodes j ~ F i u B~, a messag~
containing the cor responding price and arc flow (pj(t ') , f j (• t')) (in the case j c F~)

or (pj(t ') , f j i(j , t')) (in the case j 6 Bi) s tored at j at some earlier t ime t ' < t. I f

pj(t') < pj(i, t),

node i discards the message and does nothing further. Otherwise, node i stores th
received value pj(t') in place of pj(i, t). In addit ion, if j < F~, node i stores f j (j , t'
in place o f f j (i , t) if

pi (t)<pj (t ')+a~ and f:j(j, t ')< f : j (i , t)

and otherwise leaves f j (i , t) unchanged ; in the case j c B~, node i stores fji(j, t') i

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 239

place offj~(i, t) if

pj(t')>~pi(t)+aji and fji(j, t ')> fji(i, t)

and otherwise leaves f j(i , t) unchanged. (Thus, in case of a balanced arc, the " t ie"
is broken in favor of the flow of the start node of the arc.)

Let T ~ be the set of times for which an update by node i as in event 2 above is
attempted, and let T~(j) be the set of times when a message is received at i from j

as in event 3 above. We assume the following:

Assumption 1. Nodes never stop attempting to execute an up iteration, and receiving
messages from all their neighbors, i.e., T ~ and T~(j) have an infinite number of
elements for all i and j c F~ w B~.

Assumption 2. Old information is eventually purged from the system, i.e., given any

time tk, there exists a time tm >1 tk such that the time of generation of the price and
flow information received at any node after t,, (i.e., the time t' in #3 above),

exceeds t k.

Assumption 3. For each i, the initial arc flows f j(i , to), j c F~, and fj~(i, to),j c Bi are
integer, and satisfy e-CS together with p~(to) and pj(i, to) , jc F~ u B~. Furthermore
there holds

pi(to) ~ p~(j, to) for all j 6 Fi u Bi ,

f j (i, to) >~ f j (j , to) for all j e F f .

One set of initial conditions satisfying Assumption 3 but requiring little cooper-

ation between processors is pj(i, to)~--oo for i and j ~ F ~ u B i , f j(i , to)=Co and
f j (j , to) = bo for i and j 6 F~. Assumption 3 guarantees that for all t 1> to

pi(t) >~p~(j, t") for all j c F~ u Bi, t "~< t. (50)

To see this, note that pi(t) is monotonically nondecreasing in t, and p~(j, t") equals
p~(t') for some t ' < t".

For all nodes i and times t, f j(i , t) andfj~(i, t) are integer, and satisfy e-CS together
with pi(t) and pj(i, t) , j c F~ u B~. This is seen from (50), the logic of the up iteration,
and the rules for accepting information from adjacent nodes. Furthermore, for all

i and t/> to,

f j (i, t) >~ f j (j , t) for a l l j~F~ , (51)

i.e., the start node of an arc has at least as high an estimate of arc flow as the end
node. For a given (i , j)~ A, condition (51) holds initially by Assumption 3, and it

240 D.P, Bertsekas, J. Eckstein / Dual coordinate step methods

is preserved by up iterations at i since they cannot decrease fj(i , t), while an up

iteration at j cannot increase f j (j , t). It can also be shown that (51) cannot be

violated at the time of a message reception, but we omit the proof.

Once a node i gets nonnegat ive surplus g~(t)>~0, it maintains a nonnegat ive

surplus for all subsequent times. The reason is that an up iteration at i can at most

decrease gi(t) to zero, while in view of the rules for accepting messages, a message

exchange with an adjacent node j can only increase g~(t). Note also that f rom (51)
we obtain

g i (t) < ~ O forall t > ~ t o . (52)
i~N

This implies that, at any time t, there is at least one node i with negative surplus

g~(t) if there is a node with positive surplus. This node i must not have executed

any up iteration up to time t, and therefore its price pi(t) must still be equal to the
initial price p~(to).

We say that the algori thm terminates if there is a time tk such that for all t ~> tk

we have

gi(t) = 0 for all i c N, (53)

fj(i , t)= f j (£ t) for all (4 J) ~ A, (54)

pi(t)=pj(i , t) for all j c F~ u B~. (55)

Terminat ion can be detected by using an adapta t ion o f the protocol for diffusing

computa t ions o f [23]. Our main result is:

Proposition 5. I f (MCF) is feasible and Assumptions 1-3 hold, the distributed, totally
asynchronous version of the algorithm terminates.

Proof. Suppose no up iterations are executed at any node after some time t*. Then
(53) must hold for large enough t. Because no up iterations occur after t*, all the

p~(t) must thencefor th remain constant, and Assumpt ion 1, (50), and the message

acceptance rules imply (55). After t*, no flow estimates may change except by

message reception. By (55), the nodes will eventually agree on whether each arc is

active, inactive, or balanced. The message reception rules, (51), and Assumptions

1-2 then imply the eventual agreement on arc flows (54). (Eventually, the start node
o f each inactive arc will accept the flow of the end node, and the end node of a

balanced or active arc will accept the flow of the start node.)

We now assume the contrary, i.e., that up iterations are executed indefinitely, and

hence for every t there is a time t ' > t and a node i such that g~(t ')>0 . There are

two possibilities: The first is that p~(t) converges to a finite value p~ for every i. In

this case we assume without loss o f generality that there is at least one node i at

which an infinite number of up iterations are executed, and an adjacent arc (i,j)

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 241

whose flow fj(i , t) is changed by an integer amount an infinite number of times
with (i , j) being e+-balanced. For this to happen there must be a reduction of f , (i , t)
through communication from j an infinite number of times. This means that f j (j , t)
is reduced an infinite number of times which can happen only if an infinite number

of up iterations are executed a t j with (i , j) being e- -ba lanced . But this is impossible
since, when Pi and pj converge, arc (i,j) cannot become both e+-balanced and
e -balanced infinitely often.

The second possibility is that there is a nonempty subset of nodes N ° whose
prices increase to ~ . It is seen then that there is at least one node that has negative
surplus for all t, and therefore also a constant price. It follows that N ~ is a strict
subset of N. Since the algorithm maintains e-CS, we have for all sufficiently large

t that

fj(i , t)=f j (j , t)= cij

£,(i, t) - - £ , (j , t) = bj,

for all (i , j) c A with i c N ~ , j ~ N ~,

for all (j, i) ~ A with i 6 N ~ , j ~ N ~.

Note now that all nodes in N ~ have nonnegative surplus, and each must have
positive surplus infinitely often. Adding (49) for all i in N °, and using both (51)
and the above relations, we find that the sum of e~ over all (i , j)c A with i c N ~,

j ~ N ~, plus the sum of si over i6 N ° is less than the sum of bji over all (j, i)~ A

with i~ N ~, j ~ N ~. Therefore, there can be no feasible solution, violating the
hypothesis. It follows that the algorithm must terminate. []

8. Conclusions

Coordinate step methods are based on a blend of classical nonlinear programming

ideas of duality and coordinate ascent, and the notion of e-complementary slackness,
which has its roots in nondifferentiable optimization (see, for instance, [16]). The
methods were motivated, starting with the auction algorithm, by the desire to
massively parallelize the solution of network flow problems. However, they have
yet to fulfill their promise in this regard, either analytically or computationally. The

speed-up they provide in the limited parallel computational experimentation per-
formed so far is not spectacular, and their parallel complexity has not yet been
shown to be superior to their serial complexity. Their serial complexity has been
shown to be very favorable with proper implementation; yet their performance has
yet to match the theoretical promise. In particular, the e-relaxation method has yet
to be shown to approach the actual performance of the earlier (theoretically
pseudopolynomial) relaxation methods [12, 17, 46]. The auction algorithm is the

only member of the class which has been shown to be computationally competitive
with existing serial methods (and probably superior for many types of assignment
problems). There are as yet no published computational experimental results con-
cerning coordinate step methods for max-flow problems. We should also add that

242 D.P. Bertsekas, J. Eckstein / Dual coordinate step methods

c o o r d i n a t e s t ep m e t h o d s a re st i l l r e c e n t , a n d n o t ye t fu l ly u n d e r s t o o d . F u r t h e r

r e s e a r c h m a y s u b s t a n t i a l l y c h a n g e t h e p r e c e d i n g a s s e s s m e n t .

References

[1] R.K. Ahuja and J.B. Orlin, "A fast and simple algorithm for the maximum flow problem," Operations
Research (to appear).

[2] R.K. Ahuja and J.B. Orlin, private communication, November 1987.
[3] R.K. Ahuja, J.B. Orlin and R.E. Tarjan, "Improved time bounds for the maximum flow problem,"

Sloan School Working Paper 1966-87, MIT, 1987.
[4] Awerbuch, B., "Complexity of network synchronization," Journal of the ACM 32 (1985) 804-823.
[5] D.P. Bertsekas and J. Eckstein, "Distributed asynchronous relaxation methods for linear network

flow problems," Proceedings of International Federation of Automatic Control, Munich, July 1987.
[6] D.P. Bertsekas, "Distributed relaxation methods for linear network flow problems," Proceedings of

25th IEEE Conference on Decision and Control, Athens, Greece, 1986, pp. 2101-2106.
[7] D.P. Bertsekas, "Distributed asynchronous relaxation methods for linear network flow problems,"

LIDS Report P-1606, MIT, Sept. 1986.
[8] D.P. Bertsekas, "Distributed asynchronous relaxation methods for linear network flow problems,"

LIDS Report P-1606, MIT, revision of Nov. 1986.
[9] D.P. Bertsekas, "A distributed algorithm for the assignment problem," Unpublished LIDS Working

Paper, MIT, March 1979.
[10] D.P. Bertsekas, "A distributed asynchronous relaxation algorithm for the assignment problem,"

Proc. 24th IEEE Conference on Decision and Control, Ft Lauderdale, FL, Dec. 1985, pp. 1703-1704.
[11] D.P. Bertsekas, "The auction algorithm: A distributed relaxation method for the assignment

problem," Annals of Operations Research 14 (1988) 105-123.
[12] D.P. Bertsekas, "A unified framework for primal-dual methods in minimum cost network flow

problems," Mathematical Programming 32 (1985) 125-145.
[13] D.P. Bertsekas and D.P. Castafion, "The auction algorithm for transportation problems," unpub-

lished manuscript, November 1987.
[14] D.P. Bertsekas and D. El Baz, "Distributed asynchronous relaxation methods for convex network

flow problems," SIAM Journal on Control and Optimization 25 (1987) 74-85.
[15] D.P. Bertsekas, P. Hossein and P. Tseng, "Relaxation methods for network flow problems with

convex arc costs," SIAM Journal on Control and Optimization 25 (1987) 1219-1243.
[16] D.P. Bertsekas and S.K. Mitter, "A descent numerical method for optimization problems with

nondifferentiable cost functionals," SIAM Journal on Control and Optimization 11 (1973) 637-652.
[17] D.P. Bertsekas and P. Tseng, "Relaxation methods for minimum cost ordinary and generalized

network flow problems," Operations Research 36 (1988) 93-114.
[18] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods

(Prentice-Hall, Englewood Cliffs, N J, 1989).
[19] R.G. Bland and D.L. Jensen, "On the computational behavior of a polynomial-time network flow

algorithm," Tech. Report 661, School of Operations Research and Industrial Engineering, Cornell
University, June 1985.

[20] Y. Censor and A. Lent, "An iterative row-action method for interval convex programming," Journal
of Optimization Theory and Applications 34 (1981) 321-352.

[21] D. Chazan and W. Miranker, "Chaotic relaxation," Linear Algebra and its Applications 2 (1969)
199-222.

[22] R.W. Cottle and J.S. Pang, "On the convergence of a block successive over-relaxation method for
a class of linear complementarity problems," Mathematical Programming Study 17 (1982) 126-138.

[23] E.W. Dijkstra and C.S. Sholten, "Termination detection for diffusing computations," Information
Processing Letters 11 (1980) 1-4.

[24] J. Edmonds and R.M. Karp, "Theoretical improvements in algorithmic efficiency for network flow
problems," Journal of the ACM 19 (1972) pp. 248-264.

[25] L.R. Ford and D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton NJ, 1962).

D.P. Bertsekas, J. Eckstein / Dual coordinate step methods 243

[26] H.N. Gabow and R.E. Tarjan, "Faster scaling algorithms for graph matching," unpublished
manuscript, 1987.

[27] H.N. Gabow and R.E. Tarjan, "Faster scaling algorithms for network problems," unpublished
manuscript, July 1987.

[28] A.V. Goldberg, "A new max-flow algorithm," Tech. Mem. M1T/LCS/TM-291, Laboratory for
Computer Science, MIT, 1985.

[29] A.V. Goldberg and R.E. Tarjan, "A new approach to the maximum flow problem," Proc. 18th ACM
STOC, 1986, pp. 136-146.

[30] A.V. Goldberg, "Solving minimum-cost flow problems by successive approximations," extended
abstract, submitted to STOC 87, Nov. 1986.

[31] A.V. Goldberg, "Efficient graph algorithms for sequential and parallel computers," Tech. Report
TR-374, Laboratory for Computer Science, MIT, Feb. 1987.

[32] A.V. Goldberg and R.E. Tarjan, "Solving minimum cost flow problems by successive approxima-
tions," Proc. 19th ACM STOC, May 1987.

[33] R. Jonker and A. Volgenant, "A shortest augmenting path algorithm for dense and sparse linear
assignment problems," Computing V. 38 (1987) 325-340.

[34] D. Klingman, A. Napier and J. Stutz, "NETGEN--A program for generating large scale (un)capaci-
tated assignment, transportation, and minimum cost flow network problems," Management Science
20 (1974) pp. 814-822.

[35] D.G. Luenberger, Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1984).
[36] A. Ohuchi and I. Kaji, "Lagrangian dual coordinatewise maximization algorithm for network

transportation problems with quadratic costs," Networks 14 (1984).
[37] J.B. Odin, "Genuinely polynomial simplex and non-simplex algorithms for the minimum cost flow

problem," Working Paper No. 1615-84, Sloan School of Management, MIT, Dec. 1984.
[38] J.S. Pang, On the convergence of dual ascent methods for large-scale linearly constrained optimiz-

ation problems, Univeristy of Texas at Dallas, unpublished manuscript, 1984.
[39] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity

(Prentice-Hall, Englewood Cliffs, N J, 1982).
[40] B.T. Polyak, "Minimization of unsmooth functions," USSR Computational Mathematics and Mathe-

matical Physics 9 (1969) pp. 14-29.
[41] H. Rock, "Scaling techniques for minimal cost network flows," in V. Page, ed., Discrete Structures

and Algorithms (Carl Hansen, Munich, 1980).
[42] R.T. Rockafellar, Network Flows and Monotropic Programming (J. Wiley, NY, 1984).
[43] R.T. Rockafellar, Convex Analysis (Princeton Univ. Press, Princeton, N J, 1970).
[44] T.E. Stern, "A class of decentralized routing algorithms using relaxation," IEEE Transactions on

Communication 25(10) (1977).
[45] E. Tardos, "A strongly polynomial minimum cost circulation algorithm," Combinatorica 5 (1985)

247-255.
[46] P. Tseng, "Relaxation methods for monotropic programming problems," PhD Thesis, Dept. of

Electrical Engineering and Computer Science, MIT, May 1986.
[47] S.A. Zenios and R.A. Lasken, "Nonlinear network optimization on a massively parallel connection

machine," Report 87-08-03, Decision Sciences Department, The Wharton School, University of
Pennsylvania, 1987.

[48] S.A. Zenios and J.M. Mulvey, "Relaxation techniques for strictly convex network problems," Annals
of Operations Research 5 (1986).

