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We review a class of  recently-proposed linear-cost network flow methods which are amenable  to 
distributed implementation. All the methods in the class use the notion of e-complementary  
slackness, and most  do not explicitly manipulate any "global" objects such as paths, trees, or 
cuts. Interestingly, these methods have stimulated a large number  of  new serial computat ional  
complexity results. We develop the basic theory of  these methods and present two specific methods,  
the e-relaxation algorithm for the minimum-cost  flow problem, and the auction algorithm for the 
assignment problem. We show how to implement these methods with serial complexities of  
O ( N  3 log NC) and O(NA log NC), respectively. We also discuss practical implementat ion issues 
and computational  experience to date. Finally, we show how to implement e-relaxation in a 
completely asynchronous,  "chaotic" environment in which some processors compute  faster than 
others, some processors communicate  faster than others, and there can be arbitrarily large 
communicat ion delays. 

Key words: Network flows, relaxation, distributed algorithms, complexity, asynchronous  
algorithms. 

I. Introduction 

This paper  considers a number  of  recent developments in network optimization, all 
of  which originated from efforts to construct parallel or distributed algorithms. One 

obvious idea is to have a processor (or virtual processor) assigned to each node of  
the problem network. The intricacies of  coordinating such processors makes it 
awkward to manipulate the "global"  objects- -such as cuts, trees, and augmenting 
pa ths- - tha t  are found in most traditional network algorithms. As a consequence, 
algorithms designed for such distributed environments tend to use only local infor- 
mation: the dual variables associated with a node and its neighbors, and the flows 
on the arcs incident to the node. For reasons that will become apparent  later, we 
call this class of  methods dual coordinate step methods. Their appearance ,Jas also 
stimulated a flurry of advances in serial computat ional  complexity results for network 

optimization problems. 
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0171. Thanks are due to David Castafion, Paul Tseng, and Jim Orlin for their helpful comments.  
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Another feature of these algorithms is that they all use a notion called e-complemen- 
tary slackness. As we shall see, this idea is essential to making sure that a method 
that uses only local information does not " jam" or halt at a suboptimal point. 
However, e-complementary slackness is also useful in the construction of scaling 
algorithms. The combination of scaling and e-complementary slackness has given 
rise to a number of computational complexity results, most of them serial. Some of 
the algorithms behind these results use only local information, but others use global 
data, usually to construct augmenting paths. 

Here, we will concentrate on local algorithms, since they are the ones which hold 
the most promise of efficient parallel implementation, and show how they can be 
regarded as approximate coordinate ascent or relaxation methods in an appropri- 
ately-formulated dual problem. Section 2 of this paper gives an overview and partial 
history of these methods. Section 3 examines in detail what is perhaps the generic 
algorithm of the class, the e-relaxation method [7]. Section 4 develops some basic 
serial complexity analysis tools for this algorithm [28, 29, 8], also addressing the 
special case of maximum flow problems. Section 5 combines this analysis with the 
notion of scaling [30-32, 19, 24, 41, 5], yielding a polynomial (O(N 3 log NC)) serial 
algorithm for the minimum-cost flow problem (N  is the number of nodes, and C 
the largest absolute value of the arc cost coefficients). In Section 6, we introduce 
the auction algorithm [9] for the assignment problems, and show how it may be 
regarded as an implementation of a special form of e-relaxation in which nodes 
are processed in a particular order. In view of this connection, we indicate how the 
auction algorithm can be implemented in O(NAlog  NC) time, where A is the 
number of arcs in the network. We present computational results indicating that 
the practical performance of the auction algorithm is competitive with state-of-the-art 
codes (unfortunately, the same cannot yet be said of e-relaxation). In Section 7, 
we present an implementation of e-relaxation that works in a completely asyn- 
chronous, chaotic environment [10]. Finally, Section 8 presents conclusions and 
discusses some of the open questions regarding this class of algorithms. 

2. History and overview 

We first introduce the minimum-cost flow problem and its dual. Consider a directed 
graph with node set N and arc set A, with each arc (i,j) having a cost coefficient 
a~j. Letting f~ be the flow of the arc (i,j), the classical rain-cost flow problem [39, 
Ch. 7] may be written 

minimize ~ ai~fj (MCF) 
(i,j)cA 

subject to 

Z f # -  E fji=si Vi~N, (1) 
(i,j)~A (.j,i)~A 

b~<~fj<~c o V(i,j)~A, (2) 
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where ao, bgj, cgj and s~, are given integers. In order for the constraints (1) to be 
consistent, we require that ~i~N s~ = 0. We also assume that there exists at most one 
arc in each direction between any pair of nodes, but this assumption is for notational 
convenience and can be easily dispensed with. We denote the numbers of  nodes 
and arcs by N and A, respectively. Also, let C denote the maximum absolute value 
of  the cost coefficients, max(~.j~ala~jI. 

In this paper, a f l o w f  will be any vector in ~a, with elements denoted f j ,  (i,j) c A. 
A capacity-feasible flow is one obeying the capacity constraints (2). If  a capacity- 
feasible flow also obeys the conservation constraints (1), it is a feasible flow. 

We formulate a dual problem to (MCF) by associating a Lagrange multiplier pg 
with each conservation of  flow constraint (1). Letting f be a flow and p be the vector 
with elements p~, i c N, we can write the corresponding Lagrangian function as 

L ( f  p) = • (a~ +pj -p , ) f j  + Y~ s,p,. (3) 
(i,j)cA i~N 

One obtains the dual function value q(p) at a vector p by minimizing L(f, p) over 
all capacity-feasible flows f This leads to the dual problem 

maximize q(p) (4) 

subject to no constraint on p, with the dual functional q given by 

q(p) = mini{L( f p)lb~j <~f~ <~ c~, (i,j) ~ A} 

= • q!i(P~-Pj) + Z sgp~ (5a) 
(i,j)~A i~lN 

where 

q~ ( Pi -P j )  = minjij{(aq + Pj - Pi ) f j  l bo <~ f i  <~ c~ }. (5b) 

The function qo is shown in Fig. 1. This formulation of the dual problem is consistent 
with conjugate duality frameworks [42], [43] but can also be obtained via linear 
programming duality theory [35], [39]. We henceforth refer to (MCF) as the primal 
problem, and note that standard duality results imply that the optimal primal cost 
equals the optimal dual cost. We refer to the dual variable pi as the price of  node i. 

Naive coordinate ascent and the jamming phenomenon 

We have now obtained a dual problem which is piecewise-linear and unconstrained. 
A straightforward approach to distributed unconstrained optimization is to have 
one processor responsible for maximization along each coordinate direction. This 
approach leads to an iterative algorithm, called naive coordinate ascent, that chooses 
at each iteration a node i, and maximizes the dual function q with respect to p~, 
while keeping all other prices constant. Unfortunately, as shown in Fig. 2, this 
algorithm does not always work as desired, due to the nondifferentiability of  q. In 
particular, there may be suboptimal price vectors p from which q cannot be improved 
by changing any single price coordinate. If  naive coordinate ascent encounters such 
a point, it will loop infinitely without improving the dual objective; we call this 
phenomenon jamming. 
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Fig. 1. Primal and dual costs for arc (i,j). 
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Fig. 2. Illustration of jamming. At the indicated point, it is impossible to improve the cost by changing 
any single price. 

J a m m i n g  and  the R E L A X  approach 

One way o f  avoiding the j amming  problem is embodied  in the R E L A X  family ol 

serial computer  codes (see [12, 17, 46]). Essentially, these codes make dual  ascent, 

along directions that have a minimal number  o f  non-zero components ,  which mean', 
that  they select coordinate  directions whenever  possible. Only when j amming  occur~ 
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do they select more complicated ascent directions. These codes have proved remark- 
ably efficient in practice; however, adapting them to exploit a massively parallel 
computing environment appears to be a very intricate task, due to the difficulties 
of coordinating many simultaneous multiple-node price change and labeling 
operations. 

Note that jamming would not occur if the dual cost were differentiable. If  the 
primal cost function is strictly convex, then the dual cost is indeed differentiable, 
and application of coordinate ascent is straightforward and well-suited to parallel 
implementation. Proposals for methods of this type include [44, 20, 38, 22 and 36]. 
[48] contains computational results on a simulated parallel architecture, and [47] 
results on an actual parallel machine. [14] and [15] contain convergence proofs. 

The auction approach 

A different, more radical approach to the jamming problem is to allow small price 
changes, say by some amount e, even if they worsen the dual cost. This idea dates 
back to the 1979 auction algorithm [9, 10, 11], a procedure for the assignment 
(bipartite matching) problem that predates the RELAX family of algorithms. (An 
extension to the transportation problem is given in [13].) In this algorithm, one 
considers the nodes on one side of the bipartite graph to be "people"  or agents 
placing bids for the "objects" representing the nodes on the other side of the graph. 
The dual variables pj corresponding to the "object"  nodes may then be considered 
to be the actual current prices of the objects in the auction. The phenomenon of 
jamming in this context manifests itself as two or more people submitting the same 
bid for an object. In a real auction, such conflicts are resolved by people submitting 
slightly higher bids, thus raising the price of the object, until all but one bidder 
drops out and the conflict is resolved (we give a more rigorous description of the 
auction algorithm later in this paper). 

e-relaxation and e-complementary slackness 

This idea of resolving jamming by forcing (small) price increases even if they worsen 
the dual cost is also fundamental to the central algorithm of  this paper, which we 
call e-relaxation. This algorithm was first introduced in [7]; [8] is a revision of [7] 
which includes a (non-polynomial) complexity analysis of the algorithm without 
the use of scaling. 

To develop this algorithm, we introduce the classical complementary slackness 
conditions, and a relaxation of them which we call e-complementary slackness. The 
classical complementary slackness conditions for minimum-cost network flow prob- 
lem may be expressed as 

f /<cij  ~ pi-Pj<~a~ V( i , j ) eA ,  (6a) 

bij <f:  ~ pi -p j  >~ a~j V(i,j) ~ A. (6b) 
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Standard linear programming duality theory gives that f and p are jointly optimal 
for the primal and dual problems, respectively, if and only if they satisfy complemen- 
tary slackness and f is feasible. 

Appealing to conjugate duality theory [42, 43], there is a useful interpretation of 
the complementary slackness conditions (6a-b). Referring to Fig. 1, the complemen- 
tary slackness conditions on (i, j )  and the capacity constraint bu ~<f~j <~ c~ are precisely 
equivalent to requiring that -f~j be a supergradient of the dual function component 
qij at the point p~-pj. This may be written -f~j e a q~j ( p ~ - p  j). Adding these conditions 
together for all arcs incident to a given node i and using the definition of the dual 
functional (5a), one obtains that for any pair (f, p) obeying complementary slackness, 
the surplus of node i, defined to be 

g~:- ~ f j i -  ~ f~j+si, (7) 
(j,i)~A (i,j)EA 

is in fact a supergradient of q(p )  considered as a function of p~, with all other node 
prices held constant. We may express this as g~ e aq~(p~ ; p), where q~(- ; p) denotes 
the function of a single variable obtained from q by holding all prices except the 
ith fixed at p. The surplus also has the interpretation as the flow into node i minus 
the flow out of i given by the (possibly infeasible) flow f. Thus a flow f is feasible 
if and only if the corresponding surpluses g~ are zero for all i e N. (Note that the 
sum of all the surpluses is zero for any flow.) 

We make a few further definitions: we say that an arc (i , j)  is 

Inactive if p~ < a~j + pj, (8a) 

Balanced if p~ = a~j + pj, (8b) 

Active if pg > aii+ pj. (8c) 

The combined condition - f j  c aq<j(p~-pj) may then be reexpressed as 

f~j = bij if (i , j)  active, (9a) 

b U <~f~j<~ c U if ( i , j )  balanced, (9b) 

f j  = c/j if (i , j)  active. (9c) 

Figure 3 displays the form of the dual function along a single price coordinate Pi. 

Dual functional q(p) 

Pi 

Fig. 3. The dual functional q(p) graphed with respect to a single price coordinate. 
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The breakpoints along the curve correspond to points where one or more arcs 
incident to node i are balanced. If  one wishes to maintain complementary slackness, 
only at the breakpoints is there any freedom in choosing arc flows; on the linear 
portions of the graph, all arcs are either active or inactive, and all flows are determined 
exactly by (9a) and (9c). 

Now consider the classical complementary slackness conditions relaxed by a 
nonnegative amount e, thus: 

f j  < Cij =::> Pi -- Pj <~ aij q- e, (10a) 

bv < f i  ~ pi - p j  ~> a U - e. (10b) 

A flow-price pair ( f p )  obeying these relaxed conditions is said to obey e- 
complementary slackness. The notion of e-complementary slackness was used in 
[9, 10], and introduced more formally in [15, 17]. It was also used in the analysis 
of [45] (Lemma 2.2) in the special case where the flow vector f is feasible. Figure 
4 compares the "kilter diagrams" for conventional and e-complementary slackness. 

P i -P j  

aij 

t i j  
cij 

fij 

P i -P j  

aij - e  

• v 

bij cij 
fij 

(a) (b) 
Fig. 4. Kilterdiagramsfor(a)conventionalcomplementaryslacknessand(b) e-complementaryslackness. 

The e-relaxation algorithm works by maintaining a flow-price pair (f, p), with f 
integral, that obeys e-complementary slackness, but not necessarily regular com- 
plementary slackness. It repeatedly selects nodes i whose surplus gi is positive, and 
sets the corresponding price pi to a value which is within e of  some maximizer 
of  the dual cost with respect to Pi, with all other prices held constant (usually this 
value is e plus the largest maximizer of the dual cost if such a maximizer exists). 
This operation is called an up iteration. Because p~ is not set to the maximizing 
value, the method does not necessarily obtain an improvement in the dual objective 
at each iteration; thus we call it a dual coordinate step method as opposed to a 
coordinate ascent method. With each up iteration, the flow vector is adjusted to 
maintain integrality and e-complementary slackness. As we shall prove below, this 
process will eventually drive all the nodes' surpluses to zero, resulting in a final 
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flOW f that is optimal if e < d / N ,  where d is the greatest common divisor of the 

arc costs. It avoids jamming by following paths such as those depicted in Fig. 5. If  

e >~ d / N ,  the algorithm will still terminate with a feasible flow, but this flow may 

not be optimal. 

The Goldberg-Tarjan max imum flow method 

Another important algorithm belonging to the dual coordinate step class is the 
maximum flow method of Goldberg and Tarjan [28,29]. This algorithm was 

developed roughly concurrently with, and entirely independently from, the auction 

algorithm and the RELAX family of codes. The original motivation for this algorithm 

seems to have been quite different from the theory we emphasize in this paper; it 

appears to have been originally conceived of as a distributed, approximate computa- 

tion of the "layered" representation of the residual network that is common in 

maximum flow algorithms [24]. However, it turns out that the first phase of  this 
two-phase algorithm, in its simpler implementations, is virtually identical to e- 

relaxation as applied to a specific formulation of the maximum flow problem. This 

connection will become apparent later. Basically, the distance estimates of the 

maximum flow algorithm may be interpreted as dual variables, and the method in 

fact maintains e-complementary slackness with e = 1. 

The connection between the Goldberg-Tarjan maximum flow and e-relaxation 

provides two major benefits: e-relaxation gives a natural, straightforward way of 
reducing the maximum flow method to a single phase, and much of the maximum 

flow method's complexity analysis can be applied to the case of e-relaxation. 

Complexity analysis 

There are several difficulties in adapting the maximum flow analysis of [28] and 

[29] to the case of e-relaxation. The first is in placing a limit on the amount that 

prices can rise. The approach taken here synthesizes the ideas of [8] with those of 

, ~ ,  Surfaces of equal dual cost 
m 

Pl Pl 

Fig. 5. When the ith price Pi is chosen for relaxation, it is changed to p~+ e, where p~ is a value of the 
ith price that maximizes q(p) with all other prices held fixed. When e is small, it is possible to approach 
the optimal solution even if each step does not result in a dual cost improvement. The method eventually 
stays in a small neighborhood of the optimal solution. 
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[30]-[32]. This methodology can also be applied directly to solving maximum flow 
problems with arbitrary initial prices, as opposed to initial prices satisfying Pi <~ Pj + 1 
for all arcs (i,j), as in [28] and [29]. 

Another problem is that of flow looping. This is discussed in Section 4 (see Fig. 
7), and refers to a phenomenon whereby small increments of flow move an exponen- 
tial number of times around a loop without any intermediate price changes. To 
overcome this difficulty one must initialize the algorithm in a way that the subgraph 
of arcs along which flow can change is acyclic at all times. In the max-flow problem 
this subgraph is naturally acyclic, so the difficulty does not arise. Flow looping is 
also absent from the assignment problem because all arcs may be given a capacity 
of  1, and (as we shall see) the algorithm changes flows only by integer amounts. 

Section 4 also discusses the problem of relaxing nodes out of  order. The acyclic 
subgraph mentioned above defines a partial order among nodes, and it is helpful 
to operate on nodes according to this order. This idea is central in the complexity 
analysis of [8], and leads to a simple and practical implementation that maintains 
the partial order in a linked list. We call this the sweep implementation. This analysis, 
essentially given in [8], provides an O(N2~/e )  complexity bound where fl is a 
parameter bounded by the maximum simple path length in the network where the 
length of arc (i,j) is taken to be ]a~i ]. Maximum flow problems can be formulated 
so that f l /e  = O(N),  giving an O(N  3) complexity bound for essentially arbitrary 
initial prices. For other minimum cost flow problems, including the assignment 
problem, the complexity is pseudopolynomial,  being sensitive to the arc cost 
coefficients. The difficulty is due to a phenomenon which we call price haggling. 
This is analogous to the ill-conditioning phenomenon in unconstrained optimization, 
and is characterized by an interaction in which several nodes restrict one another 
from making large price changes (see Sections 5 and 6). 

Developments in scaling 

e-complementary slackness is also useful in constructing scaling algorithms, which 
conversely help to overcome the problem of price haggling. We first distinguish 
between two kinds of scaling: cost scaling and e-scaling. In cost scaling algorithms 
(which have their roots in [24]), one holds e fixed and gradually introduces more 
and more accurate cost data; in e-scaling, the cost data are held fixed and e is 
gradually reduced. In both cases, the solutions obtained at the end of each scaling 
phase (except the last) may not be optimal for the cost data used for that phase, 
because e may be greater than or equal to d /N .  e-scaling is mentioned in [9] as a 
method for improving the performance of the auction algorithm, based on computa- 
tional experimentation. The method of e-scaling was first analyzed in [30], where 
an algorithm with O(NA log(N) log(NC))  complexity was proposed, and a contrast 
with the method of cost scaling was drawn. The complexity of  this algorithm was 
fully established in [31] and [32], where algorithms with O(NS/3A 2/3 log(NC))  and 
O ( N  3 log NC) complexity were also given, and parallel versions were also discussed. 
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The first two algorithms use complex, sophisticated data structures, while the 
O (N  3 log(NC))  algorithm makes use of the sweep implementation. Both also employ 
a variation of e-relaxation we call broadbanding, which will be described later in 
this paper. Independent discovery of the sweep implementation, following the 
appearance of [8], is claimed in [32] (where it is called the wave implementation). 
These results improved on the complexity bounds of all alternative algorithms for 
(MCF), which in addition are not as well suited for parallel implementation as the 
e-relaxation method. Scaling analyses similar to [30] appeared later in such works 
as [26], [27], and [2]. 

In this paper we show how to moderate the effect of price haggling by using a 
similar but more traditional cost scaling approach in place of e-scaling. This 
approach, given in [5], in conjunction with the sweep implementation, leads to a 
simple algorithm with an O ( N  3 log(NC))  complexity. It also bypasses the need for 
the broadbanding modification to the basic form of the e-relaxation method, intro- 
duced in [30-32] in conjunction with e-scaling. 

Usually the most challenging part of scaling analysis [19, 24, 30-32, 37, 41, 45] 
is to show how the solution of one subproblem can be used to obtain the solution 
of the next subproblem relatively quickly. Here, the main fact is that the final 
price-flow pair (p,f) of  one subproblem violates the e-CS conditions for the next 
one by only a small amount. A way of taking advantage of this was first proposed 
in Lemmas 2-5 of [30] (see also [31, 32]). A key lemma is Lemma 5 of [30], which 
shows that the number of price changes per node needed to obtain a solution of 
the next subproblem is O(N) .  There is a similar lemma in [19] that bounds the 
number of maximum flow computations in a scaling step in an O(N41og C) 
algorithm based on the primal-dual method. Our Lemma 5 of this paper is a 
refinement of Lemma 5 of [30], and is also an extension of Corollary 3.1 of [8], 
which bounds the number of price rises per node in the case where scaling is not 
used. We introduce a measure/3 (p°) of suboptimality of the initial price vector p0, 
whereas [30-32] use an upper bound on this measure. This extension allows the 
lemma to be used in contexts other than scaling. 

Other recent developments in scaling include Gabow and Tarjan's [27], which is 
also a cost scaling method. Furthermore, analysis in [32], drawing on some ideas 
of Tardos [45], shows that a strongly polynomial bound (that is, one polynomial in 
N and A) may be placed on a properly implemented scaling algorithm. 

3. The ~-relaxation method in detail 

To discuss e-relaxation in detail, we must further develop the theory of e- 
complementary slackness. We introduce some further terminology that will be useful 
later. We say that the arc (i,j) is 

e- Inactive if Pi < % + p / -  e, (11 a) 



D.P. Bertsekas, J. Eckstein / Dual  coordinate step methods 213 

e -Balanced if pi = a~ +pj - e, (1 lb) 

e-Balanced i fao+pj-e<~p~<~a~+pj+e,  ( l l c )  

e+-Balanced i f p i = a ~ + p j + e ,  ( l l d )  

e-Active i f p~>ao+pj+e .  ( l l e )  

Note that e - -ba lanced  and e+-balanced are both special cases of  e-balanced. The 
e-complementary slackness conditions (combined with the arc capacity conditions) 
may now also be expressed as 

f j  = b~ if (i , j)  is e-inactive, 

b~ <~fj <~ c~j if (i , j)  is e-balanced, 

f i  = c/j if (i , j)  is e-active. 

(12a) 

(lZb) 

(12c) 

The usefulness of  e-complementary slackness is evident in the following proposition: 

Proposition 1. I f  e < 1/N,  f is primal feasible (it meets both constraints (1) and (2)), 
and f and p jointly satisfy e- CS, then f is optimal for (MCF). 

Proof. I f f  is not optimal then there must exist a simple directed cycle along which 
flow can be increased while the primal cost is improved. Let Y+ and Y-  denote 
the sets of  arcs of  forward and backward arcs in the cycle, respectively. Then we 

must have 

a!j-  ~ ao <O , (13a) 
(i,j)~ Y+ (i,j)~ Y 

f j  < cij for (i , j)  c Y+, (13b) 

bo<f j  for ( i , j )~  Y . (13c) 

Using (10a-b), we have 

pi<~pj+a~+e for ( i , j )~  Y+, (14a) 

pj<~pi -ao+e f o r ( i , j ) c Y - .  (14b) 

Adding all the inequalities (14a) and (14b)together and using the hypothesis e < 1 / N  

yields 

Z ai j -  ~ a i j > l - N e > - l .  
( i,j)c Y+ ( i,j )~ Y 

Since the a~ are integral, this contradicts (13a). [] 

A strengthened form of Proposition 1 also holds when the arc cost coefficients 
and flow bounds are not integer, and is obtained by replacing the condition e < 1 / N  
with the condition 

I } e < min Length of Y < 0  (15) 
All directed cycles Y~ Number  of  arcs in Y ' ~ 
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Length of cycle Y =  5~ a~j- Y, a0. 
(i,j)~ Y+ (i,j)c Y 

obtained by suitably The proof  is modifying the last relation 

(16) 

in the proof  of 
Proposition 1. A very useful special case is t h a t f  is optimal if e < d/N,  where d is 
the greatest common divisor of  all the arc costs. When all arc costs are integer, we 
are assured that d >~ 1. 

A useful way to think about e-complementary slackness is that if the pair (f, p) 
obey it, then the rate of  decrease in the primal cost to be obtained by moving flow 

around a directed cycle Y without violating the capacity constraints is at most I Yle. 
It limits the steepness of  descent along the elementary directions (using the ter- 
minology of [42]) of the primal space. 

The admissible graph 

When the e-relaxation algorithm is performing an iteration at some node i, it can 
only change the flow on two kinds of arcs: outgoing e+-balanced arcs (i,j) with 

f j  < co, and incoming e -balanced arcs (j, i) with fji > bji. We call these two kinds 
of  arcs admissible. The admissible graph G* corresponding to a pair (f, p) is the 
directed graph with node set N, an arc (i,j) for each e+-balanced arc (i,j) in A 

with f j  < cij, and a reverse arc (j, i) for each e - -ba lanced  arc (i,j) in A with f j  > bij. 
It is similar to the residual graph corresponding to the flow f which has been used 
by many other authors (see [39], for example),  but only contains arcs that are 

admissible. Note that it is possible for the admissible graph to contain two distinct 
copies of  the arc (i,j), one corresponding to (i,j) in the original network, and the 
other to (L i). 

Push lists 

To obtain an efficient implementation of e-relaxation, one must store a representation 
of the admissible graph. We use a simple "forward star" scheme in which each 

node i stores a linked list containing all the arcs of the original network corresponding 
to arcs of  the admissible graph outgoing from i - - tha t  is, all arcs whose flow can 
be changed by iterations at i without any alteration in p. We call this list a push list. 
Although it is possible to maintain all push lists exactly at all times, doing so requires 
manipulating unnecessary pointers; it is more efficient to allow some inadmissible 
arcs to creep onto the push lists. However, all push lists must be complete: that is, 
though it may contain some extra arcs, i's push list must contain every arc whose 

flow can be altered by iterations at i without a price change. 
The complexity results in most of the earlier work on the dual coordinate step 

class of algorithms [28, 29, 8, 30] implicitly require push lists or something similar. 

The first time push lists seem to have been discussed explicitly is in [32], where 
they are called edge lists. 
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The Exact form of up iteration 

We now give a precise implementa t ion  of  the up iteration. Assume that  f is a 
capaci ty-feas ible  flow, the pair  (f, p)  obeys  e - complemen ta ry  slackness,  a push  list 

co r responding  to ( f p )  exists at each node,  and all these lists are complete .  Let 
i c N be a node  with posit ive surplus (gi > 0). 

Up iteration 

Step 1 (Find Admissible  Arc): Remove  arcs f rom the top  of  r s  push  list until 
finding one which is still admissible  (this arc is not deleted f rom the list). I f  gi > 0 

and  the arc so found  is an outgoing arc ( i , j ) ,  go to Step 2. I f  gi > 0 and the arc 
found  is an incoming arc (j, i), go to Step 3. I f  the push list has b e c o m e  empty,  go 
to Step 4. I f  an arc was found  but  gi = 0, stop. 

Step 2 (Decrease  surplus  by increasing f j ) :  Set 

L:=f , j+8,  

gi :=  gi -- t~, 

g~:=gj+6, 

where  6 = min{g~, c i j - f j } .  I f  6 = c i j - f j ,  delete ( i , j )  f rom i's push  list (it must  be  
the top item). Go  to Step 1. 

Step 3 (Decrease  surplus by reducing f/~): Set 

£, := £ ,  - 6,  

g~ := gi - 6, 

gj:=gj+6,  

where  6 = min{g i ,£~-  bii}. I f  6 =f/~-bj~, delete (L i) f rom i's push  list (it must  be  
the top item). Go  to Step 1. 

Step 4 (Scan/Pr ice  Increase) :  By scanning all arcs incident  to i, set 

Pi := min{{pj + aii + e l ( i , j )  c A and f i  < cii} 

{Pj - aii + e ](j, i) ~ A and bji <f/i}} (17) 

and  construct  a new push  list for  i, containing exactly those incident  arcs which are 

admiss ible  with the new value of  p,. Go  to Step 1. (Note: I f  the set over  which the 
m i n i m u m  in (17) is t aken  is empty  and gi > 0, halt  with the conclus ion  that  the 

p rob l em is in feas ib le - - see  the comments  below. I f  this set is empty  and gi = 0, 
increase p~ by e and stop.) 

The serial e - re laxat ion  a lgor i thm consists of  repea ted ly  selecting nodes  i with 
gi > 0, and per forming  up iterations at them.  The me thod  terminates  when  gi <~ 0 
for  all i ~ N, in which case it follows that  g~ = 0 for  all i ~ N, and that  f is feasible.  
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Basic lemmas 

To see that  execut ion o f  Step 4 must  lead to a price increase note that  when it is 

entered,  we have 

f j  = ci: for  all (i , j)  such that  Pi >~Pj + au + e, (18a) 

bji =fji for  all (j, i) such that  pi>~pj-aj~+e. (18b) 

Therefore ,  when  Step 4 is entered we have 

p, < min{pj + a~j + e [ ( i , j )  c A and f: < c~/}, (19a) 

p~ < min{pj - aj~ + e I(J, i) c A and big <~i}. (19b) 

It  follows that  Step 4 must  increase p~, unless g~ > 0 and the set over  which the 
m i n i m u m  is taken is empty.  In that  case, f,:i = cu for all (i ,j)  outgoing f rom i and  
bji =~i  for  all (j, i) incoming to i, so the m a x i m u m  possible  flow is going out o f  i 
while the m i n i m u m  possible  is coming in. I f  g~ > 0 under  these circumstances,  then 
the p rob lem instance must  be infeasible.  

Lemma 1. The e-relaxation algorithm preserves the integrality o f f  the e-complementary 
slackness conditions, and the completeness of  all push lists at all times. All node prices 
are monotonically nondecreasing throughout the algorithm. 

Proof.  By induct ion on the n u m b e r  of  up iterations. Assume that  all the condit ions 

hold at the outset  o f  an i teration at node  i. F rom the fo rm of  the up iteration, all 
changes to f are by integer amounts  and e - complemen ta ry  slackness is preserved.  
By the above discussion,  the i teration can only raise the price of  i. Only inadmissible  
arcs are r emoved  f rom i's push  list in Steps 1, 2 and 3, and none  of  these steps 

change any prices;  therefore,  Steps 1, 2, and 3 preserve the comple teness  of  push  
lists. In Step 4, i 's push list is constructed exactly, so that  push  list remains complete.  
Finally, we must  show that  the price rise at i does not  create any new admissible  
arcs that  should be on other nodes '  push  lists. First, suppose  (j, i )6  A becomes  
e+-ba lanced  as a result o f  a price rise at i. Then  (j, i) must  have been former ly  
e-active,  hence fji = cji, and (j, i) cannot  be admissible.  A similar  a rgument  applies  

to any (i , j)  that  becomes  e -ba lanced  as a result o f  a price rise at i. We have thus 
shown that  all arcs added  to the admiss ible  graph  by Step 4 are outgoing f rom i. []  

Lemma 2. Suppose that the initial prices pi and the arc cost coefficients a~ are all integer 
multiples ore. Then every execution of  Step 4 results in a price rise of  at least e, and 
all prices remain multiples of  e throughout the e-relaxation algorithm. 

Proof.  It is clear f rom the fo rm of  the up i teration that  it preserves  the divisibility 
o f  all prices by  e. Thus any price increase must  be by at least e, and the above 

discussion assures that  every execut ion of  Step 4 results in a price increase. The 
l emma  follows by induct ion on the n u m b e r  of  up  iterations. [] 
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We hencefor th  assume that all arc costs and initial prices are integer multiples 

o f  e. A straightforward way to do this, considering the s tanding assumpt ion that 

the a~ are integer, is to let e = 1/k, where k is a positive integer, and assume that 

all pi are multiples o f  1/k. I f  we wish to satisfy the condit ions o f  Proposi t ion 1, a 

natural choice for k is N +  1. 

Lemma 3. An up iteration at node i can only increase the surplus of nodes other than 
i. Once a node has nonnegative surplus, it continues to do so for the rest of the algorithm. 
Nodes with negative surplus have the same price as they did at the outset of the algorithm. 

Proof. The first statement is a direct consequence  o f  the form of  Steps 2 and 3 o f  

the up iteration. The second then follows because each up iteration cannot  drive 

the surplus o f  node i below zero, and can only increase the surplus o f  adjacent 

nodes. For  the same reasons, a node with negative surplus can never have been the 
subject o f  an up iteration, and so its price must  be the same as at initialization, 

proving the third claim. []  

Finiteness 

We now prove that the e-relaxation algori thm terminates finitely. Since we will be 

giving an exact complexi ty estimate in the next section, this p r o o f  is not  strictly 

necessary. However,  it serves to illuminate the workings o f  the algori thm without  
getting involved in excessive detail. 

Proposition 2. I f  problem (MCF)  is feasible, the pure form of the e-relaxation method 
terminates with (f, p) satisfying e-CS, and with fbe ing  integer and primal feasible. 

Proof. Because prices are nondecreasing (Lemma 1), there are two possibilities: 

either (a) the prices o f  a nonempty  subset N °~ of  N diverge to + ~ ,  or else (b) the 
prices o f  all nodes in N remain bounded  f rom above. 

Suppose that case (a) holds. Then the algori thm never terminates, implying that  

at all times there must exist a node with negative surplus which, by Lemma 3, must  

have a constant  price. Thus, N ~ is a strict subset o f  N. To preserve e-CS, we must  

have after a sufficient number  o f  iterations 

f j = c ~  for all ( i , j ) ~ A  with i c N  ~, j ~ N  ~, (20a) 

fji=bji fo r a l l  ( j , i ) c A  with i o N  ~, j ~ N  ~, (20b) 

while the sum of  surpluses o f  the nodes in N ~ is positive. This means that even 

with as much  flow as arc capacities allow coming out o f  N ° to nodes j ~ N ~, and 

as little flow as arc capacities allow coming into N ~ f rom nodes j ~ N °,  the total 

surplus Y~ {gi] i ~ N ~} of  nodes  in N ~ is positive. It follows that there is no feasible 

flow vector, contradict ing the hypothesis.  Therefore case (b) holds, and all the node  

prices stay bounded.  
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We now show that the algorithm terminates. If  that were not so, then there must 

exist a node i c N at which an infinite number of iterations are executed. There 

must also exist an adjacent e--balanced arc (j, i), or e+-balanced arc (i,j) whose 

flow is decreased or increased (respectively) by an integer amount during an infinite 

number of iterations. For this to happen, the flow of (j, i) or (i,j) must be increased 

or decreased (respectively) an infinite number of times due to iterations at the 

adjacent node j. This implies that the arc (j, i) or (i , j)  must become e+-balanced 
or e--balanced from e--balanced or e+-balanced (respectively) an infinite number 
of times. For this to happen, the price of the adjacent node j must be increased by 

at least 2e an infinite number of times. It follows that pj ~ oo which contradicts the 

boundedness of all node prices shown earlier. Therefore the algorithm must 

terminate. [] 

Degenerate price rises 

Note that when the push list is empty, the price p~ of the current node may be raised 

at the end of an up iteration even when g~ = 0. We call any price rise performed at 

i when g~ = 0 degenerate. Such price rises can be viewed as optional, and do not 

affect the finiteness or complexity of the algorithm. It is possible to omit them 

completely, and halt the up iteration as soon as g~ = 0. However, our computational 

experience has shown that degenerate price rises are a good idea in practice. Similar 

price changes have proved useful in the RELAX family of algorithms. 
The reasons for this are not entirely clear, but some insight is obtained if we view 

degenerate steps as an attempt to increase the size of the price increases. The 

complexity analysis of  the next section suggests that the algorithm terminates faster 
when the price increases are as large as possible. 

Partial iterations 

Actually, it is not strictly necessary to approximately maximize the dual cost with 

respect to p~. One can also construct methods that work by repeatedly selecting 

nodes with positive surplus and applying partial up iterations to them. A partial up 
iteration is the same as an up iteration, except that it is permitted to halt following 

any execution of Step 2, 3, or 4. Thus, such algorithms are not constrained to 

reducing gi to zero before turning their attention to other nodes. It turns out that 

these algorithms retain the finiteness and most of the complexity properties of 
e-relaxation. They become important when one analyzes synchronous parallel 

implementations of e-relaxation. 

Broadbanding 

Another useful variation on the basic up iteration, which we call broadbanding, is 
due to Goldberg and Tarjan [30-32]. In our terminology, broadbanding amounts 
to redefining the admissible arcs to be those that are active and have f j  < % alone 
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Dual functional 

Pl "als Ps P2 +as2 P3"a3s • + =P'+a° 4 Price of node s 

(a) 

Price Level  

P3"a3s (~Price r i s e ?  P4*as4 

Io,2oI~,/to,3ol 

/-~ ~ P 2  +as2 
Pl "% ~ [o,lo] 

[0,201 Ps 

Flow decrease from 20 to 10 

Flow increase from 0 to 10 

(b) (c) (d) 

Fig. 6. Illustration of an up iteration involving a single node s with four incident arcs (1, s), (3, s), (s, 2), 
and (s, 4), with feasible arc flow ranges [1, 20], [0, 20], [0, 10], and [0, 30], respectively. 

(a) Form of the dual functional along Ps for given values of Pl, P2, P3, and P4. The breakpoints 
correspond to the levels of p.~ for which the corresponding arcs become balanced. For values of p~ 
between two successive breakpoints there are no balanced arcs incident to node s. The corresponding 
slope of the dual cost is equal to the surplus g~ resulting when all active arc flows are set to their upper 
bounds and all inactive arc flows are set to their lower bounds; compare with (5). 

(b) Illustration of a price rise of Ps from a value between the first two breakpoints to a value e above 
the breakpoint at which (s, 2) becomes balanced (Step 4). 

(c) Price rise of Ps to a value e above the breakpoint at which arc (3, s) becomes balanced. When 
this is done, arc (s, 2) has changed from C-balanced to e-active, and its flow has increased from 0 to 
10, maintaining e-CS. 

(d) Step 3 of the algorithm reduces the flow of arc (3, s) from 20 to 10, driving the surplus of node 
s to zero. 
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with those that are inactive and have f j  > b~j. Using e-complementary slackness 
(6a-b), it follows that the admissible arcs consist of  

(i,j) such that f j  < c~ and p~ -p~ c (a~, a 0 + e], (21a) 

(j, i) such that fji > bji and pj -Pi c [aj~- e, aij ). (21b) 

We use the name broadbanding because arcs admissible for flow changes from their 

"start"  nodes can have reduced costs anywhere in the band [ - e ,  0), whereas in 
regular e-relaxation the reduced cost must be exactly - e .  A similar observation 
applies to admissible arcs eligible for flow changes from their "end"  nodes. 

Broadbanding makes it possible to drop the condition that e divide all the arc 
costs and initial prices, yet still guarantee that all price rises are at least e, which 
is useful in e-scaling. 

Down iterations 

It is possible to construct a down iteration much like the above up iteration, which 
is applicable to nodes with gi < 0, and reduces (rather than raises) pi. Unfortunately, 
if one allows arbitrary mixing of up and down iterations, the e-relaxation method 
may not even terminate finitely. Although experience with the RELAX methods 
[12, 17, 15] suggests that allowing a limited number  of  down iterations to be mixed 

with the up iterations might be a good idea in practice, our computational experi- 
ments with down iterations in e-relaxation have not been conclusive. 

4. Basic complexity analysis 

We now commence a complexity analysis of e-relaxation. We will develop a general 

analysis that will apply both the (pure) e-relaxation algorithm we have already 
introduced, and to the scaled version we will discuss later. 

The price bound fl(p) 

We develop the price bound f l (p) ,  which is a function of the current price vector 
p, and serves to limit the amount of  further price increases. For any path H, let 
s(H) and t(H) denote the start and end nodes of  H, respectively, and let H + and 

H -  be the sets of arcs that are positively and negatively oriented, respectively, as 
one traverses the path from s(H) to t(H). We call a path simple if it is not a circuit 

and has no repeated nodes. For any price vector p and simple path H we define 

dH(p)=max{O, }~ (pi--pj--au)- ~ (p~--pj--a~;)} 
( i , j ) e H  + " ( i , j ) e H -  

=max{O, ps(H)--pt(H)-- ~ ao+ ~ ao}. (22) 
(i , j)~ H + ( i , j )c  H 
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Note that the second term in the maximum above may be viewed as a "reduced 
cost length of H " ,  being the sum of the reduced costs (Pi -Pj  - a~) over all arcs 

( i , j ) c H  + minus the sum of ( p i - p j - a i j )  over all arcs ( i , j ) 6 H - .  For any f l o w f  
we say that a simple path H is unblocked with respect to f if we have f j  < c U for all 
arcs (i , j)  c H +, and we have f j  > bij for all arcs (i , j)  ~ H- .  In words, H is unblocked 
with respect to f if there is margin for sending positive flow along H (in addition 
to f )  from s (H)  to t (H)  without violating the capacity constraints. 

For any price vector p, and feasible flow f define 

D ( p , f )  = m a x { d ~ ( p ) [ H  is a simple unblocked path with respect to f}. 
(23) 

In the exceptional case where there is no simple unblocked path with respect to f 
we define D ( p , f )  to be zero. In this case we must have bo = eli for all (i,j),  since 
any arc (i , j)  with b~ < c~ gives rise to a one-arc unblocked path with respect t o f  Let 

f l (p)  = m i n { D ( p , f ) [ f  c ~A is feasible flow}. (24) 

There are only a finite number  of  values that D ( p , f )  can take for a given p, so 
the minimum in (24) is attained for some f The following lemma shows that f l (p)  
provides a measure of  suboptimality of  the price vector p. The computational  
complexity estimate we will obtain shortly is proportional to fl(pO), where p0 is the 

initial price vector. 

Lemma 4. (a) I f  for some 7 ~> 0, there exists a feasible flow f satisfying y-CS together 
with p then 

0 ~ / 3 ( p )  ~< ( S -  l)y.  (25) 

(b) p is dual optimal if and only if ~ ( p )  =0.  

Proof. (a) For each simple path H which is unblocked with respect to f and has 
[HI arcs we have, by adding the y-CS conditions given by (6a-b) along H and using 

(22), 

dH(p) <~ IH[7 ~< ( N -  1)3, (26) 

and the result follows from (23) and (24). 
(b) I f  p is optimal then it satisfies complementary slackness together with some 

primal optimal vector f so from (26) (with y = 0) we obtain f l ( p ) - - 0 .  Conversely 
if f l ( p ) = 0 ,  then from (24) we see that there must exist a primal feasible f such 
that D ( p , f ) =  0. Hence d n ( p ) = 0  for all unblocked simple paths H with respect 
to f Applying this fact to single-arc paths H and using the definition (16) we obtain 

that f together with p satisfy complementary slackness. Hence p and f are 

optimal. [] 
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Price rise lemmas 

We have already established that f l (p)  is a measure of the optimality of p that is 
intimately connected with e-complementary slackness. We now show that fl (p) also 
places a limit on the amount that prices can rise in the course of the e-relaxation 
algorithm. Corollary 3.1 of [8] gives such a limit for the unscaled algorithm, but a 
more powerful result is required for the analysis of scaling methods. The first such 
result is contained in Lemmas 4 and 5 of [30], but does not use a general suboptimality 
measure like f l (p) .  The following lemma combines the analysis of [30] with that 
of [8], and is useful in both the scaled and unscaled cases. 

Lemma 5. I f  (MCF) is feasible, the number of  price increases at each node is 
O ( f i ( p ° ) / e  + N) .  

Proof. Let (f, p) be a vector pair generated by the algorithm prior to termination, 
and let f o  be a flow vector attaining the minimum in the definition (24) of /3(p°) .  
The key step is to consider y = f _ f o ,  which is a (probably not capacity-feasible) 
flow giving rise to the same surpluses {gi, i c N} as f If g, > 0 for some node t, there 
must exist a node s with gs < 0  and a simple path H with s ( H ) =  s, t ( H ) =  t, and 
such that y~j > 0 for all ( i , j )  c H + and YiJ < 0 for all ( i , j )  c H - .  (This follows from 
the Conformal Realization Theorem [42, p. 104]. See also [25].) 

By the construction of y, it follows that H is unblocked with respect to f0. Hence, 
from (23) we must have dH(p °) <~ D ( p ° , f  °) = el(p°), and by using (22), 

0 0 p ~ - p , -  ~ a~j+ Y~ a~j <~lg(p°). (27) 
(i , , j)~ H + ( i , j ) ~  H -  

The construction of y also gives that the reverse of H must be unblocked with 
respect to f Therefore, e-complementary slackness (6a-b) gives Pi <~Pi - a!j + e for 
all ( i , j)  c H + and pi <~ pj + aq + e for all ( i , j)  ~ H - .  By adding these conditions along 
H we obtain 

-p.~+p,+ ~. a o -  Y~ ao<~{H{e<~(N-1)e ,  (28) 
(i,.j)~ H + (i,j)c H -  

where IH[ is the number of arcs of H. We have pO=p~ since the condition gs < 0  
implies that the price of s has not yet changed. Therefore, by adding (27) and (28) 
we obtain 

p, _pO<~ fl(p0) + (N  - 1)e (29) 

throughout the algorithm for all nodes t with g ,>  0. From the assumptions and 
analysis of the previous section, we conclude that all price rises are by at least e, 
so there are at most ~9(p°)/e + ( N -  1) price increases at each node through the last 
time it has positive surplus. There may be one final degenerate price rise, so the 
total number of price rises i s /3 (p°) /e  + N per node. [] 
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In some cases, more information can be extracted from f _ f o  than in the above 
proof. For instance, Gabow and Tarjan [27] have shown that in assignment problems 
it is not only possible to bound the price of  the individual nodes, but also the sum 
of the prices of  all nodes with positive surplus. They use this refinement to construct 
an assignment algorithm with complexity O(N~/2A log NC); however, the scaling 

subroutine used by this algorithm is a variant of  the Hungarian method, rather than 
a dual coordinate step method. Ahuja and Orlin [2] have adapted this result to 
construct a hybrid assignment algorithm that uses the auction algorithm as a 
subroutine, but has the same complexity as the method of [27]. Their method 
switches to a variant of  the Hungarian method when the number  of  nodes with 
positive surplus is sufficiently small. This bears an interesting resemblance to a 

technique used in the RELAX family of  codes [12, 17, 46], which, under  certain 
circumstances typically occurring near the end of execution, occasionally use descent 
directions corresponding to a more conventional pr imal-dual  method. 

Work breakdown 

Now that a limit has been placed on the number  of price increases, we must limit 
the amount  of  work associated with each price rise. The following basic approach 

to accounting for the work performed by the algorithm dates back to Goldberg and 
Tarjan's  max-flow analysis [28, 29]. We define: 

Scanning work to be the work involved in executing Step (4) of  the up iteration - -  
that is, computing new node prices and constructing the corresponding push lists. 
We also include in this category all work performed in removing items from push lists. 

Saturating pushes are executions of  Steps 2 and 3 of  the up iteration in which an 

arc is set to its upper or lower flow bound (that is, 3 = co - f j  in Step 2, or 3 =~i  - bJi 
in Step 3). 

Nonsaturating pushes are executions of  Steps 2 and 3 that set an arc to a flow 
level strictly between its upper  and lower flow bounds. 

Limiting the amount  of effort expended on the scanning and saturating pushes 
is relatively easy. From here on we will write/3 for/3(p0) to economize on notation. 

Lemma 6. The amount of work expended in scanning is O(A(fl/ e + N)). 

Proof. We already know that O(/3/e + N )  price rises may occur at any node. At 

any particular node i, Step 4 can be implemented so as to use O(d(i)) time, where 
d(i) is the degree of node i. The work involved in removing elements from a push 
list built by Step 4 is similarly O(d(i)). Thus the total (sequential) work involved 
in scanning for all nodes is 

[] (30) 
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Supply = _ ~  

Feas. Row Range = [ 0 , 1 |  

1 C o s t  = 2 Fea~. Flow Range . [O,R] 
Cost - -1 

Feats. Flow Range ,,, [ 0 ~ ]  ) 
Cost ,, -1 Feas. Flow Range = [0,1] 

Cost = 2 

R~=I" Large Integer ~ ~ )  

Demand = 1 

Fig. 7. Example showing the importance of keeping the admissible graph acyclic. Initially, we choose 
f =  0, p = 0, which do satisfy e-complementary slackness, but imply a cyclic initial admissible graph. 
The algorithm will push one unit of flow R times around the cycle 2-3-2, taking 12(R) time. 

Lemma 7. The amount of  work involved in saturating pushes is also O(A( f l /  e + N)) .  

Proof.  Each push  (saturating or not) requires O(1) time. Once a node i has performed 
a saturating push  on an arc (i ,j)  or (j, i), there must  be a price rise o f  at least 2e 

by the node  j before another  push (necessarily in the opposi te  direction) can occur  

on the arc. Therefore,  O ( f l / e  + N )  saturating pushes occur  on each arc, for a total 

of O ( A ( f l / e +  N ) )  work. []  

Node ordering and the sweep algorithm 

The main challenge in the theoretical analysis o f  the algorithm is containing the 
amount  o f  work involved in nonsaturating pushes. There is a possibility of  flow 
looping, in which a small amount  o f  flow is " p u s h e d "  repeatedly a round  a cycle o f  

very large residual capacity. Figure 7 illustrates that  this can in fact happen.  As we 

shall see, the problem can be avoided if the admissible graph is kept acyclic at all 

times. One way to assure this is by having e < 1 /N.  In that case, one can easily 

prove that the admissible graph  must  be acyclic by an argument  similar to Proposi t ion 

1. However ,  we also have the following: 

Lemma 8. I f  the admissible graph is initially acyclic, it remains so throughout the 
executions of  the e-relaxation algorithm. 

Proof.  All " p u s h "  operat ions  (executions o f  Steps 2 and 3) can only remove arcs 

f rom the admissible graph;  only price rises can insert arcs into the graph. Note  also 

that in Lemma 1, we proved  that when arcs are inserted, they are all directed out 
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of the node i at which the price rise was executed. Consequently, no cycle can pass 
through any of these arcs. [] 

Thus, it is only necessary to assure that the initial admissible graph is acyclic. 
I f  it is acyclic, the admissible graph has a natural interpretation as a partial order 

on the node set N. A node i is called a predecessor of node j in this partial order 
if there is a directed path from i to j in the admissible graph. I f  i is a predecessor 
of  j, then j is descendant of i. Each push operation moves surplus from one node 
to one of its immediate descendents, and surplus only moves "down"  the admissible 
graph in the intervals between price changes. 

The key to controlling the complexity of  nonsaturating pushes is the interaction 
between the order in which nodes are processed and the order imposed by the 
admissible graph. The importance of node ordering was originally recognized in 

the max-flow work of [28] and [29], but the particular ordering used there does not 
work efficiently in the minimum-cost  flow context. 

To proceed with the analysis, we must first prohibit  partial up iterations: every 
up iteration drives the surplus of  its node to zero. Secondly, we assume that the 
algorithm is operated in cycles. A cycle is a set of  iterations in which all nodes are 
chosen once in a given order, and an up iteration is executed at each node having 
positive surplus at the time its turn comes. The order may change from one cycle 
to the next. 

A simple possibility is to maintain a fixed node order. The sweep implementation, 
given except for some implementation details in [8], is a different way of choosing 
the order, which is maintained in a linked list. Every time a node i changes its price, 

it is removed from its present list position and placed at the head of the list (this 
does not change the order in which the remaining nodes are taken up in the current 
cycle; only the order for the subsequent cycle is affected). We say that a given (total) 
node order is compatible with the order imposed by the admissible graph if no node 
appears before any of its predecessors. 

Lemma 9. I f  the initial admissible graph is acyclic and the initial node order is compatible 
with it, then the order maintained by the sweep implementation is always compatible 
with the admissible graph. 

Proof. By induction over the number of  flow and price change operations. Flow 
alterations only delete arcs from the admissible graph, so they preserve compatibility. 
After a price rise at node i, i has no predecessors (by the proof  of  Lemma 1), hence 
it is permissible to move it to the first position. So price rises also preserve compati-  
bility. [] 

Lemma 10. Under the sweep implementation, if  the initial node order is acyclic and 
the initial node order is compatible with it, then the maximum number of cycles is 
O(N( )8 /e+  N)) .  
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Proof. Let N + be the set of  nodes with positive surplus that have no predecessor 
with positive surplus, and let N O be the set of  nodes with nonpositive surplus that 

have no predecessor with positive surplus. Then, as long as no price increase takes 
place, all nodes in N o remain in N °, and the execution of a complete up iteration 

at a node i 6 N + moves i from N + to N °. I f  no node changed price during a cycle, 
then all nodes of N + will be added to N o by the end of the cycle, implying that the 
algorithm terminates. Therefore there will be a node price change during every cycle 
except possibly for the last cycle. Since the number  of  price increases per node is 
O(/3/e + N) ,  this leads to an estimate of  a total of O(N(CJ/e + N) )  cycles. [] 

Lemma 11. Under the same conditions as Lemma 10, the total complexity of  non- 
saturating pushes is O( N2(~ / e + N )  ). 

Proof. Nonsaturating pushes necessarily reduce the surplus of  the current node i 
to zero, so there may be at most one of them per up iteration. There are less than 
N iterations per cycle, giving a total of  O ( N 2 ( ~ / e +  N) )  possible nonsaturating 
pushes, each of which takes O(1) time. [] 

Figure 8 depicts the sweep implementation. 

Proposition 3. Under the sweep implementation, if the initial admissible graph is acyclic 
and the initial node order is compatible with it, then the total complexity of  the sweep 
implementation is O( N2(fl / e + N )  ). 

Proof. Combining the results of  Lemma 6, 7 and 11, we find that the dominant 
term is O ( N 2 ( f l / e +  N)) ,  corresponding to the nonsaturating pushes (since we 
assume at most one arc in each direction between any pair of  nodes, A = O(N2)).  

The only other work performed by the algorithm is in maintaining the linked list, 
which involves only O(1) work per price rise, and scanning down this list in the 

4- 4- 

Direction of sweeping 
o o 

0 

- + 

Fig. 8. Illustration of the admissible graph. A " + "  (or " - "  or "0") indicates a node with positive (or 
negative or zero) surplus. The algorithm is operated so that the admissible graph is acyclic at all times. 
The sweep implementation,  based on the linked list data structure, processes high ranking nodes (such 
as nodes 1 and 2) before low ranking nodes (such as node 3). 
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course of  each cycle, which involves O ( N )  work per cycle. As there are O(N2(fl/e + 
N))  price rises and O(N(f l /e  + N)) cycles, both these leftover terms work out to 

O(N2(/3/e+ N)). [] 

A straightforward way of meeting the conditions of  Proposition 3 is to choose p 

arbitrarily and set f j  -- c~i for all active (as opposed to e-active) arcs and f j  = b,j for 
all inactive ones. Then there will be no admissible arcs, and the initial admissible 
graph will be trivially acyclic. The initial node order may then be chosen arbitrarily. 

The above proof  also gives insight into the complexity of  the method when other 
orders are used. At worst, only one node will be added to N o in each cycle, and 
hence that there may be S2(N) cycles between successive price rises. In the absence 
of further analysis, one concludes that the complexity of  the algorithm is a factor 

of  N worse. 
An alternate approach is to eschew cycles, and simply maintain a data structure 

representing the set of  all nodes with positive surplus. [32] shows that a broad class 
of  implementations of  this kind have complexity O(NA(/3/e + N)). (Actually, these 
results are embedded in a scaling analysis, but the outcome is equivalent.) 

We now give an upper  bound on the complexity of  the pure (unscaled) e-relaxation 
algorithm, using the sweep implementation. Suppose we set the initial price vector 
p0 to zero and choose f so that there are initially no admissible arcs. Then a crude 
upper  bound on/3 is NC, where C is the maximum absolute value of the arcs costs, 
as in Section 2. Letting e = 1/(N + 1) to assure optimality upon termination, we get 
an overall complexity bound of O(N4C). Figure 9 demonstrates that the time taken 

by the method can indeed vary linearly with C, so the algorithm is exponential. 
Note also that any upper  bound/3* on/3 provides a means of detecting infeasibil- 

ity: I f  the problem instance (MCF) is not feasible, then the algorithm may abort in 
Step 4 of  some up iteration, or some group of prices may diverge to +co. I f  any 

price increases by more than/3* + Ne, then we may conclude that such a divergence 
is happening, and halt with a conclusion of infeasibility. Thus, the total complexity 
may be limited to O(N:(/3*/e + N)), even without the assumption of  feasibility. 

NC is always a permissible value for/3*. 

Application to maximum flow 

For classes of  problems with special structure, a better estimate o f / 3 ( p  °) may be 
possible. As an example, consider the max-flow problem formulation shown in Fig. 
10. The artificial arc (t, s) connecting the sink t with the source s has cost coefficient 

- 1 ,  and flow bounds b,s = 0 and c,~ = Y.i~N Csi. We assume that a o = 0 and bii = 0 < co 
for all other arcs (i,j), and that si = 0 for all i. We apply the e-relaxation algorithm 
with initial prices and arc flows satisfying e-complementary slackness, where e = 

1 / ( N +  1). The initial prices may be arbitrary, so long as there is an O(1) bound on 
how much they differ. Then we obtain dH(p °) = O(1) for all paths H,/3(p0) = O(1), 
and an O ( N  3) complexity bound. Note we may choose any positive value for e and 
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a12=0 
- c ~ 3  Flow range for arcs: 

Arc (1,2): [0,21 
%~=1 =c Arc (2,3): [0,1] 

Arc (3,1): [0,11 

(a) Problem Data 

o.o o.o 

f= 1 ~  f=O f= 1 ' ~  f=O 

p=O p=O 
(b) Initial flows and prices (c) Flows and prices after 1st 

iteration at node 1 

f = i ~ # / f = O  = f=l f=O 

p=O p=O 
(d) Flows and prices after 2nd (e) Flows and prices after 3rd 
iteration at node 2 iteration at node 1 

Fig. 9. Example showing that the computation required by the pure form of the e-relaxation algorithm 
can be proportional to the cost-dependent factor C. Here, up iterations at node 1 alternate with up 
iterations at node 2 until the time when Pt rises to the level C - 1 + e and arc (3, 1) becomes e--balanced, 
so that a unit of flow can be pushed back along that arc. At this time, the optimal solution is obtained. 
Since prices rise by increments of no more than 2e, the number of up iterations is 12(C/E). 

Source t Sink 
Price = 1 Price = 0 

4 

Fig. 10. Formulation of the max-flow problem. 
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negative values for a , ,  as long as e = - a t s / ( N + l )  (more generally e =  
-a,s/(1 + Largest number of arcs in a cycle containing (t, s))). 

Applied like this to the maximum flow problem, e-relaxation yields an algorithm 
resembling the maximum flow algorithm of [28-29], and having the same complexity. 
However, it has only one phase. The first phase of the procedure of [28-29] may 
in hindsight be considered an application of e-relaxation with e = 1 to the (infeasible) 
formulation of the maximum flow problem in which one considers all arcs costs to 
be zero, s~ = - ~ ,  and s, = + ~ .  

5. Scaling procedures 

In general, some sort of scaling procedure [19, 24, 41] must be used  to make the 
e-relaxation algorithm polynomial. The basic idea is to divide the solution of the 
problem into a polynomial number of subproblems (also called scales or phases) in 
which e-relaxation is applied, with ~(p° ) / e  being polynomial within each phase. 
The original analysis of this type, as we have mentioned, is due to Goldberg ([30] 
and, with Tarjan, [32]), who used e-scaling. In order to be sure that all price rises 
are by J2 (e) amounts, both these papers use the broadbanding variant of e-relaxation 
as their principal subroutine (though they also present alternatives which are not 
dual coordinate step methods). Here, we will present an alternative cost scaling 
procedure, given in [4], that results in an overall complexity of O ( N  3 log NC) and 
does not require broadbanding. 

Cost scaling 

Consider the problem (SMCF) obtained from (MCF) by multiplying all arc costs 
by N +  1, that is, the problem with arc cost coefficients 

al j=(N+l)a! i  for all (i,j). (31) 

If  the pair ( f ' , p ' )  satisfies 1-complementary slackness (namely e-complementary 
slackness with e = 1) with respect to (SMCF), then clearly the pair 

(f, p) = (f', p ' / ( N  + 1)) (32) 

satisfies ( N  + 1)-l-complementary slackness with respect to (MCF). Hence, if f '  is 
feasible, it is optimal for (MCF) by Proposition 1. In the scaled algorithm, we seek 
a solution to (SMCF) obeying 1-complementary slackness. 

Let 

M = [log2(N + 1)C] + 1 = O(log(NC)) .  (33) 

In the scaled algorithm, we solve M subproblems, in each case using the sweep 
implementation of e-relaxation. The ruth subproblem is a minimum cost flow 
problem where the cost coefficient of each arc (i,j) is 

ao(m ) = Trunc(a ~j/(2 M - - m  )), (34) 
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where Trunc(.  ) denotes integer rounding in the direction of zero, that is, down for 
positive and up for negative numbers. Note that au(m ) is the integer consisting of 
the m most significant bits in the M-bit  binary representation of a~. In particular, 

each a0(1 ) is 0, +1, or - 1 ,  while a ~ ( m + l )  is obtained by doubling ao(m ) and 
adding (subtracting) one if the (m + 1)st bit of  the M-bit  representation of a,~ is a 
one and ab is positive (negative). Note also that 

ao(M) =ali, (35) 

so the last problem of the sequence is (SMCF). 

For each subproblem, we apply the unscaled version of the algorithm with e = 1, 
yielding upon termination a pair (f'(m), p~(m)) satisfying 1-complementary slack- 
ness with respect to the cost coefficients a~(m). 

The starting price vector for the (m + 1)st problem (m = 1, 2 , . . . ,  M -  1) is 

p°(m + 1) = 2p ' (m) .  (36) 

Doubling p'(m) as above roughly maintains complementary slackness since ai~(m) 
is roughly doubled when passing to the (m + 1)st problem. Indeed it can be seen 
that every arc that was 1-balanced (1-active, 1-inactive) upon termination of the 
algorithm for the ruth problem will be 3-balanced (1-active, 1-inactive, respectively) 
at the start of the (m + 1)st problem. 

The starting flow vector f ° ( m + l )  for the ( m +  1)st problem may be obtained 
from f ' (m)  in any way that obeys 1-complementary slackness, keeps the admissible 
graph acyclic, and allows straightforward construction of a compatible node order. 
The simplest way to do this is to set 

f°(m + 1 ) = f ~ ( m )  for all balanced arcs (i,j), (37a) 

f ° (m+ 1)= co for all active arcs (i,j), and (37b) 

f°(m + 1) = bo for all inactive arcs (i,j). (37c) 

This procedure implies that the initial admissible graph for the (m + 1)st problem 
has no arcs, and so an arbitrary node order (such as the one from the end of the 
last subproblem) may be used. A procedure that does not alter as many arc flows 
(and hence is likely to generate fewer nodes with nonzero surplus) is to set 

f°(m + 1) = ci~ 

f°(m + 1) = bij 

f°(m + 1) = c!i 

f°(m + l) = b o 

f°(m + l) = f b ( m )  

for all 1-active arcs (i,j), 

for all 1-inactive arcs (i,j), 

for all l+-active arcs (i,j) that were not admissible at the 
end of the previous phase, 

for all 1--active arcs (i,j) that were not admissible at the 
end of the previous phase, and 

for all other arcs (i,j). 
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In this case, the arc set of  the new admissible graph will be a subset of that prevailing 
at the end of subproblem m, hence the new graph will be acyclic. Furthermore, the 
node order at the end of phase m will be compatible with the new admissible graph, 
and may be used as the starting node order for phase m + 1. For thefirst subproblem, 
however, there is no prior admissible graph, so the procedure (37a-c) must be used, 
and the initial node order can be arbitrary. The starting prices may be arbitrary so 
long as there is an O(N)  bound o n h o w  much they can differ .  

Analysis 

Using the analysis of Section 4, it is now fairly straightforward to find the complexity 
of the scaled form of the algorithm as outlined above. 

Proposition 4. The complexity of the scaled form of the e-relaxation algorithm is 
O ( N  3 log NC). 

Proof. Using Proposition 3 and e = 1, the complexity of the scaled form of the 
algorithm is O(N2B + N3M) where 

M 

B= 2 flm(P°(m)) (38) 
r n = l  

and t im( ')  is defined by (22)-(24) but with the modified cost coefficients ao(m) 
replacing aij in (22). We show that 

flm(p°(m)) = O ( N )  for all m, (39) 

thereby obtaining an  O ( N  3 log NC) complexity bound, as M = O(log NC). 
At the beginning of the first subproblem, we have 

pi-pj=O(1) ,  a0(1) =O(1)  for all arcs (i,j), (40) 

so we obtain dH(p°(1))=O(N) for all H, and f l l(p°(1))=O(N).  The final flow 
v e c t o r f ' ( m )  obtained from the m-th problem is feasible, and together with pO(m + 1) 
it may be easily seen to satisfy 3-complementary slackness. It follows from Lemma 
4(a) that 

flm+l(p°(m + 1)) <~ 3 (N - 1) = O(N) .  (41) 

It then follows that B = O(NM),  and the overall complexity is O ( N  3 log NC). [] 

Practical experience with scaled e-relaxation 

Despite the good theoretical complexity bounds available for the scaled form of 
e-relaxation and its relatives, dual coordinate algorithms have not yet proven 
:hemselves to be good performers in practice. Although nonsaturating pushes are 
:he theoretical bottleneck in the algorithm, they present little problem in practice. 
We have observed that typically there are only a few flow alterations between 
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successive price rises. The real problem with the algorithm is the tendency of prices 
to rise at the theoretically minimum rate--by only e or 2e per price change. This 
is the phenomenon of price haggling. Essentially, the algorithm is following a 
"staircase" path in the dual (such as in Fig. 5), where the individual steps are very 
small. 

Without scaling, the amount of  price haggling can be exponential (as in Fig. 9), 
so scaling is clearly necessary to make e-relaxation efficient. However, even with 
scaling, our computational experiments have shown that price haggling is still a 
serious difficulty. It often manifests itself in a prolonged "endgame" at the close of 
each subproblem, in which only a handful of nodes have positive surplus at any 
given time. Our experiments have also shown that degenerate price rises often cause 
a dramatic decrease in price haggling. 

Even with scaling and degenerate steps, however, we have found e-relaxation to 
be much slower than state-of-the-art sequential codes such as RELAX for large 
problems. We have not yet experimented with broadbanding and e-scaling as 
opposed to cost scaling; although these techniques may offer some speed-up, we 
suspect it will not be dramatic. Also, the potential speed-up obtainable by a parallel 
implementation, as roughly indicated by the average number of nodes that simul- 
taneously have positive surplus, appears to be only an order of magnitude or less. 
To make e-relaxation algorithms viable, even on massively parallel machines, more 
work will need to be done to overcome price haggling. 

6. The auction algorithm 

The auction algorithm for the assignment problem, however, when combined with 
scaling, seems to have only limited difficulties with price haggling, and appears 
competitive with state-of-the-art codes even without any benefit from parallelism. 
Indeed, it has proved faster on a limited set of test problems. 

Constructing auction from e-relaxation 

We now develop the auction algorithm as a variant of e-relaxation. Note that th~ 
converse is also possible: by converting a minimum-cost flow problem to an assign 
ment problem, and applying the auction algorithm, one may obtain a generic versior 
of e-relaxation. For a derivation of the auction method from first principles, refe 
to [10] and [11]. 

Consider a feasible assignment problem with n sources, n sinks, and an arbitrar, 
set A of source-to-sink arcs. We say that source i is assigned to sink j if (i , j)  ha 
positive flow. All arcs are given capacity 1, So a flow change always sets an arc tq 
its upper or lower bound, and all pushes ale saturating. Thus, if one keeps trac 
of the set of positive-surplus nodes such that the work of finding a node to iterat 
upon is always O(1), then the complexity of the pure e-relaxation algorithm (usin 
push lists) is reduced to O ( A ( ~ / e  + N ) ) ,  regardless of the order in which node 
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are processed. Scaling therefore yields an O ( N A  log N C )  algorithm. We now con- 
sider an algorithm in which up iterations are paired into "bids". Between bids (and 
also at initialization), only source nodes i can have positive surplus. Each bid does 
the following: 

(I) Finds any unassigned source i (that is, one with positive surplus), and 
performs an up iteration at i. 

(II) Takes the sink j to which i was consequently assigned, and performs an up 
iteration at j ,  even i f j  has  zero surplus. If j has zero surplus, such an up iteration 
may just consist of a degenerate price rise. If  the presence of an admissible arc on 
j ' s  push list indicates that no price rise is possible, then this step takes just O(1) 
time, aside from the work of removing inadmissible arcs from j ' s  push list, which 
may be "charged" against earlier scanning steps. 

More specifically, a bid by node i works as follows: 

(a) Source node i sets its price to pj + aij + e, where j minimizes Pk -F aik + e over 
all k for which (i, k) c A. It then sets f j  = 1, assigning itself to j. 

(b) Node i then raises its price to pj,+ au,+ e, where j '  minimizes Pk + aik -t- 6 for 
k # j ,  (i, k ) ~ A .  

(c) I f s i n k j  had a previous assignment fi,j = 1, it breaks the assignment by setting 
f~,j := 0 (one can show inductively that if this occurs, pj = P u -  auj+ e). 

(d) Sink j then raises its price pj to 

pi - au + e = Pr  + a u' - au + 2e. (42) 

It is possible to rewrite the description of  the bidding operation so that the prices 
of  sinks do not explicitly appear. For compatibility with [10] and [11], we also 
formulate the assignment problem as a m a x i m i z a t i o n  by reversing the signs of all 
the a u. Let y = 2 e ,  and define the value v u of a s i n k j  to a source i to be a u - P ; .  

The rewritten bid iteration becomes 

(1) Choose a person i who is unassigned. 
(2) Find an object j* that offers maximum value to i, that is 

a u . - p : *  = max(id)~a{a/j - P i } .  (43) 

Also, find the best value offered by objects other than j*, namely 

wu.  = max(i , j )~a. j~j .{a u --pj}. (44) 

(3) Compute the bid price 

bu.  = a u . -  wu.  + 31, (45) 

md raise the price p j. of  j* to this level. Assign i to j*,  and break any prior 
tssignment that j* may have had. 

What we have just described is the Gauss-Seidel or sequential version of the 
Luction algorithm of [10, 11]. Those papers also show that several source nodes 
aay place bids simultaneously. In that case, each sink node that receives more than 
,ne bid awards itself (provisionally) to the highest bidder. Hence the name "auction 
lgorithm". 
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We may think of each node i as an agent who is trying to assign itself to an object 
j that comes within 3' of  offering the highest value to i. Once i has found the most 
desirable object j*, it bids j* ' s  price up to the highest level that still satisfies this 
criterion. In an actual auction involving real money, doing this would be foolish; 
however, we believe that this feature is instrumental in reducing price haggling and 

is precisely what makes the algorithm perform well in practice. 

Push lists and complexity 

I f  we implement the auction algorithm as a variation of e-relaxation with a special 
node ordering scheme, as described above, then proper attention to push lists will 
insure an O ( A ( 1 3 / e + N ) )  unscaled complexity. The only detail one must worry 

about is that up iterations begun at nodes with zero surplus (as in (II) above) do 
not add to the overall effort. The discussion in (II)  above establishes this. Applying 
scaling then gives a complexity of O ( N A  log NC) .  

However, as in (a-d), it is possible to state the auction algorithm without reference 
to any of the source node prices Pi. We now present an implementation of auction 
that does not maintain source node prices, yet retains the complexity O ( N A  log NC).  

Given any price vector p for the sink nodes, define an artificial price 7ri of each 
source node i by 

7ri = - max {ai: -pj}.  (46) 
(i ,j)~A " 

The reader may confirm that the prices ~r, p and the current flow (assignment) j 
always obey y-complementary slackness. The reader may also refer to [11] for a 
proof  that i f f  is feasible (that is, it is a complete assignment) and (f, ~r,p) satisf) 
y-complementary slackness with 3' < 1/n = 2 /N,  then f is optimal. This accor&, 
with Proposition 1 and the definition y = 2e. 

Suppose there is a limit 13" on the amount that any single pj can rise. From (a-dl 
above, all price rises are at least y, so there are at most j3*/3' price rises at any sink 
or by (46)--a t  any source. 

Each source node i maintains a push list consisting of all nodes except j* tha 
were tied for offering the value w :  the last time i scanned its incident arcs. Alonl 

with each node is stored the price pj that prevailed for j at the time the last sca 
was done. The bids are performed as follows (note that, as in e-relaxation, all price 
are nondecreasing): 

(1) Locate an unassigned source node i. 
(2) Examine the elements (j, pj) of  the push list of i, starting at the top. Discar 

any for which p} < p:. Continue until reaching the end of the list, or the secon 
element for which pj = p:. I f  the end is reached, go to Step (4). 

(3) Let j*  be the first element on the list for which pj =p/. Discard the conten~ 
of the list up to, but not including, the second such element. Place a bid on j* 

price level p: + y, assigning i to j* and breaking any prior assignment of  j*. Stol 
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(4) Scan the incident arcs of i, determining an element j*  with maximum value, 

the next best value wu. , as defined above, and all elements (other than j*) tied at 
value level wo.. Let the new push list of  i be a list of  all nodes j other than j*  tied 
at value level wu. , coupled with their present prices. Submit a bid for j* at price 
level bo., assigning i to j*  and breaking any prior assignment of j*. Stop. 

This method has complexity O(Afl*/y). We omit the details of  the proof, but 
the key observation is that (4) can be performed in O(d(i)) time, and that between 
every two consecutive executions of  (4) at a given node i, there must be an increase 
in the artificial price ~r~ of i. Placed in a scaling context where prices cannot rise 

by more than fl*/y = O(n) times per node in each subproblem, one can derive an 
overall complexity of  O(NA log NC). However, it is doubtful that the overhead of 
keeping push lists in the auction algorithm is justified in practice. A simpler 
implementation that requires i to scan its incident arcs once per bid, whether or 
not there has been a change in 7ri, can be shown to have complexity 0 ( N  3 log NC). 

Computational results 

In this section we discuss limited computational experience with a public domain 
serial FORTRAN code called AUCTION,  which implements the auction algorithm 
using e-scaling. The initial sink prices were pj -- mini a u for all j ;  this is a common 

choice for dual assignment algorithms. At the end of the kth subproblem, A U C T I O N  
checks the current assignment to see if it is optimal for the subproblem k + 1, using 
the current prices ~r, p. I f  the current assignment does not obey e-complementary 
slackness with or, p using the new value of  e, all assignments along e-inactive arcs 
are deleted, and the auction is run again. After some experimentation, we found 
that we obtained the best performance by reducing e by a factor of  5 between 
subproblems (using a factor other than 2 makes no significant difference in the 

complexity analysis). The initial value of e was taken to be nC/2. A U C T I O N  does 
not use push lists; every time a node bids, it simply scans all its incident arcs. 

A U C T I O N  implements a Gauss-Seidel version of the auction algorithm, in which 
only one node bids at a time. For computational  results with a Jacobi version of  
AUCTION,  which simulates all unassigned nodes bidding simultaneously, refer to 
[11]. The Gauss-Seidel  version is somewhat faster, but not as amenable to parallel 
implementation. 

Test problems were generated using the 1987 release version of  the widely-used 
/ 

public domain generator N E T G E N  [34]. We generated problems with 800 to 12 000 
total nodes, and an average node degree of  10. We compared the run times for 
A U C T I O N  to those of  the preexisting state-of-the-art public domain assignment 
code due to Jonker and Volgenant [33], also written in FORTRAN. This code 
implements a two-phase algorithm; the first phase is an initialization based on 

relaxation ideas of  the type discussed in [ 12], while the second phase is a Hungarian 
laethod employing shortest path calculations. Both codes were run on a MicroVAX 

II CPU under the VMS 4.6 operating system. 
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Our results are summarized in Fig. 11. AUCTION appears faster to the Jonker- 
Volgenant code for problems having more than 1000 source nodes. Furthermore, 
the factor of superiority increases with problem size. Thus, the preliminary indication 
is that the auction algorithm is at least competitive with other serial methods for 
sparse assignment problems. This is consistent with the fact that the complexity 
O(NA log NC) of the auction algorithm is superior to the complexity O ( N  3) of 
Hungarian-type methods for sparse problems. 

The results of Fig. 11 are typical of those obtained for sparse problems. When 
the problem to be solved is dense, the relative performance of the Jonker and 
Volgenant code improves markedly. The reason is that a substantial portion of the 
computation in the second phase of  this code involves finding the minimum of a 
node-length array. The time to execute this operation is independent of problem 
density. We note that there are some unexpected features in AUCTION's  perform- 
ance on dense problems. We found that the algorithm with ~-scaling sometimes 
performs worse than the unscaled auction algorithm (where e is fixed at 1/(n + 1)), 
particularly for large (!) C. It seems that for dense problems, price haggling typically 
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Fig. 11. Solution times for AUCTION and the Jonker-Volgenant assignment code on a VAXStatio~ 
2000, which uses the MicroVAX I1 CPU. All problems were created using NETGEN. Times do nc 
include problem input or solution output. 
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becomes less of  a difficulty when there is a lot of  variation in the values of  the arc 
cost coefficients. A related and somewhat surprising phenomenon is that the unscaled 
algorithm's performance for relatively small values of  C may be worse than for 

large values of  C. 
Preliminary work on parallel implementations of  the Jacobi auction algorithm is 

still in progress. While results by other researchers (quoted in [11]) for small numbers 
of  processors appear  encouraging, there are as yet no results for massively parallel 
environments. A central problem, as with all dual coordinate step algorithms, is 
that it is difficult to guarantee that a substantial fraction of the nodes will have 
positive surplus (that is, be unassigned) at any given time, and hence that a large 
number  of  processors can simultaneously be active. Indeed, experimental results 
have so far indicated that the average number  of  unassigned nodes is generally 
quite small. Thus, it may prove difficult to obtain massive speed-ups through 

parallelization. 

7. Asynchronous implementation of e-relaxation 

So far as we know, nobody has been able to show how a true theoretical speed-up 

of either the auction or e-relaxation algorithms may be obtained by a simple 
synchronous parallel implementation. The essential problem is that it is difficult to 
guarantee that more than one node will have positive surplus at any given time. 

In this section, we will do something quite different: we demonstrate that there 
is a version of the e-relaxation algorithm that converges even in a completely chaotic, 

asynchronous environment. Because the assumptions made in this model are so 
loose, it is not possible to come up with anything comparable to a complexity 
estimate. The real point is to show that the algorithm is resilient to the imperfections 
and inhomogeneities that may characterize some real-life distributed computing 
environments. The formulation involves a far more flexible type of asynchronism 
that can be obtained with the use of synchronizers [4]. Algorithmic convergence is 
often difficult to establish for chaotic models, but powerful results are now available 
to aid in this process [14, 18, 21]. The algorithm given here is more complex than 

a related algorithm for strictly convex arc costs [14], and requires a novel method 
of convergence proof. 

We now return to the ordinary e-relaxation method and assume that each node 
i is a processor that updates its own price and incident arc flows, and exchanges 

information with its " forward"  adjacent nodes 

F~ = { j l ( i , j )  c A}, (47) 

and its "backward"  adjacent nodes 

Bi = {j[ (j, i) e a}. (48) 

Fhe following distributed asynchronous implementat ion applies to both the pure 
algorithm and to the subproblems of the scaled method. The information available 
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at node  i for  any t ime t is as follows: 

p~(t): The price of  node  i, 

pj(i, t): The price of  node  j c Fi w B~ communica t ed  by j at some earlier 
t ime, 

f j ( i ,  t): The est imate of  the flow o f  arc ( i , j ) ,  j ~ F~, available at node  i 
at t ime t, 

fj~(i, t): The est imate of  the flow o f  arc (j, i), j c B~, available at node  i 
at t ime t, 

g~(t): The est imate of  the surplus  of  node  i at t ime t given by 

gi( t )= Y. ~i(i, t ) -  Y~ f j( i ,  t )-s~.  (49) 
(j,i)~A (i,2j)~A 

A more  precise descr ipt ion is possible,  but  for brevity we will keep  our  discussion 
somewha t  informal .  We assume that, for  every node  i, the quanti t ies above  do not 
change except  possibly at an increasing sequence  of  t imes to, tl ,  • • •, with tm ~ co. 

At each of  these times, generical ly denoted  t, and at each node  i, one of  three events 
happens :  

Event 1. N o d e  i does nothing.  
Event 2. N o d e  i checks g~(t). I f  g~(t) <~ 0, node  i does nothing further.  Otherwise 

node  i executes either a comple te  or par t ia l  up i teration based  on the available 
price and flow informat ion  

pi(t), p j ( i , t ) , j c F i u B , ,  f j ( i , t ) , j c F i ,  f j~( i , t ) , j~Bi ,  

and accordingly changes 

pi(t), f j ( i , t ) , j 6F , . ,  f j i ( i , t ) , j cB , .  

Event 3. N o d e  i receives,  f rom one or more  adjacent  nodes  j ~ F i u  B~, a messag~ 
containing the cor responding  price and arc flow (pj( t ' ) , f j (•  t')) (in the case j c F~) 

or (pj(t ') , f j i(j ,  t')) (in the case j 6 Bi) s tored at j at some earlier t ime t ' <  t. I f  

pj( t') < pj( i, t ), 

node i discards the message  and  does nothing further.  Otherwise,  node  i stores th  
received value pj(t') in place  of  pj(i, t). In  addit ion,  if  j <  F~, node  i stores f j ( j ,  t' 
in place o f f j ( i ,  t) if 

pi ( t )<pj ( t ' )+a~ and f:j(j, t ' )< f : j ( i ,  t) 

and otherwise leaves f j ( i ,  t) unchanged ;  in the case j c  B~, node  i stores fji(j, t') i 
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place offj~(i, t) if 

pj(t')>~pi(t)+aji and fji(j, t ' )> fji(i, t) 

and otherwise leaves f j( i ,  t) unchanged. (Thus, in case of  a balanced arc, the " t ie"  
is broken in favor of  the flow of the start node of the arc.) 

Let T ~ be the set of  times for which an update by node i as in event 2 above is 
attempted, and let T~(j) be the set of  times when a message is received at i from j 

as in event 3 above. We assume the following: 

Assumption 1. Nodes never stop attempting to execute an up iteration, and receiving 
messages from all their neighbors, i.e., T ~ and T~(j) have an infinite number  of  
elements for all i and j c F~ w B~. 

Assumption 2. Old information is eventually purged from the system, i.e., given any 

time tk, there exists a time tm >1 tk such that the time of  generation of  the price and 
flow information received at any node after t,, (i.e., the time t' in #3  above), 

exceeds t k. 

Assumption 3. For each i, the initial arc flows f j( i ,  to), j c F~, and fj~(i, to),j c Bi are 
integer, and satisfy e-CS together with p~(to) and pj(i, to) , jc  F~ u B~. Furthermore 
there holds 

pi( to) ~ p~(j, to) for all j 6  Fi u Bi , 

f j (  i, to) >~ f j ( j ,  to) for all j e F f .  

One set of  initial conditions satisfying Assumption 3 but requiring little cooper- 

ation between processors is pj(i, to)~--oo for i and j ~ F ~ u B i ,  f j( i ,  to)=Co and 
f j ( j ,  to) = bo for i and j 6 F~. Assumption 3 guarantees that for all t 1> to 

pi(t) >~p~(j, t") for all j c F~ u Bi, t "~< t. (50) 

To see this, note that pi(t) is monotonically nondecreasing in t, and p~(j, t") equals 
p~(t') for some t ' <  t". 

For all nodes i and times t, f j( i ,  t) andfj~(i, t) are integer, and satisfy e-CS together 
with pi(t) and pj(i, t ) , j  c F~ u B~. This is seen from (50), the logic of  the up iteration, 
and the rules for accepting information from adjacent nodes. Furthermore, for all 

i and t/> to, 

f j (  i, t ) >~ f j ( j ,  t) for a l l j~F~ ,  (51) 

i.e., the start node of an arc has at least as high an estimate of  arc flow as the end 
node. For a given ( i , j )~  A, condition (51) holds initially by Assumption 3, and it 
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is preserved by up iterations at i since they cannot  decrease fj(i ,  t), while an up 

iteration at j cannot  increase f j ( j ,  t). It can also be shown that  (51) cannot  be 

violated at the time of  a message reception, but  we omit the proof.  

Once a node  i gets nonnegat ive surplus g~(t)>~0, it maintains a nonnegat ive 

surplus for all subsequent  times. The reason is that  an up iteration at i can at most  

decrease gi(t) to zero, while in view of  the rules for  accepting messages, a message 

exchange with an adjacent node  j can only increase g~(t). Note  also that f rom (51) 
we obtain 

g i ( t ) < ~ O  forall t > ~ t o  . (52) 
i~N 

This implies that, at any time t, there is at least one node i with negative surplus 

g~(t) if there is a node  with positive surplus. This node  i must  not  have executed 

any up iteration up to time t, and therefore its price pi(t) must still be equal to the 
initial price p~(to). 

We say that the algori thm terminates if there is a time tk such that for all t ~> tk 

we have 

gi(t) = 0 for  all i c N, (53) 

fj(i ,  t )= f j ( £  t) for all ( 4 J ) ~  A, (54) 

pi(t)=pj(i , t )  for all j c F~ u B~. (55) 

Terminat ion can be detected by using an adapta t ion  o f  the protocol  for diffusing 

computa t ions  o f  [23]. Our  main  result is: 

Proposition 5. I f  (MCF)  is feasible and Assumptions 1-3 hold, the distributed, totally 
asynchronous version of the algorithm terminates. 

Proof. Suppose no up iterations are executed at any node  after some time t*. Then 
(53) must  hold for large enough  t. Because no up iterations occur  after t*, all the 

p~(t) must thencefor th  remain constant,  and Assumpt ion 1, (50), and the message 

acceptance rules imply (55). After t*, no flow estimates may change except by 

message reception. By (55), the nodes will eventually agree on whether  each arc is 

active, inactive, or balanced.  The message reception rules, (51), and Assumptions 

1-2 then imply the eventual agreement  on arc flows (54). (Eventually,  the start node 
o f  each inactive arc will accept  the flow of  the end node,  and the end node of  a 

balanced or active arc will accept  the flow of  the start node.) 

We now assume the contrary,  i.e., that  up iterations are executed indefinitely, and 

hence for every t there is a time t ' >  t and a node  i such that  g~( t ' )>0 .  There are 

two possibilities: The first is that  p~(t) converges to a finite value p~ for every i. In 

this case we assume without  loss o f  generality that  there is at least one node  i at 

which an infinite number  of  up iterations are executed, and an adjacent arc (i,j) 
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whose flow fj(i ,  t) is changed by an integer amount  an infinite number  of  times 
with ( i , j )  being e+-balanced. For this to happen there must be a reduction of f , ( i ,  t) 
through communication from j an infinite number  of  times. This means that f j ( j ,  t) 
is reduced an infinite number  of  times which can happen only if an infinite number  

of  up iterations are executed a t j  with (i , j)  being e- -ba lanced .  But this is impossible 
since, when Pi and pj converge, arc (i,j) cannot become both e+-balanced and 
e -balanced infinitely often. 

The second possibility is that there is a nonempty subset of  nodes N ° whose 
prices increase to ~ .  It is seen then that there is at least one node that has negative 
surplus for all t, and therefore also a constant price. It follows that N ~ is a strict 
subset of  N. Since the algorithm maintains e-CS, we have for all sufficiently large 

t that 

fj(i ,  t )=f j ( j ,  t)= cij 

£,(i, t) - - £ , ( j ,  t )  = bj, 

for all ( i , j ) c A  with i c N ~ , j ~ N  ~, 

for all (j, i ) ~ A  with i 6 N ~ , j ~ N  ~. 

Note now that all nodes in N ~ have nonnegative surplus, and each must have 
positive surplus infinitely often. Adding (49) for all i in N °, and using both (51) 
and the above relations, we find that the sum of e~ over all ( i , j )c  A with i c N ~, 

j ~ N ~, plus the sum of si over i6 N ° is less than the sum of bji over all (j, i )~ A 

with i~ N ~, j ~  N ~. Therefore, there can be no feasible solution, violating the 
hypothesis. It follows that the algorithm must terminate. [] 

8. Conclusions 

Coordinate step methods are based on a blend of classical nonlinear programming 

ideas of  duality and coordinate ascent, and the notion of e-complementary slackness, 
which has its roots in nondifferentiable optimization (see, for instance, [16]). The 
methods were motivated, starting with the auction algorithm, by the desire to 
massively parallelize the solution of network flow problems. However, they have 
yet to fulfill their promise in this regard, either analytically or computationally. The 

speed-up they provide in the limited parallel computational  experimentation per- 
formed so far is not spectacular, and their parallel complexity has not yet been 
shown to be superior to their serial complexity. Their serial complexity has been 
shown to be very favorable with proper implementation;  yet their performance has 
yet to match the theoretical promise. In particular, the e-relaxation method has yet 
to be shown to approach the actual performance of the earlier (theoretically 
pseudopolynomial)  relaxation methods [12, 17, 46]. The auction algorithm is the 

only member  of  the class which has been shown to be computationally competitive 
with existing serial methods (and probably superior for many types of assignment 
problems). There are as yet no published computational  experimental results con- 
cerning coordinate step methods for max-flow problems. We should also add that 
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c o o r d i n a t e  s t ep  m e t h o d s  a re  st i l l  r e c e n t ,  a n d  n o t  ye t  fu l ly  u n d e r s t o o d .  F u r t h e r  

r e s e a r c h  m a y  s u b s t a n t i a l l y  c h a n g e  t h e  p r e c e d i n g  a s s e s s m e n t .  
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