NOTICE CONCERNING
COPYRIGHT RESTRICTIONS

The copyright law of the United States [Title 17, United
States Code] governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
reproduction is not to be used for any purpose other than
private study, scholarship, or research. If a user makes a
request for, or later uses, a photocopy or reproduction for
purposes in excess of “fair use” that use may be liable for
copyright infringement.

The institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfilment of the order
would involve violation of copyright law. No further
reproduction and distribution of this copy is permitted by
transmission or any other means.

An Analysis of Alternative Strategies for
Implementing Matching Algorithms

Michael O. Ball
College of Business and Management, University of Maryland,
College Park, Maryland 20742

Utrich Derigs
Institut fiir Operations Research, Universitit Bonn, West Germany

In this paper we explore implementation issues related to the solution of the weighted
matching problem defined on an undirected graph G =(V, E). We present algorithms
based on the two different linear characterizations of the feasible solutions to the
matching problem. Furthermore, we present two specialized implementations, one
with an O(]V[?) time bound and one with an O(| V|| E}log | V|) time bound. Both of
these implementations have storage requirements that are linear in |V | and | E]. We
initially develop these algorithms as special implementations of the well-known primal-
dual (blossom) algorithm and then show how the updates they perform have an
interesting interpretation when the algorithms are viewed as methods that successively
find shortest augmenting paths. Finally, we show that postoptimality analysis can be
performed very efficiently within this setting.

I. INTRODUCTION

Given an undirected graph G = (V, E), a matching M S E is a subset of edges no two
of which are incident with a common vertex. For any M C E, we define V(M) as the
set of vertices incident to some edge in M. A perfect matching is a matching M with
V(M)=V. Given a cost c; for each (i, j) EE, we define a minimum-cost perfect
matching as a perfect matching M that minimizes X(; jyenm c;. We assume without
loss of generality that ¢; 0 for all (i,/) EE.

We call G = (V, E, c) a weighted graph. 1f, in addition, we are given a cost a; for
each i € V, we define a minimum-cost matching as a matching M that minimizes
Zi,hem cijt Zie v- vy 4;. In this paper we describe algorithms for the minimum-
cost perfect matching problem. We mention the minimum-cost matching problem
since this is the version of the problem that arises in mass transit crew scheduling [4],
an application that motivated some of our efforts to look into more efficient imple-
mentations. The algorithms we describe in this paper can easily be modified to solve
this latter problem.

NETWORKS, Vol. 13 (1983) 517-549
© 1983 John Wiley & Sons, Inc. CCC 0028-3045/83/040517-33 $04.30

518 BALL AND DERIGS

We define the minimum-cost perfect matching problem as a mathematical program
as follows:

MCPM:
min Z C'i" xif
L)EE
such that
x;=1, for i€V,)
it (L)EE
Xij 20, for (i,j))€EE,)
x; integer for (i,/) €E, 3)
where we interpret
1, if (G,)HeEM,
X,']' =

0, if (i,HEM.

It is well known that constraint (3) is not superfluous to MCPM.

In this paper, we focus on implementation issues related to the MCPM. The match-
ing algorithms we study can be viewed as iterative applications of two basic operations:
growing alternating trees and updating dual variables. We first describe the operations/
subroutines for handling alternating trees and give a general framework for matching
algorithms (Section H). In Section III, we discuss two dual updating formulas stem-
ming from two different linear characterizations of the MCPM. We then give two
“blossom algorithms” of complexity O(|V[* |E[) based on these formulas. The
second characterization is the so-called “coboundary characterization.” To our
knowledge, this is the first published statement of an algorithm based on this
characterization.

In Section IV and V, we derive a set of updating formulas that provide more effi-
cient implementations of the algorithms presented in Section IIL. In particular, the
algorithm given in Section IV has an O(|V[*) time bound and the algorithm given in
Section V has an O(| V| |E|log |V|) time bound. These implementations draw on the
ideas of Lawler [13] and Galil, Micali, and Gabow [12]. However, certain important
new features are added. In particular, the O(]V|*) algorithm has linear storage require-
ments whereas Lawler’s algorithm has storage requirements proportional to |V|*. The
O(|V||E|log | V) algorithm differs from the Galil, Micali, and Gabow algorithm in
that it requires a simpler priority queue and is based on the coboundary character-
ization mentioned above. One of the most interesting aspects of the update formulas
given in Sections IV and V is that they can be interpreted in the context of the short-
est augmenting path approach to the matching problem developed by Derigs [6]. This
interpretation, which is given in Section VI, stimulated many of our ideas concerning
efficient implementations and we feel that it should be quite useful to other research-
ers as well.

3

IMPLEMENTING MATCHING ALGORITHMS 519

augmentation

I

FIG. 1. (== indicates an edge in M.)

Section VII shows that postoptimality analysis can be simply performed within this
general framework.

Before describing the mathematical programming theory underlying the algorithm,
we define certain graph structures used by the algorithm. We then show how to adapt
this algorithm to achieve different levels of computational complexity. We assume a
general knowledge of graphs; however, we now define some terminology that might
be specific to this paper. A parh is a sequence of edges (vy, v2), (v2, 03), . . . , (Vk—1»
vx). A simple path is a path with v; # v; for all i #j. A circuit is a path with v, = vy
and v; # v; for all other i #j. Given a matching M an alternating path with respect to
M is a simple path whose edges are alternately in M and not in M. An augmenting path
is an alternating path whose first and last vertices are not members of V(M). The
significance of an augmenting path P is that | M| may be increased by 1 by setting M =
(M\P) U (P\M) (see Fig. 1).

A rooted alternating tree is a tree T = (V(T"), E(T)) with distinguished root vertex
r € V\V(M) with the properties that the paths from r to each vertex in T are alternat-
ing paths and £(T) N M is a perfect matching with respect to V(T)\{r}. We designate
vertices in a rooted alternating tree as even or odd depending on whether the number
of edges in the path from r to the vertex is even or odd. Within the algorithm we will
assign a label [; = + to even vertices i, [; =~ to odd vertices i, and /; = O to vertices not
in the tree. If an unmatched vertex is adjacent to an even vertex of an alternating tree
then an augmenting path can be obtained by appending the unmatched vertex to the
tree (see Fig. 2).

The algorithms we describe iteratively increase |M| by growing alternating tress and
identifying augmenting paths with special cost properties. These tree growing activi-
ties can be thwarted by the presence of certain odd circuits C, which must be treated
in a special way. Given an odd set of vertices S & V, we shrink S by forming the graph

unmatched vertex
not in tree
o/

augmenting path

520 BALL AND DERIGS

G'=(V',E") where V'=V\SU {v'} and E'=E\{(i, j): i or jES} U {(v,/): T an
(i,)EEwithi€S andj &S}

We call v’ the pseudovertex induced by S. Given a pseudovertex k we expand k by
reversing the process described above. During the course of the algorithm we may
perform the shrink operation a number of times. In particular, the shrink operation
may be invoked recursively, in the sense that set S may contain pseudovertices. We
call the current set V' of vertices, i.e., vertices not contained within a pseudovertex,
exterior vertices; all vertices that are contained within some pseudovertex are called
interior vertices. The algorithm does not explicitly delete interior vertices and their
adjacent edges. In particular, the sets £ and ¥ will always denote the original edge and
vertex sets. For any real vertex i (i.e., i € V) we denote by b(i) the exterior vertex
that contains i. For any exterior vertex k, we denote by REAL(k) the set of real
vertices contained in k. Note that if a real vertex i is an exterior vertex then b(i) =i
and REAL(i) = {i}. Figure 3(a) illustrates these definitions.

Applying the shrinking procedure iteratively produces a graph G’ = (V', E') where
several sets of S S ¥ of odd cardinality have been shrunk to pseudovertices. These
sets are associated with systems of “nested” odd cycles and have the special property
that whenever any vertex in S is matched with a vertex outside S the remaining set
of vertices in S can be matched using edges having both ends in S only. The signif-

b(1) = b(2) = b(3) = b(5) = b(6) = b(7) = b(8) = 14 ; b(10) = 10 ; b(11) = 11 ;
b(12) = 12 .

REAL(14) = {1,2,3,5,6,7,8} ; REAL(10) = {10} ; REAL(11) = {11} ; REAL(12) = {12} .

FIG. 3(a).

FIG. 3(b). Graph from (a) after vertex 14 is expanded (with matching extended).

(3 4

(4 2

L 4

%

- — 3

P

L & 4

i®

L+ 4

“e

(5 4

IMPLEMENTING MATCHING ALGORITHMS 521

FIG. 3(c). Graph from (b) after vertex 13 is expanded (with matching extended).

icance of these so-called “hypomatchable” sets was first investigated by Edmonds
and Pulleyblank [11]. The importance of these structures comes from the fact that
whenever a perfect matching in G'=(V’, E) can be found, this matching can be
canonically extended to a perfect matching in the original graph G = (V, E).

Figure 3 illustrates how a perfect matching in a graph with pseudovertices can be
extended to a perfect matching in the original graph. Note that for any pseudo-
vertex, once i €S to be covered by an edge not in C is determined, then the members
of Cto be included in M are also determined.

Il. GENERAL FRAMEWORK FOR MATCHING ALGORITHMS

We now describe four subprocedures which constitute the basic components of our
algorithm. The algorithm maintains an alternating tree; these subprocedures perform
certain operations relative to this tree. The operations are the GROW operation,
which adds a matched pair of vertices to the tree; the SHRINK operation, which
shrinks an odd circuit into a pseudovertex; the EXPAND operation, which expands a
pseudovertex; and the AUGMENT operation, which augments the matching over an
augmenting path through the tree. These operations are specified below and illus-
trated using the graph of Figure 4(a).

In the specifications, note that each subprocedure calls an update routine. These
update routines update dual variables and related labels. They will be described in
detail for several different implementations. The value D passed to the subprocedure
is not relevant to the current discussion but will be used later in the paper.

-

FIG. 4(a). Initial graph: (—) edges in tree, (--) edges not in tree, (==) edges in
matching.

522 BALL AND DERIGS

GROW(,j, D)
Let k be the exterior vertex matched to i;
attach i to the tree at j and k to the tree at i;
set ;=-and [= +;
G-UPDATE(, k, D).

FIG. 4(b). Result of GROW(11, 2, D).

SHRINK(,j, D)
Find CYC, the circuit of exterior vertices formed by adding edge (i, f) to the tree;
let & be a free pseudovertex index;
S-UPDATE(CYC, &, D);
shrink CYC into pseudovertex k.

FIG. 4(c). Result of SHRINK(S, 10, D).

EXPAND(i, D)
Expand pseudovertex i;
set [, =+, -, or 0 for new exterior vertices k as appropriate;
let SA be the new exterior vertices k with /; = +,
TA the new exterior vertices k with [, =~ and
UA the new exterior vertices k with [;, = 0;
E-UPDATE(i,S4,TA, UA, D);
add i to the free pseudovertex list.

IMPLEMENTING MATCHING ALGORITHMS 523

@@

c)
@--.-

FIG. 4(d). Result of EXPAND(14,D): S4 = {4}, TA = {3, 5}, U4 = {7, 6}.

AUGMENT(,, D)
Augment the matching along the path that starts at i, proceeds to j, and then follows
the tree path from to r;
A-UPDATE(D),
Set all data structures associated with the current tree to their null values.

FIG. 4(e). Result of AUGMENT(13, 10, D).

We now describe MATCH, a general version of the matching algorithm. In addition
to the four subprocedures just described this algorithm requires [-UPDATE(r; D) and
MIN-I(; i, D). (Note that in the variable list for subprocedures, the variables preced-
ing the semicolon are input variables and the variables following the semicolon are
output variables.) I-UPDATE initializes certain labels and MIN-/ either chooses the
edge or vertex which determines each successive step of the algorithm or determines
that no augmenting path rooted at r exists. If the next step of the algorithm is to be
an EXPAND then MIN-J finds the appropriate pseudovertex i to be expanded. If the
next step is to be a GROW then MIN-/ sets i to the exterior vertex to be added to the
tree and p(¥) to the real vertex in the tree to which i is to be attached. If the next step
is to be a SHRINK, then MIN- sets i to be one of the vertices in the tree and p (i)
equal to j where j is the real vertex to which i is to be attached to form the new
pseudovertex. If the nextstep istobe an AUGMENT, MIN-/ sets i to be the unmatched

524 BALL AND DERIGS

EXPAND

GROW

SHRINK

AUGMENT

vertex that starts the augmenting path and p(i) to be the real vertex within the tree
that starts the tree portion of the augmenting path. If no augmenting path rooted at r
exists then MIN-/ sets i to zero. This indicates that no perfect matching exists so the
algorithm immediately terminates. Figure S illustrates these definitions.

Throughout this paper we assume that graph G is connected.

MaTcH (V, E, ¢)
Initialize dual variables and graphical structures;
while an unmatched vertex r exists:
set [, =+ and I, = O for all exterior vertices k #r,
I-UPDATE(r; D),
MIN-I(;i, D),
while i is matched and / # 0:
if I; = 0 then GROW(i, b(p(i)), D),
if1; = + then SHRINK(, b(p(?)), D),
if I; =~ then EXPAND(, D),
MIN-I(;i, D),
if i #0 then AUGMENTC(, b(p()), D),
otherwise, stop, no perfect matching exists,
a minimum-cost perfect matching has been found in the reduced graph, extend it to
a perfect matching in G.

IMPLEMENTING MATCHING ALGORITHMS 525

The key to the efficiency of MATCH is the efficient implementation of MIN-/.
MIN-/, I'UPDATE, and the update routines previously mentioned will be varied to
achieve different time bounds on the algorithm.

I1l. BLOSSOM ALGORITHMS

The now well-known blossom algorithm [10, 13] makes use of a linear characteriza-
tion of the solutions to MCPM. We describe two algorithms which are based on two
different characterizations. Before giving the constraint sets we define § = {SC V-
IS]1> 3,0dd} and forallSE vV

85S)={(i,HEE: icSandj &S},
¥&)={(i,HEE:i,jeS}).

The two sets of linear constraints are

as|-1

2 x;S-——=, forall SES, 0}
G.NEVES) 2
2 xy21, foral SES. (1)

.NE8(S)
The importance of these sets of constraints is that any extreme point solution to
LI:

min z c,-,-x,l-
)EeE

such that (1), (2), (I), or to
LII:

min 30 cyxy
(L.)EE

such that (1), (2), (II), is a solution to MCPM.

In fact, the algorithms we describe, while they do not explicitly deal with the entire
constraint sets of LI or LII, do rely very heavily on the structure of LI and LII.

To understand the manner in which the algorithms use this structure we must con-

sider the dual linear programs and the related complementarity conditions. The dual
of Ll is

DI:

max 2 y;~ 3 A(IS|- 1)ys

iev s

1l

526 BALL AND DERIGS

such that

yityi- 2. ysScj, for (L)EE,
S€§ with
(L)EY(S)

ys20, for SE€S.

The usual linear programming reduced cost is defined by

’_-
ci=cy=yimyit 2 Vs

SES§ with

(L,)EY(S)
and the complementarity conditions are
either x;=0 or ¢;=0, for (i,))EE,

Si-1
either ys=0 or > X = (—I—I———), for SES.
GNEVS) 2

The dual of LII is
DII:

max) y;+ > ys
i€V N=E

such that

yityi+ 2 ysScy for (L)EE,
Se§ with
(i,)E8(S)

Ys 20, for S€8.

The usual linear programming reduced cost is defined by

ci=ey=yimyi~ 2 s

S8 with
(LNE8(S)
and the complementarity conditions are
either x;=0 or ¢;=0, for (i,)€EE,
either yg=0 or > x;=1, for SES.
#.))€8(S)

4

)

(6
Q)

8

©)

(10)
(1n

In this section we describe Algorithms I-A and II-A, which are based on character-
izations 1 and II, respectively. Section IV presents Algorithm I-B, a more efficient

IMPLEMENTING MATCHING ALGORITHMS 527

implementation of Algorithm I-A, and Section V presents Algorithm II-B, a more
efficient implementation of Algorithm I1-A.

Both Algorithms I-A and II-A can be viewed as primal-dual linear programming
algorithms, with Algorithm I-A working with characterization I and Algorithm II-A
working with characterization II. In both cases dual feasibility and complementary
slackness are maintained. In addition, ¢y = 0 is maintained for all edges in the current
alternating tree so that when an augmenting path through the tree is found the com-
plementarity conditions will still be maintained after the augmentation is performed.
The algorithm works toward primal feasibility [constraint (1)] by iteratively finding a
matching M of larger cardinality until finally |M|= L1V, which implies that M is a
perfect matching.

We describe each algorithm by specifying the functions and routines required by the
general algorithm given in the previous section. Within the algorithms we assign values
to y variables associated with both real and pseudovertices. The y values associated
with pseudovertices represent yg for the associated odd- cardinality vertex sets.

For Algorithm I-A we define the following functions:

CUG,)= cij- yi~ v}, for (i,/))€E,
CS@,j)= %(c,-j— yi~yp), for (i,j)E€E,
CT(k)= 1y, for pseudovertices k.

Note that for (i, /) € E with b(i) # b(}), CU(,) = cj;.
We now specify the subprocedures required by MATCH. Throughout this paper we
define the minimum over an empty set to be oo,

MIN-I(;i,D)

set ay = min{CU(k, j): (k,j) € E with Ipky =0 and Iy = +};

set ap = min{CS(k,)): (k,) € E with Ipj) = lbry = + and b(j) # b(k)};

set a3 = min {CT'(k): k an exterior pseudovertex with L ==}

set o =min{a;, oy, a;3};

if @ =0 then set i = 0 and return;

if @=a, or a, then let (k°, /%) be an edge that achieves the minimum and set
i=b(k°)and p(i) = j°,

otherwise let kX be a pseudovertex that achieves the a;-minimum and set i = k%

setD=D+a;

D-UPDATE ().

D-UPDATE(a)
For all exterior vertices k with [, = +:
if k is a pseudovertex then set y; = Y t2a,
for alli € REAL(k) set y; = y; + a;
for all exterior vertices k with [, = - :
if k is a pseudovertex then set y; = y; ~ 2a,
foralli € REAL(k) set y; = y; - .

I-UPDATE(r; D)
Set D=0.

528 BALL AND DERIGS

S-UPDATE(CYC, k, D)
Set Yk = 0.

G-UPDATE, E-UPDATE, and A-UPDATE are vacuous in this case.

In Algorithm II-A we explicitly keep track of the reduced costs c},. The algorithm
maintains a variable c;; which equals c},- for (i, /) € E with b(i) # b(j). Before defining
c;j completely we define for any vertex k, real or pseudo, (k) as the set of all vertices
that contain k (including & itself). Now, with the yi defined with respect to DII, we
define for all (i,j) EE

Eii’—'cij_ Z Yk~ Z Y-

11310 kel()

Thus for (i,) € E with b(i) # b(j), cjj = ¢y, and for (i, /) EE with b(i) = b(j), cij =
cijt 2Zker@y 01y Vi

This definition might seem slightly unnatural, especially with respect to (i, j) with
b(i) = b(j). However, when we extend this algorithm to a more efficient version, this
definition of ¢;; becomes very useful.

For Algorithm II-A we first redefine the functions required by MIN-I:

CU(’:])':Ei]’ for (19])6Ea
CSG,j)=%¢; for (i,))EE,
CT(k) =yg, for pseudovertices k.

MIN-J is the same as for Algorithm I-A with the following revised version of D-UP-
DATE.

D-UPDATE(«)
For all exterior vertices k with [, = +:
set yy =yr T @,
for all i € REAL(K) and (i, /) EE set ¢;; = ¢; - o;
for all exterior vertices k with [=~
set Yy = Vg~ @,
for all i € REAL(k) and (i, /) EE set ¢;j = ¢cj + o

The remaining routines required by MATCH for Algorithm II-A are identical to
those required by Algorithm I-A.

Throughout the paper we assume that the graph is stored using list structures that
enable all edges adjacent to a particular vertex to be scanned in O(p) time where B is
the degree of that vertex.

Theorem 1 provides a bound on the computation time required by Algorithms I-A
and II-A.

Theorem 1. Both Algorithms I-A and II-A require at most O(|V]? |E]) time.
Proof. We refer to an iteration of the algorithm as a cycle in which a tree is grown

and an augmenting path is determined. Since after each iteration | M} increases by 1,
the number of iterations can be no greater than 1 | V|.

IMPLEMENTING MATCHING ALGORITHMS 529

It is clear that finding a new root vertex r and each call to AUGMENT and J-UPDATE
can be implemented to use at most O(|V|) time, and that each call to MIN-I can be
performed in O(|E[) time. Thus all operations outside the innermost while loop
require at most O(| V| | E']) time.

We now show that all operations within the loop use at most O(| V| |E [) time per
iteration. It can be demonstrated by induction that the number of pseudovertices
that can simultaneously exist is bounded by %(V|~ 1) (see {16]). Since only vertices
with a - label can be expanded and newly formed pseudovertices are given a + label, it
follows that a pseudovertex formed during a particular iteration can never be ex-
panded during the same iteration. These two facts imply that each of SHRINK,
EXPAND, GROW, and MIN-/ can be called at most O(|V'|) times during a particular
iteration. The basic tree and blossom maintenance operations required in SHRINK,
EXPAND, and GROW can be implemented in O(| V) time. The data structures and
procedures required to achieve this bound can be found in [7]. The above facts also
imply that MIN-/ can be called at most O(}V'|) times per iteration so that, since each
call uses at most O(|E) time, in total MIN-I uses at most O(| V| |E) time per itera-
tion. It now follows that the overall complexity of the algorithm is no more than
o(VE |ED. =

IV. ANO(|V[) IMPLEMENTATION

In this section we present an O(|V[*) algorithm. This implementation draws on the
ideas of Lawler [13] and of Derigs [6]. In addition to unifying these two approaches,
the algorithm presented here includes a new method for keeping track of edges that
are potential candidates for blossom formation. This method, which is based on a
specialized minimum spanning tree algorithm [2], has linear storage requirements
whereas Lawler’s methods require the maintenance of matrix whose size is propor-
tional to | V2.

As mentioned above, Algorithm I-A keeps track of a variable D which is not essen-
tial to its execution. We now define certain variables in terms of D and show how
these lead to a more efficient implementation, Algorithm I-B. For each vertex k we
define a variable dy; dj, is assigned the current value of D when vertex k first appears
in the tree as an exterior vertex. In particular, whenever GROW(j, j, D) is called d;
and dy are set to D; whenever SHRINK(i, j, D) is called dy is set equal to D where k
is the newly formed pseudovertex; finally, whenever EXPAND(, D) is called dj, is set
equal to D for all k €S54 U TA. Furthermore, we define a set of “partially updated”
dual variables y,. Whenever an exterior vertex k is added to the tree Vi is set equal to
the current value of y;. For each real vertex i contained in some pseudovertex b(i),
Yy is set equal to the value of y; at the time the current b(i) vertex was added to the
tree. For all exterior vertices i not in the tree and all interior vertices i, Y;=y; Based
on these conditions it is easy to see that whenever MIN-I is called the following re-
lations hold:

Yk =Yk +2(D-dy), for exterior pseudovertices k with L=+,
Yk =Yk~ 2(D-d;), for exterior pseudovertices k with [, = -,

Yi=yitD- dyg, for real vertices i with I, = +,

530 BALL AND DERIGS

yi=yi- (D~ dpy), for real vertices i with lp(;y = -,

Vi = Vi for interior pseudovertices k and real vertices k with lp) = 0.
Thus we have that

oy = min {C‘k]- - Yk -)_lj + db(]')l (k,)EE, lb(k) =0 and lb(]') =+}-D,
o, = min {%(Ck] - j;k - J_/] + db(k) + db(])) (k,]) € E with lb(k) = lb(l) =+
and b(k) #b(j)} - D,

a3 = min {1y + dy: k an exterior pseudovertex with / =-} - D.

Note that we need not explicitly compute the oy to find the edge or vertex that
achieves the minimum but rather we can compute D;=a; + D using the above for-
mulas with the final - D deleted. The significance of computing the D; rather than the
o; is that the formulas for the D; do not explicitly require the dual variables y; but
rather only the y; and d;. Thus it is not necessary to update all dual variables after
each pass through the innermost while loop of MATCH. More importantly, we show
below that a variety of other efficiencies result from dealing with the D;, d; and y;,and
not with the o; and y;. The principal computational efficiencies result from the fol-
lowing simple property.

Proposition 1. For any real vertex i, after ;) is set to +, the quantity ¢;; - Vit dpw
remains constant throughout the current iteration.

Proof. Once l,(; is set equal to +, the only condition under which y; or dp;) can
change is if (/) becomes a member of CYC during a call to SHRINK. If we denote by
k' the old value of b(i), by k the new value of b(i), by P, the old value of y;, and by
»9 the new value of y; we have

cij- ¥ tde=cij- (Ji+D-dy)+ D
=cij- Pi- dy.
Thus the old and new values of the relevant expressions are equal. n
The importance of this proposition is that it greatly reduces the updating required
to find the appropriate edge or vertex in MIN-/. To use this property we first redefine
CU(i,), CS(, j), and CT(k) as their previously defined values plus D. Now let
MI= {(l,]) eE: Ib(i) =+ and lb(]) = 0},

MII = {(l,]) ek lb(i) =+ and lb(]) =+ with b(l) #* b(])},

MIII = {k: k is an exterior pseudovertex with [=~ }.
The proposition implies that as long as (i, j) € MI, the value of CU(i, j) remains con-

stant and as long as (i,) is a member of MII the value of CS(i, /) remains constant. It
is also clear that as long as a vertex A is a member of MIII the value of CT (k) remains

IMPLEMENTING MATCHING ALGORITHMS 531

constant. Thus the problem of finding the vertex or edge in MIN-/ is not a problem of
updating the values of CU, CS, and CT but rather of updating membership and order
in MI, MII, and MIIL.

We now describe an algorithm that uses this approach. The algorithm maintains
subsets of MI and MII, where it is known that edges not in the subsets need not be
considered. In the case of MI, it is easy to see that for any exterior vertex k with
I, =0, only one edge adjacent to an exterior vertex i with /; =+ will ever be used.
Consequently, we can maintain a subset of MI that includes at most one edge adjacent
to each vertex with /; = 0. The edge kept is the one that minimizes CU(i, f).

MII consists of all edges in the subgraph induced by exterior vertices k with /, = +.
The important observation here is that it is not possible that edges in a circuit in this
subgraph will be used to form pseudovertices. The reason for this is that once all but
one edge in a circuit were used to form pseudovertices then the last edge would have
both ends within the same pseudovertex (see Fig. 6). Consequently, rather than main-
taining all of MII we maintain a minimum-weight forest over MII with the CS(i, /)
values used as weights.

We use a common set of labels to maintain the subsets of MI and MII and the set
MIII. For each exterior vertex k with /i = 0 let v, = min {CU(i,j): (i,/)EE, b(i) =k,
and lp(;y = +} and let p(k)=j for some real vertex j which achieves the above mini-
mum. We maintain the minimum spanning forest previously described using a pre-
decessor array defined by the p(k) for exterior vertices k with I, =+. We set vy =
CS(i, p(k)) where (i, p(k)) is the edge in the forest between vertex k and b(p(k)).
[Note that (i) = k and b(i) # b(p(k)).] Finally, for each pseudovertex k with [= -,
we set vy = CT (k).

For all real vertices j we define the variables v} and p’(j) to aid in updating the values
just described. Whenever a pseudovertex is expanded, it is possible that two or more
additional exterior vertices k will receive labels /; = 0. To facilitate the computation
of their vy values we define for each real vertex j with ly(jy = 0 or ly(jy = -

vj = min {cy; - y; + dp(y: (1, 1) € E and lp() = +},

p'(j)=i, for areal vertex i which achieves the above minimum.

We should note that the use of the v} labels in this manner has been previously de-
scribed by Lawler [13].

We now describe Algorithm I-B, which uses the labels just defined. The algorithm
invokes the subprocedure FOREST(AS, k) to update the minimum-weight spanning
forest. FOREST, which is described in [2], solves 2 minimum-weight spanning forest

FIG. 6. Once any two members of {(4, 6), (6, 8), (8, 4)} were used in a shrink opera-
tion the third would become ineligible because it would have both ends in the same
pseudovertex.

532 BALL AND DERIGS

problem over graphs in which all circuits pass through a single vertex. When FOREST
is called by GROW and EXPAND the set of +-labeled exterior vertices has just been
augmented by vertex k. FOREST(AS, k) finds the minimum-weight forest using the
original set of forest edges plus the set AS of edges adjacent to k and other +-labeled
vertices. When SHRINK calls FOREST(AS, k), k is the newly formed pseudovertex
and A4S is the set of edges adjacent to k and other +-labeled vertices that were formerly
adjacent to --labeled vertices now interior to k. It is shown in [2] that FOREST
(AS, k) can be implemented in O(|V]+ |AS) time.

Whenever an exterior vertex i is given a + label by GROW or EXPAND or when-
ever an exterior vertex i with /; =~ becomes interior to a +-labeled pseudovertex in
SHRINK the real vertices interior to i are scanned. This scanning operation updates
the vy and vy values of all adjacent vertices and also finds the set 45 used by FOREST.
The scanning procedure SCAN is specified below.

SCAN(, D; AS)
Set AS = ¢;
for each k € REAL({) and each (k,j) € E with b(]) #i
if Ip(jy = O then set vp(jy = min {vpjy, cxj = Vi = Vil

and set p(b(j)) = k if the value of Un(j) changes
set v; = min {v}, Cxi Vitandsetp'(j)=k
if the value of v, changes;
if I,(j) = + then set AS = AS U {(k,/)};
if Ip(jy = - then set v; = min {u}, ¢i; - V5 } and set p'(j) =k
if the value of v} changes.

We can now specify MIN-/ and the update procedure for Algorithm I-B.

MIN-I(;i,D)
Set D = min {;: j an exterior vertex};
if D = oo then set i = 0 and return;
let 7 equal the j value that achieves this minimum;
set v; = oo,

I'UPDATE(r, D)
SCAN(r, 0, AS);
set uf = v; = oo for all vertices j.

G-UPDATE(, k, D)
Set d; = dy = D;
if i is a pseudovertex then set v;=d; + 3
SCAN(k, D; AS);
FOREST(AS, k).

S-UPDATE(CYC, k, D)
For each h € CYC with [, = +:
if & is a pseudovertex then set yh ynt2D-dy);
for each g € REAL(h) set y, =y, + D - dy;
set SS = ¢@;

IMPLEMENTING MATCHING ALGORITHMS 533

for each h € CYC with [, = -:
if h is a pseudovertex then set ¥, = y, - 2(D - dp),
for each ¢ € REAL(h) set y, =y, - (D - dy),
SCAN(h, D; AS),
set SS =SS U AS;

FOREST(SS, k);

set y =0 and dy = D.

E-UPDATE(i,SA,TA, UA, D)
Foreachh €54;
for each u € REAL(h) set y, =y, - (D - d)),
setd,, =D,
SCAN(h,D; AS),
FOREST (48, h);
foreach h € T4:
for each u € REAL(#) set y,, =y, - (D- d),
setd, =D,
if h is a pseudovertex then set vy, = dj, + yp,;
foreach h € UA:
for each u € REAL(h) set y, = y, - (D - d;),
set Uy, = min {v,, - y,: u € REAL(h)} and
set p(h) = p(u®) where u® achieves the above minimum.

A-UPDATE(D)
For each exterior vertex k with [, = +:
if k is a pseudo-vertex then set yi = y; + 2(D - dy),
for eachi € REAL(h) set y; = y; - (D - dy);
for each exterior vertex k with /; = ~:
if k is a pseudo-vertex then set y; = yi - 2(D - dy),
for each i € REAL(k) set y; = y; - (D - dy);

We now show that algorithm I-B has a time bound superior to Algorithm I-A, and
II-A.

Theorem 2. Algorithm I-B requires at most O(| V|*) time.

Proof. As was described in the proof of Theorem 1, the algorithm’s running time is
dominated by the time required to execute the procedure in the innermost while loop.
The principle computational advantage of Algorithm I-B is that MIN-/ can now be ex-
ecuted in O(|V]) time. As was mentioned previously the basic tree and blossom main-
tenance operations require no more than O(]V|) time per call to GROW, SHRINK,
and EXPAND. Consequently, the total time required for these operations and for
MIN-/ is no greater than O(| V' ?).

We must now show that the additional updating required in the calls to G-UPDATE,
S-UPDATE, and E-UPDATE has a similar bound. First notice that the dual variable
updates in S-UPDATE and E-UPDATE and the minimizations required to compute
vy for € UA in E-UPDATE all involve scanning disjoint sets of real vertices and con-
sequently require at most O(|V'|) time per call. The remaining operations are domi-
nated by the calls to SCAN and FOREST. For ease in the exposition of this proof we

534 BALL AND DERIGS

assume that whenever . is set for an exterior vertex k then /; is set to the same value
for i € REAL(k). The key property of Algorithm I-B is that whenever the edges
adjacent to a real vertex i are scanned the value of /; has just changed from 0 or - to +
and that once J; is set to + it remains + throughout the current iteration. Thus an
edge is scanned at most twice per iteration, once for each of its end vertices. Thus
during a particular iteration all scanning operations use at most O(| E'|) time.

It also follows from the above arguments that the sets AS of edges passed to
FOREST in a particular iteration are disjoint. Since each call to FOREST(A4S, k) re-
quires no more than O(] V| + |AS|) time the total time required by FOREST per itera-
tion is no more than O(|V |2 + | E|) time. We now have that the overall complexity of
Algorithm I-B is O(| V?). .

V. ANO{|V||E|log |V} IMPLEMENTATION

It was demonstrated in the previous section that when using the dy a large number
of the values over which MIN- chooses remained constant from one call to the next.
This fact suggests the use of priority queues to store the lists scanned by MIN-1. Here
we use priority queue to mean any list of elements in which a value is associated with
each element, and such that the operations of finding the minimum value element,
adding an element and deleting an element can all be performed in log k time, where
k is the size of the list [1]. In this section we present a more efficient version of
Algorithm II-A that uses these ideas.

An O(|V||E]log | V) algorithm has been previously described by Galil, Micali, and
Gabow [12]. The algorithm we present is based on their algorithm; however, we have
simplified certain ideas and, in addition, our algorithm is based on characterization Il
whereas theirs is based on characterization I. The concept that is crucial to our algo-
rithm, which was first described in [12], is a ‘“‘splittable” priority queue. Such a
priority queue has all the priority queue properties described above and, in addition,
can be split, in a well-defined way, into two priority queues in log k time. The split is
defined in terms of an ordering of the elements. It should be emphasized that this
ordering is different from the ordering based on the element values. A split is per-
formed at a particular element. The result of the split is two priority queues, one con-
taining all elements less than the chosen element and the other containing all elements
greater than or equal to the chosen element. Here less and greater are with respect to
the ordering and not the element values.

Within our algorithm, a splittable priority queue will be associated with certain
pseudovertices i. The elements on this priority queue will be the vertices in REAL(J).
The elements will be ordered so that whenever a pseudovertex i is expanded the pri-
ority queue associated with i can be split into priority queues associated with each new
exterior vertex generated after the expand. Further, the ordering must allow this
property to hold after recursive expansions. As Figure 7 illustrates, such an ordering
can always easily be obtained.

We now describe the data structures used by Algorithm II-B.

Starting with Algorithm II-A we define di and y; in a manner analogous to the way
they were defined in terms of Algorithm I-A in the previous section. That is, whenever
an exterior vertex k is added to the tree y is set to y, and dj is set to D. As the
algorithm proceeds yy is not updated to y; unless a shrink or expand involving k takes

IMPLEMENTING MATCHING ALGORITHMS 536

FIG. 7. The vertices are ordered according to the numbering given. The priority
queue associated with blossom C contains {1,2,3,4,5,6,7,8,9,10, 11}, When Cis
expanded this priority queue is split at 6 and at 7 to obtain three priority queues
which contain {1, 2, 3, 4, 5}, {6}, and {7, 8, 9}. These correspond to the three
(pseudo)vertices uncovered by the expansion.

place. Thus, with these definitions it is easy to see that

Y=y +D-dy, for exterior vertices k with I = +,
Ye =y - (D-dy), forexterior vertices k with [, = -,

Yi = Yk, for all interior vertices k and exterior vertices k with [= 0.

Algorithm II-B only updates the c;; values at the beginning of an iteration so that
we define, for all (i, j) € E, ¢;j as the value of c i at the beginning of the current
iteration. 'To enable us to compute the c;; based on the ¢;;, we define for each vertex
k that existed at the beginning of the current iteration,

ex = Z Y
jergen{x}

where the I(k) used in the above sum is its value at the beginning of the current
iteration.

Although the e; do not change during an iteration we find it most convenient to
update them dynamically as expands take place. It is possible to compute required
reduced costs from the quantities just defined. For any (i, j) € E for which b(i) and
b(j) existed at the beginning of the current iteration (i.e., neither i nor j was involved
in a shrink operation), we have

i = i+ Vit
where
€b(k)> if Iy =0,
T =< oy t (D= dpry)s I Ipy =-»
epky = (D= dpy), if Ipey =+.

536 BALL AND DERIGS
We now define for any (7, /) € E with lp;y = +,
dpaytei= 2 Ye~e€~ Y if by #H
dyj= 11370

1/2(dpiy + dojy + €ip)s if Ipgjy =+

Note that we are defining a single dj; value for each edge (i,). The usefulness of the
d;; arises from the following:

dii + eb(,-) =D+ Cl,] for (l,]) € FE with lb(i) =+ and lb(/) = 0,

dij =D+ 1/2C',I for (l,]) € E with lb(i) = Ib(]) =+ with b(l) + b(])

Note that it is also true that
dy + yp =D +y,, for exterior pseudovertices k with [= -.

Thus, by taking the minimum over the above three quantities we obtain the same ver-
tex or edge obtained by MIN-/ of Algorithm II-A. Proposition 2 gives a property
which facilitates updating required to keep track of the d;;.

Proposition 2. For any real vertex i and (i,j) €E, after [y is set to +, d=D+ cij -
ke 1(i) Yx remains constant throughout the current iteration.

Proof. Let h be the first exterior vertex with [, = + that contained i. At the time [,
was first set to + we have that

67'—' dh + Cij ~ Z Yk
kE1(i)

=dptoy- k= Yh-

Y
kern{n}
Now as long as b(i) = h, y, = yj, + (D - dj) so that

d=D+cy- 2 v~ (p+D-dy),
ke1(\{n}

which equals d at the time /,, is first set to +. We now only need to show that d re-
mains constant when b(¥) changes; i.e., after a shrink involving / takes place. Now let
h = b(i) before the shrink and A" = b(i) after the shrink. Then after the shrink

d=D+cj~ 2. yk-wn
ker\{#'}
=D+ ¢y - 2 i~ [yn+(D-dy)]-0.

kel {nn'}

But it is clear that this last quantity equals d at the time 4 is added to the tree. n

IMPLEMENTING MATCHING ALGORITHMS 537

The implications of Proposition 2 on updating the d;; are given by the following
corollary.

Corollary 1. For any (i, j) €E, as long as Ip@sy = + and lp(j) # +, d;; remains constant
and as long as ly(;y = Ip(;) = +, d;; remains constant.

We now define the values used by the priority queues to determine the appropriate
minimums which guide the successive steps of Algorithm II-B. Several priority queues
are maintained. PQ-V contains exterior vertices not in the tree and - -labeled exterior
pseudovertices. PQ-E contains edges adjacent to a pair of +-labeled vertices. Finally,
a splittable priority queue PQ-P(k) is associated with each exterior pseudovertex k
that is either O or - labeled. The vertices k in PQ-V are ordered by v, where

min {dl] + €n(i): (l,]) ek, je REAL(k), lb(i) = +},
U = for exterior vertices k with /i = 0;

di + Vx, for exterior pseudovertices k with [, = -,

PQ-E contains edges (7, /) with ly(;y = lp(j) = +.

These edges are ordered by dj;. 1t follows directly from the definitions that the min-
imum of the v, and the d;; with b (i) # b(j) over these two lists yields the appropriate
vertex or edge for the next step of the alrogithm.

The splittable priority queues PQ-P(k) are necessary to allow for easy determination
of the vy, values after expands. The real vertices on these priority queues are ordered
by v} where

Ul” = min {dll lb(i) =+ and (l,]) EE}.

The pointer p'(j) is set to the i value that achieves the above minimum. The useful-
ness of the v} arises from the following property:

vx = min {y: j € REAL(K)} + e.

We can now define the subprocedures for Algorithm I1-B.

I'UPDATE(r; D)
Set dy; = o= forall (i,/) € E;
set v, = o0, ¢, =0, and [, = 0 for all exterior vertices k;
setd, =D =0,
SCAN(r, D).

SCAN(, D)
For each kK € REAL(Y) and each (k,j) € E:

if lb(/) #+ or lb(/) =+ and dk] = oo then
setd; =D+ ¢y +e;+ D~ d,

otherwise set dy; = 1/2(dy; + D + e; + D - d;),

if lb(]) =0 then set Up(j) = min {Ub(j)a dki + eb(,)} and
if the value of vy changes in the above minimum then
set p(b(/)) = k and adjust the position of &(j) on PQ-V,

538 BALL AND DERIGS

if Ip(jy = + and b(k) # b(j) then place (k,7) on PQ-E,

if Ip(j) # + then set v; = mir’l {v), dij}
if the value of v; changes in the above minimum then
set p'(j) = k and adjust the position of j on PQ-P(b(/)).

MIN-I(:i,D)
Set Dy = min {v;: j on PQ-V};
set D, =oo;

if PQ-E is not empty and for the top edge (%, j), b(k) = b(j),
then take edges off of PQ-E until PQ-E is empty or
for the top edge (k,), b(k) #b());
if PQ-E is not empty then set D, = djs
set D=min {D,,D,};
if D = oo then set i = 0 and return;
if D =D, then set i equal to the vertex on top of PQ-V and remove i from PQ-V;
otherwise (D =D,), let (k, j) be the top edge on PQ-E, set i=b(k), p(i) =/, and
remove (k, j) from PQ-E.

G-UPDATE(, k, D)
Setd;=d, =D,
if 7 is a pseudovertex then set v; = d;+ y; and place i on PQ-v;
SCAN(k, D).
S-UPDATE(CYC, k, D)
Set y, =0;
foreach h € CYC with j, =+ set y,, = y, + (D - d));
for each # € CYC with [, =~:
set yp = yp = (D~ dp),
SCAN(h, D).

E-UPDATE(i,SA,TA, UA, D)
Split PQ-P() into {PQ-P(M)}hesaurauuas
forallh€SAUTA U UA sete, =e;tys
forallh €SA U T4 setd,, = D;
forallh €S4 SCAN(h, D);
forall h € TA if h is a pseudovertex then
set v, =dy, + y, and put h on PQ-V;
forallh e UA:
if PQ(h) is not empty then:
set vy = vy + ey, and p(h) = p'(k) where k is the top element on PQ-P(%), place &
onPQ-Vifu, <ee,

A-UPDATE(D)
For each exterior vertex k with Iy =+ set y; =y, + (D~ dy);
for each exterior vertex k with I, = - set y, =y, - (D~ dy);
for each edge (i,/) EE:
if Ib(i) =+ and lb(/) = (then set Z:il' = d,-j— D+ €n(j)>
iflb(,-) =+ and lb(/’) =~ then set Eii = d,-j - db(j) * €pj),
lflb(,) = Ib(j) = + then set Z",, = 2d,, - 2D,

43

IMPLEMENTING MATCHING ALGORITHMS 539

if lb(i) # + and lb(]) # + then:
set E"” = E,] + €p(i) + €b(j)>
if lb(i) =~ then set Eij = 2',7 +(D- db(i))a
lflb(/) = - then set Eii = Eij - (D - db(]))

We will not formally prove that Algorithm II-B correctly solves the matching prob-
lem. However, we should note that this result follows from the fact that MIN-7 of
Algorithm II-B computes the minimum over the same set of values considered by Algo-
rithm II-A offset by the vailue of D.

We now give a bound on the running time of Algorithm II-B.

Theorem 3. Algorithm II-B requires at most O(| V| | E| log | V) time.

To demonstrate this result, it suffices to show that no more than O(|E|log |V)
time is spent per iteration, since there can be no more than % | V| iterations.

To obtain the required bound we need a better bound than O(]V|) on the basic
SHRINK operations. If the operations could be performed in O(|CYC|) time then
since a vertex can only be a member of CYC once per iteration and since there are at
most O(|V|) vertices and pseudovertices “handled” per iteration all shrink operations
could be performed in O(|V|) time. It is fairly easy to achieve this time bound on all
operations except for updating the 5(i) values. However, if the new pseudovertex is
given the “same name” as the larger of its interior pseudovertices then the b(7) values
need not be changed for real vertices in the largest pseudovertex in CYC. In this case
whenever b(i) changes the number of real vertices in the outermost pseudovertex con-
taining 7 at least doubles. Consequently, for any real vertex i, b(¢) can change at most
log | V| times and then the total time required per iteration for updating b (i) values is
O(|V|1og |V]). For more details on the data structures required for the basic GROW,
SHRINK, EXPAND, and AUGMENT operations see {3,7,12,13].

We now consider the scanning and other update operations performed by SCAN,
G-UPDATE, S-UPDATE and E-UPDATE. First note that a vertex is only scanned
when it is first + labeled. Thus each edge can be considered at most twice by SCAN.
When each edge is scanned, at most O(log|Ef) = O(log| V) time is expended. Thus,
in total, for all scan operations O(|E|log | V) time is used per iteration. Each of
G-UPDATE, S-UPDATE, and E-UPDATE never performs a particular operation on a
particular vertex more than once. All operations either require constant time or, in
the case of E-UPDATE, log | V| time per vertex. Thus in total |V|log [V] time is ex-
pended per iteration.

Now note that a vertex can be placed in PQ-V at most twice, once when it is labeled
0 and once when it is labeled -, and an edge can be placed on PQ-E at most once.
Consequently, throughout an iteration MIN-/ can remove a vertex from PQ-V at most
twice and can remove an edge from PQ-E at most once. Thus in total MIN-J requires
at most O(|E| log |V |) time per iteration.

Finally, note that 4-UPDATE and I-UPDATE use no more than O(|E|[) time per
iteration. We now have overall bound of O(1V| | E'| log |V). L]

VI. SHORTEST AUGMENTING PATH INTERPRETATION

In Section III the blossom algorithms were introduced as primal-dual algorithms.
Primal-dual methods have been shown to be key techniques for solving many graph

540 BALL AND DERIGS

related problems of linear programming. A general discussion of primal-dual methods
can be found in [15]. In Sections IV and V we showed how dual adjustments can be
condensed to improve the performance of the algorithm.

In this section we now look at the blossom algorithms and the improved versions
from a more combinatorial point of view. Our approach buids on the one given in
[6], where such a combinatorially motivated algorithm based on characterization II
is discussed.

An iteration of the blossom algorithm can be described as follows. At the beginning
a matching M and a dual solution y are at hand, fuifilling the complementary slackness
conditions with the additional property that all § € with nonzero dual value yg are
hypomatchable and y; = 0 for all vertices i & V(M). Moreover, all these sets S €8 with
ys >0 are shrunk to pseudovertices. Starting from an unmatched vertex r V(M) an
alternating tree is grown until an augmenting path P is detected. Then the matching M
is changed to M' by reversing the role of matching and nonmatching edges of P and the
dual solution is altered such that complementary slackness and the additional condi-
tions from the beginning of the iteration are fulfilled again.

It is easy to show that for both matchings M and M’ the following is true.

Lemma 1. Let M be the matching at the beginning of a blossom iteration. Then M is
an optimal solution to the following matching problem:

MCM:

min Z cij X,'j
J)EE

such that

<1, for i& V(M),

Z xij = ;
jGDEE 1, forie V(M),

xi]. z 0, for integer (15]) EE.

Proof. Add the set of blossm constraints I (II) and formulate the associate dual
linear programs DI’ (DII"). Then the dual solution y which is at hand is also feasible
for DI’ (DII") and complementary slackness with M is fulfilled. =

Now let P be the augmenting path which is used to augment M to M’ and let us
define the length of P by

C(P)= Z Cij ~ Z Cij- (12)

(i,))EP\M (LHEMNP

Then the following relation holds:
ci= 2. cite(P) (13)
G.)EmM (i,HEM

Thus the cost of the matching is enlarged by the length of the path P.
Now the following is true.

& 2

(4 3

(¢ 4

i 4

A% 4

(2

“8

%

LE3

IMPLEMENTING MATCHING ALGORITHMS 541

Lemma 2. Let P’ be an augmenting path with respect to M starting at vertex r &
V(M), then

c(P) < c(P');

i.e., P is the shortest augmenting path with respect to M which starts at r.

Proof. Extend the argument given in the proof of the previous lemma. .

Thus the blossom algorithm can also be viewed as a method which successively looks
for shortest augmenting paths with respect to a given matching and a predetermined
start vertex. Of course this is not a standard shortest path problem that can be solved
by direct application of the well-known shortest path algorithms. Rather two addi-
tional conditions are imposed: (i) the arcs in the path must alternately be in M and not
in M; (ii) the length of the path is not defined as the sum of the lengths of each of its
arcs but rather by (12). Many of the difficulties associated with (ii) are overcome by
working with a transformed set of costs. At the start of any iteration for each arc
(i,j) we have the reduced cost c},- associated with the current dual solution, i.e.,

c cl/ Yi~ yj+ Z Vs
@NHEYS)
sed

if characterization I is used and

C ¢~ Vi~ Z ys
,)E8(S)
Se$§

if characterization II is used.

Now let G' = (V', E") be the graph which is at hand at the beginning of an iteration
where all hypomatchable sets S with yg > 0 are shrunk into pseudovertices. It can be
seen easily that any augmenting path P’ in G’ uniquely determines an augmenting path
Pin G. With respect to the costs of these paths several useful relations hold.

Lemma 3. Let P be an augmenting path with respect to M in G which is induced by
an augmenting path in G'. Then

c(P)=c'(P).
Proof. See [6].
This lemma motivates the use of the reduced cost c}j instead of the actual cost c;;

since because of the fact that c;; =0 if (i, j) €M, the cost definition (12) becomes a
simple sum, i.e.,

cP= 3 cj. (14)

(,Her

The next lemma enables us to work in G’ rather than G.

542 BALL AND DERIGS

Lemma 4. Let P be an augmenting path in G which is induced by an augmenting
path in G’ and let S €8 with yg > 0. By Pg we denote the partial path of P which is
contained in §. Then ¢'(Pg) = 0.

Proof. The result follows immediately from the fact that the property
c; =0 forall (i, /) € Pg withys >0

is maintained throughout MATCH. e

Thus far we have presented the foundation for working in G’ and looking for a
shortest augmenting path with respect to c;,. Yet the shortest augmenting path in G
with respect to c;; need not be induced by any augmenting path in G'. When this is
not the case the approach developed thus far cannot produce the solution. Thus the
matching algorithm must be able to detect whether this is the case and it must over-
come this situation. The algorithm maintains throughout the path finding steps in G’
control variables which indicate the possibility of the existence of shorter augmenting
paths which cannot be generated from augmenting paths in G'. In such cases certain
pseudovertices must be expanded so that these paths can be detected.

The following lemma is used to determine when such paths may exist.

Lemma 5. Let P be an augmenting path with respect to M in G which is not induced
by an augmenting path in G’, but is by one in G”, where G” is obtained from G’ by
expanding the pseudovertex representing odd set S, then

c'(P)+yg, for characterization I,
c(P)=1 ,
¢'(P)+2yg, for characterization II.

Proof. The result follows by an immediate extension of the proof of Lemma 3. =

During each iteration Algorithm II-B can be interpreted as a combination of a
modified Dijkstra algorithm which finds a shortest augmenting path in G’ and a pro-
cedure which modifies G’ when there is an indication that the shortest augmenting
path in G is not induced by an augmenting path in G'. Let us at first assume that the
shortest augmenting path in G is induced by an augmenting path in G'. Then we
interpret the steps of Algorithm II-B as path finding techniques. Note that in this
case Algorithm II-B would never call EXPAND (assuming no ties are encountered by
MIN-J) and thus all e; values encountered would be O so that these variables can be
ignored. Note that the 2-',-,- equal the c},- at the beginning of the iteration, so these are
the edge costs for the shortest path problem.

It can be shown that throughout the iteration D is a lower bound on the length of a
shortest augmenting path and that dy is the length of a shortest alternating path from
r to k ending with a nonmatching edge for exterior vertices k with [, = -, respectively,
ending with a matching edge for exterior vertices k with I, = +. Furthermore, dy is
the length of the shortest alternating path from r to b(j) ending with edge (i,). We
now show that the updates to D, dy, and dj; made by Algorithm II-B by GROW and
SHRINK are in fact setting path lengths.

o

g g

B

L%4

«e

L2 4

¢

3

L¢

Lt 4

[

IMPLEMENTING MATCHING ALGORITHMS 543

FIG. 8. Illustration for Case 1: D = v = dp(u) + Cuw is the length of the alternating
path from r over b(u) to k.

Case 1. Let D =D, with v, = min {v;]j on PQ-V} and I, =0. Then v; = dy,, with
w € REAL(k) and Ip(,,) = +. (See Fig. 8.)

Now if vertex k is unmatched we have found an augmenting path of length D, i.e.,
a shortest augmenting path. If vertex k is matched with, say g, the algorithm sets

dy=dg=D

since the matching edge incident with k has (reduced) cost zero. When SCAN(q, D)
is called it sets the dj; for edges adjacent to g to the appropriate path lengths, i.e.,
dg + ¢;j (note that in this case D - dg = 0).

Case 2. D =D, with D =d;. (See Fig.9.)

Adding edge (i, j) to the tree creates an odd cycle CYC. Let ¢ € CYC withlg =-.
After adding edge (7, /) an even alternating path from g to r exists [which uses only
edges in the tree and edge (i,j)]. The length L of this path is given by

deb(j)+db(i)+ Et’j— dq =2D- dq.

Now let ¢ be a O-labeled vertex adjacent to a vertex s with b(s) = ¢. Then the alter-
nating path from r to ¢ over s has length

L + gst=dst= 2D_ db(s) + Est-

FIG. 9. [Illustration for Case 2: d,,(]-) is the length of the alternating path fromj tor,
dp(i) is the length of the alternating path fromitor.

544 BALL AND DERIGS

During a shrink SCAN(q, D) is called for all vertices ¢ in CYC with I, = -. When the
edges (s,) with s € REAL(q) are scanned d,, is set to the value]ust derlved Note
that if before the shrink b(s) = g and l4 =+ the algorithm need not update dj; since
these path lengths do not change.

Thus far we have discussed the operation of the algorithm assuming the shortest
augmenting path in G is induced by an augmenting path in G'. If MIN-J sets D to U
for an exterior pseudovertex k with /; = - then this indicates that the shortest aug-
menting path in G may be induced by an augmenting path in the graph obtained by
expanding k. We now interpret the updates performed by the algorithm in this case.
These updates involve the e; variables. The e; can be interpreted as penalties for
traversing paths that are interior to blossoms at the start of the iteration. These pen-
alties are justified by Lemma 5.

Case 3. D =D, =v, with [, =-. (See Fig. 10).

In EXPAND the pseudovertex k is expanded and in E- UPDATE some of the d; are
redefined and some new d; and d;; are set. Recall that D =d + y,.

Denote the hypomatchable set represented by pseudovertex k by R. Foranyi E€R
for which ;) is set to + and any j adjacent to i with Ipj) = 0, let P, be the alternating
path through the tree from r toj. By Lemma 5 we have

c(Py) = c'(Py) + 2yy.
This equation is equivalent to the relation
c(P) = dy + Cyr + 2y
Note that when E-UPDATE calls SCAN(s, D), the value of d;j is set as follows:

dj=D+cj+tes+D-dg

Sdptyp t Gty +0,

which equals the value derived above.

From this formula it becomes clear that even if the reduced cost &y, equals zero this
edge will not necessarily be a candidate for the next GROW operation. There may still
be some other edges (u, v) incident to +-labeled vertices having d,, € [D, dgs) and

d =d =d =D \®

q S u

FIG. 10. Updating during expansion: dg=dg=d, =D.

L. 4

*

sty

&>

e

-

&0

€ »

«»

< »

IMPLEMENTING MATCHING ALGORITHMS 545

such edges could have j V(M), i.e., induce an augmenting path with length shorter
than di]"

Thus if one is interested only in finding the shortest augmenting path this expansion
may not be imperative at that particular stage. Yet, the algorithm which is motivated
by a search for shortest alternating paths performs an expansion at this time because
it is able to fix dj values for & interior to k at the lower bound D (vertices g, 5, and u
in Fig. 10). However, as we have demonstrated above none of these paths can lead to
augmenting paths of length less than D + y,.

Considering the fact that an expansion is very costly in all implementations one may
wish to investigate the computational advantage of postponing expansions.

Based on the interpretation given in this section it directly follows that :

Theorem 4. Given a graph G =(V, E), a matching M S E with |M| < %IV]— 1 and
non-negative weights c;; for (7, /) € E, Algorithm II-B can easily be modified to find the
shortest augmenting path starting at a vertex r € V\V(M) in O(| E |log | V') time, where
the cost of a path P is defined by Z(; jye p ¢;;.

VIl. POSTOPTIMALITY PROCEDURES

Postoptimality procedures are of practical importance since matching problems most
naturally occur within a more complex system which requires that the problem be re-
solved on the same graph with a few changes (new edges/new edge weights). Then it
can be advantageous to start from the old solution rather than to solve every modified
problem from scratch.

The computerized system for mass transit crew scheduling [4] handles matching
problems with a small number of side constraints. This problem is tackled via a
Lagrangian Relaxation approach. The optimization routine requires the solution of
a series of matching problems on the same graph with only a few number of edge
weights changed and thus asks for an efficient postoptimality procedure.

Nemhauser and Weber [14] use matchings to solve a Lagrangian Relaxation for the
set-partitioning problem. They use the blossom algorithm based on characterization [.
For the sensitivity analysis Weber [17] gives a set of updating formulas distinguishing
the different cases that may occur (weight is increased/decreased for a matching/
nonmatching edge which is shrunk/not shrunk in the optimal solution). Cunningham
and Marsh [5] also describe a procedure that can be used in the context of their
primal matching algorithm.

The need for efficient postoptimality procedures in connection with the crew sched-
uling application motivated our further research. Below we demonstrate that sensi-
tivity analysis can be performed very simply and efficiently within our general frame-
work. No special updating formulas/subroutines are necessary. Rather, after some
minor changes the general procedure MATCH can be reentered. Again this efficient
and simple approach was developed within the framework of “shortest augmenting
path” using combinatorial arguments (see [8]). Here we present the adaption of these
ideas to our general matching algorithm.

At the end of all the matching implementations that we have described there is al-
ways a perfect matching M and a dual feasible solution y at hand which together fulfill
the complementary slackness conditions. Some of the original vertices may be shrunk

546 BALL AND DERIGS

into pseudovertices which represent those hypomatchable sets with nonzero dual
values. Now let 7 € V be such that for one or more edges (7, /) € 8(r) the edge weight
cyj has been modified to ©,;.
If vertex r is shrunk into a pseudovertex we modify in a first step the optimal dual
solution so that all hypomatchable sets containing get zero dual value. After delet-
ing the matching edge incident with vertex r from M we then adjust the edge weights
for all edges in 8(r) and update the dual variable y, so that again a dual feasible solu-
tion is at hand. Then we reenter our basic procedure for one further iteration, i.e.,
determination of a shortest augmenting path. At the end of this procedure Z“;-j 2 0 for
(r, /)€ 8(r) and a perfect matching is again at hand. We now give a more detailed
description of this routine. ’

The first step is necessary only if vertex r is shrunk into a pseudovertex, say v. Let
t €V be the vertex matched with r. If vertex r is not shrunk we simply delete the
matching edge (7, £) from the matching and start immediately with the second step.
To accomplish the first step, we introduce two artificial vertices a, b & V and two
artificial edges (a, r) and (b, t) as illustrated in Figure 11.

Depending on what linear characterization has been used to solve the original match-
ing problem we have to introduce appropriate edge weights and dual variables for the
artificial vertices and edges. For characterization I we set

Car=Vrs (15)
Cpe > Max Syu)’t"";lz‘ Z yYs - Z ys l (16)
res, r,tes f
tES
For characterization II we set
Car=yr+ ZyS7 (17)
res
cor >Vt 2 vst 2 Vs (18)
tes, tes,
réS rés

For both characterizations the additional dual variables can be set to zero, ie,y, =
¥ = 0 and implicitly yg = 0 for all § C VU {a, b} odd with S N {a, b} # &.
It is easy to see that with this definition we obtain in both cases a feasible dual solu-

FIG. 11. Graph with artificial vertices and edges.

&

IMPLEMENTING MATCHING ALGORITHMS 547

FIG. 12. Modified graph after application of MODDUAL(a).

tion which with the (nonperfect) matching still fulfills the complementarity condi-
tions. After making this modifications we execute the following procedure which
modifies the dual solution and makes vertex r an exterior vertex.

MODDUAL (@)
Set I, = + and [, = 0 for all exterior vertices k #r;
I-UPDATE(r, D);
MIN-I(;i,D);
while i is matched
if 1; = 0 then GROW(i, b(p ())), D),
if I; = + then SHRINK (i, b(p (¥)), D),
if I; = - then EXPAND(i, D),
MIN-I(;i,D),
AUGMENT(, b(p (1)), D).

To see that r has become an exterior vertex in the sense of Section VI we view
MODDUAL as a shortest augmenting path finding routine which is started from ver-
tex a. The only existing augmenting path has to use edge (¢, b). By (16) [(18)] we
have made this edge expensive enough so that it can become part of the shortest path
tree only after all pseudovertices containing » are expanded.

After executing MODDUAL delete the artificial vertices @ and b and the artificial
edges (a,r) and (¢, b) and start with the second step. With the new edge weights oy we
calculate

min {¢,;- y,-y;}, for characterization I,
JjE8(r)
A = A . .
min ¢, -y, -y~ > ys¢, for characterization II.
JES(r) r,jES

If we now set y, =y, + A all edges (7, /) in 8(r) will have ¢}; 2 0.

The following subroutine REOPT will then reoptimize, i.e., give the optimal match-
ing with respect to the altered edge weights, by augmenting along the shortest aug-
menting path starting at vertex r.

REOPT(r)
Set I, = + and /;, = O for all exterior vertices k #r;
I-UPDATE(r, D);
MIN-I(;i,D);

548 BALL AND DERIGS

while 7 is matched:
if 1;= 0 then GROW(i, b(p(i)), D),
if I; = + then SHRINK (i, b (p(9)), D),
if I; = - then EXPAND(, D),
MIN-I(;i,D);

AUGMENT(, b(p())), D).

A comparison of the two subroutines MODDUAL(«) and REOPT(r) with the basic
procedure MATCH(V, E, ¢) shows that the reoptimizing technique is identical to two
iterations of the basic procedure without the first initialization of the dual variables
and the graph structure. Thus in a computer implementation one would program
MATCH in such a way that it can be entered with an appropriate graph structure and
appropriate dual variables.

Now let UC V be such that the edge weights are only altered for edges (i, j) €
8(U) U y(U), then the complexity to reoptimize equals 2 |U| times the complexity of
one iteration of the basic procedure. If the cardinality of U is small this compares
favorably to solving the altered problem from scratch. We note that this is the same
property achieved by the algorithm of Cunningham and Marsh [5] in the context of
their primal algorithm,

This work was supported by Sonderforschungsbereich 21 (DFG), Institut fiir Opera-
tions Research, Universitit Bonn, West Germany and by Contract MD-06-0041 from
the Urban Mass Transportation Administration of the U.S. Department of Transpor-
tation. We wish to thank Bezalel Gavisch for bringing Ref. {12] to our attention.

References

{11 A. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA (1974).

{2] M. O. Ball, A linear-time algorithm for finding 2 minimum-weight spanning tree
in graphs in which all cycles pass through a single vertex. Unpublished.

[3] M. O. Ball and L. D. Bodin, A computational study comparing the efficiency of
various list structures in matching algorithm. Unpublished.

[4] M. O. Ball, L. D. Bodin, and R. Dial, A matching based heuristic for scheduling
mass transit crews and vehicles. Transportation Sci. 17 (1983) 4-31.

[5] W. H. Cunningham and A. Marsh, A primal algorithm for optimal matching.
Math. Programming Study 8 (1976) 50-72.

[6] U. Derigs, A shortest augmenting path method for solving minimal perfect
matching problems. Networks 11 (1981) 379-390.

[7] U. Derigs, Matching code theory part I: Combinatorial structures and the cardi-
nality matching problem. Working Paper MS/S No. 81-041, College of Business
and Management, University of Maryland at College Park (1981).

[81 U. Derigs, Shortest augmenting paths and sensitivity analysis for optimal match-
ings. Report 82222-OR, Institut fir Okonometrie und Operations Research,
Universitdt Bonn (1982).

[9] U. Derigs and G. Kazakidis, On two methods for solving minimal perfect match-
ing problems. In Proceedings of the Second Danish/Polish Mathematical Pro-
gramming Seminar, J. Krarup and S. Walukiewicz, Eds. (1980), pp. 85-100.

[10] J. Edmonds, Maximum matching and a polyhedron with 0,1 vertices. J. Res.
Natl. Bur. Standards, 69B (1965) 125-130.

[11]
(12}

[13]
[14]
[15]
[16]
[17]

IMPLEMENTING MATCHING ALGORITHMS 549

J. Edmonds and W. R. Pulleyblank, Facets of 1-matching polyhedra. In Hyper-
graph Seminar, Lecture Notes in Mathematics 411 (1974) 214-242.

Z. Galil, S. Micali, and H. Gabow, Priority queries with variable priority and an
O(EV log V) algorithm for finding a maximal weighted matching in general
graphs. Unpublished manuscript (1982).

E. L. Lawler, Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart and Winston, New York (1976), pp. 217-263.

G. Nemhauser and G. Weber, Optimal set partitioning, matchings and Lagrangian
duality. Naval Res. Logist. Quart. 26 (1979) 553-563.

C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Englewood Cliffs, NJ (1976).

W. H. Pulleyblank, Faces of matching polyhedra. Thesis, University of Waterloo,
1973.

G. Weber, Sensitivity analysis of optimal matchings. Networks 11 (1981) 41-56.

Received February 4, 1982
Accepted May 4, 1983

