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M. L. BALINSKIY, The City University of New York

1. INTRODUCTION

This paper desecribes a very simple labelling algorithm for
solving the maximum matching problem on a graph. In con-
trast with the approach [4] which depends on “shrinking odd
cycles” and, hence, on consideration of a hierarchy of reduced
graphs this method permits all work to proceed on the given
graph through use of purely “local” information stored only
on the vertices of the graph. To contrast these approaches
and enable the discussion to be self-sufficient Section 2 reviews
basic theorems and the shrinking approach in a simple manner
before proceeding to labelling. The success of labelling tech-
niques in the closely related network flow problems together
with the practical importance of integer programs defined on
a graph [1], [2] has motivated this development which is now
being extended to the general integer programming problem
on a graph.

2. THE PROBLEM
A graph G = {V, E} is taken to be a finite set of vertices

1 This work was supported by the Army Research Office, Durham, under con-
tract No. DA-31-124-ARO(D)-366.
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V together with a set of distinct edges E which are unordered
pairs of distinct vertices. A matching M of the graph is a
subset of the edges E with the property that no two edges of
M are incident at a vertex. The maximum matching problem
is to find a matching having a maximum number of edges.

Given a graph G and a matching M an alternating path is
a simple path (no vertices in common) whose successive edges
alternately belong to and do not belong to M. An augmenting
path is an alternating path connecting a pair of exposed vertices,
vertices which are not incident to an edge of M. It is obvious
that if a matching M admits an augmenting path, M cannot
be maximum, since a simple reversal of assignment of edges in
the augmenting path to M results in a new matching having one
more edge than M. Not so obvious is the reverse statement
which permits

Theorem 1. (Berge [3] for matching; Norman-Rabin [5] for
covering). A matching M is maximum if and only if G admits
no augmenting paths relative to M.

Proof. Suppose that M is a matching which admits no aug-
menting path but that M* = M is a maximum matching. Con-
sider the subgraph G’ of G containing all vertices of G and
edges e of G which satisfy: eec M and e¢ M* or e¢ M and
ec M*. This is the set of edges where M and M* differ.

Consider any connected component of the subgraph. Such
a component can only be either a simple path or a cycle, for
otherwise, the component would have a vertex with three inci-
dent edges. But this would mean that either at least two edges
of M or at least two edges of M* are incident, contradicting
the fact that M and M* are matchings. If the component is
a simple path P we distinguish three cases: (i) the extreme
edges of P are both in M and not in M*; or (ii) both in M*
and not in M; or (iii) one is in M and not M*, the other in
M* and not M.

In case (i) M* admits an augmenting path in the com-
ponent, contradicting its maximality. In case (ii) M admits an
augmenting path, contradicting the hypothesis. In case (iii) the
extreme vertices have no incident edges belonging to M or M*
other than those in the component itself. Therefore the com-
ponent has an even number of edges and M* may be changed
by taking every edge e € M* of the component out of M * and
putting every edge e¢¢ M* of the component into M*. This
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does not change the cardinality and hence gives a new M*
which is a maximum matching. But the change leads to a new
G’ containing fewer edges. We call such a change a redefini-
tion of M*.

If the component is a cycle, the cycle must contain an even
number of edges. This permits the same redefinition of M*,.
Thus, in a finite number of such redefinitions we must have
|M*| = | M|, completing the proof.

Our augument yields

Corollary. If M, and M, are both maximum matchings of G
one may be obtained from the other through a finite number of
redefinitions.

Thus to solve the matching problem a method is needed to
find augmenting paths or to show that none exist. Edmonds
[4] correctly pointed out that the theorem itself does not indi-
cate an obvious algorithm. For to have a “good” algorithm
it is necessary to show that the number of steps required to
obtain a solution is less than exponential in the size of the
graph, i.e., the algorithm must be better than sheer exhaustive
search and its difficulty should increase only algebraically with
the size of the graph. Edmonds proposed a “good” method
which is based on the idea of “shrinking” odd cycles of edges
into pseudonodes and working on the reduced graph in search-
ing for augmenting paths. Given a simple odd cycle of edges
together with its vertices B in G = (V, E), the reduced graph
G /B, said to be obtained from G by shrinking B, is the graph
consisting of vertices »; in G but not in B, and a (pseudo)
vertex vy; and consisting of edges (v, v;) for v, v, in G but
not B if (v, v;) € E, and edges (vs, v;) for v, ¢ B if (v, v,)e K
for some v; € B.

Lemma 1 ([4]). Let B be a simple odd cycle of 2k + 1 edges
together with its vertices. Then, if M, is a matching in G/B
there exists a maximum matching My of B, |My| = k, such that
M= MUM; is a matching for G.

Proof. Since M, is a matching of G/B only one edge of M, is
incident to vz hence to some v, in B. Thus, in B, choose for
M; the k unique edges which are not pairwise incident at a
vertex and leave v, exposed. The lemma implies that if an
augmenting path can be found in G/B relative to some M, then
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an augmenting path obtains in G relative to the corresponding
M = Ml U M B -

Theorem 2 (Edmonds [4]). Let M be a matching leaving at least
two vertices of G exposed, B a simple odd cycle of 2k + 1 edges
together with its wertices, and MyC M, |M;| = k, a maximum
set of matching edges in B. Suppose v,, the unique vertex mot
tncident to an edge of My in B, 1s either exposed or connected
to an exposed vertex v, along an alternating path beginning with
an edge in M. Then M is a maximum matching for G if and
only if MN(G/B) is a maximum matching for G|B.

Proof. If M is a maximum matching and M, = MN(G/B) is
not, then the latter admits an augmenting path which, by
Lemma 1, implies M does as well. This is a contradiction by
Theorem 1.

Suppose, then, that M, is a maximum matching but that
M is not. Then there exists an augmenting path P in G rela-
tive to M connecting exposed vertices », and v, which must
include an edge of B. Let P,C P be the part of the path first
joining v, to a vertex of B (1 = 1,2), and let P, be the alter-
nating path joining v, to v,. If either P, or P, first hits a node
of B along an edge in M, hence in M, then (P,UP,))N(G/B) is
an augmenting path, contradicting the maximality of M,. Thus
we may assume P, and P, both first hit a vertex of B along
an edge not in M, hence hit v, along an edge not in M,. If
P, is distinct from either P, or P, the same contradiction re-
sults. So, suppose that P, first hits P, (and not P,) from w,
to v, in G/B at v,. Then, either the cycle of edges formed
by P, and P, on G/B between v, and v, is even or it is odd.

p,

L

PO Vg

Up v,

Yy

P,

If the cycle is even then define P} to be the alternating path
going from v, to v; along P, and v, to v, along P,; define P}
to be the alternating path going from v, to v, along P,; and
P} to the alternating path going from v, to v, along P,. The
paths P;, P}, and P; satisfy the same assumptions as P, P, P,
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did (where v, takes the role of v;), but the length of the path
P! is strictly less than that of P,. Repeat. In a finite number
of redefinitions either PF is distinet from P} or P, a contra-
diction; or PF is identical to P* or P# implying it is distinet
from one or the other, again a contradiction; or, an odd cycle
D is formed. In this last case shrink D to obtain the graph

= (G/B)/D. In this graph the edge P,NG, incident to v, in
G, belongs to M;NG,. Therefore (P,UP,)NG, is an augmenting
path in G, which implies, by Lemma 1, that G, = G/B admits
an augmenting path as well. This is a contradiction and es-
tablishes the theorem.

These observations lead to the following algorithm for find-
ing augmenting paths or showing none exists [4]. Given a
graph G and some matching M in which at least two nodes of
G are exposed (otherwise no augmenting path is to be found)
call one exposed node, say v,, even. Then, iteratively define
nodes to be even or odd by the rules below. We will say that
a node which has been defined odd or even is paired. A node
defined to be even (odd) has an alternating path joining it to
v, with first edge in M (not in M).

1. If vertex v is even, w unpaired, w exposed, (1;, w) G
an augmenting path from w to v, exists.

2. If vertex v is even, w unpaired, w not exposed, (v, w) € M
(=FE — M), define w to be odd.

8. If vertex v is even, w is even, (v, w)e M, or if v is
odd, w is odd, and (v, w) € M an odd cycle B of 2k + 1 edges
containing k matching edges and the vertices v and w exists.
Shrink B, to obtain a reduced graph, and define v; to be even.

4. If vertex v is odd, w unpaired, (v, w)€ M, define w to
be even.

At every stage the (reduced) graph of paired vertices is a
tree with every even (odd) vertex v connected to v, along an
alternating path beginning with an edge in M (not in M).
These rules must result either in an augmenting path in some
reduced graph which can be used to determine a larger matching
M! in G, or in a reduced graph G, = G/B,/.../B, where every
even vertex is connected only to odd vertices. Suppose the
subgraph of G corresponding to paired vertices in G, together
with all edges joining them is J, and that the matching edges
Min J are M,. M, is a maximum matching for J. Eliminate
from G all edges having exactly one end in J to obtain two
disjoint subgraphs J and G — J. Use the algorithm only on
G — J, and repeat. If no augmenting paths can be found in
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G — J the matching M is a maximum matching by virtue of

Theorem 3 [4]. M = M,UM, is a maximum matching of G if
and only if M, and M, are maximum matchings for J and
G — J, respectively.

Proof. Clearly, if either M, or M, is not a maximum matching
then M = M,UM, is not. So suppose M, and M, are maximum
matchings but M is not. Then there exists an augmenting path
P in G which must use one or more edges (v, w) with veJ and
weG — J. Suppose only one such edge is in P. Then v, must
be one of the exposed nodes of P. Therefore there must exist
an alternating path beginning at v and terminating at v, in J,
and the node corresponding to or including » in G, must be
odd, since otherwise w would be paired. PNG, is alternating
in JNG,, contains an even number of edges 2k and k + 1 nodes
defined to be even since v, is even and every edge of M,NG,
has exactly one even incident node. This implies two even
nodes are incident in G,, a contradiction. If there is more
than one edge (v, w) e P, veJ, weG — J, the same argument
applies, completing the proof.

It should be noted why this is a “ good ” algorithm. If =
is the number of edges in G then given any matching M the
algorithm requires looking at each edge at most once to either
prove M is a maximum or locate an augmenting path which
permits improving M. Thus it is clear that in at most n? looks
the problem must be solved, since at most n looks locates an
augmenting path, if any exists.

The difficulty with this approach, however, is that the
“memory ” requirement in its implementation can be excessive.
It would appear that shrinking odd circuits to obtain reduced
graphs, and reduced-reduced graphs, ete., together with the
necessity of expanding back to the original G makes it extremely
difficult to keep track of and organize the information necessary
to implement the algorithm in a completely prescribed manner,
e.g., as a computer program. Building upon the philosophical
discussion of Edmonds in which he discusses the importance of
a “good ” algorithm in terms of the number of steps necessary
to find a solution, it seems important as well to consider the
memory requirement necessary to carry out such a step. Users
of modern day computing machinery are happy to testify to
the fact that memory and speed, or number of steps, compete.
Unfortunately, there seems to be no theory by which the nature
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of this competition can be analyzed. Nevertheless, motivated
by this consideration, and by the success of labelling techniques
in the closely related network flow problem, a labelling approach
is developed below for solving the maximum matching problem.
This approach is purely local in nature; that is, requires only
information stored at vertices of the original graph G, and
completely does away with shrinking odd cycles and reduced
graphs.

3. LABELLING

Given a graph G and a matching M, let v, be an exposed
vertex, and assume at least one other exposed vertex exists.
Then we assign labels to vertices, according to stated rules,
having the following meanings. If an arbitrary vertex « car-
ries the label

[#’, —], then there exists an alternating path,
(1) denoted p,(x), of labelled vertices beginning
at « with edge (x, 2') ¢ M and ending at v,;

[—, 2'], then there exists an alternating path,
(2) denoted p,(x), of labelled vertices beginning
at £ with edge (x, ") ¢ M and ending at v;

(3) { [2’, '], then both of the above simultaneously.

In the latter case z is said to be doubly labelled ; in the former
cases, singly labelled. The alternating path or paths p,(x), where
¢ indicates that the path begins with edge (x,y), ¥ the ith
component of x’s label, are defined inductively by “backtrack-
ing ” from vertex to vertex as indicated by alternate components
of the labels. We use the symbols —, 4+, 0 as components of the
labels to mean, respectively, the component is empty, is non-
empty, and is either empty or not. Finally, every labelled vertex
x carries an exponent, e(x), which is a nonnegative integer used
in determining order in the application of the labelling rules.

Rule 0. Label an exposed wvertex v, with [v,, v,] and let
e(v) = 0.

Then, at any stage, use any one of the following rules given
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a labelled vertex v* (the « origin ”) with label [0, +] and e(v*) =
max {e(x): x labelled [0, +] and admitting the application of at
least one rule}. If no such v* exists, the current matching M
gives a maximum matching M, for the subgraph J consisting
of all labelled vertices of G together with edges connecting
them. Confine subsequent labelling to the subgraph G — J, and
store or remember M, .

Rule 1 (“breakthrough”). There exists a vertex w, uUn-
labelled, (v, w) ¢ M and w is exposed. This means an augmenting
path has been found between exposed vertices w and v,. Reverse
the assignment of edges to M in p(v*) and adjoin (v¥, w) to M,
to obtain a new matching. Erase all labels and exponents and
return to rule 0.

Rule 2 (“tandem label”). There exist vertices w, and w,,
unlabelled, (v*, w)¢ M and (wi, w,) € M. Label w, with [v*, —],
w, with [—, w] and let e(w,) = e(v*) + 1, e(w,) = e(v*) + 2.

Rule 3 (“double label 7). There exists a vertex w with label
[0, +], (v*, w) ¢ M, e(v*) = e(w). v* and certain vertices on py(v*)
should receive a second label simce an alternating path from v*

to w via py(w) to v, exists. Let v* — Vi ooy Vg, Uiy be successive
vertices on py(v*) with e(v,) > e(w) for 7 < k and e(v,,,) < e(w).
Then give second labels to v* = Yy, ..., U (changing any labels

tf some are already doubly labelled) with v* receiving w in the
first component, v, receiving v in the second, v, receiving v, in
the first, etc. Redefine exponents by setting e(v;) = e(w) for 1 <
J= k.

These are the only possibilities we need consider. The other
logical possibilities either eannot oceur or lead to no additional
or potential augmenting paths. The cases are these : (1) There
exists a node w labelled with [+, —] where (v*, w) ¢ M, which
simply indicates the existence of more than one alternating path
from w to v, beginning with an edge not in M. (2) There
exists nodes w, unlabelled, w, labelled, (v*, w,) ¢ M, (w,, w,) € M.
But this is impossible by the rules. For if w, has a label [0, 4]
then this label must be [0, w,], since M is a matching, implying
w, is labelled after all. So, suppose w, has a label [+, —].
This is impossible for no rule assigns a label of form [+, -]
without giving its neighbor along an edge of M a label of form
[~, +]. This completes the description of the algorithm.
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This algorithm is good in the sense of Edmonds. Let m
be the number of vertices of G, n the number of edges of G.
Usually one would expect » > m for otherwise, if G is a con-
nected graph, the problem is trivial. If we count the number
of times a label is assigned (including changed) as a step, it
takes at most m’ steps before either an augmenting path is
located or no further labelling is possible. For each vertex can
be labelled at most m times, and there are m vertices. Since
there are at most m possible origins for labelling, m?® is as upper
bound on the number of labellings.

4. STRUCTURE OF LABELLED GRAPHS AND VALIDI-
TY OF ALGORITHM

The simplicity of the algorithm is not matched by a sim-
plicity of structure. It seems that to achieve a simpler strue-
ture in labelled graphs it is necessary to make more stringent
demands in the labelling process.

In order to be able to describe the pertinent structure of
labels we introduce a number of terms. A vertex z is usable
if it carries a label [0, +] and either has an unlabelled neighbor
or a neighbor z with label [0, +] and e(x) > e(Z). A branch of
a vertex x, denoted B(x), is the set of vertices B(x) = {y: Y
labelled, « € py(y) or x € py(y)}. We take x ¢ B(x).

Lemma 1. (i) The exponents along any defined alternating
path p(x) are nonincreasing.

(i) The exponents of two successive vertices along any p,(x)
differ by exactly 1 if both are singly labelled, and differ by at
most 1 along an edge of M.

(i) Any vertex with label [0, +] has an even exponent.

Proofs are immediate by observing rules 2 and 3 preserve all
properties.

Lemma 2. If a node  is doubly labelled [+, +1, then the node
z incident to x along (x, %) € M is also doubly labelled.

Double labelling can occur only by labelling according to rule 3,
and the parity of exponents is sufficient to establish this fact.

Lemma 3. Suppose v carries the label [—, +] and z € B(v) s
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usable. Then every mode receiving a label after v contains v in
its paths unless v becomes doubly labelled.

Proof. This simply says that a branch grown by labelling from
a singly labelled v [—, +] is grown until no further growth is
possible before a distinet branch is considered. To prove the
lemma assume it true at some stage of labelling. We show it
must still be true after one labelling step. Suppose z € B(v) is
usable and v has label [—, +]. Then e(y) = e(v) for y € B(v)
and the origin of labelling v* € B(v). For, if v* ¢ B(w), e(v*) =
e(v) and hence v should not have been labelled when it was
since it was labelled from a node with exponent e(v) — 2,

Suppose rule 2 is used from v* to label w, and w, previously
not labelled. Then, clearly, » belongs to the paths of w, and
Wy .

Suppose rule 3 is used from v* due to a neighbor w having
label [0, +1, e(v*) > e(w). If e(w) < e(v) then, since ve Da(v*),
v would be doubly labelled. If e(w) = e(v) and w € B(v) then,
since v € p,(w), v would belong to the path of any newly labelled
node. If e(w) = e(v) and w ¢ B(v) then, again, v should not have
been labelled when it was.

Lemma 4. Suppose v carries the label [— +]1 e() < e(w) and
Bu)NB(v) = ¢ at some stage of labelling. Then if y ¢ B(u) and
z € B(v) have labels [0, +] they do not both have unlabelled neigh-
bors.

Proof. Either v received the label [—, +] before y, or Y re-
ceived the label [0, 4+] before v was labelled. So, if the lemma
s false, then in the first case v belongs to the paths of Y,
contradicting B(u)NB(v) = ¢; in the second case v should not
have been labelled when it was since it was labelled from a
node having exponent e(v) — 2 < e(y).

Theorem 4. Suppose v carries the label [— +1, w is labelled,
and e(v) < e(u) at some stage of labelling. Then, if B(w)N B(v)
= ¢, and y € B(u) and z € B(v) have labels [0, +1]

(1) y (respectively, z) usable 1mplies 2(y) has mo neighbor
m B(u) (in B(v)); and

() y and z are not neighbors.
However, if B(u)n B(v) + ¢ then

(iii) v belongs to all the paths of u.
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It should be pointed out that it is not possible to strengthen
(i) and (ii) to say that y(2) usable implies z(y) is not usable;
that is, a branch admitting of no growth at one stage of label-
ling may admit growth at a later stage. The following example
illustrates this fact. Vertices v, are indexed in the order in

Vo Vg
Vg
an
U2
U7
Vo vy U, Uy vy Vs Vs

which they are labelled and vertices without names are not
labelled. Suppose v, through v, are labelled. B(vs) = v; cannot
be grown. Labelling continues from v, to through v, double
labelling occurs due to v, and v, then due to v, and v,. At
this point e(v) =8, e(v) = 6 yet both branches have usable
vertices with B(v,) N B(v) = ¢. The same example shows it is
even impossible to assert that y(z) usable implies 2(y) has no
unlabelled neighbor. Also, the asymmetry in v and w is neces-
sary as shown by the following example. For (iii) B(v,) N B(vy)
# ¢ yet v, is on only one path of »;. For (i) and (ii), B(vy)
NB(v) = ¢, yet both branches have vertices labelled [0, +]

Uy U3
Vo
v, 2 Us Vg

having neighbors in the other branch (and unlabelled neighbors).

To prove the ‘theorem we will use induction; namely, we
show that if the structure described holds before use of labelling
rules 2 or 3 then the same structure obtains after the labelling.
However, as a preliminary, we establish

Lemma 5. Suppose e(v) < e(u), v carries the label [—, +], and
u 18 labelled immediately after a labelling by rule 3. Assume
the structure of Theorem 4 obtains before this labelling. Then
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B(u)NB(v) = ¢ holds after the labelling if and only if it holds
before.

Proof. Suppose B(u) N B(v) = ¢ before but B(u) N B(v) + ¢ after.
Then there must exist a vertex z € B(u)NB(v) after labelling
while before either (a) x ¢ B(v) or (b) = ¢ B(u) and x € B(v).

(a) There must exist a node y belonging to a path of z,
with v ¢ p(y) whose label becomes changed by rule 3. Hence,
Y € p(v*), where v* is the origin of labelling, and either v € p,(w)
or v € p(v*) between the vertices v* and y, where w is the
neighbor of v* prompting the labelling. In the first instance,
e(v) < e(w) < e(y) and v* € B(y), we B(v). But by Theorem 4
(ii) implies B(v)NB(y) + ¢, since v* and w are labelled with
[0, +1, and by (iii) this implies v belongs to the paths of y,
contrary to hypothesis. In the second instance v would have
to be doubly labelled by rule 3.

(b) There must be a node y in a path of x, u ¢ p(y) whose
label becomes changed by rule 8. Thus, y € p,(v*) and u € py(w)
or u € py(v*). between v* and y. In the first instance, e(v) <
e(u) < e(w) < e(y) and x € B(v) N B(y) implying v belongs to both
paths of ¥ and hence v € py(v*). But this contradicts (ii) since
v* € B(v) and w € B(u) are neighbors carrying labels [0, +]. In
the second instance we know (by (iii)) that v belongs to the
paths of 2. So, if e(v) < e(y), then v belongs to the paths of
y hence to a path of u, a contradiction. Otherwise, e(v) > e(y).
But, then, after labelling e(u) = e(w) < e(y) < e(v), again a con-
tradiction.

The converse is easily established. Suppose B(u)N B(v) # ¢
before labelling but B(u)N B(v) = ¢ after labelling. By (iii) v
belongs to the paths of u before but not after. This can only
mean that a node y belonging to a path of % and containing
v in its paths came to be doubly labelled. But this implies
Y € po(v*) whence v* € B(v) and is usable. By Lemma 3 this
means all newly defined paths contain ». This establishes
Lemma 5.

We turn to Theorem 4 and treat each part separately. It
is trivial to verify that labelling rule 2 preserves the properties,
so we consider only use of rule 3 and recall Lemma 5 applies.

(i) Suppose v* e B(v) before applying rule 3. Then we
show that if y € B(u) carries a label [0, +] then it can have no
neighbor in B(v). For otherwise, before labelling either (a)
y ¢ B(u) or (b) yeB(u) and has label [+, —] or (¢) y € B(u),
has label [0, +], but has no neighbor in B(»). In case (a) this
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implies w € B(w) or v* € B(u), both contradicting B(v) N B(w) = ¢.
In case (b) ¥ € p(v*), hence v is in the paths of y, again con-
tradicting B(v) N B(x) = ¢. Finally, in case (c) some neighbor
t of y comes to belong to B(v) due to double labelling a vertex
s € py(v*) belonging to a path of t. e(s) = e(v), since otherwise,
» would be doubly labelled after rule 3. But then v* € B(s) is
usable, t € B(s), and y € B(u), with y labelled [0, 4], contradict-
ing our inductive hypothesis (i).

Suppose v* € B(u) before applying rule 3. We show that if
z € B(w) carries a label [0, +] then it can have no neighbor in
B(u) after labelling. For otherwise, before labelling either (a)
z¢ Bw) or (b) zeB(v) and has label [+, —] or (¢) z € B(v),
has label [0, +], but has no neighbor in B(u). In case (a)
either w € B(v) or v* € B(v), contradicting B(v)NB(u) = ¢. In
case (b) v belongs to the path of z, z to the py(v*), implying
v* € B(v), also a contradiction. In case (c) some neighbor ¢ of
2 comes to belong to B(u) due to double labelling some s € p(v*).
This means that either w € B(w) or u € p,(v*). If w € B(u) then
e(u) < e(w) < e(s). If ue p«(v*), then the new exponent of s,
which is strictly less than its old exponent e(s), equals the new
exponent of % which is assumed greater or equal to e(v). So,
e(s) = e(v) in either case. Consider B(s) and B(v). v* € B(s),
and is usable, ¢ € B(s), z € B(v) with label [0, +], and t and 2
are neighbors. This contradicts our hypothesis (i) before label-
ling.

So suppose v* ¢ B(v) and v* ¢ B(u). If B(v) grows then
either w e B(w) or wep(v¥), ie, v* ¢ B(v). The latter is a
contradiction. So is the former since then w ¢ B(v) and v* € B(v*)
are neighbors with e(v) < e(w) < e(v*) so that v belongs to the
paths of v*. So B(v), by Lemma 3, has no usable nodes. So,
if y ¢ B(u) is usable then z¢€ B(v) having label [0, +] can have
a neighbor t ¢ B(u) after labelling only if t¢ B(u) before. A
contradiction is derived in precisely the same manner as case
(¢) immediately above. This establishes (1).

(ii) The arguments for (i) apply directly to (ii) except
for minor modifications for the case v* ¢ B(v) and v* ¢ B(uw). In
this case B(v) cannot, as shown above, grow. So the only
question concerns a z € B(v) with label [0, +] gaining a neighbor
t ¢ B(w) having label [0, +]. If t ¢ B(u) before labelling the
same argument used above applies. So suppose t € B(u) and has
the label [+, —] before labelling but ¢ has label [+, +] after
labelling. Then t € py(v*), that is, v* € B(t) or v* € B(u), a contra-
diction.
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portant practical applications [1] [2]; it is closely related to
network flow problems, and an understanding of this class would
throw light on the structure of more general integer program-
ming problems. We take as the formulation for such problems

(4) maximize 3¢z, when 3)a,x,Ray, 2; 20, x; integer-
valued where a;, j # 0, is a column of 0’s and 1’s con-
taining at most two 1’s, &, is a column of nommegative
integers, and R represents relations which are either
=Z,0r X or =.

The simple graph matching problem treated in this paper is of
form (4) with all R representing <, a, a column of 1’s, c;=1
and «; containing exactly two 1’s for all  # 0. The matrix
A = (ay, ..., a,) is the node-arc incidence matrix of the graph
G. The network flow problems are of - form (4) except that
each a; either contains one non-zero entry which can be =+1,
or two with one +1 and one —1. Note that the minors of 4
in (4) are all of form +2*, for some integer k = 0.

In conclusion, we indicate one generalization to a restricted
problem (4) which can itself be generalized further in various
directions depending on the form of (4) which is considered
(these are being developed in a separate paper). Suppose we
consider a weighted graph G, a graph G in which every edge ¢
is assigned a positive weight w(e) > 0. Problem: find a mazxi-
mum weighted matching on G, that is, find a matching the sum
of whose weights is a maximum. This is a problem (4) with
¢; > 0 the weights, and remaining data as prescribed above for
the simple matching problem.

Given a matching M in a weighted graph G define an’ aug-
menting path P relative to M to be an alternating path or
alternating simple cycle having no edge of M incident to only
one vertex of P and with the property wy(P) = {3 w(e) —
Swd): ee PNM, de PNM} > 0.

Theorem 7. M is a maximum weighted matching if and only
iof M admits no augmenting path.

If M admits an augmenting path it is not of maximum
weight.

Suppose that M is a matching which admits no augmenting
path but that M* + M is a maximum weighted matching.
Consider, as above, the subgraph G’ of G containing all vertices
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of G and edges e of G which satisfy e€ Mand e¢ M* or e¢ M
and ee M*. Look at a connected component Hof G'. H can
only be a simple path or a simple cycle consisting of an even
number of edges and having no edge of M or of M* incident
at only one node. In either case since M admits no augment-
ing path, wy(H) < 0. But since M* is a maximum matching
it can admit no augmenting path so that 0 = wy(H) = —wy(H)
or wy{H) = wy(H) =0, proving that the weights of M and
M* must be identical.
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Discussion on Professor Balinski’s Paper

PROFESSOR B. B. BHATTACHARYYA: The labelling algo-
rithm for the maximum matching problem may be viewed as
a special method for solving a certain class of integer-program-
ming problems. Linear programmers have been successful in
solving transportation-model-type integer programming problems
without any special difficulty, as the extreme points of the
convex set of feasible solutions of the associated problem, with
integral restrictions removed, are integer-valued. But a genuine
difficulty may arise in solving the maximum matching problem
in a non-bipartite graph as we may get fractional optimal
solutions by removing integral restrictions. This difficulty was
met by Edmonds by the device of “shrinking blossoms.” It
would be of help to understand the labelling algorithm if we
set up a correspondence between the two algorithms.

Edmonds starts by rooting an alternating tree in a match-
ing and partitions the vertices into outer and inner vertices.
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The vertices labelled (0, +) in the labelling algorithm seem to
be outer vertices of the rooted alternating tree. The break-
through rule corresponds to the situation where the planted
tree is augmenting. The tandem label rule enlarges the already
existing tree while non-existence of a vertex v* under Rule 0
indicates that the tree is hungarian. The “double label rule”
deals with a blossoming tree, and this rule provides a method
of keeping the matching in the blossom in view; and hence it
becomes possible to avoid the problem of resurrecting shrinking
blossoms at the end of the calculations,

It seems plausible that one should be able to devise a label-
ling algorithm for the maximum matching problem by solving
the associated minimum cover problem by using the concept of
“reducing path” introduced by Norman and Rabin. In this
procedure labelling should start naturally from a vertex which
has more than one edge incident on it.

It has been noted by Edmonds that the maximum matching
problem may be solved as an ordinary linear programming
problem, by substituting for the zero-one conditions the ad-
ditional constraints that the variables are non-negative and that
for any set R of 2K + 1 vertices, the sum of the variables that
correspond to the edges with both end points in R is not greater
than K. It may be of interest to study the dual of this prob-
lem to see whether it leads to some simple algorithm.

The possibility of extending the algorithm to the weighted
maximum matching problem is of great interest. This would
be very helpful to an integer programmer as otherwise he has
to use more laborious cutting plane techniques to deal with the
situation.
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