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MANAGEMENT SCIENCE 
Vol. 10, No. 3, April, 1964 

Printed in U.S.A. 

A PRIMAL METHOD FOR THE ASSIGNMENT AND 
TRANSPORTATION PROBLEMS*t 

M. L. BALINSKI' AND R. E. GOMORY2 

This paper describes a simple calculation for the assignment and trans- 
portation problems which is "dual to" the well-known Hungarian Method. 
While the Hungarian is a dual method, this method is primal and so gives a 
feasible assignment at each stage of the calculation. Bounds on the number 
of steps required for the assignment and transportation problems are given. 
They are the same as the best bounds known for the Hungarian Method. 

1. Introduction 

Perhaps the best known, most widely used, and most written about method 
for solving the assignment problem is the "Hungarian Method". Originally 
suggested by Kuhn [8] in 1955, it has appeared in many variants (e.g., [4], 
[5], [9], [10], [11]). It provided essential ideas for the early methods used in 
solving network flow problems [5], it has been extended to solve the transporta- 
tion problem [51, [11], and it has even been "generalized" to solve the linear 
programming problem [3]. It is a dual method with a feasible assignment being 
obtained only at the last computational step. 

This paper presents a primal method for the assignment and transportation 
problems which is a method "dual to" the Hungarian Method. Where the Hun- 
garian Method provides at each intermediate computational step a dual feasible 
vector (U, V) and a corresponding (infeasible) primal vector X orthogonal to 
(U, V), the present method provides at each step a feasible X (a complete 
assignment or transportation solution) and a corresponding orthogonal (U, V). 
In addition to the advantage of being primal, and so providing a constantly im- 
proving solution, the method seems to be extremely simple to describe, explain, 
and-it would seem-program. 

With this method, we are able to bound the number of steps required to solve 
the assignment and transportation problems. Different bounds can be obtained 
from different variants of the procedure. The best bounds are n(n + 1)/2 
labeling passes for the n X n assignment problem and (Zjcj) min (m, n) 
passes for the m source n sink transportation problem with total demand of 
Ej Cj . These bounds are the same as the best known bounds for the Hungarian 
Method. 

Remarkably enough, the variant that gives the best bounds requires a special 
rule of choice very similar to the simplex method's "most negative column" rule. 

* Received July 1963. 
t This research was supported in part by the Office of Naval Research under Contract 

No. Nonr-3775(00), NR 047040. 
' University of Pennsylvania. This author's work was supported by the Princeton 

University, Office of Naval Research Logistics Project. 
2 Thomas J. Watson Research Center, IBM Corporation. 
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Since many methods for obtaining optimal solutions to assignment problems 
have been proposed, it is natural to ask if the primal method described here is 
really new. To the best of our knowledge, it really is new. The only other primal 
method maintaining orthogonality is the primal simplex method; but there a key 
idea is that of a basic feasible solution. This makes application of a simplex 
method to the assignment problem practicularly messy and difficult due to 
"degeneracy". In contrast, the idea of a basic solution is unnecessary for the 
method described below. The other apparent candidates for comparison are the 
"out-of-kilter method" [6] or the method of Gleyzal [7]. But these are not methods 
which preserve-or attempt to preserve- "orthogonality" between current 
values for primal and dual variables. Moreover, in the out-of-kilter method, 
the "kilter numbers" are monotone non-decreasing, and this is clearly not the 
case in the primal method given below. The method of Beale [2], which is also 
applicable to problems with convex costs ai;(xij), shares with this method its 
primal character and its avoidance of the notion of basis. Again, orthogonality is 
not preserved. 

These rather sketchy and general remarks will be amplified in a planned paper 
devoted to classifying and explaining the connections between the various known 
computational procedures (simplex, out-of-kilter, etc.) for the assignment prob- 
lem, the transportation problem, and more general linear programs. 

2. A Primal Method for the Assignment Problem 

As is well known, the n X n assignment problem is equivalent to the dual 
linear programs 

(1) minimize a (X) =Ejjaijx 

constrained by 5Ij xs = 1, all i 

Eixij= 1, all j 

xij 0 O all (i, j) 

or 

(2) maximize ,B(U, V) = EZi ui + -1 

constrained by ui + vj _ aij, all (i, j). 

The criterion for optimality for an X satisfying the constraints of (1) and (U, V) 
satisfying the constraints of (2) is the orthogonality condition: 

(3) (aij - ui-vj)xj = 0 all (i,j). 

The primal method described below obtains, in a finite number of steps, 
optimal solutions to the pair of dual programs (1) and (2), and at every step 
of this method an orthogonal pair is at hand. This means that X is a feasible 
assignment (X satisfies (1) and every component is 0 or 1) and U, V satisfies 
conditions (3). 

Suppose, then, that such a pair is at hand at some stage of the computation. 
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If ui + vj < aij for all (i, j), then X and U, V constitute optimal solutions to 
their respective problems. 

Otherwise, there exists some entry (k, 1) with 

(4) uk +v > akl. 

The rules specified below then show that in one computational step either a 
new feasible assignment X' and orthogonal mate U', V' is obtained which satisfy 

(5a) a(X') < a (X), 

(5b) ufi + vlj < aij if ui + vj _ aij, 

(5c) u k + V'l < akl, 

or a new orthogonal mate U', V' for X is obtained which satisfies 

(6a) u i + vlj < aij if ui + vj < aij, 

(6b) u k + V l - akl < Uk + Vl- akl. 

Thus, either a truly better assignment X' is found, or a new orthogonal mate 
which "better meets" (in the sense of (6a) and (6b)) the constraints of the 
dual problem (2).3 

A Computational Step 

Given an orthogonal pair, X (which we will consider to be in matrix form) 
and U, V (or ui associated with each row i of X and vj associated with each 
column j of X) with specified entry (k, 1) such that Uk + v1 > ak , use the follow- 
ing labelling procedure until further labelling is impossible. 

1(a) Assign the label { k} to column 1. 
(b) If column j has been labelled, then label with {j} that one row i having 

xij= 1. 

(c) If row i, i : k, has been labelled, then label with {i} all columns j 
having ui + vj = aij which have not yet been labelled. 

Let {R(i)} and {Q(j)} denote, respectively, row i's label and column j's 
label. Either 2) row k receives a label {R(1k)} or 3) not. 

2. If row k receives a label, then by following the labelling in "backward 
order" a sequence of entries xij forming a loop is uniquely defined: 

(7) Xkl = 0, Xk,R(k) = 1 XQ(R(k)),R(k) = 0, * * Xkl = 0. 

Number Xkl = 0 the first, Xk,R(k) = 1 the second, etc., entries in the loop. Then 
every odd numbered entry of the loop is zero, and every even numbered entry 
of the loop is one. 

Define 

3 The same primitive idea is used in [1] and [3] for the general linear programming prob- 
lem: if improvement ill the primal (or dual) problem is impossible due to degeneracy, then 
improvement is attempted in a dual (or primal) problem. 
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-x = 1 if xij is an odd numbered loop entry, 
(8) -j 

xij = 0 if xij is an even numbered loop entry, 

(9) Xij = xij if xij is not in the loop. 

Also, define e = uk + v1 - akl > 0 and 

(10) ufi= ui all i, 

(11) vj =vj all j ? 1, v'I = vI-e 

X' = (x'j) is clearly a new assignment. U' = (u'i), V' = (v'j) is orthogonal 
to X' because if x'; = 1 (i, j) # (k, 1) then u'i = ui and v'j = Vj so u/i + Vj = 

ui + vj = aj ; while for xkI = 1, U'k + V' = ak, due to the choice of e. Thus 
orthogonality of X and U, V and the particular choice of e assure the ortho- 
gonality of X' and U', V'. Also, a(X') < a(X) because 

a (X) - a(X') = 1 aij- I' aij 

where I = g(i, j) I (i, j) in the loop (7) and xij = 1} and I' = {(i, j) I (i, j) 
in the loop (7) and X$j = 1}. Hence, there being two such entries in each row 
and column of the loop 

a(X) - a(X') = >3I (aij - ui - vj) - i (aij - Ui - Vj) 

= -(akl - Uk - VI) = e > 0, 

since for all entries in the loop (IUI') except (k, 1), aij - U- v = 0. 
Finally (5b) holds because all totals ui + vj are either unchanged or decreased. 

(5c) holds due to the orthogonality. 
This completes a step in the case where row k is labelled. 
3. If row k is not labelled, let E = minj {aij - u- vj where J = { (i, j) I ui + 

vj _ aij and row i is labelled and column j is not labelled}; or e = Uk + V - akl if 
J is a void set of entries. Then define X' = X and 

(12) u i = ui + e if row i is labelled, u's = ui otherwise; 

(13) V'j = Vj- e if column j is labelled, v'j = vj otherwise. If u'k + v'l > akl 

(Case 3a), specify entry (k, 1) for the next step4; otherwise (Case 3b), 
specify any entry (i, j) with u'i + v'j > aij . If all u'i + v'j < aij, stop. 

X' = X and U', V are orthogonal because if x' = = 1 either both ui 
and vj were labelled or neither was labelled so u' + vlj = ui + vj = aij . (6a) 
holds because the only totals ui + vj that are increased are those whose indices 
(i, j) are in J. And e was chosen small enough that the corresponding inequalities 
remain satisfied. Also e > 0 which implies (6b). 

If the computational step produces Case 3a, then at the next step an addi- 

4Notice that in this case the labelling can be kept unchanged to begin the next step. 
This gives the same result as starting over would for those zeros used in the previous label- 
ling are still zeros, since both their row and their column were labelled. 
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tional column is always labelled. This is because we have for one of the (i, j)eJ, 
uIi + v'j = aij. 

To initiate the algorithm, take any orthogonal pair with X a feasible assign- 
ment; e.g., X = I(xii = 1 all i; xij = 0 i # j) and U = 0, V = (vi) = (aii). 
This completes the description of the algorithm. 

The primal method described above must terminate in a finite number of 
steps for in one step a new orthogonal pair is obtained which satisfies either 
(5a, b, c) or (6a, b). The second alternative can occur at most n times in suc- 
cession, since after each occurrence of this alternative, at least one more column 
is labelled. But each occurrence of the first alternative makes at least one more 
dual inequality satisfied; thus, since once a dual inequality is satisfied, it always 
remains satisfied (by (5b) and (6a)), and there are only a finite number n2 
of such inequalities, the method cannot take more than n-n2 = n3 steps. 

To reduce this bound to 0(n2) one refinement is needed in the choice of the 
origin of labelling. 

At every point in the description of the algorithm where the instructions say 
to choose an aki with uk + v, > aki as the origin for labelling, the k should be 
chosen to maximize (uk + Vi - aki) in column 1. Specificaly, 

(a) in starting, choose any column containing an element akl with 
Uk + Vi > akl ; then chose the row so that the difference (Uk + VI -akl) 

is maxlmized. 
(b) The same procedure should be followed after completing Step (2). 
(c) After completing a Step (3), if maxi (u'i +v'i - ail) > 0, keep column 

1 and choose the k that maximizes. Otherwise, choose any column just 
as after Step (2) or at the start. 

To get the improved bound, we reason as follows: 
If (k, 1) is chosen to maximize e = (ui + vi - ai) and Step (2) occurs, the 

change in the dual variables will make u'i + v'l < ail for all entries i in column 1. 
This is easily verified. So in one labelling pass, we satisfy all inequalities in one 
column. 

k-i 

k-1 

- 1 

:. 

1,I 

FIGURE 1 
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If row k is not labelled so Step (3) occurs, there are two possibilities (if it is 
not already true that u'i + v'l < ail all i): 

3(a) k still maximizes in its column; i.e., k = i maximizes u'X + v'j - ai > 0. 
In this case (k, 1) is still the origin of labelling for the next step. 

3(d) (k', 1), k' 5 the previous k, maximizes u'i + v'l -ail > 0 over column 
I and so becomes the origin of labelling for the next step. 

If (3a) occurs (n - 1) times in succession, the only unlabelled column left 
would be that column 1' having Xklz = 1. Otherwise, k would be labelled. So 
Case (2) will occur at the next labelling. Thus, after n labellings, all inequalities 
in the column will be satisfied. 

If (3a) occurs 0, ... , (n- 2) times and is followed by (3A), the very next 
labelling will bring on Case (2). For the maximum can shift from k to k' upon 
changing the variables after a Case (3a) only if row kI' was labelled while (by 
assumption) row k was not. The next labelling, which starts from (k', 1), will 
make use of all the old labels since the column is unchanged, so k' will be labelled 
again and Case (2) occurs. Again in n steps, all colunm I inequalities are satisfied. 

Proceeding in this way, all inequalities will be satisfied after at most n2 steps. 
A further modification can bring the bound down to n(n + 1)/2 steps. 
Let us assume a starting solution xii = 1, all i. An appropriate set of dual 

variables satisfying the orthogonality condition is ui = ass, all i, vj = 0 all j. 
Let us assume that our calculation has reached a point where all dual inequalities 
Ui + v; _ ai1 are satisfied for j < k. We will show how at most k labellings will 
extend this condition to column k. 

The calculation follows the procedure just described with the maximizing 
method of row choice. The entry maximizing (ui + Vk - aik) in column k is 
selected and labelling proceeds exactly as before, except for one change. Columns 
k' > k are never labelled. 

The following consequences are easily seen: 
(i) After at most k steps, all inequalities in column k are satisfied. This is 

by the same reasoning as above but confined to the first k columns. 
(ii) Rows with index i > k are never reached by the labelling process. This is 

because of the diagonal l's in these rows and the fact that columns with 
index j > k are not labelled. 

Statement (i) shows that, after repeating the process on columns k + 1, 
etc., after at most 1 + 2 + * * * k + * * * n = n(n + 1)/2 labellings all inequalities 
will have been satisfied. If they are kept that way, the problem will have 
been solved in at most n(n + 1)/2 steps. 

Statement (ii) implies that inequalities indexed in the lower right of Figure 1 
will be completely unchanged and, hence, orthogonality preserved. It also shows 
that, since entries in the lower left box are in unlabelled rows, these cannot be- 
come unsatisfied. Those in the upper left are preserved as here our previous 
argument applies. Satisfied inequalities in the upper right box may be lost, but to 
make the argument go through, we need preserve only those in columns j < k, 
which we do. 
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3. Example 

Consider the four by four assignment problem defined by the cost matrix 

2 3 1 1 

A= 5 8 3 2 
4 9 5 1 
8 7 8 4 

In the computation below, the numbers on the left-hand margin of each "box" 
are current values of ui and, in brackets, any labels they may receive; the num- 
bers on the top margin are current values of the vj and, in brackets, the labels they 
are given. 

Within the -box an uncircled number in the (i, j) position is aij - i-v, 
and the corresponding xij is zero; a circled number in the (i, j) position means 
aij- ui- = 0 and xij = 1. 

A star indicates the origin of labelling. 

{1} 

1) Start with xii = 1, ui = 0, vi = aii . 2 8 5 4 

Label, Case (3a) occurs. 0 (0) -5* -4 -3 
{2}O 3 (0) -2 -2 

O 2 1 (0) -3 
O 6 -1 3 (0) 

{2} {1} 
2) Change variables, continue the 2 5 5 4 

labelling, Case (2) occurs. {1} 0 () -2* -4 -3 
{2} 3 0 (0) -5 -5 

O 2 4 (D -3 
O 6 2 3 (0) 

{2} 

3) Change variables, label, Case (3a) 2 3 5 4 

occurs. 0 O (0 ) -4 -3 
3 (0) 2 -5* -5 

{3} 0 2 6 (D -3 
0 6 4 3 (0) 
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{3} {2} 
4) Change variables, continue the 2 3 3 4 

labelling, Case (2) occurs. 0 O (0 -2 -3 
I11 3 (0) 2 -3* -5 
{3} 2 0 4 (X -5 

0 6 4 5 0 
e 3 

{2} 

5) Change variables, label, Case (3a) 2 3 0 4 
occurs. 0 0 0 1 -3 

3 0 2 (i) -5* 
2 0 4 3 -5 

{4} 0 6 4 8 ( 

{l} {4} {2} 
6) Change variables, continue labelling, 2 3 0 0 

Case (3b) occurs. {2} 0 0 (X) 1 1 
3 0 2 (0) -1* 

{1} 2 Q 4 3 -1 
{4} 4 2 0 4 0 

Ill~ ( 14 l 3 

{1} {4} {1} {3} 
7) Change variables, continue label- 1 2 0 -1 

ling, Case (2) occurs. {2} 1 00 0 1 
{3} 3 1 3 (i 0 
{1} 3 (J) 4 2 -1* 
{4} 5 2 0 3 0 

8) Solution given by circled l's. 1 2 0 -2 
1 0 (i 0 0 2 
3 1 3 Q 1 
3 0 4 2 0 
5 2 0 3 1 

4. A Primal Method for the Transportation Problem 

Consider, now, the transportation problem which we take to be 

(14) minimize ao(X) = jaijxij 
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constrained by5 

,j Xij = bi, Ei xj = cj x?j _ O. 
The dual problem is 

(15) maximize 3(U, V) = EiZbui + Ej cvj 

constrained by 

ui + vj< ? aij, all (i,j). 

The primal method for the transportation problem described below is a 
direct extension of the method for the assignment problem given in Section 2. 

If in our transportation problem we replace each sink by cj identical sinks, 
each of demand 1, we have a problem to which the assignment method just 
described would apply. One cail verify that the unit bound on sinks alone (not 
sources) is sufficient to justify the reasoning and procedures given above. The 
assignment calculation on this enlarged matrix of Ej cj columns would, how- 
ever, involve a great deal of redundancy. Removing this redundancy, one ob- 
tains the transportation algorithm described below which is directly applicable 
to the original problem (14). 

The algorithm may be described as a sequence of at most n stages, one for 
each column, with each stage made up of steps analogous to those defined in 
Section 2. 

At the beginning of each stage, an orthogonal pair, X feasible for (14) and 
orthogonal U, V, i.e., satisfying 

(16) (aij - ui- vj)xj = 0 all (i,j) 

is at hand. If ui + vj _ aij for all (i, j), then X and U, V constitute optimal solu- 
tions to their respective problems. 

Otherwise, there exists some entry (k, 1) with 

(17) uk + vz > akz . 

The rules specified below then show that in one computational stage I (for 
column 1) a new orthogonal pair, X' and U', V' with X' feasible, is obtained which 
satisfies a(X') ? a(X) and 

(18a) u'I + v'tj < aij if ui + vj _ a 

(18b) uvi + vi < ail all i. 

Thus, each stage 1, which takes at most mcj steps, assures that at least one more 
column of dual inequalities is satisfied (18b). This is the same as in the variant 
of the method for an m by m assignment problem which leads to at most m 
steps being required to satisfy one more column of dual inequalities, i.e., to 
complete a "stage". 

At every step within a stage I (initiated by an inequality (17)) an equivalent 

5 It is assumed that the bi and c; are nonnegative integers with E bi Cj. 



A PRIMAL METHOD FOR ASSIGNMENT AND TRANSPORTATION PROBLEMS 587 

derived transportation problem is considered which is identical to the problem 
(14) except that column I is replaced by two columns, 1(1) and 1(2), having 
nonnegative integer "demands" cl(l) and Cl(2) (Cl = cl(l) + Cl(2)), with "costs" 
ail(l) = ail(2) = ail all i. At every step there is at hand a derived transportation 
problem and its dual, together with a feasible X for the primal and orthogonal 
C, V. In one step either a new derived transportation problem is obtained with 
demands c 1 and C'2 (Cl = c' + c'2 ) and an orthogonal pair of solutions, X' feasible 
and 2', V' which satisfies 

(19a) a(X') < a(X) 

(19b) cl(l) > cl(l) (cl(2) < cl(2)) 

(19c) i + vi" < ai; if i + vs ai 

or a new orthogonal mate C', V' is found for the same derived transportation 
problem and a feasible X which satisfies (19c) and 

(20) u k + V1(2) - akl(2) < Uk + 1(2) - akl(2) , for some k. 

A Computational Stage I 
Given an orthogonal pair for (14) and (15), X feasible and U, V, and a specified 

column I such that uk + vi - akl = maxi {ui + vi - ai} > 0, define an initial 
derived transportation problem and orthogonal pair, X feasible and 12, V, by 
setting Cl(l) = 0, Ci(2) = Ci; il(1) = 0 and ?il(2) = xi all i, &ij = xii otherwise; 
Ui = ui all i, 01(l) = akl - Uk, VA(2) = V,, and Vij = Vj otherwise. Note that the 
choice of ih(l) satisfies all dual inequalities in 1(1). 

A Computational Step. 
Given an orthogonal pair, X feasible and C, V with max% { + (2)- aijl(2)j = 

Uk + v'() -akl(2)> 0 and cl(2) > 0, use the iollowXng labeXXing procedure until 
further labelling is impossible: 

1.(a) Assign the label {Ik} to column 1(2). 
(b) If column j has been labelled, then label with {j} all rows i having 

&ij > 0 which have not yet been labelled. 
(c) If row i (i $ k) has been labelled, then label with {i} all columns j 

having u + vA = ai1 which have not yet beenilabelled. 
Either 2. row k receives a label or 3. it does not. 

2. If row k receives a label a loop is uniquely defined: 

(21) 41(2) = O, ?kR(k) > Oy &QR(k),R(k) >- ?, * * *kl(2) = 0. 

Number &kl(2) the first, ?ka(k) > 0 the second, etc., entries in the loop. Then 
every odd numbered entry of the loop is nonnegative and every even numbered 
entry is positive. Let 

a = min {[ij I &ij even numbered loop entry}. 

a is always > 1. 
Define 
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(k2a()) Xkl(1) if Xkl(l) is an even numbered loop entry, 
(22a) 

= xkl(1) + a otherwise, 

(22b) Xk l(2) = 0; 

xij = xij + if x is an odd numbered loop entry, 

(22c) = x-5 if4((i,j) # (k, 1(1)) is an even numberedloopentry, 

ij otherwise; and 

(23) cl(l) = cl(l) + 8, c;(2) = cl(2) and 

(24) ft = ui, v j =vj all iand j. 

If C1(2) F 0, start a new computational step. If Ci(2) = 0, stop; stage 1 is complete. 
Let xi, = &i, xij = xij j 5 1, and ui = u i', vI = vl(1) to obtain an orthogonal 
pair for (14) and (15), X feasible and U, V. Start a new stage if necessary. 

There are two points in this procedure that would seem to require explanation. 
One is in connection with orthogonality. The orthogonality between the new 
primal solution, X', and the dual variables C', V`' is assured by the same reason- 
ing as in the assignment case except in the case of the components &kl(1) and 

kl(2) * The component ikl(2) is and remains zero, so it poses no problem. Similarly, 
as we will show, the current akl(l) - Uk - V,(l) is zero, which assures the ortho- 
gonality of the remaining component. To see this, we need the two following 
facts: (i) The ail(l) - ui- () and ail(2) - U- Vl(2) differ by a constant Vl(2)- 

01(1) independent of the row i. (ii) The ail(l) - uiv(l) are nonnegative and at 
least one is zero. (This is so at the beginning of a stage, and just as in the assign- 
ment problem these properties are preserved.) We know that akl(2) - Uk - Vl(2) 

is minimal in column 1(2). Because of (i) akl(l) - Uk - vl(l) is minimal in column 
1(1) and because of (ii) it must be zero. This disposes of the orthogonality 
question. 

The other point is the reason why the demands cl(l) and Cl(2) can be changed by 
S. We want to maintain the property that the demand of a sink equals the sum 
of the variables in its column. The changes in the primal variables given in 
(22) above are equivalent to a change of amount a completely around the loop, 
as in the assignment problem, followed by a shift of a between kl(2) and Xkl(1) 

The change around the loop leaves column sums unaltered so the net effect is a 
shift of amount a between the demands supplied to sinks 1(1) and 1(2). 

This completes a step in the case where row j is labelled. 
3. If row k is not labelled, let J = { (i, j) aji + v; < , row i labelled, 

column j not labelled} 
and 

(25) A= mmn [minj {as - - ij}, 'k + Vl(2)-akl(2)] > 0. 

Define X' = X and 

Ui = ui + e if row i labelled 

( 26 ) = qti otherwise 
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V j = Vj- if column j labelled 
(27) 

= fj otherwise. 

If for some i, u i + vl(2) > ail(2) start another computational step. Labels are 
maintained. If u + v(2) ail(2) all i, stop; stage 1 is complete. Let xi, = 

XI (1) + Xi 1(2), XXi = Xi j F 1; and ui u i, VI v(1) = ( (see below) vj = 

v&, j 7 1, to obtain an orthogonal pair for (14), (15), X feasible and U, V. 
Start a new stage if necessary. 

The reason for the equality of vl(1) and V (2) when a stage ends in this way is 
as follows. Throughout the computation, any column j always has aij- ui - 
v= 0 for some i; also, as we remarked above, corresponding entries ail(l) - 
vi-VI(,) and ail(2) - ui- v(2) in columns 1(1) and 1(2) always differ by a 
constant VZ(l) - V(2) . Also throughout stage 1, ail(,) - u- V 0 for all i. 
When stage l is completed as above ail(2) - ui- (2) ? 0 for all i also. Thus, 
the minimal entries in columns 1(1) and 1(2) are both zero at this point. Since 
these columns differ by a constant, the constant can only be zero, i.e., vh(l) - 
V1(2) = 0. 

To initiate the algorithm take any orthogonal pair for (14) and (15), with 
X a feasible solution containing no loops among its positive entries and U, V 
then computed to satisfy the orthogonality conditions (16). 

The bound on the algorithm follows from the fact that every time the row of 
the labelling source is labelled, cl(l) is increased by a an integer > 1, and Cl(2) is 

decreased the same amount. Therefore, after at most cl of these events Cl(2) 

represents a zero demand sink and can be dropped. (See end of stage under 2 
above.) All dual inequalities in column 1(2) (and so in 1) are now satisfied. 

The same reasoning as in the assignment case shows that after at most m 
labellings the row of the labelling source must be labelled, or else all dual in- 
equalities in its column (in this case 1(2)) are already satisfied. (See end of stage 
under 3 above.) 

Consequently, after at most mc, labellings all dual inequalities in column l are 
satisfied (i.e., it takes at most mc, steps to complete stage 1). Since any satisfied 
dual inequality remains satisfied, it follows that after at most 

m(Ej cj) 

labellings all dual inequalities are satisfied and the optimal X is obtained. 
Because the roles of source and sink are interchangeable, the final bound for 

an m source n sink transportation problem is 

( E cj) min (m, n). 
It is also easy to describe an algorithm in which each stage aims at making at 

least one more dual inequality (k, 1) satisfied given (17) initially-rather than 
aiming at making at least one more column l of dual inequalities satisfied given 
(17) initially. Such an algorithm would then be similar to the method first 
described for the m by m assignment problem where it takes at most m steps to 
satisfy one more dual inequality, and hence at most m3 steps to solve the problem. 
The bound for such an algorithm becomes, however, [min(m2, n2)][ j cj]. 
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Notice, finally, that the primal algorithm given in this section for the trans- 
portation problem may have at hand at any step of the procedure a feasible X 
for (14) (arising, perhaps, from an XI) which contains loops among its positive 
entries, i.e., a feasible X which is not a basic feasible solution for (14). 

5. Example 

Consider the transportation problem defined by 

3 6 3 1 1 b1 = 4 
2 4 3 2 7 b2= 5 
1 1 2 1 2 b3 = 6 

C C2 C3= C4 C = 

2 2 3 4 4 

In the computation below the numbers on the left and top margins are the ui 
and vj, respectively, and in brackets any labels they may receive. Within a box 
an uncircled number in the (i, j) position is aij - ui- vj and the corresponding 
xij is zero; a circled number in the (i, j) position is the value of the current xi 
and aij - ui- vj is zero (where the xij , ui and vj are the primal and dual 
variables for the transportation problem under consideration). A star indicates 
the origin of labelling. 

3 6 3 2 3 

1. Start with an initial feasible X 0 Q 0 -1 -2 
and orthogonal U, V. Select 0 -1 -2 ? ? 4 
column2. -1 -1 -4 0 (? ?) 

Stage 2 {1} {1} {2} {3} 
3 2 3 2 3 6 

1. Replace column 2 by two {6} 0 (?) 4 0 -1 -2 
columns. Label, case 2 occurs. {3} 0 -1 2 ? ? 4 -2 

{4} -1 -1 0 0 ? ) -4* 
0= 2= 
Cl(l) Cl (2) 

a -2 

3 2 3 2 3 6 

2. Stage 2 complete since Cl(2) = 0. () 4 ? -1 -2 0 
Select column 1. 0 -1 2 ( ? 4 -2 

-1 -1 (i) 0 0 ? -4 
2= 0= 
cZ(l) Cl(2) 
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Stage 1 {2} {l} {2} {3} 
2 2 3 2 3 3 

2. Label, case 3 occurs. {6} 0 1 4 (i) -1 -2: 
{3} 0 0 2 (i () 4 -1 

-1 0 (? 0 0 () -1* 
0= 2= 

cl(l) Cl(2) 

e= 1 

{1} {2} 
1 2 2 1 3 2 

3. Label, case 2 occurs. {6} 1 1 3 ( -1 -3 ?g 
{3} 1 0 1 (i ?G 3 -1* 

-1 1 (i) 1 1 () 0 
0= 2= 
cl(l) Cl(2) 

{1 } {2} 
1 2 2 1 3 2 

4. Label, case 3 occurs. {6} 1 1 3 ( -1 -3 (i) 
1 1 0 () 3 -1* 

-1 1 (i 1 1 (i 0 

1= 1 
cl(l) Cl(2) 

e =1 

5. Stage 1 complete since column 1(2) 1 2 1 1 3 1 

entries all nonnegative. Select 2 0 2 ? -2 -4 (K) 
column 5. 1 1 1 () 3 0 

-_ 1 1 (i) 2 1 () 1 

1= 1= 
cl(l) Cl(2) 

Stage 5 {3} {1} 
1 2 1 1 -1 3 

5. Label, case 3 occurs. 2 Q 2 ? -2 0 -4* 
101 1 ? 7 3 

{6}-1 1 ( 2 1 4 ( 
0= 4= 
Cm(1) C1(2) 

e =1 
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{3} {3} {3} {1} 
1 1 1 1 -1 2 

6. Continue the labelling, case 2 {1} 2 Q( 3 ?3 -2 0 -3* 
occurs. 1 0 2 1 ? 7 4 

{6}0 0 (i 1 0 3 ?) 
0= 4= 
CZ(l) CZ (2) 

131~~ =3 12 
{3} {3} {2} {1} 
1 1 1 1 - 1 2 

7. Label, case 3 occurs. 2 0 3 ?3 -2 Q -3* 
{1}1 ? 2 1 Q3 7 4 
{6}0 1 0 3 ? 

1 = 3= 
Cl(l) Cl(2) 

e = 1 

{3} {3J {3} {2} {1} 
8. Continue the labelling, case 2 0 0 1 0 -1 1 

occurs. {3} 2 1 4 ?D - 1 ? -2* 
{1} 2 Q3 2 0 0 6 4 
{6} 1 0 0 2 ( 

1= 3= 
Cl(l) Cl(2) 

a=3 

9. Stage 5 complete since Cj(2) = 0. 0 0 1 0 -1 1 

Selectcolumn4. 2 1 4 0 -1 ( -2 
2 02 0 ) 6 4 
1 00?) (i) (# 0 2 0 

4= O= 
Cl(1) CZ(2) 

Stage 4 {2} {3} {2} {M} 
0 0 1 -1 -1 0 

9. Label, case 3 occurs. 2 1 4 0 0 (i -1 
{6} 2 0 2 0 1 6 (i 
{i}l 0 (i) (i) (#) 1 2 0 

O= 4- 
CI(l) C (2) 

e=1 
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10. Stage 4 is complete since column -1 -1 0 -1 -1 -1 
1(2) entries all nonnegative. 2 2 5 1 0 () 0 

3 2 0 0 5 () 
2 00 1 0 

0= 4= 
Cl(l) Cl (2) 

All entries are nonnegative; hence, the optimal solution is displayed in 
-1 -1 0 -1 -1 

2 2 5 1 0 () 
3 0 2 0 ( 5 
2 0 0 0 1 

The cost of this solution is 23. 
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