Computing a Maximum Cardinality Matching
in a Bipartite Graph in Time O(n!®\/m/logn)

by H. Art!, N. BLum?, K. MEHLHORN®, M. PauL?

April 26, 2002

Keywords: Analysis of algorithms, bipartite graph, matching

Abstract: We show how to compute a maximum cardinality matching in a
bipartite graph of n vertices in time O(n'-®y/m/logn). For dense graphs this
improves on the O(y/nm) algorithm of J.E. Hopcroft and R.M. Karp [HK]. The
speed-up is obtained by an application of the fast adjacency matrix scanning
technique of J. Cheriyan, T. Hagerup and K. Mehlhorn [CHM].

A bipartite graph is an undirected graph G = (V, E) where the vertex set V
can be partitioned into disjoint sets V; and V. such that every edge e € E has
exactly one endpoint in each of the two sets. A matching M is a subset of F
such that every vertex is incident to at most one edge in M.

J.E. Hopcroft and R.M. Karp [HK] have shown how to compute a maximum
cardinality matching in a bipartite graph in time O(y/nm), where n = |V|
and m = |E|. We give an implementation of their algorithm, which runs in
time O(n!®y/m/logn). For dense graphs this is an improvement by a factor
of v/logn. The speed-up is obtained by the “fast adjacency matrix scanning
technique” of J. Cheriyan, T. Hagerup and K. Mehlhorn [CHM].

The algorithm of J.E. Hopcroft and R.M. Karp works in O(y/n) phases. In
each phase, which takes O(m) time, a maximal set (with respect to set inclusion)
of shortest augmenting paths is determined by breadth-first and subsequent
depth-first search.

An augmenting path with respect to a matching M is an alternating path
connecting two free vertices in V, i.e. vertices which are not incident to an edge
in M. An alternating path is a path in G which alternately uses edges in M and
E — M. Interchanging the matching and non-matching edges of an augmenting
path increases the cardinality of the matching by one.

1FB Mathematik, WE3, Freie Universitit Berlin, D-1000 Berlin 33, West Germany
2Informatik IV, Universitit Bonn, D-5300 Bonn, West Germany
3FB Informatik , Universitit des Saarlandes, D-6600 Saarbriicken, West Germany

Now we can describe one phase of their algorithm in more detail.

The breadth-first search starts from the free vertices in V,. and constructs a
layered directed graph. A vertex v € V is in layer [iff the shortest alternating
path from v to a free vertex in V,. has length [. The edges of the layered digraph
are those lying on a shortest alternating path in G. They are directed from the
vertex in the higher layer to that in the lower one. In this way, vertices in V,
are put into even layers, vertices in V; are put into odd layers, matching edges
start in even layers, and non-matching edges start in odd layers (cf. Figure ?7).
The depth-first search starts in the free vertices in layer L, where L is defined
as the minimum layer containing a free vertex in V;. Whenever a free vertex
in layer zero is reached, the edges of the augmenting path are removed from
the layered digraph, and the augmenting path is used to increase the current
matching.

In our implementation of the algorithm (cf. Figure 1) we combine the breadth-
first and the depth-first search following the model of recent network flow algo-
rithms [AO, GT].

Let digraph G4 = (V, E4) be obtained from G by directing all edges in the
current matching from V. to V;, and all other edges from V; to V.. Thus every
path in G4 corresponds to an alternating path in G. For each vertex v € V we
maintain a distance label layer[v]. Vertices in V,. occupy even layers, and all
free vertices in V,. are in layer zero. Vertices in V; occupy odd layers, and all
free vertices in V; are in two adjacent layers L and L + 2.

We maintain the “layered graph invariant” that no edge of the directed graph
reaches downwards by two or more layers, i.e.

() VY(v,w) € Eyq: layer[v] < layer[w]+ 1.
It follows that layer[v] is a lower bound on the length of an alternating path
starting in v and ending in a free vertex in V,.. Call an edge (v, w) € Eq4 eligible,
if layer[v] = layer[w] + 1, and let ce(v) be a function which returns an eligible
edge starting in v, if there is one, and nil otherwise.

Initially, we put all vertices in V. into layer zero, all vertices in V; into layer
one, and direct all edges from V; to V.. We then search for augmenting paths
as follows:

Starting from a free vertex in layer L we construct a path p of eligible edges.
Let v be the last vertex of p. There are three cases to distinguish:

Case 1 (breakthrough): v is a free vertex in layer zero:
Then p is an augmenting path with respect to the current matching. We
augment the current matching by reversing all edges of p.

Case 2 (advance): v is not a free vertex in layer zero and ce(v) exists:
The path p is extended by adding endpoint(ce(v)).

Case 3 (retreat): v is not a free vertex in layer zero and ce(v) = nil:
Increase layer[v] by two, and remove v from p.

After a breakthrough or a retreat which leaves us with an empty path p, we
start the next search for an augmenting path. If there are no more free vertices

(1) define digraph G4 = (Vg, E4) by V3=V and
E; = {(va) eV x Vi {va} € E})
(2) forall veV do

free[v] + 1 ;
layer[v] + 0, }f vel } ;
1, ifveV ’
od ;
cardinality < 0 ;
L1,

3 while L<./ny do /| v =+mlogn/n
(4) while 3Jv €V, with layer[v] =L and freev] =1 do
(5) let v € V; be such that layer[v] = L and free[v] =1 ;
6) p< [v] ;
(7) while p#] do
(8) v « lastvertex(p) ;
(9) if layer[v] =0 and free[v]=1 then // breakthrough
cardinality < cardinality + 1 ;
free[first_vertex(p)] <0 ; free[v] <0 ;
reverse the direction of all edges in p ;

P
else
(10)if ce(v) # nil then // advance
p < p + [endpoint(ce(v))] ;
(11)else // retreat

layer[v] < layer[v] + 2 ;
remove v from p ;
fi ;
fi ;
od ;
od ;
(12)L <~ L+2;

(13) od ;
(14) find the remaining augmenting paths by the standard method ;

Figure 1: The algorithm

in layer L, we increase L by two and repeat. In this way we proceed until L
exceeds /nvy, where v is a parameter which we will fix at v/mlogn/n later.

Lemma 1: At all times during the execution of the algorithm, the following
invariants hold:

(L) V(v,w) € Eg4: layer[v] < layer[w] + 1 ;
(I2) layer[v] is even & veV,;

(Is) p=[vo,v1,...,v] is a path in the current digraph with layer[v;] = L —1,
for 0 <i<I< L and free[vg] =1 ;

(I4) all vertices v € V; with free[v] =1 are in layers L or L + 2 ;

(Is) the set M = {{v,w} € E; (w,v) € (V, x V;) N E4} forms a matching in
G with |M| = cardinality; furthermore
freefv] =1 forveV & v is free with respect to M.

Proof: Certainly all invariants hold initially. Now we do the induction step.

(I1): Only relabeling a vertex or reversing the direction of an edge may invali-
date ([7).
When a vertex v is relabeled there are no eligible edges out of v, i.e.
layer[v] < layer[w] — 1 for all (v,w) € E4 by (I1) and (I2). Hence in-
creasing layer[v] by two preserves (I1) for all edges (v, w) € E4. For edges
(w,v) € E4 the invariant also stays true.
Reversing the edges of the path p in step (9) maintains (I;) as well, since
all edges are eligible.

(Iz): Since layer labels are always increased by two, (I2) remains true.

(I3): The path p always starts at a vertex v € V} in layer L with free[v] = 1
and is only extended by eligible edges.

(I): When a vertex is relabeled, it must be on the path p. Thus no free vertex
in layer L + 2 can be relabeled by (I3). When L is increased by two, there
is no vertex v with free[v] =1 in layer L.

(I5): In the case of a breakthrough, p is an alternating path from a free vertex
w € V] to a free vertex v € V,. by (I3) and the induction hypothesis, i.e. an
augmenting path with respect to the current matching. Thus (9) preserves

(Is).

The correctness of our algorithm is now established. Next we show that it is a
derivative of the algorithm of J.E. Hopcroft and R.M. Karp.

Lemma 2: The algorithm in Figure 1 always increases the matching along a
shortest augmenting path.

Proof: Let p be the augmenting path of length L found in step (9). (I4) and
(I5) imply that all free vertices in V; are in layers L or L + 2, and those of V..
are in layer zero. Now the claim follows from (7).

Lemma 3: Let M* be a matching of maximum cardinality in G and M the
matching computed by our algorithm after step (13). Then we have |M| >
M*| — /7).

Furthermore, step (14) takes time O(y/nm/7).

Proof: After step (13) there is no augmenting path with respect to the current
matching M of length less than y/n. But M* & M must contain |M*| — |M]|
disjoint augmenting paths with respect to M. Thus (|[M*| — |[M|)yv/n < n
and hence |M| > |M*| — y/n/~v. This implies that further \/n/vy phases of the
standard algorithm with total cost O(y/nm/v) suffice to compute a matching
of maximum cardinality.

Lemma 4:

a) The total number of increases of layer labels is O(n!®7y).
b) The eligible edge function ce is called O(n'-5y) times.

Proof:
a): (I4) and step (3) imply that the maximum layer of a vertex during an
execution of the algorithm is y/n7y + 2. Thus we execute step (11) at most
O(y/n7y) times for each vertex.

b): Each time the function ce returns an eligible edge (v, w) € E4, we extend
the current path p by this edge. Either it still belongs to the path when
p becomes augmenting for the next time, or layer[w] is increased by two
when (v, w) is deleted from p. Thus the number of calls to the function ce
is bounded by twice the total number of increases of layer labels plus the
total length of all augmenting paths found during the execution of steps
(1)—(13). Since the length of an augmenting path is at most 1/ny, because
of (I4) and step (3), and since there are at most n of them, part a) of this
Lemma completes the proof.

We infer from Lemma 4 that the total time spent in steps (1)—(13) is O(n!y)
plus the time spent in calls to the current edge function.

In [CHM] it has been shown how to implement this function such that the time
spent in calls ce(v) between relabelings of v is O(n/logn + number of calls).
We conclude that the total time spent in steps (1)—(13) is O(y/ny-n-n/logn+
n!%y) = O(n*®vy/logn).

We summarize in

Theorem 1: A maximum cardinality matching in a bipartite graph with n
vertices and m edges can be computed in time

O(min{y/nm,n*%\/m/logn}) = 0O(n*®/y/logn).
Proof: The running time of the standard algorithm is O(y/nm), and the run-

ning time of our algorithm is (O(n?®v/logn + /nm/v) for any v > 0. The
bound follows with v = y/mlogn/n.

References

[AO] Ahuja, R.K., J.B. Orlin. A Fast and Simple Algorithm for the Mazimum
Flow Problem. Operation Research, Vol. 37 (1989), 748-759

[CHM] Cheriyan, J., T. Hagerup, K. Mehlhorn. Can a Mazimum Flow be Com-
puted in O(nm) Time? To be presented at 17" ICALP, 1990

[GT] Goldberg, A.V., R.E. Tarjan. A New Approach to the Mazimum Flow
Problem. J. ACM 35 (1988), 921-940.

[HK] Hopcroft, J.E., R.M. Karp. An n?> Algorithm for Mazimum Matchings
in Bipartite Graphs. SIAM J. Comp. 2, No. 4 (1973), 225-231

