
Open Problems from Dagstuhl Seminar 16451:

Structure and Hardness in P

Organizers: Moshe Lewenstein, Seth Pettie, Virginia Vassilevska Williams

The Dagstuhl Seminar Structure and Hardness in P took place November 7-11, 2016. The
following open problems were contributed by the seminar attendees, and compiled and edited by
the organizers.

Open Problem 1: Parameterizing problems in P by treewidth

Background. Let t be the treewidth of an input graph. Many NP-hard problems, particularly
those expressible in MSOL, are solvable in fptqn time and there are lower bounds on the (expo-
nential) function f conditioned on the Strong Exponential Time Hypothesis (SETH) [26]. For
problems in P the picture is less clear. Consider your favorite problem Π in P solvable in TΠpnq
time on a graph wtih n vertices. Some problems Π admit algorithms running in polyptq ¨ opTΠpnqq
time whereas others do not. For example, Abboud et al. [5] proved that Diameter can be solved
in 2Opt log tqn1`op1q time, yet a 2optqn2´ε time algorithm would refute SETH. On the other hand,
maximum cardinality matching can be solved in randomized Opt3 ¨ n log nq-time [31].

Question. Classify graph problems in P according to their dependence on treewidth. Which
problems admit fptq ¨ n1`op1q-time algorithms with polynomial f , and which require exponential
f? A specific goal is the determine whether maximum weight perfect matching has an Õppolyptqnq
algorithm, for integer weights from a polynomial range.

Main paper reference: Abboud et al. [5], Fomin et al. [31].

[Contributed by Fedor V. Fomin.]

Open Problem 2: Approximate all-pairs shortest paths

Background. In unweighted, undirected graphs, we can compute All Pairs Shortest Paths (APSP)
in Opn3q time with a fast “combinatorial” algorithm, or in Opnωq time, where ω ă 2.373 is the
matrix multiplication exponent. It is conjectured that a truly subcubic combinatorial algorithm
does not exist, which is equivalent to the combinatorial Boolean matrix multiplication conjecture.

What about approximation algorithms? The best kind of approximation is an additive `2, so
that for all pairs u, v we return a value that is between dpu, vq and dpu, vq ` 2. Dor, Halperin, and
Zwick [30] presented a combinatorial algorithm with runtime Õpn7{3q. Note that this runtime is
currently even better that Opnωq, and has the advantage of being practical.

1



Questions. Is there a conditional lower bound for `2-APSP? Can we show that a combina-
torial algorithm must spend n7{3´op1q time? Would a faster non-combinatorial algorithm require
improvements to ω? Alternatively, is there an Õpn2q time algorithm for `2-APSP?

Main paper reference: Dor, Halperin, and Zwick [30].

[Contributed by Amir Abboud.]

Open Problem 3: Approximate diameter

Background. Computing the diameter of a sparse graph in truly subquadratic time refutes
SETH: Roditty and Vassilevska Williams [62] showed that a p3{2´εq-approximation to the diameter
requires n2´op1q time, even on a sparse unweighted undirected graph under SETH. On the other
hand, there are algorithms [62, 22] that give a (roughly) 3{2 approximation in Õpm

?
nq time on

unweighted graphs, or Õpmintm3{2,mn2{3uq time on weighted graphs. Extending these algorithms
further, Cairo et al. [19] showed that for all integers k ě 1, there is an Õpmn1{pk`1qq time algorithm
that approximates the diameter of an undirected unweighted graph within a factor of (roughly)
2´ 1{2k.

Question. If we insist on near-linear runtime, what is the best approximation factor we can
get? It is easy to see that a 2-approximation can be achieved in linear time, but what about an
α-approximation, where 3{2 ď α ă 2?

Main paper reference: Roditty and Vassilevska W. [62].

[Contributed by Amir Abboud.]

Open Problem 4: Finding cycles and approximating the girth

Background. Consider an unweighted undirected graph G “ pV,Eq. The girth of G is the
length of the shortest cycle. The problem of detecting 3-cycles (and odd cycles of any length) is
reducible to matrix multiplication and there are reductions in the reverse direction; see [66]. Yuster
and Zwick [67] showed that detecting 2k-cycles can be computed in Opfpkqn2q time, where f is
exponential.

Question. For any fixed constant k, give a conditional lower bound, showing that there does not
exist an algorithm deciding whether G contains a 2k-cycle in time Opfpkqn2´εq for any ε ą 0, or
one running in Opfpkqm2k{pk`1q´εq time, where m is the number of edges.

Main paper reference: Yuster and Zwick [67].
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Question. Prove or disprove the following conjecture: There exists a truly subquadratic algo-
rithm for finding a 4-cycle in a graph if and only if there exists a truly subquadratic algorithm for
finding a multiplicative p2´ εq-approximation of the girth.

Question. Prove or disprove the following conjecture from [63]: the problem of detecting a 3-cycle
in a graph G without 4- and 5-cycles requires n2´op1q time. Note that if there exists a subquadratic
p2 ´ εq-approximation for the girth, it must be able to detect 3-cycles in graphs without 4- and
5-cycles. See [63] for more details.

Main paper reference: Roditty and Vassilevska W. [63].

[Contributed by Mathias Bæk Tejs Knudsen and Liam Roditty.]

Open Problem 5: Minimum cycle problem in directed graphs

Background. Given an unweighted directed graph G “ pV,Eq on n vertices, the problem is to
find a shortest cycle in G. The potentially simpler Girth problem asks to compute just the length
of the shortest cycle.

The girth and the minimum cycle can be computed in Opnωq time exactly, as shown by Itai and
Rodeh [49], where ω ă 2.373. It is easy to see that the minimum cycle problem is at least as hard
as finding a triangle in a graph. In fact, even obtaining a p2 ´ δq-approximation for the girth for
any constant δ ą 0 is at least as hard as triangle detection. The fastest algorithm for the Triangle
problem in n node graphs runs in Opnωq time.

Question. Is there any Op1q-approximation algorithm for the girth that runs faster than Opnωq
time? In recent work, Pachocki, Roditty, Sidford, Tov, and Vassilevska Williams [59] showed that
for any integer k, there is an Õpmn1{kq time Opk log nq approximation algorithm for the Minimum
Cycle problem. Thus, in nearly linear time, one can obtain an Oplog2 nq-approximation. Can one
improve the approximation factor further? Can one even obtain a constant factor approximation
in linear time?

Main paper reference: Pachocki et al. [59].

[Contributed by Virginia Vassilevska Williams.]

Open Problem 6: Linear Programming

Background. Consider a linear program of the following form: minimize cTx subject to Ax ě b,
where A is an d-by-n constraint matrix. Suppose that we could solve any such LP in time

rO
´

`

nnzpAq ` d2
˘

dδ logL
¯

,

where nnzpAq is the number of non-zero entries of A, L is the bound on the bit complexity of the
input entries, and δ is a positive constant.
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Question. Is there some value of δ for which the above (hypothetical) running time bound would
disprove any of the popular hardness conjectures?

In [57], it is shown that one can achieve the above running time bound for δ “ 1
2 .

Main paper reference: Lee and Sidford [57].

[Contributed by Aleksander Madry.]

Open Problem 7: Fully dynamic APSP

Background. In the fully dynamic all-pairs shortest paths (APSP) problem we are interested in
maintaining the distance matrix of a graph under insertions and deletions of nodes. Demetrescu
and Italiano [28] showed that the distance matrix can be updated in amortized time Õpn2q after
each node update. The current fastest worst case algorithms have update times of Õpn2`2{3q

(randomized Monte Carlo [7]) and Õpn2`3{4q (deterministic [65]).

Questions. Can the worst case update time Õpn2q be achieved? A barrier for current algorithmic
approaches is n2.5. Is there a conditional lower bound showing this to be a true barrier?

Main paper reference: Abraham et al. [7].

[Contributed by Sebastian Krinninger.]

Open Problem 8: Dynamic reachability in planar graphs

Background. Dynamic reachability in a planar graph G is the problem of maintaining a data
structure supporting the following operations: (i) Insert a directed edge pu, vq into G, (ii) delete an
edge from G, and (iii) query whether v is reachable from u in G.

An algorithm with update and query time Õp
?
nq is known (Diks and Sankowski [29]) for

dynamic plane graphs—that is, the graph is dynamic but the plane embedding is fixed.

Question. Does an n1{2´Ωp1q algorithm exist or is there a conditional n1{2´op1q hardness result?
Any polynomial hardness result would be interesting. A good place to start for the latter part
would be the recent paper by Abboud and Dahlgaard [3] about hardness for dynamic problems in
planar graphs.

Main paper reference: Abboud and Dahlgaard [3].

[Contributed by Søren Dahlgaard.]
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Open Problem 9: Static hardness for planar graphs

Background. An important direction is to show conditional hardness for important problems,
even on restricted (easier) classes of graphs, e.g., planar graphs. Abboud and Dahlgaard [3] recently
showed hardness for several dynamic problems in planar graphs, but nothing is known for static
problems.

Question. On planar graphs, many problems (such as shortest paths, multi-source multi-sink
max-flow, etc.) run in near-linear time. Can we show that some problem does not? No hardness
results are known for any static problem in P on planar graphs. Two candidate problems to consider
are diameter and sum of distances. Both require subquadratic time (Cabello [18]), but it may still
be possible to show a hardness result, e.g., n3{2´op1q hardness.

Main paper reference: Cabello [18].

[Contributed by Søren Dahlgaard.]

Open Problem 10: Sparse reductions for graph problems

Background. Many graph problems are known to be as hard as APSP on dense graphs [66, 4, 64],
in the sense that a subcubic algorithm for any of them implies a subcubic algorithm for all of
them. When the graph sparsity is taken into account, these problems currently are no longer
in a single class: many have Õpmnq-time algorithms whereas finding minimum weight triangle
and related problems have Õpm3{2q-time algorithms. Most known fine-grained reductions between
graph problems do not preserve the graph sparsity. Until recently, the only examples of sparseness-
preserving truly subcubic reductions appeared in [4]. Agarwal and Ramachandran [8] presented
several more such reductions, strengthening the connections between problems with Õpmnq-time
algorithms. A reduction from CNF-SAT to Diameter was presented in [62] to give SETH-hardness
results for Diameter and Eccentricities. The notion of a sub-mn time bound was formalized later,
in [8], where is was observed that the reduction in [62] gives SETH-hardness for any sub-mn time
bound for these problems.

Questions. Is there a sparseness-preserving, Õpn2q time reduction from undirected weighted All
Nodes Shortest Cycles (ANSC) to APSP? Is there a sparseness-preserving, Õpm`nq time reduction
from undirected Min-Wt-Cycle to either Radius or Eccentricities? Is it SETH-hard to find a sub-mn
bound for Min-Wt-Cycle or an Opn2` sub-mnq bound on APSP?

Main paper reference: Agarwal and Ramachandran [8].

[Contributed by Vijaya Ramachandran.]
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Open Problem 11: Hardness for partially dynamic graph problems

Background. Many results show hardness for fully-dynamic problems in graphs, but the tech-
niques do not seem to extend well to amortized lower bounds in the incremental and decremental
cases. (See Abboud and Vassilevska Williams [2], Henzinger, Krinninger, Nanongkai, and Saranu-
rak [46], Kopelowitz, Pettie and Porat [55], and Dahlgaard [27] for some initial results on incre-
mental/decremental problems.)

Question. Develop general techniques for showing amortized hardness of partially dynamic prob-
lems in graphs. One candidate problem is decremental single-source reachability. A result of
Chechik, Hansen, Italiano, Lacki, and Parotsidis [23] shows that Õpm

?
nq total time is sufficient.

Is it necessary?

[Contributed by Søren Dahlgaard.]

Open Problem 12: Hardness of vertex connectivity

Background. A connected undirected graph is k-vertex (resp. edge) connected if it remains
connected after any set of at most k ´ 1 vertices (edges) is removed from the graph. A strongly
connected directed graph is k-vertex (edge) connected if it remains strongly connected after any
set of at most k ´ 1 vertices (edges) is removed from the graph. The vertex (edge) connectivity of
a graph is the maximum value of k such that the graph is k-vertex (edge) connected.

The edge-connectivity λ of an undirected graph can be determined in time Opm log2 n log2 log nq
[47, 54], and for directed graphs in timeOpλm logpn2{mqq [37]. In contrast, the vertex-connectivity κ
can only be computed in time Oppn`mintκ5{2, κn3{4uqmq [38], where for undirected graphs m can
be replaced by kn.

Question. To check k-vertex connectivity means to either confirm that κ ě k or to find a set
of k ´ 1 vertices that disconnects the graph. Even when k is constant, no opn2q time (or opmnq
time for directed graphs) algorithms are known for checking k-connectivity. Is there a conditional
superlinear lower bound?

Main paper reference: Gabow [38].

[Contributed by Veronika Loitzenbauer.]
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Open Problem 13: Parity and mean-payoff games

Background. Parity games, and their generalization mean-payoff games, are among the rare
“natural” problems in NPXco-NP (and in UPXco-UP [52]) for which no polynomial-time algorithm
is known. Both parity games and mean-payoff games are 2-player games played by taking an infinite
walk on a directed graph; one of the vertices is designated the start vertex. In parity games each
vertex is labeled by an integer in r0, cs; in mean payoff games each edge is labeled by an integer in
r´W,W s. (See [53] for a description of the game.) The algorithmic question is to decide, for each
start vertex, which of the two players wins the game and to construct a corresponding winning
strategy. Parity games can be reduced to mean-payoff games with W “ nc. Very recently, quasi-
polynomial Opnlog cq time algorithms for parity games were discovered [20, 51]. The best known
algorithms for mean-payoff games run in pseudo-polynomial time OpmnW q [16] and randomized
sub-exponential time Op2

?
n logn logW q [15].

Questions. Is there a polynomial-time algorithm for parity or mean-payoff games? Are there
conditional superlinear lower bounds on these problems?

[Contributed by Veronika Loitzenbauer.]

Open Problem 14: Unknotting

Background. A knot is a closed, non-self-intersecting polygonal chain in R3. Two knots are
equivalent if one can be continuously deformed into the other without self-intersection. The unknot
problem is to decide if a knot is equivalent to one that is embeddable in the plane.

Knots can be represented combinatorially, by projecting the polygonal chain onto R2, placing
a vertex wherever two edges intersect. The result is a 4-regular planar graph (possibly with loops
and parallel edges) where each vertex carries a bit indicating which pair of edges is “over” and
which pair is “under.” Reidemeister moves (a small set of transformations on the knot diagram)
suffice to transform any knot diagram to one of its equivalent representations.

The complexity of unknot and related problems (e.g., are two knots equivalent?, can two knots
simultaneously embedded in R3 be untangled?) are known to be in NP [45] and solvable in 2Opnq

time [45, 50].

Questions. Given a plane knot diagram with n intersections, can unknot or knot-equivalence be
solved in time near-linear in n? If not, are there conditional lower bounds that show even some
polynomial hardness?

[Contributed by Seth Pettie.]
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Open Problem 15: 3-Collinearity (general position testing)

Background. A set S of n points in R2 is said to be in general position if there do not exist
three points in S that lie on a line. The 3-Collinearity problem is to test whether S is in general
position. The 3-Collinearity problem is known to be as hard as 3SUM, and an algorithm that runs
in Opn2q time is known.

Questions. The question is whether the Opn2q algorithm is optimal or whether it can be solved in
opn2q time. Recent subquadratic algorithms for 3SUM [12, 44, 34, 41] indicate that polylogarithmic
improvements should be possible. A related question is whether there is an Opn2´εq-depth decision
tree for 3-Collinearity; see [44, 13].

Main paper reference: Gajentaan and Overmars [39].

[Contributed by Omer Gold.]

Open Problem 16: Element uniqueness in X ` Y

Background. Given two sets X and Y , each of n real numbers, determine whether all the
elements of X ` Y “ tx` y | x P X, y P Y u are distinct. A somewhat stronger variant of this
problem is to sort X ` Y .

The decision tree complexity of sorting X ` Y and Element Uniqueness in X ` Y was shown
to be Opn2q by Fredman [33].

Question. Can these problems can be solved in opn2 log nq time, even for the special case X “ Y ?

[Contributed by Omer Gold.]

Open Problem 17: Histogram indexing

Background. The histogram ψpT q of a string T P Σ˚ is a |Σ|-length vector containing the number
of occurrences of each letter in T . The histogram indexing problem (aka jumbled indexing) is to
preprocess a string T to support the following query: given a histogram vector ψ, decide whether
there is a substring T 1 of T such that ψpT 1q “ ψ.

The state-of-the-art algorithm for histogram indexing [21] preprocesses a binary text T in
Opn1.859q time and answers queries in Op1q time. Over a d-letter alphabet the preprocessing and
query times are Õpn2´δq and Õpn2{3`δpd`13q{6q, for any δ ě 0. On the lower bound side [10, 42],
the 3SUM conjecture implies that it is impossible to simultaneously improve n2´δ preprocessing
and nδpd{2´1q query time by polynomial factors, where δ ď 2{pd´ 1q and d ě 3.

Question. Are there any non-trivial lower bounds on histogram indexing when d “ 2? Is it
possible to close the gap between the lower and upper bounds in general, or to base the hardness
off of a different conjecture than 3SUM?
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Main paper reference: Chan and Lewenstein [21].

[Contributed by Isaac Goldstein.]

Open Problem 18: Integer programming

Background. The objective of Integer Programming (IP) is to decide, for a given mˆ n matrix
A and an m-vector b “ pb1, . . . , bmq, whether there is a non-negative integer n-vector x such that
Ax “ b. In 1981, Papadimitriou [61] showed that (IP) is solvable in pseudo-polynomial time on
instances for which the number of constraints m is constant. The rough estimation of the running
time of Papadimitriou’s algorithm is nOpmq ¨ dOpm

2q, where d bounds the magnitude of any entry

in A and b. The best known lower bound is n
op m

logm
q
dopmq [32], assuming the Exponential Time

Hypothesis (ETH).

Question. Is it possible to narrow the gap between algorithms for IP and the ETH-hardness of
IP?

Main paper reference: Fomin et al. [32].

[Contributed by Fedor V. Fomin.]

Open Problem 19: All-pairs min-cut and generalizations

Background. The all-pairs min-cut problem is, given an edge-capacitated undirected graph G “
pV,E, cq, to compute the minimum s-t cut over all pairs s, t P V . Gomory and Hu [43] showed the
problem is reducible to n´1 s-t min-cut instances, and moreover, all

`

n
2

˘

min-cuts can be represented
by a capacitated tree T on the vertex set V . On unweighted graphs, the construction of T takes
time Õpmnq [14, 60].

Generalizations of this problem include finding the min-cut separating every triple pr, s, tq P
V 3, which is NP-hard, and finding the min-cuts separating all pairs of k-sets ts1, . . . , sku from
tt1, . . . , tku. See [24].

Questions. Are there superlinear conditional lower bounds for all-pairs min-cut/Gomory-Hu tree
construction? (Refer to [6] for conditional lower bounds for variants of the problem on directed
graphs.) Are there non-trivial conditional lower bounds for all-triplets approximate min-cut, or
all-k-sets min-cut?

[Contributed by Robert Krauthgamer.]
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Open Problem 20: Parameterizing string algorithms by compressibility

Background. The broad idea can be illustrated with a lower bound for string edit distance:
Given two strings of length N whose compressed length (say, using Lempel-Ziv compression) is n,
it is known that their edit distance can be computed in OpnNq time. Is it possible to prove an
ΩpnNq conditional lower bound? The known conditional lower bound [11, 1, 17] reduces CNF-SAT
(with n variables) to string edit distance by creating two strings each consisting of Op2n{2q blocks.
To make such a reduction suitable for proving ΩpnNq lower bound, one needs to generate instead
two strings whose length is much more than 2n{2 but that compress to much less than 2n{2.

[Contributed by Oren Weimann.]

Open Problem 21: Reductions from low complexity to high complexity

Background. We know that improving the runtime of our 10-Clique algorithms improves the
runtime of our 100-Clique algorithms. E.g., if 10-Clique can be solved in Opn5q, then 100-Clique
can be solved in Opn50q. In general, we have many examples of reductions showing that a faster
algorithm for a problem with best known runtime Opnaq, implies a faster algorithm for a problem
with runtime Opnbq, where a ď b.

However, we have no interesting reductions in the other way, showing that improvements over
nb imply improvements over na, where a ă b. In particular, we do not know how to use an
algorithm that solved 100-Clique in Opn50q or even Opn11q time, to speed up the known algorithms
for 10-Clique.

Could it be that such reductions, from low complexity to high complexity, do not exist? It is not
hard to construct artificial problems where this can be done, but what about the natural problems
we typically study: Clique, Orthogonal Vectors, k-SUM, APSP, LCS, etc. Can we show that a fine-
grained reduction from 10-Clique to 100-Clique is unlikely due to some surprising consequences?
Another candidate is 3SUM (for which the complexity is n2) vs. APSP (for which the complexity
is N1.5, where N is the input size). We repeatedly ask if faster 3SUM implies faster APSP, but
maybe proving such a result (via fine-grained reductions) has unexpected consequences?

On the other hand, it would be of great interest to find examples of such reductions between
interesting and natural problems.

[Contributed by Amir Abboud.]

Open Problem 22: Stable matching in the two-list model

Background. Gale and Shapley’s stable matching [40] algorithm runs in Opn2q time (linear in the
input size) and it is known that Ωpn2q is optimal if the preference lists are arbitrary. Künnemann,
Moeller, Paturi, and Schneider [56] studied the complexity of stable matching when the prefer-
ence lists are constrained, and encoded in some succinct manner. Many succinct input models
nonetheless require n2´op1q time, conditioned on SETH.
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Question. A problem left open by [56] is two-list stable matching. A matching market in the
two-list model consists of two sets M and W , both of size n, and permutations π1, π2 on M and
σ1, σ2 on W . The preference list of each agent m P M is either σ1 or σ2 and the preference list of
each agent w PW is either π1 or π2. The input size is Opnq. The goal is to find a stable matching in
the resulting matching market. Can this problem be solved in linear time, or is there a superlinear
conditional lower bound?

Main paper reference: Kuennemann et al. [56].

[Contributed by Stefan Schneider.]

Open Problem 23: Boolean vs. real maximum inner product

Background. In the maximum inner product problem we are given two sets of d-dimensional
vectors U and V of size n as well as a threshold l. The problem is to decide if there is a pair
u P U, v P V such that their inner product u ¨ v is at least l. If the vectors are Boolean, then a
randomized algorithm by Alman and Williams [9] solves the problem in time n2´1{Θpc log2 cq where
d “ c log n. In contrast, if the vectors are real or integer, then using ray-shooting techniques [58]
we can solve the problem in time n2´1{Θpdq. This leaves a large gap between the two problems. In
particular, the Boolean case is strongly subquadratic if d “ Oplog nq, while the real case is only
strongly subquadratic for constant d. The conditional lower bounds of [9] show that any n2´ε

algorithm when d “ ωplog nq refutes SETH.

Questions. Can the gap between the boolean and integer/real case be closed, with a better
maximum inner product algorithm? If the gap is natural, can it be explained with a stronger
conditional lower bound on (real or integer) maximum inner product?

[Contributed by Stefan Schneider.]

Open Problem 24: Hardness of Approximating NP-hard Problems

Background. Many approximation algorithms for NP-hard problems run in polynomial time,
but not linear time. This is often due to the use of general LP or SDP solvers, but not always.
To take two examples, the chromatic index (edge coloring) and minimum degree spanning tree
problems are NP-hard, but can both be approximated to within 1 of optimal in Õpm

?
nq time [36]

and Õpmnq time [35], respectively.

Question. Prove superlinear conditional lower bounds on the time complexity of any approxi-
mation problem, whose exact version is NP-hard.

[Contributed by Seth Pettie.]
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Open Problem 25: Chromatic index/edge coloring

Background. The chromatic index of a graph is the least number of colors needed for a proper
edge-coloring. Vizing’s theorem implies that the chromatic index is either ∆ or ∆ ` 1 (where ∆
is the maximum degree), but determining which one is NP-hard. The NP-hardness reduction of
Holyer [48] reduces 3SAT to a 3-regular graph on Opnq vertices, so the ETH implies a 2Ωpnq lower
bound. There is an O˚p2mq algorithm for chromatic index, by reduction to vertex coloring, so the
hardness is well understood when m “ Opnq.

Questions. Does the ETH rule out a 2opmq algorithm for chromatic index on dense graphs? Is
there, for example, an nOpnq or 2n

2´ε
-time algorithm?

[Contributed by Marek Cygan.]

Open Problem 26: Communication Complexity of Approximate Hamming Dis-
tance

Background. Consider strings P of length n and T of length 2n. Alice has the whole of P and
the first half of T . That is she has P and T r0, . . . , n ´ 1s. Bob has the second half of T , that is
T rn, . . . , 2n ´ 1s. Alice sends one message to Bob and Bob has to output a p1 ` εq multiplicative
approximation of HDpP, T ri, . . . , i` nsq for all i P rns where HD is the Hamming Distance.

In [25] a Op
?
n log n{ε2q bit communication protocol was given.

Question. Is there a matching lower bound for the randomized one-way communication com-
plexity of this problem?

Main paper reference. Clifford and Starikovskaya [25].

[Contributed by Raphaël Clifford.]
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