An Extensible AOP Framework for Runtime Monitoring

Gholamali Rahnavard

Amjad Nusayr

Jonathan Cook

New Mexico State University University of Houston - Victoria New Mexico State University

rah@nmsu.edu

ABSTRACT

We present a design and initial prototype for TEAMS, a new
aspect oriented programming framework designed specifi-
cally for usage as an abstract instrumentation capability for
runtime monitoring and dynamic analysis. Our goals for
this framework are simplicity, extensibility, portability, and
monitoring concept coverage. If successful, TEAMS will pro-
vide us and other researchers an easy-to-use platform for
building instrumentation that will support their monitoring
and analysis research, and will provide practioners an ability
to craft their own analyses without needing to understand
low-level instrumentation.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Measurement, Languages

Keywords

Runtime Monitoring, Aspect Oriented Programming

1. INTRODUCTION

For several years we have investigated the application of
aspect oriented programming (AOP) to runtime monitoring
instrumentation. Indeed if one looks at the success stories
of AOP, many of them are analysis-based applications that
use AOP weaving to instrument and monitor the underlying
program they analyze. Examples are too numerous to list
and cite. The drawback that existing AOP systems have is
that none of them support all the levels of detail that dy-
namic analyses can require, and this limits the granularity
of what a researcher can do with them. For example, virtu-
ally all AOP frameworks can only instrument down to the
method level (call or execution) when it comes to code de-
tail, and data instrumentation is usually very sparse (e.g.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WODA ’13, Houston, TX, USA.

nusayra@uhv.edu

joncook@nmsu.edu

object fields but nothing else) or non-existent. We pointed
this out in 2009 [12, 14] as we began a detailed investigation
of the application of AOP to runtime monitoring, and others
have noticed this before us [17] and even more recently [2].
Thus investigating the application of AOP ideas and mech-
anisms to the full spectrum of runtime monitoring needs is
still an important research area.

We encountered severe limitations in extending existing
AOQOP systems for the full breadth of runtime monitoring
needs, and so are now attempting to build TEAMS, our own
AOP framework, not for general purpose AOP usage but
in particular for using AOP as a high-level abstraction for
instrumentation that will be used for monitoring and anal-
ysis. TEAMS stands for The Extensible Aspect-based Mon-
itoring System. This short paper presents our initial ideas
for the framework, some early progress in prototyping the
framework, and some promising experimental results that
encourage us to continue in this path.

2. MOTIVATION AND BACKGROUND

For presentation purposes, the mapping between AOP
terms and runtime monitoring terms we use is: the advice is
the instrumentation code; a joinpoint is a point in a program
execution at which instrumentation (advice) can be inserted,;
a pointcut is a set of joinpoints, usually specified abstractly
in a pointcut expression; and a pointcut designator (PCD)
is specific primitive type of instrumentation point (e.g., the
PCD “call” denotes the call site of a method).

In our previous work, we evaluated the breadth of needs
that runtime monitoring has for its instrumentation, and de-
vised a dimension based view of the types of weaving AOP
would need to support to be able to create such instrumen-
tation [13]. Our defined dimensions were code, traditional
weaving over code (instructions); data, weaving over con-
cepts in data space; time, weaving based on time constraints;
and sampling, weaving to support sampling-based instru-
mentation. We defined these dimensions after seeing that
most AOP approaches both to weaving and to the example
runtime monitors they support virtually all focused on the
code dimension, even though the others are useful. Using
these dimensions, we began to look at how we might extend
existing AOP systems to better support runtime monitoring
across all of these dimensions.

The code dimension of weaving is well understood al-
ready, and most AOP frameworks support a variety of code-
based pointcut designators (PCDs), which include method
call, method execution, and even complex PCDs such as
c¢flow. For monitoring purposes, however, existing AOP

frameworks are still quite limited in the features that they
support. Statement level coverage analysis and many other
analyses depend on being able to instrument down to the
statement (or basic block) level, yet current AOP systems
do not support this.

The data dimension weaving has limited support in most
existing AOP frameworks. For example, AspectJ has point-
cut designators for object field accesses, but not for ac-
cesses to local variables, array elements, or arguments. The
data dimension also envisions weaving on higher level data-
oriented concepts, such as when a node in a data structure
is accessed, when references to objects have changed, or how
much space an application has allocated.

The time dimension entails weaving not based on locations
(points) in code or data, but on timers, either relative or
absolute. An obvious example of the utility of this dimension
is profiling, where a timer-based interruption of the program
samples where the program is at that point in time, and
constructs a statistical profile of the execution behavior of
the program. Other time-based uses would be to periodically
check data structure health or application progress.

The sampling (probability) dimension covers the notion
of controlling whether or not the advice is actually exe-
cuted at a joinpoint, or not. Current AOP assumes that
every time a joinpoint satisfying the pointcut expression
is reached, the advice will execute. However, research in
runtime monitoring has shown the utility of sampling-based
approaches, where instrumentation is executed probabilisti-
cally, either randomly or (more efficiently) with a counter-
based approach.

In our previous experimental work we constructed both
basicblock and loopbackedge PCDs [14], a time interval PCD,
and several sampling PCDs, investigating both static and
runtime probability-based weaving, and also non-random
fixed-ratio sampling [14].

3. DESIGN

In attempting to address the full breadth of runtime mon-
itoring needs by extending existing AOP frameworks, we
found them to be very code-centric in their instrumentation
(weaving) mechanisms and ultimately found it extremely
difficult if not impossible to pursue all of the ideas we had.
Thus we are now building our own framework, TEAMS, in or-
der to explore applying AOP across the spectrum of runtime
monitoring needs.

Figure 1 shows the high-level design of TEAMS. TEAMS will
be a lightweight cross-platform system for exploring AOP
mechanisms, to be used in particular for runtime monitor-
ing. Focusing on monitoring in particular will mean that
we will concentrate on features that are observational and
informational, and will not be concerned with AOP features
that modify the behavior of the system. This greatly simpli-
fies some of the standard AOP concerns such as conflicting
advice behavior.

The pointcut expression compiler and the actual instru-
mentation weaver will be the static parts of TEAMS; these
will support both pointcut designators and advice execu-
tion mechanisms created using extension interfaces. We will
create a suite of our own PCDs and advice execution mech-
anisms, but our intent is that others as well will be able to
explore their own ideas in TEAMS.

A key notion in our architecture is that the advice por-
tion of an aspect will be written in a plain old programming

Executing
System

Application .
Program Advice
in
Plain OId

Pointcut
Expressions
and

Advice
Reference

Programming
Language

\. J

([TEAMS l / ¥)
(Parser / Compiler]
y
1

Primitive PCD Plugins
Advice Execution Plugins

e
e

Figure 1: TEAMS overall architecture.

language, or POPL for short. In many AOP systems advice
is packaged into the aspect, which then requires the AOP
framework to either have a full language compiler built in,
or at least a partial grammar of the language in order to
translate extra-language features inside the advice into the
underlying programming language. We will instead rely on
well-defined interfaces and standard naming conventions to
connect advice written separately in the POPL with the
pointcut expressions and aspect definitions written in our
lightweight aspect language.

We will initially focus on a fully dynamic runtime engine
that will perform load-time or run-time weaving, but we
can later integrate static weaving if the performance payoff
is large and needed.

While Section 4 presents our initial work in building TEAMS
in Java, we view the architecture of TEAMS as replicable to
other platforms. The weaver component of TEAMS needs
to be built around an actual instrumentation mechanism;
in Java we are using ASM, but in, say, a compiled environ-
ment we could use Dyninst [5] or Pin [9] or some other in-
strumentation tool. These choices would result in different
TEAMS frameworks suited not only for different platforms
but also for different purposes. For example, in a test en-
vironment setting where execution slowdown might not be
an issue, we could use a very intrusive tool such as Pin to
provide very low-level joinpoint types and enable a user to
create fine-grained runtime monitoring instrumentation at
the abstract AOP level without worrying about how to pro-
gram Pin itself.

A major focus of TEAMS is extensibility: we aim to allow
advanced users and researchers to develop their own moni-
toring mechanisms that will integrate into TEAMS. The ma-
jor areas of extension are: 1) new joinpoint designators that
create new fundamental monitoring mechanisms; 2) new ad-
vice execution mechanisms that control how or when the
advice is executed at an instrumentation point; and 3) new
information sources that create new data at an instrumen-
tation point for advice to use. To date we have been work-
ing on the first extension mechanism, that of new joinpoint

designators, and even this work is not yet complete. We
describe ideas for all three below.

3.1 Pointcut Designator Extensibility

In AOP, a pointcut designator (PCD) is the fundamen-
tal entity that embodies a specific mechanism for identify-
ing the points in a program’s execution that support advice
execution. We do not intend to ourselves create every pos-
sibly useful PCD for runtime monitoring, but rather we are
providing a mechanism for creating new PCDs, while also
building specific PCDs that are generally useful and explore
the research ideas we are particularly interested in.

We envision a modular architecture of the runtime system
where each pointcut designator in the pointcut language will
have its own implementation of a common interface, acting
as a plugin component to the base weaving engine. In this
way new pointcut designators can be added by us or by
others that implement unique monitoring-oriented joinpoint
types.

The pointcut expression grammar will also need to be ex-
tended when introducing a new pointcut designator for a
new joinpoint type. We envision several possibilities for this
issue. One would be to use a tool like Polyglot [15] that
supports extensible grammars. Another is to be careful in
designing the grammar and its associated actions so as to
make it cleanly extensible at the pointcut designator syntax.
One issue will be how to handle the syntax of the designator
arguments, which can be widely varying (e.g., many exist-
ing designators takes a regular expression to match pack-
age/class/method names). A final approach is to employ a
grammar merging tool, such as the Antlr gDiff tool, and
to allow the writer of a new designator to write a gram-
mar for their designator, following particular naming rules
to avoid conflicts, and then merging that grammar with the
base aspect grammar. We plan to experiment with these
approaches to evaluate their viability.

3.2 Advice Execution Extensibility

As described in Section 2, we take a multi-dimensioned
view of the instrumentation needs of runtime monitoring,
and note that advice execution (weaving) in exiting AOP
frameworks have really only supported the code dimension.
Our goal will be to have advice execution to be an extensible
domain where we can experiment with methods to support
all dimensions.

A typical approach in existing AOP systems for deciding
where to weave advice for a compound pointcut expression
is to allow each pointcut designator to produce a shadow
that describes where it matches the program, and then to
find the intersection (for the && operation) of these shadows
as the concrete description of the entire pointcut. Because
much of runtime monitoring can be supported with code in-
strumentation, this basic approach is useful in TEAMS, with
extensions.

To handle the sampling ideas, two distinct alternative
mechanisms are needed. One is for a pointcut designator
to base its shadow on other shadows; for example, with a
static joinpoint selection probability we would make a prob-
abilistic decision at each shadowed code location whether to
weave advice or not. Two is to be able to insert dynamic
residue computation that makes a runtime decision whether
to execute advice or not; for example, with a dynamic join-
point probability, each time a joinpoint occurs a dynamic

probabilistic decision is made to execute the advice or not.

To handle the time domain pointcut designators, we need
mechanisms where advice can be triggered completely sepa-
rate from what the program is doing. We expect that with
careful interface design and modular framework construction
we will be able to allow new advice mechanisms to attach
to the runtime framework and access the information and
advice handles they need to accomplish these novel and dif-
ferent ideas that are crucial to supporting broad runtime
monitoring needs. For example, a time-domain advice plu-
gin will register itself, read some meta-information about the
advice intervals it needs to obey for the particular pointcut
expressions being used, and then it will spawn a thread to
act as an alarm, sleeping the appropriate intervals and then
waking up to execute the necessary advice method(s).

Data domain pointcut designators may also need mecha-
nisms that are entirely separate from the program. For ex-
ample, while in Java object field accesses are easily mapped
to specific bytecode instructions, for a less memory safe lan-
guage such as C++ there is no such easy reduction; in this
case a mechanism such as using page protection faults to
catch memory references, or even CPU watchpoint regis-
ters which can trap accesses to specific addresses, might be
needed to provide an efficient data domain designator.

Because we are focusing on monitoring as the domain for
our AOP framework, we are not concerned with the ad-
vice interference problem. We intend our advice methods to
be observational only and not to affect the program state.
However, since the advice is in the POPL of the system and
the user can be in control of how it gets compiled, there is
nothing immediately preventing a user from accessing and
modifying parts of their system within their advice. We view
such use as outside TEAMS’s intended scope and do not plan
on providing any particular support for it. Possible indirect
affects from e.g., timing modifications of concurrent behav-
ior, are also beyond the scope of our concerns.

3.3 Joinpoint Information Extensibility

A limitation of the advice-as-POPL approach is that one
cannot support any special extended syntax that might pro-
vide meta-level access to information about the joinpoint
that the advice was executed on. We are limited only to
providing joinpoint information through advice arguments.
Another consideration is when and how to generate joinpoint
information; if our framework always generates as much in-
formation as possible, this would be wasteful if the advice
does not actually use it.

One related work, DiSL [10], described in more detail in
Section 6, has some elegant solutions to this problem, sepa-
rating the static and dynamic information parts and creating
efficient mechanisms to produce the static information for
the advice. We imagine that a pointcut declaration can in-
clude a parameter list that names the information the advice
should be provided with. Thus it would be the responsibility
of the aspect creator to declare what information the advice
should be provided with; this is similar to how the AspectJ
args designator works.

Each fundamental pointcut designator in the aspect lan-
guage will have a set of information types that it could pro-
vide, and the pointcut expression compiler will verify that
there is at least one pointcut designator in the expression
that can generate the requested information type. For ex-
ample, a method execution designator could produce the

class and method name of the executing method, and a basic
block designator might produce, in addition to the enclosing
class and method names, a unique block ID and the source
line number on which it begins. If more than one can gener-
ate the requested type then the designator that produces the
most specific data of the type will be the one that generates
the joinpoint data. This information will then be passed as
a plain typed parameter in the advice POPL. The advice
method must be declared to accept the parameters that the
pointcut expression declares.

4. PROTOTYPE JAVA TEAMS

We have begun building a first instantiation of TEAMS in
Java. In this prototype we are currently ignoring the possi-
bility of static weaving, considering it an optimization which
we can later revisit.

The framework is embodied as a class loader agent which
initializes itself and then triggers on each Java class being
loaded. It uses the ASM bytecode manipulation library to
perform the necessary weaving operations on the classes be-
ing loaded [4]. ASM has built-in functionality for construct-
ing and accessing a control flow graph of a method, and
so detailed code-level weaving is nicely doable using ASM.
We use the Antlr parser generator to create the pointcut
expression grammar and parser.

We have created rudimentary pointcut designators for me-
thod execution, method call, field access, and basic blocks.
The runtime weaver loads the advice class which is named
the same as the aspect name used in the pointcut defini-
tion, with a prefix “Aspect”. Each advice is a static method
named as the same name of the pointcut expression name,
with a prefix indicating its weaving mode: “before” or “af-
ter”. The runtime weaver is a JVM class loader extension
that inspects each class being loaded and uses ASM to on-
the-fly transform the bytecode to include invocations to the
advice methods where necessary.

To specify an aspect and its advice in Java, we rely on
naming conventions to connect the two. An example aspect
is

aspect PrintGetters {

pointcut GetterCall(): (within(org.app) &&
(call(* get*()) && withincode(* doWork()))
)
}

which selects all calls to methods beginning with “get” that
occur inside methods named “doWork” and are in the
“org.app” package. The associated advice in plain Java is

public class AspectPrintGetters {
private static long i = O;
public static void beforeGetterCall() {
System.out.println("Getter execution #: "+i);
i++;
}
}

The aspect class is prefixed with “Aspect” and then is named
the same as the aspect. Each pointcut expression has a
name, in this case “GetterCall”, and the advice associated
with that pointcut expression is a method named with the
same name and prefixed by the execution mechanism (e.g.,
before). We have considered using Java annotations but do

not yet see an immediate benefit or reason (e.g., is there
really a benefit to unconstrained class and method names?).

Our system is a prototype in the true sense of the word,
in that we are still experimenting with various capabilities
and expect that we will need ongoing re-design to support
the full ideas outlined in Section 3. However, each of the
pointcut designators we have created are implemented in a
common manner as extensions, and we describe that process
here.

To create a new PCD in TEAMS-Java, three things need
to be done:

1. add the grammar clause(s) that will match the desig-
nator’s syntax;

2. write the code that finds and indicates the matching
execution points; and

3. write the code that provides unique data for the PCD.

Since we have not started working on the data extensibility
portion of TEAMS, we only describe the first two steps here.

Our pointcut expression grammar is an Antlr grammar.
We currently do not have an automated mechanism to ex-
tend the grammar, but adding a new designator is straight-
forward and mostly mechanistic. A production rule for a
generic designator has an OR’d set of clauses, each a pro-
duction rule for one specific PCD; a clause for the new PCD
is needed, which is generally just one nonterminal for the
specific PCD (e.g., call for our method call PCD). Then
a new production rule for the new PCD is needed. This
rule must embody the designator plus any arguments that
it might have. For the call example, in full Antlr syntax this
looks like

call returns[Designator value]:
{ $value = new Designator();
$value.setName("call"); }
'call’ ()
e=methodSignaturePattern {$value.setArgument(e);}
)))

3

Curly braces surround embedded Java actions and are the
same for all PCD rules; the syntax of the PCD is simply the
literal “call”, the literal parentheses, and the single PCD ar-
gument which is the nonterminal methodSignaturePattern,
which matches a RegEx-style pattern describing methods to
match (this is similar to AspectJ and other AOP implemen-
tations). We provide some existing nonterminals for stan-
dard AOP designator arguments, plus simple strings and
numerical arguments. If a PCD needs something different,
more Antlr clauses may need to be created for its arguments,
but we think this will be rare. The Java actions simply cre-
ate an object for TEAMS to use as it processes the expression.

Secondly, the creator of the new PCD must write code
that embodies what that PCD is: to match program exe-
cution points where instrumentation can be attached. Ul-
timately we will be exploring multiple different views of a
program execution (dimensions), but for now we focus on the
most immediate and used view, that of the code being exe-
cuted. TEAMS uses the ASM bytecode manipulation frame-
work for inserting the instrumentation into the program, and
so the new designator code must use some of the ASM mech-
anisms to discover and find the execution points that the des-
ignator matches. The code to implement a new PCD must

Table 1: Execution overhead for TEAMS.

TEAMS AspectJ

No Instru- || JPs Exec | Time | Per JP || JPs Exec | Time | Per JP
Benchmark mentation (count) (Sec) | (uSec) (count) (Sec) | (uSec)
Xalan, execution 14.89 17348 18.55 211 16114 16.91 125
Xalan, call 14.89 17.2M 18.57 0.214 21.8M 19.5 0.211
Xalan, fieldAccess 14.89 402M 24.89 | 0.025 253M 17.53 0.010
Xalan, basicblock 14.89 219M 21.65 | 0.031 n/a n/a n/a
H2, execution 38.59 110M 42.25 0.033 96.8M 47.08 0.088
H2, call 38.59 3.36M 41.44 | 0.848 3.43M 40.90 0.673
H2, fieldAccess 38.59 1.05B 46.46 | 0.0075 205M 42.51 0.019
H2, basicblock 38.59 4.3B 119.5 | 0.019 n/a n/a n/a

implement the interface PCDShadowMatcher. For now, this
interface is:

public interface PCDShadowMatcher {
public Set<JoinPointShadow> match(

MethodNode methodNode, ArgumentList args);
}

The new PCD must implement just one method, match.
This method takes as its first argument an ASM object that
represents a method in a class; thus match() is called once
for each method of each class that is loaded. The second
argument are the PCD arguments from the pointcut expres-
sion. Match() returns a set of bytecode intervals that match
the PCD, marked by the positions of the first and last in-
structions in the interval. Many PCDs, such as the call
PCD, might have just one instruction in each interval, but
some, such as a hypothetical loop body PCD, could have
a longer sequence of instructions that match. Note that a
PCD creator in TEAMS-Java must learn and use the ASM
API to implement their PCD’s functionality; TEAMS is in-
tended to hide such complexity from the TEAMS user, but
needs to expose it to the TEAMS extender.

S. EVALUATION

Table 1 shows some very preliminary execution perfor-
mance evaluations results for TEAMS. The programs used,
Xalan and H2, are taken from the DaCapo Java benchmark
suite (9.12-bach release) [3], run within the DaCapo frame-
work but using the Unix time command to get user-space
execution times. Where AspectJ has an equivalent pointcut
designator, we try to reproduce as closely as possible the
same results as in TEAMS (our system is still in prototype
stage and so may not select exactly the same joinpoints as
AspectJ). We do not show the full pointcut expressions, but
we used various within clauses to control the portions of the
programs that were instrumented.

The results show the benchmark execution time without
any instrumentation, and then the number of advice execu-
tions, total execution time, and per joinpoint execution time
for each of TEAMS and AspectJ. Advice bodies in both con-
tained only a simple increment of a counter variable, plus
a check to print out the counter on the final execution of
the advice (which we determined beforehand on a previous
fully-traced execution; this was too avoid having the body
optimized away).

Firstly, we should note that even in this prototype we are
already able to do something AspectJ could not, that is add
advice to basic blocks. While seemingly small, this moving

past existing AOP systems is exactly our motivation for the
entire TEAMS effort.

To compare TEAMS and AspectJ, the per-joinpoint times
are most useful, since they represent the cost per individ-
ual advice execution in each framework. While in a single
column the per-joinpoint times vary greatly, looking across
comparable TEAMS and AspectJ joinpoint types, both sys-
tems exhibit similar overheads. This supports our conclu-
sion that TEAMS can be an effective instrumentation frame-
work. The per-joinpoint overheads vary greatly between the
experiments mainly because the number of joinpoints exe-
cuted in each experiment also varies greatly, from a low of
a few thousand up to a few billion. Since the variations
are similar in each of TEAMS and AspectJ, we estimate that
this is due to less startup amortization in the lower joinpoint
counts and also probably less dynamic optimization within
the JVMs.

6. RELATED WORK

There is much recent activity and novel ideas for extend-
ing AOP in a variety of manners, and several approaches to
understanding the fundamental ideas in AOP that relate to
the ideas we present here. While we focus on contrasting
the ideas we plan on investigating in this project with their
work, we also recognize that this body of previous work has
many good, existing approaches to solving particular prob-
lems that we can build upon and leverage for greater success
in our project.

As noted earlier, Binder et al. [2] have discussed the need
for AOP to better support runtime monitoring, and have
a body of work in doing so. Their latest step is DiSL, a
domain-specific language for Java bytecode instrumentation,
that uses AOP ideas in its design [10]. DiSL is targeting vir-
tually the exact same problem as we are, that of providing
high level mechanisms to accomplish low-level instrumenta-
tion, and it embodies some very elegant solutions to some
of the problems, such as using Java annotations for multiple
purposes (advice, new join point designators, and others),
allowing instrumentation to be written in Java code (an-
notated static methods), and providing efficient static and
dynamic information to instrumentation (extensible instru-
mentation contexts, weave-time static information evalua-
tion, synthetic local advice variables, etc.). DiSL is code-
centric, however, whereas our hope is to move beyond code-
centric weaving to support the other dimensions of runtime
monitoring (data, sampling, and time). DiSL only supports
before/after advice execution models (including exception
throwing), whereas we will investigate further advice execu-

tion models, especially in relation to concurrency issues.

A very novel approach to creating instrumentation for a
particular dynamic analysis is that of PTQL, a program
trace query language [8]. The design of PTQL is based on
SQL, and is intended to mimic the act of writing a database
query for writing the specification of the information needed
from a program execution for a particular dynamic analy-
sis. The rich part of their work is the fact that the program
instrumentation is automatically generated to produce just
the information that the given query requires, and this in-
strumentation is richly optimized to avoid unnecessary in-
strumentation or computation. PTQL, as far as we can tell,
is also focused on code-centric instrumentation.

Dyer and Rajan [6] have investigated new AOP infrastruc-
ture ideas, explicitly working on arguing for more extensive
join point models (thus allowing more pointcut designators)
and embodying those in an intermediate language and vir-
tual machine support for weaving. Rajan has continued to
press forward with typed event (EVT) based aspect oriented
programming (including program instrumentation) [16].

So many of the successful applications of AOP are pro-
gram instrumentation and analysis that they would be too
numerous to try to list; our goal is to support more funda-
mental instrumentation capabilities for these applications to
be pushed even further. For example, the Monitor-Oriented
Programming [11] framework is an elegant system for cre-
ating formal analyses that provide runtime verification of
particular properties, but its implementation is limited by
what AspectJ supports.If we can offer MOP more extensive
access to the program behavior then it becomes more useful
and capable of verifying more properties of an executing pro-
gram. RuleR [1] is another formalism that eventually needs
underlying instrumentation support, and analysis systems
like RoadRUNNER [7], even though built on their own in-
strumentation, could instead use, and then be extended, by
taking advantage of TEAMS.

7. CONCLUSION

The TEAMS framework presented here is in its earliest
prototype form, and yet it appears to have promise for sup-
porting the directions we hope to go. Our vision is to use the
elegant, formal, notations of AOP to support a broad variety
of the instrumentation needs that occur in runtime monitor-
ing. Along with some standard AOP pointcut designators,
shown here was one sample pointcut designator that pro-
vided a more detailed code-based joinpoint than most AOP
frameworks do, the basic block PCD. We intend to not only
support further code-centric designators, but also support
designators that move away from a code-centric view and
incorporate such instrumentation needs as stochastic sam-
pling and even time-domain sampling.

In the future we hope that TEAMS will become a use-
ful tool for both researchers and practitioners who need to
implement some custom instrumentation for their own pur-
poses but do not desire to build it themselves from scratch.

8. REFERENCES

[1] H. Barringer, A. Goldberg, K. Havelund, and K. Sen.
Rule-based Runtime Verification. In Verification, Model
Checking, and Abstract Interpretation (VMCAI’04), LNCS
2937, pages 44-57, Jan. 2004.

[2] W. Binder, P. Moret, D. Ansaloni, A. Sarimbekov,

A. Yokokawa, and E. Tanter. Towards a Domain-Specific

(8]

(10]

(11]

(12]

(13]

[14]

(15]

(16]

(17]

Aspect Language for Dynamic Program Analysis: Position
Paper. In Proceedings of the sizth annual workshop on
Domain-specific aspect languages, DSAL 11, pages 9-11,
New York, NY, USA, 2011. ACM.

Blackburn et al. The DaCapo Benchmarks: Java
Benchmarking Development and Analysis. In OOPSLA
’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems,
Languages, and Applications, pages 169-190, New York,
NY, USA, Oct. 2006. ACM Press.

E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A Code
Manipulation Tool to Implement Adaptable Systems. In
Adaptable and Extensible Component Systems, Nov. 2002.
B. Buck and J. K. Hollingsworth. An API for Runtime
Code Patching. Int. J. High Perform. Comput. Appl.,
14(4):317-329, 2000.

R. Dyer and H. Rajan. Nu: A Dynamic Aspect-Oriented
Intermediate Language Model and Virtual Machine for
Flexible Runtime Adaptation. In AOSD ’08: Proceedings of
the Tth international conference on Aspect-oriented
software development, pages 191-202, 2008.

C. Flanagan and S. N. Freund. The RoadRunner Dynamic
Analysis Framework for Concurrent Programs. In Proc. 9th
ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, PASTE ’10,
pages 1-8, New York, NY, USA, 2010. ACM.

S. F. Goldsmith, R. O’Callahan, and A. Aiken. Relational
Queries over Program Traces. In Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
OOPSLA ’05, pages 385—402, New York, NY, USA, 2005.
ACM.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design
and implementation, PLDI ’05, pages 190-200, New York,
NY, USA, 2005. ACM.

L. Marek, Y. Zheng, D. Ansaloni, W. Binder, Z. Qi, and
P. Tuma. DiSL: An Extensible Language for Efficient and
Comprehensive Dynamic Program Analysis. In Proceedings
of the seventh workshop on Domain-Specific Aspect
Languages, DSAL 12, pages 2728, New York, NY, USA,
2012. ACM.

P. O. Meredith, D. Jin, F. Chen, and G. Rosu. Efficient
Monitoring of Parametric Context-Free Patterns.
Automated Software Engg., 17(2):149-180, June 2010.

A. Nusayr and J. Cook. AOP for the Domain of Runtime
Monitoring: Breaking Out of the Code-Based Model. In
Proc. 2009 AOSD Workshop on Domain-Specific Aspect
Languages, page 4pp, 2009.

A. Nusayr and J. Cook. Extending AOP to Support Broad
Runtime Monitoring Needs. In Proc. 2009 Int’l Conf. on
Software Engineering and Knowledge Engineering (SEKE),
2009. to appear.

A. Nusayr and J. Cook. Using AOP for Detailed Runtime
Monitoring Instrumentation. In Proc. 2009 ISSTA
Workshop on Dynamic Analysis (WODA), page Tpp, 2009.
N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot:
An Extensible Compiler Framework for Java. In Proc. 12th
International Conference on Compiler Construction
(LNCS 2622), pages 138-152, Apr. 2003.

H. Rajan, G. T. Leavens, R. Dyer, and M. Bagherzadeh.
Modularizing Crosscutting Concerns with Ptolemy. In
Proceedings of the tenth international conference on
Aspect-oriented software development companion, AOSD
’11, pages 61-62, New York, NY, USA, 2011. ACM.

H. Rajan and K. Sullivan. Aspect Language Features for
Concern Coverage Profiling. In AOSD ’05: Proc. 4th
international conference on Aspect-oriented software
development, pages 181-191, 2005.

