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Abstract
Chimera1 uses a new hybrid program analysis to provide determin-
istic replay for commodity multiprocessor systems. Chimera lever-
ages the insight that it is easy to provide deterministic multipro-
cessor replay for data-race-free programs (one can just record non-
deterministic inputs and the order of synchronization operations),
so if we can somehow transform an arbitrary program to be data-
race-free, then we can provide deterministic replay cheaply for that
program. To perform this transformation, Chimera uses a sound
static data-race detector to find all potential data-races. It then in-
struments pairs of potentially racing instructions with a weak-lock,
which provides sufficient guarantees to allow deterministic replay
but does not guarantee mutual exclusion.

Unsurprisingly, a large fraction of data-races found by the static
tool are false data-races, and instrumenting them each of them with
a weak-lock results in prohibitively high overhead. Chimera dras-
tically reduces this cost from 53x to 1.39x by increasing the gran-
ularity of weak-locks without significantly compromising on par-
allelism. This is achieved by employing a combination of profiling
and symbolic analysis techniques that target the sources of impreci-
sion in the static data-race detector. We find that performance over-
head for deterministic recording is 2.4% on average for Apache and
desktop applications and about 86% for scientific applications.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; D.4.5 [Operating Systems]: Relia-
bility

General Terms Design, Performance, Reliability

Keywords Determinism, Replay, Data-race detection, Static anal-
ysis, Profiling, Symbolic range analysis

1. Introduction
A shared-memory multithreaded program is not guaranteed to pro-
duce the same output across different executions even if the input
is guaranteed to be the same. Lack of determinism significantly
impairs a programmer’s ability to reason about an execution and
understand the root causes of program failure. This problem can

1 Chimera is a mythological hybrid animal composed of parts of a lion, a
goat and a snake.
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be addressed by constructing multiprocessor systems that guaran-
tee that every execution for a given input produces the same out-
put [14]. Another approach is to record the non-deterministic thread
interleavings and enable a programmer to deterministically replay
and understand an execution [28]. In this paper, we focus on solv-
ing the latter replay problem for multithreaded programs, but the
principles discussed here could be applied to build a deterministic
multiprocessor system as well.

The ability to faithfully reproduce an execution has proven
useful in many areas, including debugging [27, 47], fault toler-
ance [11], computer forensics [16], dynamic analysis [13, 36], and
workload capture [34]. However, past solutions to deterministic re-
play for shared-memory multiprocessor systems have been unsat-
isfactory either due to performance costs [17, 29, 49], reliance on
custom hardware [24, 32, 33, 54], or lack of sufficiently strong de-
terminism guarantees [2, 38, 51, 56].

Uniprocessor replay is relatively easy. During a recording
phase, non-deterministic events (e.g., interrupts and data read from
input devices) are logged. If the program is multithreaded, then
thread schedules (e.g., the instructions at which each thread is pre-
empted) must also be logged and replayed [43]. Previous studies
have shown that logging these non-deterministic events adds little
overhead [55].

Efficient multiprocessor replay, however, remains an open prob-
lem. The fundamental challenge comes from recording the non-
deterministic interleaving among threads, a property that is neces-
sary to deterministically replay programs that contain data-races.
Recording and replaying the frequent interactions among thread
accesses to shared data can slow execution by an order of magni-
tude or more. However, if one could somehow statically guarantee
that a program is data-race-free, then it is not necessary to record
thread interactions — past research has shown that recording and
replaying the happens-before order of synchronization operations is
sufficient to ensure deterministic replay [40]. In most applications,
synchronization operations are relatively infrequent compared to
memory accesses, and therefore logging them is relatively cheap.
Many uses of deterministic replay, including program debugging,
reproducing errors encountered in the field in a test environment,
replication for fault tolerance, and forensics following a computer
intrusion, are especially useful for programs with bugs, so working
only for bug-free programs (i.e., programs without data-races) is
not a viable option.

Unfortunately, statically proving the absence of data-races in a
program without rejecting data-race-free programs is hard. If there
is a chance that a program contains a data-race, then one must
record the order of potentially racing operations in order to guar-
antee that the recorded program can be replayed deterministically.
One could discover such operations with a dynamic data-race de-
tector. However, despite significant advances, dynamic data-race
detection in software slows program execution by nearly 8x [20]
for state-of-the-art detectors. Thus, logging the order of potentially



racing instructions is no less of a problem than detecting a data
race.

In this paper we discuss Chimera, a deterministic replay system
that employs a new hybrid program analysis to handle programs
with data races. Chimera combines static data race analysis with
off-line profiling and targeted, dynamic checks to provide deter-
ministic replay efficiently.

Chimera instruments a program to log all non-deterministic in-
puts (e.g., system call results), the thread schedule on each proces-
sor core, and the happens-before relationships due to synchroniza-
tion operations. This information is sufficient to guarantee that the
program can later be replayed deterministically, provided the pro-
gram contains no data-races.

To provide replay for racy programs, Chimera uses a sound but
imprecise static data-race detector (RELAY [50]) to find potential
data-races. Every memory instruction that potentially races with
another instruction is placed inside a code region protected by a
weak-lock. Chimera records all happens-before relationships due
to weak-locks in addition to the relationships due to the original
program synchronization. Thus, Chimera guarantees deterministic
replay for all programs.

We use weak-locks instead of traditional locks in order to be
conservative and avoid introducing artificial deadlocks. A weak-
lock is essentially a time-out lock, where mutual exclusion is com-
promised if the weak-lock is not acquired in reasonable amount of
time. In the rare case when a weak-lock times out, Chimera deter-
ministically preempts the thread that currently holds the weak-lock
and forces it to yield the weak-lock to the thread that timed out on
the weak-lock; the original holder of the weak-lock must reacquire
the weak-lock before resuming its execution. This approach splits
the code region protected by the weak-lock into two regions across
the preemption. Because this timeout mechanism enables Chimera
to preserve the invariant that only one thread holds a given weak-
lock at any given time, Chimera can support deterministic replay by
reproducing the order of weak-locks at the same preemption point.

Unsurprisingly, we find that a sound data-race detector reports
a large number of false data-races, and thus adding a weak-lock
for every reported data-race results in prohibitively high overhead.
Chimera employs two critical optimizations to drastically reduce
this cost.

Both optimizations attempt to increase the granularity of a
weak-lock, in terms of the size of the locked code region and
the amount of data the lock protects. Coarser weak-locks reduce
the cost of instrumentation but may serialize threads unnecessarily
and compromise parallelism. Chimera’s optimizations navigate this
performance trade-off by targeting the main sources of imprecision
in a static data-race detector [50].

The first optimization is based on the observation that a large
fraction of false data-race reports are due to the inability of the
static data-race detector to account for the happens-before relations
due to synchronization operations other than locks. One example
of this is that a number of data-races are reported between initial-
ization code and the rest of the program because the static tool
does not account for the happens-before relation due to fork-join
synchronization. To address this problem, we profile the program
offline over a variety of inputs. If the code regions containing po-
tentially racing instructions are non-concurrent in all profile runs,
Chimera increases the granularity of the weak-lock to protect the
entire code region instead of just one instruction. Chimera cur-
rently treats functions as code regions. This optimization reduces
the number of times weak-locks are acquired and released during a
function’s execution.

The second optimization pertains to the remaining set of false
racy pairs that are part of function pairs that ran concurrently in
at least one profile run. This optimization targets the inaccuracy

caused by the conservative points-to analysis [3, 45] on which RE-
LAY is based. Due to this analysis, RELAY overestimates the set
of shared objects that could be accessed by a memory instruction
and also underestimates the set of locks that could be acquired. We
observe that while the numeric values for the address bounds of
an object accessed by a memory instruction are generally hard to
determine precisely during static analysis, one can often estimate
reasonable bounds in the form of a symbolic expression [42].

Therefore, in our implementation, we compute symbolic ad-
dress bounds of objects that can be accessed by a racing instruction
within a loop. Using this information, we increase the granularity
of the weak-lock to the entire loop containing the race, such that it
protects the loop for the data variables specified by the loop’s sym-
bolic address bounds. This avoids the cost of instrumentation for
every iteration of the loop.

Our evaluation shows that Chimera is more efficient than the
state-of-the-art software solutions that guarantee multiprocessor
replay [49]. We show that recording a set of server (e.g., Apache)
and desktop (e.g., pbzip, aget) applications incurs only about 2.4%
performance overhead, and recording a set of memory-intensive
scientific applications (SPLASH [53] incurs about 86%. Replay
overhead is also similar to that of recording. We find that our
two optimizations play a significant role in bringing the average
overhead from 53x (when all races are naively instrumented) to
1.39x.

Programs transformed by Chimera are data-race-free under the
new set of synchronization operations. Though our immediate
motive for this transformation is to provide deterministic record
and replay, we envision that future work may be able to leverage
the data-race-freedom provided by Chimera to provide stronger
guarantees such as sequential consistency and deterministic execu-
tion [37], since these properties are much easier to guarantee in the
absence of data-races.

The primary contributions of this paper are as follows:

• We discuss Chimera, a new deterministic replay system for
commodity multiprocessors based on a static data-race detector.
• We discuss two optimizations that employ profiling and sym-

bolic bounds analysis to drastically reduce the overhead of a
naive method that instruments all false data-races.
• Our experimental study shows that the performance overhead

is about 40% on average, which is less than the state-of-the-art
software solutions for multiprocessor replay.

2. Design Overview
This section provides a design overview of the Chimera multipro-
cessor replay system.

2.1 Background
A program is said to be data-race-free if none of its executions
exhibit a data-race. Two memory instructions are said to be racy
if at least one of them is a write, and there is at least one execution
where the two are executed in different threads and not ordered by
any happens-before relation due to synchronization operations. For
clarity, we define a few terms that we use in this paper. A race-
pair is a pair of static memory instructions that are racy. The two
functions (or loops) that contains the race-pair are referred to as a
racy-function-pair (or a racy-loop-pair).

Chimera records non-deterministic input (e.g., interrupts and
file reads) and happens-before relations due to synchronization ac-
cesses in a program. This is sufficient to later provide deterministic
replay for data-race-free programs because all memory instructions
are ordered by some happens-before relation [40]. However, it is
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Figure 1. Chimera Overview

insufficient to later provide deterministic replay for programs that
contain data-races.

2.2 Design Overview
Figure 1 presents an overview of how Chimera transforms a po-
tentially racy program to a data-race-free program by adding ad-
ditional synchronization and runtime constraints. Chimera’s trans-
formation does not attempt to correct a given program, it simply
makes it easier to deterministically record and replay the program’s
execution.

Chimera analyzes a given program using the RELAY [50] static
data-race detector. RELAY is sound, except for two corner cases
(assembly instructions and pointer arithmetic). However, the un-
soundness is modularized and can be addressed using additional
analysis [5, 52] (Section 3.2).

In the simplest implementation of Chimera, each race-pair is
placed inside a code section protected by an unique weak-lock w.
Recording and replaying the happens-before relation due to weak-
locks enables Chimera to record and replay the order of all racy
accesses and thus guarantee deterministic replay for all programs.

A sound static data-race detector is imprecise as it has to make
very conservative assumptions. This results in a huge number of
false data-races, and naively recording all those races results in
high overhead. The insight of this paper is that by employing a
combination of profiling, symbolic address bounds analysis and
dynamic checks, the overhead is significantly reduced to the point
where deterministic record and replay is viable even for production
systems.

We discuss two specific optimizations. The first optimization is
based on our observation that for many false race-pairs, the code
regions containing them are almost never executed concurrently.
One main cause for this imprecision is the static data-race de-
tector’s inability to account for non-mutex synchronization oper-
ations. Chimera learns which code regions are almost always non-
concurrent by profiling executions with a set of representative in-
puts. It uses profile information to increase the granularity of weak-
locks, both in terms of size of the code region and the amount of
shared objects they protect, which reduces the number of weak-
lock operations at runtime. Chimera’s profiler treats every function
as a code region, though other granularities could be considered. As
shown in Figure 1, racy-pairs in non-concurrent functions are han-
dled using weak-locks instrumented at the granularity of a function
(referred to as function-locks).

Not all false data-races are part of non-concurrent code regions.
Two code regions can overlap in time, but still may not exhibit a
data race if they access different sets of shared objects. However,
a static data-race detector may not always be able to prove that
the set of shared objects accessed in concurrently executed code
regions are disjoint due to imprecise pointer analysis. While it is
hard to accurately compute the numeric values for address bounds
statically for a code region, it is often possible to derive a symbolic

expression for the upper and lower bounds of an object that will be
accessed within a code region [42].

For data-races that are not found to be part of non-concurrent
functions, Chimera checks if they are part of a loop. If a data-race is
not part of any loop, then Chimera simply instruments a weak-lock
at the granularity of a basic block (referred to as a basic block lock).
In case the basic block has a function call, Chimera instruments
a weak-lock at the granularity of an instruction (referred to as an
instruction lock).

If a data-race is part of a loop, Chimera derives a symbolic ad-
dress bound for the range of addresses that a racy instruction can
access within the loop. A race-pair is then guarded by instrument-
ing a loop-lock. The loop-lock is also a weak-lock, but it protects a
range of addresses, which are computed at runtime using the sym-
bolic expression derived statically. If the symbolic bounds expres-
sion is too imprecise (e.g., one of the bounds is infinity), and if the
loop body is reasonably large in size, then Chimera instruments at
the granularity of a basic block. In this manner, Chimera avoids the
risk of over-serializing the execution of loops.

2.3 Weak-Lock Design
Chimera ensures that the instrumented weak-locks do not introduce
a deadlock. Chimera orders the set of weak-locks constructed for
each granularity of a code region (basic block, loop, and function)
and ensures that they are always acquired in the same order. When a
program has nested code regions (e.g., a function calling a function,
a loop calling a function, etc.), an outer region releases all its weak-
locks before starting the inner region, and acquires the weak-locks
back after exiting the inner region. The order in which weak-locks
of different granularities are acquired is also consistent. Function-
locks are always acquired before loop and basic-block locks. Loop-
locks are always acquired before basic-block locks. Hence, there
cannot be a deadlock between weak-locks.

Chimera avoids deadlocks that may happen when a weak-lock
protected code region contains a programmer specified synchro-
nization wait. The “weak” part of the weak-lock is meant for han-
dling such deadlocks. If a weak-lock is stalled for more than a
threshold period of time, the stalled weak-lock invokes a special
system call to handle the potential deadlock. The system call han-
dler identifies the thread that currently owns the stalled weak-lock
by examining the log files used to record the order of weak-lock
acquires and releases. The kernel preempts the current owner, and
forces it to release and reacquire the weak-lock that timed-out. This
allows the stalled thread to acquire the weak-lock and proceed with
its execution.

Though the above mechanism may compromise the atomicity
of a weak-lock protected code region, we always preserve the in-
variant that only one thread holds a given weak-lock at any given
time. Thus, recording and replaying the exact order of forced weak-
lock release and reacquire operations with respect to instrumented
weak-lock operations is sufficient to guarantee deterministic replay.



This requires that Chimera record and replay the exact instance
when a thread is preempted and forced to release its weak-locks.
For this purpose, we plan to use a mechanism from the Double-
Play replay system [49] in which the kernel records the instruction
pointer and the branch count (measured via hardware performance
counters) at the point of preemption. We have not yet ported this
implementation to the Chimera infrastructure as none of our bench-
marks have exhibited a weak-lock timeout.

2.4 Discussion
Any data-race that exists in the original program can manifest in
the transformed program. However, Chimera now records the order
between the racing instructions. Increasing the granularity of weak-
lock (e.g., to a basic-block) would make it less likely for instruc-
tions from two racy basic-blocks to interleave. If there is only one
race between two racy basic-blocks, then all thread interleavings in
the original program can manifest at approximately the same prob-
ability in the transformed program. However, if there is more than
one race between two basic blocks, then Chimera’s weak-locks will
try to serialize them. While preventing fine-grained interleaving of
smaller code regions may be beneficial for masking certain atom-
icity violations in production systems [31], a programmer trying to
record and debug a test run might consider this to be a limitation of
Chimera’s optimizations.

3. Static Data-Race Detection
Chimera uses the RELAY [50] static data-race detector to iden-
tify potential data-races. In this section, we briefly summarize the
RELAY detection algorithm, and then we discuss soundness and
completeness of RELAY.

3.1 RELAY
RELAY is a lockset-based static race detection tool that scales to
millions lines of code. A lockset for a program point is the set of
locks held at that point. A lockset-based analysis assumes that for
every shared object there is at least one common lock that is held
whenever that object is accessed. The tool reports a race if a pair of
memory accesses in different threads could access the same shared
object, the intersection of their locksets is empty, and at least one
of the accesses is a write.

We briefly summarize RELAY’s analysis, but details can be
found in the original paper [50]. RELAY starts by analyzing every
leaf function in the static call graph ignoring the calling context. For
each leaf function, it computes a summary. A function’s summary
soundly approximates the effect of the function on the set of locks
held before the function execution. Also, it includes a summary of
the set of shared objects accessed in the function and the lockset
held during each of its accesses. For example, a summary of a
function bar(void *b) may say that a write to the field b->bob
can happen while holding a lock b->lock, and that the function
releases the lock b->lock before returning. RELAY composes
function summaries in a bottom-up manner over the call graph by
plugging in the summaries of the callee functions to compute the
summaries of the callers.

Thus, RELAY performs a bottom-up calling-context-sensitive
analysis on the call graph to compute the access summaries for all
functions that are thread entry points. This is done using a combi-
nation of flow-insensitive points-to [3, 45] and symbolic analysis.

3.2 Soundness
Chimera only instruments data-races found by the static data-race
detector. Therefore, its deterministic replay guarantees are based on
the soundness of the static data-race detector it uses.

RELAY has three potential sources of unsoundness, but they
are modularized and each one can be addressed separately using

known techniques. First, RELAY ignores memory operations that
occur inside blocks of assembly code when calculating lockset
summaries. However, this issue could be addressed with additional
engineering that integrates memory access analysis for assembly
instructions [5] with RELAY, or via manual annotations.

Second, the points-to analysis [3, 45] used by RELAY does
not handle pointer arithmetic. RELAY’s pointer analysis assumes
that after any arithmetic operation on a pointer, the pointer still
points to the same object. When this assumption does not hold
true, the pointer analysis is not guaranteed to be sound. As a
result, we can guarantee replay for an execution only until the
first buffer overflow. However, this does not fundamentally affect
Chimera’s analysis. Enhancing pointer analysis to handle pointer
arithmetic [52], or ensuring language safety would address this
problem.

Finally, RELAY post-processes data-race warnings using un-
sound filters, but we do not use them.

3.3 False Positives
To provide soundness, RELAY makes conservative assumptions,
resulting in its reporting a high number of false data-races. In-
strumenting weak-locks for every false data-race results in pro-
hibitively high overhead.

There are two main sources of false positives. First, RELAY
accounts for lock synchronizations, but ignores happens-before
relationships due to non-mutex synchronization operations such as
fork/join, barriers, and conditional variables. As a result, RELAY
may report a data-race between memory operations that can never
execute concurrently. The second main source of false positives is
due to the conservative pointer analysis it uses [3, 45]. Conservative
pointer analysis would cause RELAY to underestimate the lockset
held by a code region and overestimate the variables that could be
accessed by a memory instruction.

Our experimental results in Section 7 show that RELAY re-
ported data-race warnings on about 14% of memory operations in a
dynamic execution. Instrumenting them with weak-locks to record
the order of those potential data-races incurs an approximately 53x
slowdown. We next discuss two important optimizations based on
profiling (Section 4) and symbolic bounds analysis (Section 5) that
significantly reduce this cost.

4. Profiling Non-Concurrent Functions
A static data-race detector may report races between code regions
that are never executed concurrently. One reason for this is the inad-
equacy of the static analysis in accounting for non-mutex synchro-
nization operations. To address this issue, Chimera uses a profile-
guided analysis to determine code regions that are likely to never
execute concurrently and use that information to increase the gran-
ularity of weak-locks without compromising an application’s par-
allelism.

4.1 Overview
One important limitation of lockset based static data-race detec-
tors, including RELAY, is that they account only for locks, but ig-
nore happens-before relations due to non-mutex synchronization
operations. Many false data-races may be reported due to this lim-
itation. Figure 2(a) illustrates a false data-race reported for water.
The data-race is false because the two supposedly racy functions
are never executed concurrently due to a barrier synchronization.
We also find that a number of false data-races are reported between
initialization code and the rest of the code regions, as RELAY does
not account for fork-join synchronization. Another source of false
data-races, unrelated to non-mutex synchronizations, is the lack of
static knowledge of control dependencies. For example, we found
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Figure 2. (a) A false data-race reported for water application from the SPLASH benchmark [53]. Functions bndry() and interf() are
never executed concurrently due to the barrier synchronization, which is not accounted for in RELAY. (b) The granularity of weak-locks is
increased to function level in the two potentially racy functions because Chimera’s profiler finds them to be non-concurrent.

instances where a set of code regions are executed in only one
thread, but RELAY reported false races among them. In all these
cases, the two code regions containing the race-pair reported by
RELAY are never executed concurrently.

We observe that such cases can be determined by profiling with
a set of representative inputs. If a pair of potentially racy code
regions are never executed concurrently in any of the profile runs,
then there is sufficient confidence that they are likely to be non-
concurrent in another execution. Profiling cannot guarantee that
they will be non-concurrent in all executions. Nevertheless, we can
take advantage of profiled information to increase the granularity of
weak-locks to larger code regions and reduce the dynamic number
of weak-lock operations.

If a pair of code regions containing a potential race-pair is
likely to be non-concurrent, then Chimera increases the granularity
of the weak-lock to protect the entire code region instead of just
the basic blocks containing the race-pair. Figure 2(b) shows how
this optimization affects the weak-lock instrumented to handle the
false data-race that we discussed for water (Figure 2(a)). In this
study, we consider functions as code regions while performing non-
concurrent region profiling, but our method could be applied for
other region granularities as well. We refer to a weak-lock that
protects a function as a function-lock.

By increasing the granularity of the weak-lock to the function-
level, Chimera reduces the dynamic number of operations on that
lock. Increasing the granularity in terms of the code region size for
a weak-lock also creates the opportunity to use a single weak-lock
to guard multiple potential data-races. The next section discusses
an optimization that exploits this opportunity.

4.2 Clique analysis
We propose a clique analysis to determine which racy function-
pairs can share the same function-lock. Sharing a function-lock
reduces the cost of instrumentation.

Figure 3(a) shows a graph with a node for every function that
contains at least one potential data-race. A dotted edge connects a
pair of functions that could potentially race. A solid edge connects
a pair of functions that are found to be non-concurrent in all of
the profile runs. For example, alice is potentially racy and non-
concurrent with bob and carol. Functions bob and carol are
non-concurrent, but are proven to be race-free with each other.
Functions bob and dave are racy and have also been found to be
concurrent in some profile run.

One simple algorithm would be to assign a unique weak-lock
for every racy-function-pair. If the race-function pair is also non-
concurrent, then we can use a function-level lock as shown in
Figure 3(a). Note that bob and dave could run concurrently, and
so we do not use function-level weak-locks to guard potential races
between them, as that could serialize those the two concurrent
functions and compromise on parallelism. Instead, a weak-lock is
instrumented at the basic-block granularity.

The above algorithm requires that alice acquires and releases
two function-level weak-locks (f1 and f2) every time it is ex-
ecuted. However, alice, bob, and carol are potentially non-
concurrent with each other. Therefore, the two potential races could
be guarded using a single function-lock f0 as shown in Figure 3(b).
This optimization would reduce the number of weak-lock opera-
tions.

To identify a group of functions which are mutually non-
concurrent, we construct maximal cliques using a greedy algo-
rithm in a graph of potentially non-concurrent functions (deter-
mined through profiling). A clique of an undirected graph is a
subset of nodes where every node is connected to every other node.
A maximal clique is a clique that cannot be extended by including
one more adjacent node. Figure 3(c) shows a graph of potentially
non-concurrent functions with two cliques, {alice,bob,carol}
and {carol,dave}.

Once cliques are identified in a graph of non-concurrent func-
tions, Chimera assigns function-locks as follows. For each race-
pair, it checks if its racy functions are non-concurrent. If they
are, then it finds the clique that the racy-function-pair is part of
in the graph of non-concurrent functions. Chimera assigns the
function-lock corresponding to that clique to both racy functions.
For example in Figure 3(b), racy-function pairs {alice,carol}
and {alice,bob} are both assigned a single function-lock f0. No-
tice that this weak-lock assignment is efficient for alice as it now
has to acquire only one weak-lock as opposed to two. However,
bob and carol are unnecessarily serialized (as they do not race
with each other), which is still acceptable as they are also found to
be non-concurrent during profiling.

It is possible that a racy-function-pair is part of two cliques. In
that case, we use a greedy algorithm that chooses the weak-lock
corresponding to the clique that contains the most number of racy-
function-pairs.

5. Symbolic Bounds Analysis for Loops
Chimera’s second optimization targets race-pairs that remain af-
ter applying the profile-based analysis described in the previous
section. This optimization is based on symbolic address bounds
analysis. It addresses the imprecision of the conservative but sound
pointer analysis used in a static data-race detector.

5.1 Overview
Static data-race detectors [26, 50] use pointer analysis to determine
the set of objects a memory instruction can access and also to de-
termine the lockset at a program point. RELAY uses a combination
of Steensgaard [45] and Andersen [3] flow-insensitive and context-
insensitive pointer analysis, which are used in many static tools
because they scale well to large programs. However, because these
analyses are very conservative, RELAY overestimates the range of
addresses that a memory instruction can access and underestimates
the set of locks held at a program point, both of which cause it to
report a number of false data races.
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Figure 3. (a) One weak-lock is instrumented for each race-pair. If a racy function-pair is non-concurrent, a function-level weak-lock (f1,
f2) is used. Otherwise, a basic-block level weak-lock is used (b0). (b) Two potential data-races in a clique in a graph of non-concurrent
function share one function-lock (f0). (c) Cliques in a graph representing non-concurrent functions.
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Figure 4. Instrumenting weak-locks for a loop in the function
slave sort in radix using symbolic bounds.

For example, we find a number of false data-races between
two functions executed concurrently in different threads. This often
happens when a programmer partitions work between threads, but
the static analysis is unable to determine that the function will ac-
cess different parts of a data structure. Figure 4 shows an example.
RELAY reports a false data-race on the rank array in line 4 and 11,
and also on key from array in line 10. However, radix divides a
large array into multiple portions and assigns different portions to
concurrent threads to process them in parallel. Therefore, the base
address of rank and key from are different for each worker thread,
and hence the threads do not access the same entry in those arrays
concurrently.

It is hard to statically determine the absolute values of address
bounds of an object accessed by memory operations in a code re-
gion. However, it has been shown that the lower and upper bounds
in the form of a symbolic expression can often be derived stati-
cally [41, 42] with much better accuracy. Chimera uses this in-
formation to increase the granularity of weak-locks that it must
instrument for race-pairs in concurrent code regions. The weak-
lock is constructed in such a way that it protects a code region
for a range of addresses specified by a symbolic expression. Thus,
two potentially racy code regions can execute concurrently (pro-
vided our symbolic bounds are accurate enough). At the same time,
Chimera can protect the regions with weak-locks instrumented at
larger granularities to reduce the number of operations.

Figure 4 shows an example. RELAY reports that line 4 could
race with itself. Instrumenting a weak-lock inside the loop would
be very expensive. Instead, Chimera instruments a weak-lock that
provides mutual exclusion for the entire loop (lines 3-5) only for
the address range from &rank[0] to &rank[radix-1]. This range
is computed by a sound static symbolic address bounds analysis,
which we discuss in the next section.

5.2 Symbolic Bounds Analysis
We implemented our symbolic bounds analysis based on the algo-
rithm proposed by Rugina and Rinard [41, 42]. The goal of this
analysis is to determine the symbolic expressions that specify the
upper and lower bounds for a pointer or array index variable at a
program point that is found to be potentially racy by the static data
race detector. For the example in Figure 4, the analysis determines
that the symbolic lower bound of j of the first inner loop (line 4-7)
is 0 and the upper bound is the initial value of radix radix0 − 1. It
also finds that line 4 can access a memory region from &rank[0]
to &rank[radix-1]. Details about the algorithm are discussed by
Rugina and Rinard [42].

The effectiveness of our optimization depends on the accuracy
of the lower and upper bounds. The analysis we use is sound, but
imprecise. If the bounds are too conservative, we may serialize
concurrent code regions unnecessarily. There are two main sources
of imprecision. The first case is when the address of the racy object
is based on the value of a variable that cannot be determined outside
the code region. For example, precise symbolic bounds for the
rank array accesses in the second inner loop (line 9-12) cannot
be determined. The value of the index variable my key cannot be
computed outside the loop as it depends on the value read from
another array key from inside the loop (line 11). However, we
can derive the symbolic bounds for the array key from accurately.
The second source of inaccuracy is when the racy object’s bounds
depends on an arithmetic operation (e.g., the modulo operation or
logical AND/OR) not supported in the analysis.

5.3 Choosing the Granularity for Code Region
Rugina and Rinard’s analysis [41, 42] describes a generic algorithm
for larger code regions including inter-procedural analysis, but, as a
first step, we applied their technique only for loops with no function
calls in the loop body. As a result, our current implementation may
not exploit all opportunities for optimization.

If the symbolic bounds are too imprecise, care must be taken to
ensure that we do not over-serialize loops. If the derived symbolic
expression for an address range is from negative infinity to positive
infinity, we consider it to be too imprecise to be useful. Otherwise,
we consider it to be precise enough. In that case, we balance the
number of weak-lock operations with the loop serialization cost.

If the symbolic bounds of a racy loop is precise enough, we
assign a weak-lock at the loop granularity (the first inner loop in
Figure 4). If the bounds are too imprecise, we estimate via profiling
the average number of instructions executed by a loop iteration.
If the estimate is less than a loop-body-threshold, we still
instrument at the loop granularity because the cost of operations on
the weak-lock does not warrant exposing parallelism in the loop.
Otherwise, we instrument a basic-block lock inside the loop body.



If a loop is nested, we select the outermost loop with precise enough
bounds.

6. Implementation
This section presents the implementation details of the Chimera
record and replay system.

6.1 Analysis, Instrumentation, and Runtime System
Our analysis and instrumentation framework is implemented in
OCaml, using CIL [35] as a front end. To profile concurrent func-
tion pairs (Section 4), we instrumented the entry and exit of each
function using CIL’s source-to-source translation. To statically de-
rive symbolic bounds of racy loops (Section 5), we also performed
data flow analysis on a racy loop and produced linear programming
constraints using CIL. Then, we used lpsolve [1], a mixed inte-
ger linear programming solver, to find a solution for static bounds
that a racy loop may access. Finally, based on the results of the
above static analysis, we used CIL to instrument weak-locks at the
function, loop, basic block, or instruction granularity.

We modified the Linux kernel to record and replay non-
deterministic input from system calls and signals. We also mod-
ified GNU pthread library version 2.5.1 to log the happens-before
order of the original synchronization operations and the weak-locks
added by Chimera.

6.2 Static Analysis and Source code
We used RELAY [50] to perform pointer analysis and to collect a
set of potential data-races. We applied Andersen’s inclusion-based
pointer analysis [3] to resolve function pointers, and Steensgaard’s
unification-based approach [45] to perform alias analysis between
lvalues. While performing pointer analysis, RELAY first translates
function local arrays and address-taken variables to heap variables
(making them global) in order to derive pointer constraints in a
unified manner. RELAY performs static analysis on this modified
source code. This can lead to unnecessary false data-races on lo-
cal variables. To resolve this, we filtered out race warnings on a
’heapified’ local variable that did not escape its function.

To perform sound static analysis, we made sure that all library
source code (except for apache and pbzip2) are included in our
static analysis. For the standard C library, we used uClibc [48]
which is smaller and easier to analyze than the GNU glibc library,
as it is developed for embedded Linux systems. The uClibc library
involves all the necessary functions such as libc and libm.

For apache, we did not include libraries such as gdbm, sqlite3,
etc., because they do not contain code that gets executed for the in-
put we use in our study. It is possible that the source code of a third
party library may not be available for static analysis. When any part
of the source code of a library used by a program is not analyzed,
the soundness of static analysis may be compromised. One solution
is to ask library builders to provide annotation (lockset summaries)
for their library functions so that it can be fed into RELAY to
perform a sound data-race analysis. Developing such annotations
would be an one-time cost for library builders, and it would not
place any burden on software developers that use those libraries.
Another possible solution is to assume that a library function will
only access the set of objects pointed to by the parameters passed
as function arguments without acquring any new locks. However,
this approach is not guaranteed to be sound, because a library could
retain pointers passed to previous calls to the same library. Also,
instructions in a library’s function can have a data-race on some
shared-variable that is internal to the library. We employed the lat-
ter approach for pbzip2 (we excluded the libbz2 library used by
pbzip2)

We also converted the C++ pbzip2 program into ANSI-C code
by replacing the vector STL container with a linked-list-based C

library, because our instrumentation framework, CIL [35], can only
handle C programs, but not C++ constructs.

7. Results
This section evaluates Chimera’s recording and replaying overhead
and demonstrates the effectiveness of the profiling and symbolic
bounds optimizations.

7.1 Methodology
We evaluated our system using three sets of benchmarks which are
listed in Table 1. The first set consists of three desktop applica-
tions: aget, pfscan, and pbzip2. The second set has two web
sever programs: knot and apache, which are evaluated using the
ApacheBench (ab) client. The final set contains four scientific pro-
grams from SPLASH-2 [53]: ocean, water, fft, and radix. To
collect a set of concurrent function pairs for clique analysis (Sec-
tion 4.2), we profiled each program 20 times with various inputs.
The inputs used for profiling are significantly different from the
input used for our performance evaluation.

Chimera is scalable to large programs. It is built on RE-
LAY [50], which has been shown to scale to very large programs
(e.g., Linux with 4.5 million lines of code). Chimera also uses
static analysis to derive symbolic bounds, but it is a scalable intra-
procedural analysis. Our benchmark set includes some fairly large
programs. Table 1 provides the number of lines (LOC) of our
benchmarks in their CIL representation. It does not account for
the size of library code: libc(41.7K) and libm(3.6K).

Presence of assembly code and buffer overflow may compro-
mise the soundness of static data-race analysis (Section 3.2). How-
ever, the programs we evaluated do not contain assembly code,
except for a few library functions. Also, we are not aware of any
buffer overflow bugs in our benchmarks. Also, we did not observe
any weak-lock timeouts (Section 2.3) in any of our experiments.

We ran our experiments on a 2.66 GHz 8-core Xeon processor
with 4 GB of RAM running CentOS Linux version 5.3. We mod-
ified Linux 2.6.26 kernel and GNU pthread library version 2.5.1
to support Chimera’s record and replay features. All results are the
mean of five trials with 4 worker threads (excluding main or control
threads). Section 7.2 presents scalability results for which we used
2, 4, and 8 threads.

7.2 Record and replay performance
Table 2 shows Chimera’s record and replay performance when
all the optimizations (function, loop, and basic-block level weak-
lock optimizations) are enabled. The first set of columns quantifies
the number of logs generated for recording program input (read
through systems calls) and the happens-before order of synchro-
nization operations. These logs are sufficient to guarantee replay for
data-race-free (DRF) programs. The second set of columns quan-
tifies the number of logs due to various types of weak-locks. The
next set of columns presents the performance overhead. The last set
of columns quantifies the gzip compressed log sizes for recording
the program input and the order of all synchronization operations
(including weak-locks).

Chimera incurs negligible overhead for desktop and server ap-
plications. For scientific applications (with high frequency of ac-
cesses to shared variables) the overhead is relatively high. On av-
erage, our system incurs 40% performance overhead to record an
execution with four worker threads. Replay overhead is similar to
that of recording overhead for most applications, except for I/O in-
tensive applications. Network intensive applications such as aget,
knot, and apache replay much faster as we feed the recorded input
directly to the replayed process without waiting for the network re-
sponse. Chimera’s performance overhead is an order of magnitude



application LOC profile environment evaluation environment
desktop aget 1.2K 2 workers, download a 29KB file from local network 2,4,8 workers, download a 10MB file from http://ftp.gnu.org

pfscan 2.1K 2 workers, scan 236 KB of small 22 files 2,4,8 workers, scan 952 MB of 8 log files
pbzip2 4.8K 2 workers, compress a 219 KB file, output to stdout 2,4,8 workers, compress 16 MB file, output to file

server knot 1.3K 2 workers, 4 clients, 100 requests, 29KB file 2,4,8 workers, 16 clients, 1000 requests, 390KB file
apache 99K 2 workers, 4 clients, 100 requests, 29KB file 2,4,8 workers, 16 clients, 1000 requests, 390KB file

scientific ocean 5.3K 2 workers, 130*130 grid, 1e-01 error tolerance 2,4,8 workers, 1026*1026 grid, 1e-07 error tolerance
water 2.5K 2 workers, 64 molecules, 5 steps 2,4,8 workers, 1000 molecules, 10 steps

fft 1.4K 2 workers, 24 matrix , no inverse FFT check 2,4,8 workers, 220 matrix, with inverse FFT check
radix 1.3K 2 workers, 28 keys , no sanity check 2,4,8 workers, 214 keys, with sanity check

Table 1. Benchmarks and input used for profiling and evaluating Chimera. The number of lines in the source program (LOC) is measured
for the CIL representation. It does not include the size of library code: libc(41.7K) and libm(3.6K).

DRF Logs logging order of potential data-races performance log size
application system synch. instr. basic blk. loop func. original record recording replay input order

calls ops. log log log log time(ms) time(ms) overhead overhead log(KB) log (KB)
desktop aget 16604 8424 28876 5191 15939 32416 5058 5114 1.01 0.06 20072 361

pfscan 109 879 8 0 39 347 848 881 1.04 1.02 2 3
pbzip2 592 2491 2621 81 1177 1540 1343 1371 1.02 1.03 1989 26

server knot 8056 32 5136 0 251 2257 7137 7176 1.01 0.01 84 23
apache 18301 36812 798891 266956 565863 1123337 18668 19376 1.04 0.02 178 6469

scientific ocean 2750 9978 6237 8233 287642 37655 2328 5585 2.40 2.24 16 727
water 10295 67202 21838 1409884 198993 1112798 1665 2820 1.69 1.75 101 12744

fft 113 193 1843 38 49718 11595 586 1249 2.13 2.23 2 107
radix 102 312 3 13 344 393 1599 1939 1.21 1.20 1 3

Table 2. Chimera record and replay performance. The results are the mean of five trials with 4 worker threads.

improvement over the state-of-the art software solutions that guar-
antee multiprocessor replay [49].

Log sizes of Chimera are within acceptable limits for various
uses of replay. aget produces large logs because the contents of
all the downloaded files are in the log. water also produces a large
log size because of frequent user specified synchronizations and
weak-locks.

7.3 Effectiveness of Optimizations
We analyzed the effect of different optimizations on recorder’s
overhead. Fine grained weak-locks (instruction and basic-block
level weak-locks) enable higher concurrency, but they increase
the number of program points instrumented resulting in higher
performance and log size overhead. The opposite is true for coarser
grained weak-locks such as function and loop level weak-locks. We
use function-level weak-locks if two functions are likely to be non-
concurrent (Section 4). We use loop-level weak-locks with runtime
bounds checks if our static analysis can derive precise enough
symbolic bounds (Section 5).

Figure 5 shows the performance overhead of Chimera’s recorder
with different sets of optimizations normalized to native execu-
tion time. As expected, instrumenting every potential data-race
at the granularity of a source line (labeled as ‘instr’) incurs 53x
slowdown. However, when we apply the profile-based optimiza-
tion to increase the granularity of some weak-locks to function
level (‘inst+func’) the overhead drops to 27x. If we use only sym-
bolic analysis to coarsen the granularity of some weak-locks to loop
level results in 33x overhead. However, when we employ all the op-
timizations together (‘inst+bb+loop+func’), including basic block
level weak-locks, the average overhead drops significantly to 1.39x.

Applications such as pfscan and water benefit significantly
from function-level locks. In these applications, most data-races
are in function-pairs ordered by some non-mutex synchronization

operations that our static analysis could not account for. For ap-
plications such as apache, ocean, fft, and radix, loop-level
locks reduce the recording overhead drastically. For example, in
apache, RELAY reports a false data-race between memory opera-
tions within a hot loop in the memset library function that iterates
approximately over 6 million times in our experiments. Function-
level weak-lock is ineffective in this case, because two threads may
execute the memset concurrently. However, our static analysis de-
termines the bounds of addresses accessed within the hot loops of
memset fairly accurately, which enabled us to use loop-level weak-
locks effectively. We also observe noticeable benefits in coarsening
weak-locks from instruction-level to basic-blocks (e.g., water).

Finally, for network applications like aget, knot, and apache,
recording cost overlaps with I/O wait resulting in negligible over-
head. Chimera could be used even in production systems for such
applications.

Figure 6 shows the proportion of dynamic number of weak-lock
operations with respect to the total number of dynamic memory op-
erations. A naive dynamic data-race detector would have to instru-
ment 100% of memory operations. This result shows the advantage
of static data-race analysis and our optimizations in terms of reduc-
ing the number of instrumented points in the program. In general,
results in Figure 6 for different optimizations are consistent with
the recording overhead in Figure 5. This indicates that the savings
obtained from coarser weak-locks was not overshadowed by any
loss in parallelism.

On average, naively monitoring all data-races reported by the
static data-race detector requires us to instrument about 14% of all
dynamic memory operations. By increasing the weak-lock gran-
ularity to function, loop, and basic block levels, we can reduce
the proportion of weak-lock operations with respect to memory ac-
cesses down to 0.02% on average. In general, this result shows that
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Figure 6. Proportion of instrumentation points for different logging schemes

increasing the granularity of weak-locks reduces the instrumenta-
tion cost.

However, in some fairly rare cases, increasing the locking gran-
ularity from instruction to loop-level may increase the frequency
of weak-lock operations. The reason is due to control flow depen-
dencies. In pfscan, there is a racy instruction inside a hot loop
that is guarded by an if statement. If we use loop-level weak-
lock, Chimera has to always perform weak-lock operations when
the loop is executed. But if we use instruction-level weak-lock, the
instrumented code will be executed only when the if condition gets
satisfied.

In apache the number of weak-lock operations increase when
we go from instruction-level to function-level granularity. The rea-
son for this is behavior is best explained using a contrived example.
Assume that RELAY finds a data-race between each of the func-
tions foo, bar, and qux. Also, assume that all these functions are
non-concurrent with each other, except for the function-pair bar
and qux. For this example, Chimera will assign two different func-
tion level weak-locks (one for foo-bar and another for foo-qux).
This allows bar and qux to run concurrently. As a result, foo is
instrumented with two function-level locks, which may be more
costlier than using one instruction-level lock if there is only one
racy instruction inside foo.

We also studied the sensitivity of our profile-based non-concurrent
function analysis to the number of profile runs. We did this study
only for pfscan and water-nsq, because other applications shows
little performance benefit from function-level logging (Figure 5).
For these two applications, the number of concurrent function pairs
observed quickly saturates after a small number of profile runs (five
for pfscan and three for water-nsq).

7.4 Sources of Overhead and Scalability
Figure 7 provides a breakdown of the remaining sources of perfor-
mance overhead in the Chimera recorder that incorporates all of our
optimizations (‘inst+bb+loop+func’). The results are normalized to
the native execution time. We measure the performance of our sys-
tem by instrumenting each type of weak-lock one by one. The per-
formance overhead due to a weak-lock type is further broken down
into the cost of logging the weak-lock operations and the cost due
to weak-lock contention. To measure the time lost due to weak-
lock contention, we subtracted the execution time of a program ex-
ecution in which a weak-lock acquire operation always succeeds
without waiting from the execution time of a program execution in
which the weak-locks semantics are obeyed.

Contention for loop-level weak-locks dominate the overhead
for scientific applications such as ocean and fft. The reason is
that our static symbolic bounds analysis is not very precise for
some performance critical loops in these programs because they
tend to execute irregular array accesses and unmodeled arithmetic
operations (Section 5.2). As a result, the bounds checks performed
as part of loop-lock acquire operation over-serializes the execution.
We also fail to use loop-level lock and resort to instruction-level
logging (e.g., water), if the loop body contains a function call,
because our symbolic analysis in intra-procedural.

Contention between loop-level weak-locks is the for increase
in performance overhead as the number of threads increases for
some applications (Figure 8). We believe that source-level inlining
for small functions or inter-procedural symbolic bounds analysis
could help reduce this overhead. Nevertheless, as we discussed ear-
lier (Section 7.3), our current analysis already provides significant
benefits with loop-level locks for many applications (e.g., ocean).
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Figure 7. Sources of recording overhead
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Figure 8. Scalability results on 2,4,and 8 processor executions

8. Related Work
Chimera is related to three distinct areas of prior work: determinis-
tic record-and-replay, deterministic execution, and hybrid data-race
detection.

Deterministic Replay. Support for checkpointing and logging
non-deterministic input (interrupts, DMA, I/O, etc.) is sufficient to
guarantee deterministic replay for single-threaded programs [44].
Deterministic replay for multithreaded programs running on a
uniprocessor also can be provided at low cost by recording thread
schedules [16]. However, multiprocessor replay remains an open
challenge due to difficulties in detecting and logging shared mem-
ory dependencies. The earliest work in this area either incurred
prohibitive performance overhead due to the cost of monitoring
memory operations [8, 17, 34], supported deterministic record and
replay only for data-race-free programs [40], or relied on custom
hardware support [33, 54].

State-of-the-art software solutions mainly take two approaches:
search or redundancy. PRES [38] and ODR [2] are offline search
based replay systems. Instead of detecting and recording shared
memory dependencies at runtime, they perform offline search to re-
construct thread interleavings. This class of systems show notable
performance improvement during recording, but the offline search
is not guaranteed to succeed in a bounded amount of time (failing to
find a solution in some experiments). In some cases, the first deter-
ministic replay may take prohibitively long time when the search
does not scale. However, subsequent replays have low overhead,
because a solution has been previously found. Alternatively, Re-
spec [29] and DoublePlay [49] use redundant execution to detect
data-races during recording that could compromise deterministic
replay. While the record and replay latency overhead is low when
spare cores are available to run an additional replica, these systems

impose a minimum of a 2x CPU throughput overhead to run an
additional replica.

LEAP [25] uses static escape analysis to provide efficient mul-
tiprocessor replay. LEAP improves the efficiency of a recorder by
instrumenting accesses to only shared variables that are determined
using a static escape analysis. LEAP also ignores accesses to vari-
ables that are immutable after initialization to improve efficiency.
Monitoring and logging accesses to all mutable shared variables
determined using a conservative static analysis can be quite expen-
sive at runtime. LEAP can slowdown a program by more than 2x
in the average case and 6x in the worst case [25].

In contrast to these prior systems, Chimera uses a sound static
data race analysis and a series of optimizations to build the most
efficient software replay solution for commodity multiprocessors
to date.

Deterministic Execution. Deterministic execution systems
help programmers reproduce a multiprocessor execution by en-
suring that the thread interleaving observed is always the same for
a given program and an input [7, 9, 14, 37]. This approach obviates
the need for recording the order of shared-memory accesses, but
must still record any non-deterministic program input to provide
deterministic replay. While deterministic execution can be sup-
ported fairly efficiently for programs without data-races [9, 37],
software only solutions for racy programs incur many orders of
slowdown [6, 30]. Efficiency can be improved by either using cus-
tom hardware [14, 15, 23], or by restricting the class of programs
supported to fork-join parallelism [7] or shared-nothing address
spaces [4]. Chimera transforms a program into an equivalent data-
race-free program under the new set of synchronization operations.
Future work can leverage this property to design an efficient soft-
ware only solution for deterministic execution.

Data-Race Detection. There is a large body of work that
uses locksets to perform static data-race detection for C/C++ pro-



grams [19, 26, 39, 46]. Type systems have been used to improve
static data-race analysis [10, 21, 22]. We used lockset based RE-
LAY [50] to build Chimera, but future advancements in this area
could help us further reduce the overhead of our replay system.

Perhaps the most closely related study is the work on hybrid
data-race detectors that used static analysis to eliminate runtime
checks for memory operations that are proven to be data-race-
free [12, 18]. Unlike Chimera, they check all suspected racy ac-
cesses at the instruction granularity, which we show could lead to a
high runtime overhead. To reduce this overhead, Choi et al. [12]
discuss unsound optimizations that may not find more than one
data-race per memory location. Such weaker guarantees may be
acceptable for detecting concurrency bugs, but are not sufficient to
guarantee deterministic replay.

9. Conclusion
Non-determinism has been one of the thorny issues in shared-
memory multithreaded programming. An efficient deterministic re-
play system can help solve this problem by empowering program-
mers with the ability to reproduce and understand a program’s exe-
cution. This is critical in many stages of the software development
process, including debugging, testing, reproducing problems from
the field, and forensic analysis.

Chimera is the first software system for multiprocessors that
leverages a static data-race detector tool to provide a low overhead
replay solution. However, an efficient solution would not have been
possible without the two critical optimizations that we employed
to drastically reduce the overhead of recording all the data-races
reported by a conservative, but sound static analysis tool.

Chimera’s transformations ensure that the resultant code is data-
race-free when instrumented with the new set of synchronization
operations. We believe that this technique could also prove quite
useful for enabling stronger semantics for concurrent languages
such as sequential consistency and for enabling deterministic ex-
ecution.

Acknowledgments
This work was funded in part by NSF with grants CCF-0916770,
CNS-0905149, a Microsoft gift and an equipment grant from Intel.

References
[1] lpsolve, mixed integer linear programming solver.

http://lpsolve.sourceforge.net/5.5.

[2] G. Altekar and I. Stoica. ODR: Output-deterministic replay for mul-
ticore debugging. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles, pages 193–206, October 2009.

[3] L. O. Andersen. Program analysis and specialization for the c pro-
gramming language. In PhD thesis, DIKU, University of Copenhagen,
1994.

[4] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-enforced
deterministic parallelism. In Proceedings of the 9th Symposium on
Operating Systems Design and Implementation, Vancouver, BC, 2010.

[5] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86
executables. In In CC, pages 5–23. Springer-Verlag, 2004.

[6] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-
det: a compiler and runtime system for deterministic multithreaded
execution. In Proceedings of the 15th International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems, pages 53–64, Pittsburgh, PA, 2010.

[7] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe multi-
threaded programming for C/C++. In Proceedings of the International
Conference on Object Oriented Programming Systems, Languages,
and Applications, pages 81–96, Orlando, FL, October 2009.

[8] S. Bhansali, W. Chen, S. de Jong, A. Edwards, and M. Drinic. Frame-
work for instruction-level tracing and analysis of programs. In Second
International Conference on Virtual Execution Environments, pages
154–163, June 2006.

[9] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A
type and effect system for deterministic parallel Java. In Proceedings
of the International Conference on Object Oriented Programming
Systems, Languages, and Applications, pages 97–116, Orlando, FL,
October 2009.

[10] C. Boyapati and M. Rinard. A parameterized type system for race-
free java programs. In Proceedings of the 16th ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and ap-
plications, OOPSLA ’01, pages 56–69, New York, NY, USA, 2001.

[11] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault toler-
ance. ACM Transactions on Computer Systems, 14(1):80–107, Febru-
ary 1996.

[12] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran. Efficient and precise datarace detection for multithreaded
object-oriented programs. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation,
Berlin, Germany, June 2002.

[13] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program
analysis from execution in virtual environments. In Proceedings of the
2008 USENIX Technical Conference, pages 1–14, June 2008.

[14] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic
shared memory multiprocessing. In Proceedings of the 2009 Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 85–96, March 2009.

[15] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman. Rcdc: a
relaxed consistency deterministic computer. In Proceedings of the six-
teenth international conference on Architectural support for program-
ming languages and operating systems, ASPLOS ’11, pages 67–78,
2011.

[16] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. Re-
Virt: Enabling intrusion analysis through virtual-machine logging and
replay. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation, pages 211–224, Boston, MA, December
2002.

[17] G. W. Dunlap, D. G. Lucchetti, M. Fetterman, and P. M. Chen. Exe-
cution replay on multiprocessor virtual machines. In Proceedings of
the 2008 ACM SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments (VEE), pages 121–130, March 2008.

[18] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A race and
transaction-aware Java runtime. In PLDI, pages 245–255, 2007.

[19] D. Engler and K. Ashcraft. RacerX: Efficient static detection of race
conditions and deadlocks. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles, pages 237–252, Bolton Landing,
NY, 2003.

[20] C. Flanagan and S. Freund. FastTrack: Efficient and precise dynamic
race detection. In Proceedings of the ACM SIGPLAN 2009 Conference
on Programming Language Design and Implementation, pages 121–
133, Dublin, Ireland, June 2009.

[21] C. Flanagan and S. N. Freund. Type-based race detection for java. In
Proceedings of the ACM SIGPLAN conference on Programming lan-
guage design and implementation, pages 219–232, Vancouver, British
Columbia, Canada, 2000.

[22] D. Grossman. Type-safe multithreading in cyclone. In Proceed-
ings of the 2003 ACM SIGPLAN international workshop on Types in
languages design and implementation, TLDI ’03, pages 13–25, New
York, NY, USA, 2003.

[23] D. Hower, P. Dudnik, M. D. Hill, and D. A. Wood. Calvin: Determin-
istic or not? free will to choose. In 17th International Conference on
High-Performance Computer Architecture, HPCA ’11.

[24] D. R. Hower and M. D. Hill. Rerun: Exploiting episodes for
lightweight memory race recording. In Proceedings of the 2008 Inter-



national Symposium on Computer Architecture, pages 265–276, June
2008.

[25] R. Huang, D. Y. Den, and G. E. Suh. Orthrus: Efficient software in-
tegrity protection on multi-cores. In Proceedings of the 15th Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 371–383, Pittsburgh, PA, March
2010.

[26] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang. Static data race detection
for concurrent programs with asynchronous calls. In Proceedings
of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations
of software engineering, ESEC/FSE ’09, pages 13–22, New York, NY,
USA, 2009.

[27] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating
systems with time-traveling virtual machines. In Proceedings of the
2005 USENIX Technical Conference, pages 1–15, April 2005.

[28] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel pro-
grams with instant replay. IEEE Transaction on Computers, 36(4):
471–482, 1987.

[29] D. Lee, B. Wester, K. Veeraraghavan, P. M. Chen, J. Flinn, and
S. Narayanasamy. Respec: Efficient online multiprocessor replay
via speculation and external determinism. In Proceedings of the
15th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 77–89, Pittsburgh, PA,
March 2010.

[30] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: efficient determin-
istic multithreading. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles, SOSP ’11, pages 327–336,
2011.

[31] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-aid: Detecting
and surviving atomicity violations. In Proceedings of the 35th Annual
International Symposium on Computer Architecture, pages 277–288,
Beijing, China, 2008.

[32] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording and
deterministically replaying shared-memory multiprocessor execution
efficiently. In Proceedings of the 2008 International Symposium on
Computer Architecture, pages 289–300, June 2008.

[33] S. Narayanasamy, C. Pereira, and B. Calder. Recording shared mem-
ory dependencies using Strata. In ASPLOS-XII: Proceedings of the
12th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 229–240, 2006.

[34] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder. Au-
tomatic logging of operating system effects to guide application-level
architecture simulation. In International Conference on Measurements
and Modeling of Computer Systems (SIGMETRICS), pages 216–227,
June 2006.

[35] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil: Inter-
mediate language and tools for analysis and transformation of c pro-
grams. In Proceedings of the 11th International Conference on Com-
piler Construction, CC ’02, pages 213–228, 2002.

[36] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Paralleliz-
ing security checks on commodity hardware. In Proceedings of the
13th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 308–318, Seattle, WA,
March 2008.

[37] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient de-
terministic multithreading in software. In Proceedings of the 2009
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 97–108, March
2009.

[38] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu.
PRES: Probabilistic replay with execution sketching on multiproces-
sors. In Proceedings of the 22nd SOSP, pages 177–191, October 2009.

[39] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Practical static
race detection for c. ACM Trans. Program. Lang. Syst., 33:3:1–3:55,
January 2011.

[40] M. Ronsse and K. De Bosschere. RecPlay: A fully integrated practical
record/replay system. ACM Transactions on Computer Systems, 17
(2):133–152, May 1999.

[41] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers,
array indices, and accessed memory regions. In Proceedings of the
ACM SIGPLAN 2000 conference on Programming language design
and implementation, PLDI ’00, pages 182–195, New York, NY, USA,
2000.

[42] R. Rugina and M. C. Rinard. Symbolic bounds analysis of pointers,
array indices, and accessed memory regions. ACM Trans. Program.
Lang. Syst., 27:185–235, March 2005.

[43] M. Russinovich and B. Cogswell. Replay for concurrent non-
deterministic shared-memory applications. In Proceedings of the ACM
SIGPLAN 1996 Conference on Programming Language Design and
Implementation, pages 258–266, 1996.

[44] S. Srinivasan, C. Andrews, S. Kandula, and Y. Zhou. Flashback:
A light-weight extension for rollback and deterministic replay for
software debugging. In Proceedings of the 2004 USENIX Technical
Conference, pages 29–44, Boston, MA, June 2004.

[45] B. Steensgaard. Points-to analysis in almost linear time. In Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’96, pages 32–41, New York, NY,
USA, 1996.

[46] N. Sterling. Warlock: A static data race analysis tool. pages 97–106,
1993.

[47] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage: Diag-
nosing production run failures at the user’s site. In Proceedings of the
21st ACM Symposium on Operating Systems Principles, pages 131–
144, October 2007.

[48] uclib.org. uClibc, a C library for embedded Linux.
http://uClibc.org.

[49] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy. DoublePlay: Parallelizing sequential logging
and replay. In Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operating
Systems, Long Beach, CA, March 2011.

[50] J. W. Voung, R. Jhala, and S. Lerner. Relay: static race detection on
millions of lines of code. In Proceedings of the the 6th joint meeting
of the European software engineering conference and the ACM SIG-
SOFT symposium on The foundations of software engineering, pages
205–214, Dubrovnik, Croatia, 2007.

[51] D. Weeratunge, X. Zhang, and S. Jagannathan. Analyzing multicore
dumps to facilitate concurrency bug reproduction. In Proceedings
of the 2010 International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages
155–166, March 2010.

[52] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer
analysis for c programs. In Proceedings of the ACM SIGPLAN 1995
conference on Programming language design and implementation,
PLDI ’95, pages 1–12, New York, NY, USA, 1995.

[53] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological consider-
ations. In Proceedings of the 22nd International Symposium on Com-
puter Architecture, pages 24–36, June 1995.

[54] M. Xu, R. Bodik, and M. D. Hill. A “flight data recorder” for enabling
full-system multiprocessor deterministic replay. In Proceedings of the
2003 International Symposium on Computer Architecture, pages 122–
135, June 2003.

[55] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weissman.
ReTrace: Collecting execution trace with virtual machine determinis-
tic replay. In Proceedings of the 2007 Workshop on Modeling, Bench-
marking and Simulation (MoBS), June 2007.

[56] C. Zamfir and G. Candea. Execution synthesis: A technique for auto-
mated software debugging. In Proceedings of the European Confer-
ence on Computer Systems, pages 321–334, April 2010.


