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Abstract

Several program analysis tools—such as plagiarism detec-

tion and bug finding—rely on knowing a piece of code’s

relative semantic importance. For example, a plagiarism de-

tector should not bother reporting two programs that have

an identical simple loop counter test, but should report pro-

grams that share more distinctive code. Traditional program

analysis techniques (e.g., finding data and control dependen-

cies) are useful, but do not say how surprising or common

a line of code is. Natural language processing researchers

have encountered a similar problem and addressed it using

an n-gram model of text frequency, derived from statistics

computed over text corpora.

We propose and compute an n-gram model for program-

ming languages, computed over a corpus of 2.8 million

JavaScript programs we downloaded from the Web. In con-

trast to previous techniques, we describe a code n-gram as

a subgraph of the program dependence graph that contains

all nodes and edges reachable in n steps from the statement.

We can count n-grams in a program and count the frequency

of n-grams in the corpus, enabling us to compute tf-idf-style

measures that capture the differing importance of different

lines of code. We demonstrate the power of this approach by

implementing a plagiarism detector with accuracy that beats

previous techniques, and a bug-finding tool that discovered

over a dozen previously unknown bugs in a collection of real

deployed programs.

Categories and Subject Descriptors D.2.4 [Software/Pro-

gram Verification]: Statistical methods; D.2.5 [Testing and

Debugging]: Debugging aids; F.3.2 [Semantics of Pro-

gramming Languages]: Program analysis

Keywords Programmatic n-gram; Corpus-driven; Plagia-

rism detection; Copy-paste bug; JavaScript
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1. Introduction

Standard data flow and control flow analysis methods form

the basis of many programmer productivity tools. However,

these methods have been largely limited to analyzing one

program or a set of programs chosen by the programmer.

Today, one could easily collect source code for millions of

programs by crawling the Web, especially for web appli-

cations written in scripting languages like JavaScript. Pro-

gramming assignments submitted by thousands of students

enrolled on massive open online courses (MOOCs) are an-

other rich source of programs. By examining these large cor-

pora of source code and computing the probability of ob-

serving programming patterns, we aim to build a statistical

body of knowledge that can improve a wide range of pro-

gram analysis.

The natural language processing (NLP) community has

discovered a technique that is broadly useful to many in-

dividual language tasks: exploiting usage statistics com-

puted over large corpora of text. Simple counts over ob-

served words and sequences can be useful in information re-

trieval [26], machine translation [2], spelling correction [9],

and even analysis of historical texts [19, 23].

We postulate that a similar corpus-driven “big-code” ap-

proach can work for program analysis. That is, the infor-

mation that we can glean from analyzing millions of unre-

lated programs could allow us to better analyze a new pro-

gram. In this paper, we focus on exploiting one particular

information that we can gather by analyzing a large corpus:

“importance” of a code snippet. We consider a code snip-

pet that is seen in many thousands of programs to be less

important than one that is rarely seen. We demonstrate the

utility of this information by using it to improve the accu-

racy of two tools: a plagiarism checker and a copy-paste bug

finder. We have built these tools for JavaScript programs,

because a corpus-driven program analysis is particularly at-

tractive for such programs. Hundreds of thousands of web

applications developed today are written in JavaScript and

are easily available to build a large corpus.

The first step that we take to realize the above goals

is to develop a method to extract meaningful code snip-

pets (“semantic tokens”) from the raw source code of mil-

lions of unrelated programs such that they are amenable for

statistical analysis. The standard textual n-gram statistical



method used in NLP applications relies on certain proper-

ties of natural language text: the context of a token is rea-

sonably captured by the preceding words, and the text to-

kens are different enough to have distinctive distributions,

but common enough that a single text token can be observed

multiple times. Source code does not obviously have these

features: programs have complicated dependencies among

non-sequential tokens, some programming language tokens

are so common (e.g., “int” or an open brace) that it is un-

clear what information they carry, and other tokens (variable

names) are so idiosyncratic that it is unclear how to count

them across multiple programs. Thus, an important contri-

bution of this paper lies in building useful “semantic tokens”

from the raw JavaScript programs; these are small abstracted

versions of program code under which the n-gram counting

model can be successful.

We build a database of n-gram code snippets along with

their importance scores. We use this information to build two

tools: a plagiarism checker and a copy-paste bug finder. A

traditional plagiarism detection tool might identify two re-

gions of code that are quite similar, but in fact reflect a repet-

itive and dull task, such as a simple increment-and-test loop.

A tool with corpus-derived knowledge of the importance of

code snippets would recognize that overlap on such common

tasks is poor evidence of plagiarism.

We also build a copy-paste bug finder tool that uses our

plagiarism checker to find code snippets in a program that

have been potentially copied from other sources, and then

detects errors that programmers are likely to make while

using the old code in the new context.

Background — The use of corpus statistics in information

retrieval and natural language processing is well known [2,

26]. Statistical debugging is an active area of research [15,

17], but to date has focused on statistical analysis of program

traces rather than source code. Existing methods for our

two target applications (plagiarism detection [4, 6, 7, 10,

11, 13, 16, 22, 25] and copy-paste bug finding [3, 11, 14])

do not exploit corpus-derived data. While past work has

used sequential n-grams to characterize programs [7, 12],

none has considered n-grams based on program dependence

graphs [1].

Contributions and Outline — The central contributions of

this work include the following:

• A model for extending corpus-driven statistics approaches

to programmatic tasks (Section 2).

• Techniques for addressing a basic challenge when us-

ing statistical methods—identifying relevant semantic to-

kens. We describe algorithms for applying these tech-

niques to a corpus of 2.8 million JavaScript programs

downloaded from the Web (Section 3).

• A demonstration of the effectiveness of corpus-driven

code statistics on two automated programming tasks: pla-

giarism detection (Section 4) and copy-paste bug find-

ing (Section 5). In the former case, our corpus-driven ap-

proach beats a known baseline. In the latter, our method

has found over a dozen previously unknown copy-paste

bugs (Section 6). Also we present a first tool to find copy-

paste bugs in JavaScript.

We discuss related work in Section 7. In Section 8 we

conclude with a discussion of future work.

2. N-Gram Data Model

In this section, we describe our model for computing cor-

pus statistics for programming languages over a collection

of source code. This model includes two elements: (1) a def-

inition of “semantic tokens” that can capture small-grained

topics of source code while being general enough that iden-

tical tokens appear in multiple programs; and (2) a statisti-

cal method for computing the importance of such a token

in a program. The results in this paper focus on processing

JavaScript, and we will use the code example below to ex-

plain our system. However, our model has very little that

is language-specific: it should apply to any imperative-style

programming language, including C, C++, Python, and Java.

To explain the two elements of the model, we use the

following JavaScript subroutine as a running example. It

takes a value and an array as parameters, then returns true

only if the array contains the given value.

function inArray(a, val) {

var i;

for (i = 0; i < a.length; i++) {

if (a[i] === val) {

return true;

}

}

return false;

}

2.1 Programmatic N -Grams

Some assumptions behind standard linguistic n-gram1 con-

struction are so straightforward as to be barely noticeable:

tokens are delimited by whitespace or sentence boundaries,

and the context of a token is well-captured by its preceding

text. Of course these qualities are only rough approxima-

tions of the truth. Collocations (e.g., Procter and Gamble)

and words with unusual punctuation (e.g., I.B.M.) violate the

standard tokenization approach and often need special han-

dling in text processing. Also, not all linguistic phenomena

can be captured by simple short word sequences: some tasks

require linguistic parse trees to describe long-range linkages

between words. However, in general these qualities hold true

often enough that the n-gram model works.

1 An NLP researcher may object to this paper’s use of “n-gram”, which in

some projects refers strictly to a multiword text probability model. How-

ever, widespread use of Google’s “Ngram data,” which comprises simple

word counts, has undermined that strict meaning. For us, the term “n-gram”

refers to sequential multitoken text strings, which are used to construct a sta-

tistical resource. We will treat token and 1-gram as interchangeable terms.



function inArray(a, val) {

1 begin;

2 i = 0;

3 $0 = a.length;

4 $1 = i < $0;

5 while ($1) {

6 $2 = a[i];

7 $3 = $2 === val;

8 if ($3) {

9 return true;

}

10 i = i + 1;

11 $4 = a.length;

12 $1 = i < $4;

}

13 return false;

14 end;

}

(a)

begin1

=2 .3

<4

while5

[]6

===7

if8

return9

+10 .11

<12 return13

end14

(b)

begin1

while5

[]6

===7

begin1

=2

<4

while5

[]6

===7

(c)

Figure 1: (a) The canonical form of the inArray subroutine. (b) The program dependence graph of the inArray subroutine. A

direct edge from s to t means that s is control- or data-dependent on t. (c) Two n-gram graphs. The upper graph is the 2-gram

of line 7; the lower graph is the 3-gram of the same line.

These qualities generally do not hold true for source code.

In order to apply the n-gram approach to program source

code, we must choose how to delimit a “gram,” and how to

decide when one gram immediately precedes another.

2.1.1 Delimiting Tokens

There are at least two obvious choices when describing pro-

grammatic n-grams. The first is to model each gram as a sin-

gle line of code. This appears natural to a human program-

mer, and program complexity is often described in pure line

counts. However, the amount of program complexity carried

by a single line can vary tremendously from line to line: con-

trast a simple integer increment with a deeply-nested set of

mathematical operators that combine half a dozen variables.

In the latter case, a simple mathematical operation might

mean very different things depending on the nesting; how-

ever, a gram-per-line approach would ignore the nesting and

treat all occurrences of the operation identically. Further, this

approach is very sensitive to variable naming.

A second choice is to model each gram as a programming

language token: if, for, variable names, and so on. How-

ever, low-level tokens carry very little information, requiring

us to construct large consecutive grams to capture what ap-

pear to the programmer to be trivial steps. Also, consecutive

pieces of source code may not have much to do with each

other, as single programs often reorder different operations

for application or performance reasons. To construct tokens

with appropriate complexity, we propose to decompose each

statement into a canonical form that is similar to three ad-

dress code. Each statement in the source JavaScript yields at

least one statement in canonical form, and often many more.

Three address code is an intermediate code representa-

tion often used in compilers and program optimization [20].

A single example of three address code includes a binary

operator, its operands, and often an assignment (hence, there

are at most three operands.) For example, the loop condition

test from inArray is translated into a form that includes an

equality test between two values and assignment of the result

to a third location. Operands are internal symbolic names,

not names from the program code.

Lines in our canonical form depend on each other to pro-

vide input values. Understanding the dependence structure is

critical for understanding the original program. Not only are

lines in the source language interrelated, but multiple lines

of three address code can be derived from a single source

line. We describe the dependence structure in detail below.

2.1.2 Ordering Tokens

NLP grams are generally built using simple linear lexical

order instead of, say, an ordering imposed by a parse tree.

Ordering of lines in source code is at times unimportant:

independent statements can be arbitrarily reordered without

changing the logic of the program. At other times—when

there is a data or control dependency between statements—

the order is crucial for code correctness and for understand-

ing the programmer’s goal.

Therefore, we compute grams not using lexical order

of statements, but rather ordering imposed by the program

dependence graph [5]. A node represents a single canonical

form statement. A directed edge leads from node s to t when

s takes as input a value written by t, or when s’s execution

depends on the result of t.

We show the program dependence graph of the inArray

function in Figure 1b, with each node annotated by its corre-

sponding canonical form line in Figure 1a. The initialization

of loop variable i takes place at line 2. Because this piece of

code is not dependent on anything except the invocation of

the function itself, node 2 in Figure 1b points only to node



1, which represents begin. The loop bounds check at line

4 (from source code i < a.length) depends on both the

value of i and the length of array a; hence, node 4 from Fig-

ure 1b points to both node 2 and node 3 (which represents

the result of looking up a.length).

We will say that two canonical form lines are consecutive

when there is an edge between their corresponding nodes in

the graph. So line 4 from Figure 1a is immediately preceded

by both line 2 and line 3. This model is quite different from

the traditional linguistic n-gram construction, in which a

given word in a text has at most one (obvious) predecessor.

Note that the program dependence graph in Figure 1b

does not contain all control dependence edges. Details about

how to construct the graph, including simplification rules to

ensure that it is acyclic, are described in Section 3.2.

2.1.3 Constructing N -Grams

In computational linguistics, an n-gram consists of n con-

secutive tokens in a document. We construct an n-gram in a

program similarly: starting from a particular token, we tra-

verse the program dependence graph backward up to dis-

tance (n − 1), collecting all the visited grams and depen-

dence edges during the traversal. In other words, an n-gram

of a specific gram x is the subgraph of the program depen-

dence graph consisting of all paths of length (n− 1) starting

from x. Thus, the n-gram of x captures all recent dependent

computations that x requires prior to its execution.

For example, the upper portion of Figure 1c is the 2-gram

of line 7. It includes line 7 itself as well as lines 1, 5, and

6. The lower subgraph of Figure 1c is the 3-gram of line 7.

It includes all nodes in the 2-gram as well as lines 2 and 4

(which are two steps away from line 7).

Because a single node (or, equivalently, statement) can

have multiple immediate predecessors, the number n only

tells the depth of an n-gram. The number of nodes in an

n-gram also depends on its width, which is determined by

the dependence graph. For example, the 2-gram of line 7

contains 4 nodes, whereas the 2-gram of line 9 contains only

2 nodes (lines 7 and 9). We describe n-gram construction in

more detail in Section 3.3.

In summary, an n-gram in a program is a labeled sub-

graph of the program dependence graph constructed over the

canonical form of the program’s statements. The subgraph

consists of all paths of length (n−1) starting from a specific

statement.

2.2 Quantifying Gram Importance

Our method to evaluate the “importance” of an n-gram is

directly inspired by the tf-idf measure. There are several

ways to define the term frequency (tf) of an n-gram x in a

program P . One simple and well-known method is boolean

frequency [18]:

tf (x, P ) =

{

1, if x ∈ P,

0, otherwise.

2-gram

tf-idf

3-gram

tf-idf
function inArray(a, val) {

1 begin; 0.000 0.000

2 i = 0; 1.017 1.017

3 $0 = a.length; 0.969 0.969

4 $1 = i < $0; 2.238 2.876
5 while ($1) { 1.641 2.368

6 $2 = a[i]; 3.035 3.590

7 $3 = $2 === val; 4.767 6.704

8 if ($3) { 4.560 5.296

9 return true; 1.699 5.911

}

10 i = i + 1; 1.934 2.232

11 $4 = a.length; 2.024 2.312
12 $1 = i < $4; 1.564 3.846

}

13 return false; 1.857 1.857

14 end;

}

Figure 2: The 2-gram and 3-gram tf-idf scores for each

canonical line of inArray.

This method seems appropriate to source code, where im-

portant code is determined more by the call graph than fre-

quency in the source code text itself.

Given a program corpus Π, the inverse document fre-

quency (or idf) of an n-gram x measures the overall impor-

tance of each unique n-gram:

idf (x,Π) = log
|Π|

|{P ∈ Π : x ∈ P}|
.

So the tf-idf measure for x in P with respect to corpus Π is

the product of the two:

tf-idf(x, P,Π) = tf (x, P )× idf (x,Π).

If x is indeed in P , then the tf-idf measure of x is simply the

same as its idf value.

Figure 2 shows the tf-idf score for each 2-gram and 3-

gram in inArray. Of course, all grams here satisfy the

boolean tf test, so tf-idf and idf are equivalent. For n = 2 and

n = 3, lines 7–9 have the highest tf-idf values, and we might

thus imagine that these lines are more remarkable or more

important than the others in understanding the function. In-

deed, to the programmer’s eye this is obvious: lines 7–9 de-

scribe inner loop code that determines what the function will

do in most cases. The remainder of inArray is just boiler-

plate loop iteration code.

This example also illustrates the potential power of larger

values for n. Line 9 has a 2-gram of unremarkable tf-idf

that reflects a fairly common programming motif: it tests a

boolean, and if true, then the code returns true. However, its

3-gram has a comparatively quite high tf-idf that reflects a

less common pattern: inside a while loop, the code tests two

values for equality, and if they are equal, the code returns

true. In practice, a user’s specific choice for n will depend

on the application and available data (as with text, at some

pointn is large enough that no large counts can be computed,

because each observation is sui generis).



3. Computing Corpus Statistics

Computing n-gram statistics for text is relatively straightfor-

ward (even if very large text corpora and estimating smooth-

ing statistics provide difficult challenges). However, translat-

ing these techniques to our gram model and corpus setting is

not. We now show the technical challenge and algorithmic

solution for each of the above-described steps: transforming

JavaScript into canonical form, computing large numbers of

program dependence graphs, and extracting many n-grams.

Finally, we discuss how to count grams, a near-trivial step in

the textual case that is challenging in ours.

3.1 Canonical JavaScript

Our goal in transforming a JavaScript program into canoni-

cal form is to decompose all statements — both complicated

and simple ones — into units that carry a roughly standard

amount of “semantic information.” Figure 3 shows our de-

sign for the JavaScript canonical form, which is based on

the three address code representation. We implemented our

transformation by analyzing the abstract syntax tree (AST)

produced by the V8 JavaScript engine. We accurately han-

dled most language features in JavaScript. However, we do

not handle a few features such as dynamic scoping and

exception handling (Section A.5). Fortunately, our corpus-

driven statistical approach can tolerate such small degrees of

inaccuracy in our transformation.

In summary, each line in canonical form is one of:

• a handful of reserved operators: while, if, etc.

• a function invocation

• an assignment operation

• begin or end to represent function entry and exit.

Some high-level programming constructs, such as if and

while, have representations in canonical form, with the

restriction that their boolean test can only evaluate an input

variable, not a complex expression. Some other constructs

(such as do...while) are translated to an equivalent while

statement.

Each assignment in canonical form contains:

• One operator, which can be unary, binary or ternary arith-

metic; a field or array access; or a function or method

invocation.

• Arguments in the form of variables or constants.

• A variable to store the result of the operation.

Rules for transforming a legal JavaScript program into

canonical form appear in the Appendix (Section A). Our

canonical form preserves certain pieces of program informa-

tion, such as “which statements are in the same loop body”

and “which statements are controlled by the same if condi-

tion.” These are important facts about program structure that

we want the n-grams to capture.

func→ function id?(var∗) { begin; stmt∗ end; }

stmt→ assign; | break; | continue; | return val?;

| if ( val ) { stmt∗ } else { stmt∗ }

| while ( val ) { stmt∗ }

| for ( var in val ) { stmt∗ }

| switch ( val ) {

(case val: stmt∗)∗ (default: stmt∗)?}

| with ( val ) { stmt∗ }

assign→ var = val | var = opunary val | var = val opbinary val

| var = val ? val : val | var = val.identifier

| var = val[val] | var = identifier(val∗)

| var = (func)(val∗) | var = val.identifier(val∗)

| var.identifier = val | var[val] = val

val→ var | literal | func

Figure 3: The canonical form’s formal definition. S∗ means

that S appears at 0 or more times, and S? means that S

appears at most once.

3.2 The Program Dependence Graph

Once we have transformed a JavaScript program into canon-

ical form, we can build its program dependence graph. It is

a directed graph G = (V,E), where V is the set of all state-

ments, and E contains all edges (s, t) such that the statement

s is data-dependent or control-dependent on the statement

t. The program dependence graph is a standard structure in

compiler construction (and is covered in texts such as Aho,

et al. [1]), but we have made a number of changes in order

to fit the needs of extracting n-grams.

3.2.1 Data Dependence Edges

We perform a standard reaching definition analysis to iden-

tify all use-def chains between statements. The definition of

a variable (that is, its assignment) at a statement t will reach

its use at a statement s if s depends on the value assigned at t

and there is no intervening definition of the variable between

s and t. A use-def chain for a use of a variable is all reaching

definitions of the use. For each use-def chain (t, s) where t

is the definition and s is the use, the directed edge (s, t) is

added into the program dependence graph, except:

1. When t is outside the function scope of s. Since the se-

mantics of nested functions provides no control flow be-

tween t and s, it is incorrect to add such an edge. Instead,

we model this dependency by assuming that the defini-

tion is implicitly passed into the function containing s,

so we add edge (s, begin) to the program dependence

graph, where begin is the begin statement of the func-

tion containing s.



2. When t appears after s in lexical order. This case can only

appear in looping-style control flow constructs. Includ-

ing this edge would make the program dependence graph

more accurate since it preserves the inter-iteration depen-

dency between s and t; but there would be many such

edges in a loop and thus the graph would be much more

complex. We believe that the information these edges

preserve is not worth the complexity they bring, so we

exclude such edges in our design. We discuss our design

decisions around cycles in more detail in Section 3.2.3.

In addition to the above, for each statement s that uses

a parameter, and for each variable whose definition value is

missing, we add (s, begin) to the graph. We essentially treat

begin as a dummy statement that initializes the value of

all parameters, variables in outer scopes, and all otherwise-

uninitialized variables. In so doing, we ensure that all edges

in the graph are intra-procedural.

3.2.2 Control Dependence Edges

Traditional optimizing compilers must construct edges to re-

flect control flow dependence as well as data dependence. In

our case, we want to explicitly retain control flow structures

such as while and if in our canonical version of three ad-

dress form. Thus, instead of a standard control flow analysis

we add control flow-inspired edges as follows:

1. Add (s,begin) to the program dependence graph, where

begin is the begin statement of the function that contains

s. This edge is conventionally added only because of the

ease of control flow analysis.

2. If s is inside the body of t, and t is one of the if, while,

for...in, switch or with statements, then add (s, t)
into the graph. That is, the execution of s depends on the

execution of t.

We ignore all control dependence edges owing to break,

continue, and return because they often lead to cycles in

the program dependence graph.

3.2.3 Cycle Removal

An important design choice we made is to keep the program

dependence graph acyclic. Because dependencies across dif-

ferent iterations of the same loop can only be expressed by

cycles, we lose all information about inter-iteration depen-

dencies. Keeping the cycles makes the program dependence

graph more accurate, but also fills the related n-grams with

large numbers of extra edges. Any gram found in a loop

body would thus appear to be entirely different from the ex-

act same gram found outside a loop. Distinguishing in-loop

and out-of-loop versions of the same code might be useful

in some cases, but we could not find any practical cases to

warrant the extra complexity. Avoiding loops also makes it

easier to compare and count n-grams, as we discuss below.

3.3 Extracting and Comparing N -Grams

We extract the set of all n-grams in a program according to

Algorithm 1. For each statement in the program, we locate

the corresponding node in the program dependence graph,

and then perform a breadth-first search with a depth limit

(n − 1). For each such search, we collect the visited nodes

and edges to create the statement’s n-gram.

Algorithm 1 The n-gram extraction algorithm.

function EXTRACTNGRAMS(n,P )

P ′ ← χ(P ) ⊲ Canonical form of P
G← PDG(P ′) ⊲ Program dependence graph of P ′

Γ← ∅ ⊲ The set of all n-grams in P
for p ∈ P ′ do

Γ← Γ ∪ {NGRAMBFS(G, p, n)}

return Γ

function NGRAMBFS(G,v, n)

V ← {v} ⊲ The set of vertices with distance ≤ n− 1
E ← ∅ ⊲ The set of edges with distance ≤ n− 1
d[v]← 0
Q← ∅
ENQUEUE(Q,v)
while Q 6= ∅ do ⊲ Breadth-first search with depth ≤ n− 1

v ← DEQUEUE(Q)
for (v, u) ∈ G do

E ← E ∪ {(v, u)}
if u /∈ V then

V ← V ∪ {u}
d[u]← d[u] + 1
if d[u] < n− 1 then

ENQUEUE(Q,u)

return (V, E)

We apply Algorithm 1 to all programs in the downloaded

JavaScript corpus to build the n-gram database. Collecting

and counting this huge set of small graphs is an unusual

challenge. Graph databases are a popular research area, but

focus primarily on large graphs [31], on moderate numbers

of graphs [28–30], or on frequent subgraph mining [27]. In

contrast, we want to store and compute frequency informa-

tion for a large number of small graphs; for our test corpus,

approximately 662 million of them.

Counting graph frequencies is equivalent to computing

many graph isomorphism problems. Doing so is in principle

infeasible, but our graphs are generally very small and so

an exhaustive approach is possible. We encode each n-gram

graph as a string. For example, the 3-gram in Figure 1c

consists of 6 nodes and is encoded as follows:

(begin)(<)(=)(while 0 1)([] 0 2 3)[=== 0 3 4]

First, we order all nodes, so the begin statement becomes

node 0, the < operator becomes node 1, and so on. With

this ordering, each node is encoded as a parenthesis-enclosed

string that consists of the name of its operator followed by a

list of the nodes it depends on. The “starting” node for the

n-gram will not be depended upon by any other node; we

denote this node with brackets rather than parentheses.



Since there are k! different orderings for an n-gram of

k nodes, there are many possible string representations for

a given n-gram. To choose a single representation, we enu-

merate every ordering and find the lexically minimal string.

Finding the minimal string for a given n-gram can be time-

consuming, but k is generally small and we use a number of

heuristics to avoid enumerating some orderings (e.g., when

we can detect that two orderings will yield the same string).

Once all n-grams are represented using these standardized

strings, counting them is straightforward.

4. Plagiarism Detection

The first application for our corpus-driven technique is pla-

giarism detection. This system examines a set of programs

to find pairs of code regions that have likely been copied

from one location to the other. Such systems are useful when

teaching classes that include programming tasks. The growth

in online education, and the accompanying growth in stu-

dents doing work outside traditional academic settings, will

likely increase the need for systems that detect when stu-

dents submit work that is not their own.

The problem of plagiarism detection has been extensively

studied [16, 25]. However, all systems we know of are sensi-

tive to the problem of “trivial plagiarism.” The systems rec-

ognize similar code regions, but cannot detect when the sim-

ilar region consists of trivial or widely-known code. For ex-

ample, older JavaScript programs used a standard technique

to detect the current browser engine; the repeated appearance

of this idiom reflects common knowledge and practice, not

rampant plagiarism. By using our n-gram corpus statistics,

we can filter the output of a plagiarism detection system and

remove plagiarism reports that describe uninteresting code

regions. The result should be a hybrid plagiarism detector

that reports many fewer false alarms.

4.1 Detection Algorithm

We assume the existence of a plagiarism detector that exam-

ines a set of programs and reports a set of suspicious pro-

gram pairs. A good detector would report examples of pla-

giarism that are almost always true (that is, it has high preci-

sion) while also reporting almost all the plagiarism cases in

the corpus (that is, it has high recall). By filtering the output

of an existing plagiarism detection tool, we aim to improve

its precision by removing false alarms that reflect “trivial

plagiarism” of common idioms. Our filter should impact the

core detector’s recall as little as possible. It works by identi-

fying commonly-used grams that should also have low tf-idf

scores. Denote Γ
(n)
θ (X) as the set of n-grams of program X

whose tf-idf scores are at least θ. For a suspicious program

pair of plagiarism (P,Q), if Γ
(n)
θ (P ) ∩ Γ

(n)
θ (Q) = ∅, then

we drop the pair from the output.

4.2 Discussion

Our filter is immune to plagiarism techniques that preserve

control and data flow, but is vulnerable to certain changes in

those flows. For example, consider a plagiarizer who gen-

erates a new plagiarized program by copying a source pro-

gram, and then inserts { a++; a--; } before every read of

a. These new instructions modify the data flow observed at

each read of a. All a-focused grams of size 2 or greater in the

plagiarized program would appear to be quite different from

their original version. If they also appear to be very com-

mon, the plagiarized program may be incorrectly removed

by our filter. We could address this problem by searching

for synthetic-seeming “nonsense” code that can be removed

without impacting the code’s output.

Note that our system can help detect code plagiarism,

but is not designed for content plagiarism. Imagine two pro-

grams that consist entirely of calls to document.write(),

which emit near-identical textual content. Assume the base

plagiarism tool reports these as a suspicious pair; the grams’

tf-idf scores will likely appear trivial and so will be removed

by our filter. The problem, of course, is that the program is

trivial, but the string content is not.

5. Copy-Paste Bug Finding

Our second application is a mechanism for finding copy-

paste bugs in software. These arise when a user copies and

pastes source code in order to create a new version that

is similar but not identical; the programmer then fails to

fully or correctly rename variables from the original version.

Figure 4 illustrates such a bug. This problem can arise when

the programmer copies her own code, or code found on the

Internet. Such bugs are easy to introduce, but may be hard

to find and diagnose. Other researchers have looked at copy-

paste bugs [14].

Copy-paste bugs yield code pairs that are similar to each

other, but the pasted (buggy) code likely has at least one

variable usage that is inconsistent with the rest of the code.

We search for these bugs in two steps.

Step 1. Finding Candidate Pairs — We simply locate pairs

of subroutines (P,Q) that are copy-paste candidates from

either the input program or the corpus. If one of P and Q

contains a copy-paste bug, the two subroutines are likely

similar but not identical. We can use n-gram statistics to

score subroutine similarity.

Step 2. Finding Surprising Variable Usage — We examine

each subroutine pair (P,Q) from the above step for a vari-

able usage that is “more surprising” in one subroutine than

its counterpart in the other. For example, in Figure 4, lines 9

and 21 are not only textually identical, but they clearly play

a similar role in each piece of code. In correct copy-pasted

code, the n-grams for lines 9 and 21 should also be similar;

for buggy code, the two lines will have dissimilar n-grams.

Our system identifies such cases as potential bugs.



1 function FindParentLeft(Obj) {

2 var curLeft = 0;

3 if (Obj.offsetParent) {

4 while (Obj && (null != Obj.offsetLeft)) {

5 if (...) curLeft += Obj.offsetLeft;

6 Obj = Obj.offsetParent;

7 }

8 } else if (Obj.x) {

9 curLeft += Obj.x;

10 }

11 return (curLeft);

12 }

13 function FindParentTop(Obj) {

14 var curTop = 0;

15 if (Obj.offsetParent) {

16 while (Obj && (null != Obj.offsetTop)) {

17 if (...) curTop += Obj.offsetTop;

18 Obj = Obj.offsetParent;

19 }

20 } else if (Obj.x) {

21 curLeft += Obj.x;

22 }

23 return (curTop);

24 }

Figure 4: Two JavaScript functions downloaded from

http://www.petfoodindustry.com/WorkArea/java/

webtoolbar.js and slightly edited for clarity. The top

FindParentLeft function was apparently incorrectly

copied, pasted, and modified to create the bottom function

FindParentTop. The programmer has failed to change

curLeft to curTop at line 21. We also suspect that Obj.x

in line 21–22 may need to be changed to Obj.y but the

evidence in these two functions is ambiguous.

5.1 Finding Candidate Pairs

Finding copy-paste candidates is essentially finding heav-

ily plagiarized code snippets. Unlike plagiarism detection

(where we want to report any plagiarism no matter how

small the plagiarized part is), we want to find copy-paste

candidates that are large enough and almost the same. To

prune false positives, we focus on finding copy-paste sub-

routines. Therefore we use the following method instead of

the plagiarism detector we have developed to find copy-paste

candidates. We can use the n-gram data to obtain a function

that scores the similarity of subroutine pairs:

α(P,Q) =
|Γ

(n)
θ (P ) ∩ Γ

(n)
θ (Q)|

|Γ
(n)
θ (P ) ∪ Γ

(n)
θ (Q)|

,

where P and Q are any subroutines in the corpus. This

similarity function is the Jaccard similarity coefficient. It

scores all subroutines P and Q in the corpus, locates those

where 1 > α(P,Q) ≥ t (where threshold t is a tunable

parameter) and sends them to the next step.

To speed up the process of finding all similar subroutines

for an input subroutine P , we built an inverted index that

lists, for each n-gram with non-trivial tf-idf, the subroutines

that contain the gram. When finding candidates for P , we

enumerate all of P ’s n-grams, look each up in the index, and

then retrieve the indexed subroutines. We then score only

these returned subroutines with the full α function. Finally,

we deduplicate results before passing them to the next stage.

5.2 Finding Surprising Variable Usage

Finding surprising variable usage in a subroutine pair is

more challenging than simply finding similar subroutines.

We identify surprising variable usages in three steps: (1)

matching subroutine statements, (2) matching subroutine

variables, and (3) scoring the likelihood of copy-paste bugs

by counting “surprising” variables.

Matching subroutine statements matches each statement

in subroutine P with a “most-similar” statement in subrou-

tine Q. For example, in Figure 4, we want to match lines

9 and 21, because they appear to play the same role, even

though the lines of code are not identical. In contrast, no pro-

grammer would believe that lines 9 and 23 are at all similar.

More formally, let subroutine P consist of canonical state-

ments 〈p1, p2, ..., pk〉 and let subroutine Q consist of canon-

ical statements 〈q1, q2, ..., ql〉. A matching consists of state-

ment pairs such that if it contains (pi, qj), then pi plays the

same role in P as qj in Q. We limit ourselves to match-

ings where matched statements share an operator (i.e., ===

or while) and an operand signature (consisting of variables

vs constant values).

Algorithm 2 The heuristic score function to quantify the

properness pi and qj being matched. It returns a nonzero

value if and only if (pi, qj) is a valid match.

function MATCHSCORE(pi, qj)

if type(pi) 6= type(qj) then

return 0

k ← #shared variable names

s← 0
for n← 1, N do ⊲ N is the largest level of grams.

if n-gram(pi) = n-gram(qj) then

s← 1 + tf-idf(n-gram(pi)) + k

return s

To find statement matchings that maximize role agree-

ment between each matched pair, we propose Algorithm 2

to score a candidate statement match (pi, qj). It is designed

to embody two matching heuristics. First, pi and qj are more

likely to serve the same role if they share more variable

names. Second, pi and qj are more likely to serve the same

role if they share a larger n-gram. For example, consider

two different statements qj and qj′ in Q. If the 3-gram of

qj is the same as that of pi, but only the 2-gram of qj′ is

the same as that of pi, then the score of (pi, qj) should be

higher than that of (pi, qj′). The optimal statement matching

M∗
S is then computed by Algorithm 3 to find the maximum

weighted common subsequence with MATCHSCORE as the

weight function.

Matching subroutine variables means finding a matching

MV between pairs of variables—not statements—in sub-

http://www.petfoodindustry.com/WorkArea/java/webtoolbar.js
http://www.petfoodindustry.com/WorkArea/java/webtoolbar.js


routines P and Q. (Copy-paste bugs entail variable naming

failures.) We exploit the statement matching M∗
S that was

computed in the above step.

We first build a weighted variable mapping graph G =
(V,E), in which V consists of the set of all variables in both

subroutines. For any variable x in P and y in Q, (x, y) ∈ E

with weight w if (x, y) appears w times in identical operand

slots in matched statements (p, q) ∈ M∗
S . We obtain vari-

able matching MV by finding the maximum weighted bi-

partite matching in G.

Algorithm 3 The statement matching algorithm.

function STATEMENTMATCHING(P,Q)

⊲ P = 〈p1, p2, ..., pk〉, Q = 〈q1, q2, ..., ql〉
for j ← 0, l do

score[0, j]← 0 ⊲ Initialization
M0,j ← ∅

for i← 1, k do

score[i, 0]← 0 ⊲ Initialization

Mi,0 ← ∅
for j ← 1, l do ⊲ Max weighted common subsequence

s← MATCHSCORE(pi, qj)
score[i, j]← score[i− 1, j − 1] + s
Mi,j ←Mi−1,j−1

if s > 0 then ⊲ (pi, qj) is a valid match.

Mi,j ←Mi,j ∪ {(pi, qj)}

I ← {(i − 1, j), (i, j − 1), (i, j)}
(i∗, j∗) = argmaxi′,j′{score[i′, j′] : (i′, j′) ∈ I}

score[i, j]← score[i∗, j∗] ⊲ Pick the best match
Mi,j ←Mi∗,j∗

returnMk,l

Identifying copy-paste bugs is the final step. We now have

the strongest possible variable matching MV , as well as the

set of all variables ever matched, in the set of edges E. We

observe that there might be a copy-paste bug (pi, qj) if it

contains a variable pair (x, y) ∈ E that was unusual enough

to not be contained in MV . We thus define the conflict

ratio [14] of variable x:

γ(x) =

∑

(x,y)∈E−MV
w(x, y)

∑

(x,y)∈E w(x, y)
.

If γ(x) = 0, then all occurrences x in P correspond to

MV (x) in Q, i.e., there is no copy-paste bug related to x.

But if γ(P,Q) is very high, it is probable that P and Q

were not copy-pasted from one another, or the statements

are not correctly matched. Therefore, our system reports a

copy-paste bug for x if γ(x) is nonzero but small.

6. Experiments

We first describe some details of how we constructed the

JavaScript gram corpus and its statistical properties. We then

describe our performance in the plagiarism detection and

copy-paste bug finding tasks.

6.1 The JavaScript Gram Corpus

To build the JavaScript program corpus, we scanned the

ClueWeb09 web crawl,2 extracted all JavaScript URLs ref-

erenced by the src attribute of any <script> tags, and re-

trieved the JavaScript files from the resulting set of URLs.

We removed duplicates and finally obtained 2.8M distinct

JavaScript files. We used these programs to build our n-gram

corpus for n = 2, 3, 4 with the method described in Sec-

tion 3.3.

Most 4-grams can be encoded as strings in seconds. How-

ever, some larger 4-grams might take much longer to encode.

Therefore, we only generate 4-grams that have 40 or fewer

nodes since more than 99% of the 4-grams are smaller than

this number. The average size of 4-grams is just 4.62, with

variance 8.39. Fewer than 0.005% of the 4-grams failed the

encoding. Once all n-grams were encoded, we ran a Hadoop

program to compute an idf value for each unique n-gram.

In addition to our programmatic n-grams, we also built a

database of sequential n-grams (2 ≤ n ≤ 7). A sequential

n-gram is a sequence of operations of n consecutive state-

ments in a canonicalized JavaScript program; it uses no data

or control dependency information. We study sequential n-

grams to illustrate how program dependence information can

improve the quality of our corpus-driven analysis.

6.2 Plagiarism Detection

In this section we analyze the effectiveness of our corpus-

driven filters in improving the accuracy of plagiarism reports

from MOSS [25], a widely-used modern plagiarism detector

that can process JavaScript programs.

6.2.1 Methodology

A central difficulty in evaluating a plagiarism detection tool

is the absence of a ground truth data set, especially for

JavaScript. We therefore synthesized test sets of plagiarized

programs in the following way:

1. A set S of JavaScript programs was carefully picked from

the corpus such that it did not contain any plagiarized

code pairs, but included code pairs that looked similar

but do not appear to be plagiarized. These similar-but-

not-plagiarized code pairs were included in S to fairly

evaluate the precision of our plagiarism detectors. The

procedure to obtain S is described in Section 6.2.2.

2. Each program in S was then applied a plagiarism tech-

nique to produce the plagiarized S′. We used three

previously-proposed plagiarism techniques [16], plus one

of our own. This step produced plagiarized code pairs

for evaluating the recall of the plagiarism detectors. The

details of the plagiarism techniques are described in Sec-

tion 6.2.3.

3. We then submitted the combined set S ∪ S′ to both stan-

dalone MOSS and our filter-based plagiarism detectors.

2 http://lemurproject.org/clueweb09.php/

http://lemurproject.org/clueweb09.php/


Since we already knew the ground truth of S ∪ S′, the

precision and recall of our plagiarism detectors could be

easily evaluated.

6.2.2 Test Sets

The test data was generated in the following way. We first

randomly picked a set S of 1,000 JavaScript programs of

medium size (containing dozens to hundreds of statements)

from the corpus. These programs were then submitted to

both MOSS and our plagiarism detectors to obtain hints

of possibly plagiarized code pairs. We manually checked

the reported suspects, and if a plagiarized code pair was

verified, one program from the pair would be removed from

S. All programs triggering false alarms from MOSS and our

plagiarism detectors were retained in S, including 10 pairs

that looked similar but did not appear to be plagiarized.

We also identified 21 programs from the random set as

“commonly written code,” which anyone would write in-

dependently to achieve certain functionalities. For instance,

dozens of consecutive assignments would appear in many

object constructors, and should never be considered as pla-

giarism. Another example for commonly written code is a

function to get a cookie value for a specific key. We ar-

gue that such code snippet should not be considered as pla-

giarism since there is a well-known common programming

logic to write such a function.

The resulting S contained 212 programs, including 21

programs containing commonly written code. We then man-

ually went through all programs in S to ensure that the set

did not contain any plagiarized code pairs.

6.2.3 Plagiarism Techniques

We synthesized the test sets of plagiarized programs us-

ing the following three previously-proposed plagiarism tech-

niques [16], plus one of our own.

Identifier Renaming (IR) is simple: just change the

names of all identifiers in the original code snippet. State-

ment Reordering (SR) exchanges the order of two state-

ments that do not have data or control dependencies; this

method will deceive sequence-based plagiarism detectors

but is only possible when the code contains many inde-

pendent statements. Code Insertion (CI) inserts off-topic

nonsense statements between real lines of code, thereby “di-

luting” and breaking up the plagiarized code. Finally, Code

Optimization (CO) rewrites the original program to be log-

ically equivalent but superficially distinct. This transforma-

tion can change the control and data flow, making it very

difficult for conventional methods to detect. It is also the

only technique we did not derive from Liu, et al. [16].

6.2.4 Experimental Setup

We ran standalone MOSS with default parameters as the

baseline detector. Our plagiarism detector used MOSS to

generate the initial results, then applied our programmatic

n-gram post-filters with n = 2, 3, 4, and the tf-idf thresh-

old θ = 6.0. An n-gram with 6.0 tf-idf or higher appears

only once in 400 programs on average and thus is quite dis-

tinctive. For each of the four test sets, MOSS emitted up

to 250 results (and possibly fewer). Because of our test set

generation procedure, we know whether each MOSS answer

is correct or incorrect. The goal of the plagiarism detection

system is to correctly retrieve all the correct answers, and

none of the incorrect ones. This method appears in Table 1

as PDG-4GRAM-IDF.

To evaluate the effectiveness of the tf-idf measure, we

compared against an alternate version of our post-filter that

does not use any tf-idf information. Put another way, this fil-

ter sets its threshold to 0, so that no n-grams are disqualified

on the grounds of being too commonplace. This method is

thus similar to that of existing PDG-based plagiarism de-

tectors [16]. (We would like to compare our system’s per-

formance directly against an extant PDG-based plagiarism

detector, but unfortunately we know of no publicly available

such detector that can process JavaScript.) This method ap-

pears in Table 1 as PDG-4GRAM.

We also examined the utility of program dependence in-

formation. The SEQ-4GRAM-IDF method uses tf-idf infor-

mation that is computed with the conventional sequential

n-grams. Finally, we tried a mechanism that uses no tf-idf

information and sequential grams only; it appears as SEQ-

7GRAM.

Precision Recall

Set MOSS SEQ-7GRAM ∆ MOSS SEQ-7GRAM ∆
IR 73.20% 73.79% 0.59% 95.81% 95.81% 0.00%

SR 46.00% 49.78% 3.78% 98.29% 98.29% 0.00%

CI 49.60% 54.63% 5.03% 64.92% 64.92% 0.00%

CO 64.40% 65.45% 1.05% 86.10% 86.10% 0.00%

Set MOSS PDG-4GRAM ∆ MOSS PDG-4GRAM ∆
IR 73.20% 82.87% 9.67% 95.81% 93.72% -2.09%

SR 46.00% 62.50% 16.50% 98.29% 98.29% 0.00%

CI 49.60% 67.39% 17.79% 64.92% 64.92% 0.00%

CO 64.40% 73.94% 9.54% 86.10% 74.33% -11.76%

Set MOSS SEQ-4GRAM-IDF ∆ MOSS SEQ-4GRAM-IDF ∆
IR 73.20% 91.84% 18.64% 95.81% 94.24% -1.57%

SR 46.00% 77.24% 31.24% 98.29% 95.73% -2.56%

CI 49.60% 75.51% 25.91% 64.92% 58.12% -6.81%

CO 64.40% 79.29% 14.89% 86.10% 83.96% -2.14%

Set MOSS PDG-4GRAM-IDF ∆ MOSS PDG-4GRAM-IDF ∆
IR 73.20% 86.06% 12.86% 95.81% 93.72% -2.09%

SR 46.00% 70.44% 24.44% 98.29% 95.73% -2.56%

CI 49.60% 73.21% 23.61% 64.92% 64.40% -0.52%

CO 64.40% 77.78% 13.38% 86.10% 82.35% -3.75%

Table 1: Accuracy of MOSS (baseline) and our tools that

apply different filters on MOSS reports. SEQ represents

our filter that uses sequential n-gram and PDG represents

programmatic n-gram filter. Filters with the suffix -IDF use

tf-idf values learned from analyzing the corpus to discard

unimportant n-grams. The ∆ columns show the differences

in precision and recall after applying our filters to MOSS

output.



6.2.5 Evaluation Results

Table 1 shows precision and recall for standalone MOSS as

well as our filter-based systems. In each setting, we choose

the value of n in n-gram such that it achieves the best F1

score,3 which is commonly used to evaluate systems that

emphasize both precision and recall. (Thus, we use 4-grams

for all systems except for SEQ-7GRAM.)

As can be seen, all post-filters that use the tf-idf infor-

mation, which we collected from the corpus, are able to ob-

tain large increases in precision across all four test sets. Re-

call gets worse in all cases, but these decreases are small

compared to precision gains, and are especially small in the

PDG-4GRAM-IDF filter. In other words, F1 scores for all our

filters are significantly higher than the F1 score for baseline

MOSS reports. Thus, a corpus-driven approach can signifi-

cantly improve the accuracy of a plagiarism detection tool.

The PDG-4GRAM filter outperformed SEQ-7GRAM, show-

ing that programmatic n-grams could yield better accuracy

than sequential n-grams. However, our PDG-4GRAM-IDF

filter did not beat SEQ-4GRAM-IDF in precision. This is be-

cause MOSS is itself sequence-oriented. When MOSS in-

correctly removed true plagiarized pairs, it made dispropor-

tionately more errors for pairs that PDG-4GRAM-IDF would

retain (over pairs that SEQ-4GRAM-IDF would retain). If we

included all of the false negatives that MOSS removed be-

fore applying our filters, on average PDG-4GRAM-IDF would

have 75.52% precision and 84.72% recall overall, whereas

SEQ-4GRAM-IDF would have 76.12% precision and 83.29%

recall overall. Of our four tasks, the CI task should present

the biggest challenge for sequential techniques, which have

no obvious way to avoid the inserted nonsense code. In-

deed we can observe that CI is the biggest opportunity for

programmatic n-grams in our experiments that used both

MOSS and the false negatives: the sequential n-grams yield

precision of 80.85% and recall of 65.52%, while program-

matic n-grams yield a near-identical precision of 80.60%

with recall improved to 73.33%.

6.3 Copy-Paste Bug Finder

We evaluate our tool for finding two types of copy-paste

bugs. One is inter-program copy-paste bugs introduced by

copy-pasting code from another program (e.g., a program

found in the Internet). The second type is intra-program

bugs that are introduced by a programmer by copy-pasting

from her own code. In total, our system detected as many as

15 previously unknown bugs in source code that we had not

previously seen.

6.3.1 Experimental Setup

We randomly chose a set S of 100,000 programs to evaluate

our copy-paste bug finder. (Note, we still use the corpus of

n-grams that we constructed from 2.8 million programs for

this analysis.) We used our tool to find intra-program copy-

3 F1 = 2× precision×recall

precision+recall

Errors

reported

Bugs

verified

Careless

programming

False positives
I II III

Intra-program 46 11 0 31 0 4
Inter-program 391 18 24 222 49 78

Table 2: The numbers of erroneous subroutines that contain

intra-program and inter-program copy-paste bugs.

paste bugs in each program in the set S. In addition, we

randomly chose a smaller set SS of 5,000 programs from

S. We checked for inter-program copy-paste bugs between

every function in SS and all the functions in the larger set

S. We manually examined the reports generated by our tool

to distinguish between true and false positives.

We used our corpus-driven code clone detection tech-

nique (Section 5.1) to locate copy-pasted subroutines and

then used our heuristics to find copy-paste bugs (Sec-

tion 5.2). We also implemented the heuristics used in CP-

Miner [14] to find code clones, and compared the accuracy

of our heuristics and theirs.

We used n = 3, θ = 6.0, and t = 0.9 to locate copy-

paste subroutines. We used N = 4 (the largest level of

grams) when finding variable mappings. We evaluated the

effectiveness of our copy-paste bug finder by computing

precision and recall for the emitted bug reports. Computing

precision is straightforward. For recall, we reported only the

absolute number of bugs found, because there is no feasible

solution to know all the copy-paste bugs that exist in 100,000

programs.

6.3.2 Evaluation Results

Table 2 shows the numbers of erroneous subroutines that

contain intra-program and inter-program bugs we have

found in S. We successfully found 29 previously-unknown

bug instances in S. In addition, we also identified some

“carelessly written” [14] copy-paste code that has not yet

introduced a bug, but could become buggy in the future. For

example, one could copy-paste a function and incorrectly

rename an identifier to another declared variable. If the ex-

pected variable name and the incorrectly renamed variable

name both happen to carry the same value, then the pro-

gram would still execute correctly. However, this fragile

code could easily become buggy due to updates in future.

Combining the real bugs and all carelessly programmed

code, we achieved 23.9% accuracy for intra-program bugs.

For inter-program bugs, the accuracy is only 10.7%. One rea-

son is that certain false positives appear several times in our

reports when the same code appears in different programs

in S. When we remove the redundant false positives, the

accuracy goes up to 14.4%. Also, because the same erro-

neous code could have been copied and used in many differ-

ent websites, a few true bugs appear more than once in S.

Among the 29 true bugs we find 13 of them are unique. The

unique bugs and their source is listed in Table 3.

When we applied CP-Miner’s heuristics [14] instead of

ours, we got 52 reports. It consisted of 1 intra-program bug,



URL (Line, Character) Bug Description

http://www.pets-memories.com/js/wz_tooltip.js (161, 56) t_bc should be t_bgc

http://wiki.ext-livegrid.com/chrome/common/js/jquery.js (23, 13635)
removeAttribute() should be called
before overwriting bq

http://talentedtom.liquidpoker.net/calc/codeBehind.js (1114, 28) selectedCard should be boardSelected

http://www.vcdd.org.uk/js/slideshowPart1.js (667, 24) slide should be thisSlide

http://www.tutvid.com/SpryAssets/xpath.js (685, 43) input should be n

http://www.iconutils.com/menu.js (50, 10) document should be this.o.ref

http://www.shopconcordmall.com/includes/js/fading_slideshow.js (138, 29) obj should be this

http://bostonballet.org/WorkArea/java/webtoolbar.js (382, 9) curleft should be curTop

http://www.myradiationsign.com/xp/xp5_searchbar.js (983, 33) PARTIALxtablestr should be PARTIALxstr
http://es.tuaviso.net/template/_global/js/drop.js (593, 32) tempSelected should be tempSelectedn3

http://minnesota.kudzu.com/content/includes_kudzu/video3/js/util.js (169, 29) funcName should be callback

http://www.greenindiastandards.com/includes/pull-down3.js (646, 1) top should be left

http://homefreetrade.com/js/floatbox.js (1715, 7) this should be document

Table 3: List of unique bugs found in 100,000 randomly selected programs.

1 inter-program bug, 8 carelessly programmed code snip-

pets, and the rest were false positives. Although a higher ac-

curacy was achieved by CP-Miner’s heuristics, much fewer

bugs were reported, because CP-Miner only reports an error

only if it discovers a suspiciously unchanged identifier. This

strategy helps CP-Miner to achieve a good accuracy, but sac-

rifices its recall, and thus limits its usefulness.

Although we found a good number of real bugs, we were

expecting much more from a set of 100k programs. After

checking the set, we found that about half of the programs

are simple JavaScripts generating advertisements, and there

are many program-generated programs as well. We believe

that we could discover more bugs if we construct a set that

contains higher fraction of human-written code.

6.3.3 Discussion and Failure Types

We were able to classify all but one false positive under three

types.

Type I false positives result when the bug finder mismatches

two statements in two subroutines. They account for 222 of

the 384 false positives. The mismatch may happen because

the subroutines are not in fact copy-pasted. It can also hap-

pen when the subroutines match, but the statements do not.

Figure 5 shows an example of Type I false positive: func-

tion echeck is a refinement of function emailCheck, having

added an extra statement at line 8. Our copy-paste bug finder

mismatched line 8 to line 3. To fix this, we plan to refine the

statement matching algorithm to have stricter conditions on

whether two statements can be matched.

Type II false positives result when one subroutine uses the

same variable to store several independent values, while the

other subroutine uses different variables. They account for

49 of the 384 false positives. These false positives can be

eliminated by using a data dependence analysis to remove

all the name dependencies by renaming the variables.

Type III false positives happen for various reasons and ac-

count for 82 of the 222 false positives. Figure 6 shows one

interesting example where the two subroutines contain code

snippets that do exactly the same thing in different ways:

1 function emailCheck (emailStr) {

2 var emailPat = /^(.+)@(.+)$/;

3 var validChars = "[a-zA-Z0-9_-]";

4 ...

5 }

6 function echeck (emailStr) {

7 var emailPat = /^(.+)@(.+)$/;

8 var specialChars

= "\\(\\)<>@,;:\\\\\\\"\\.\\[\\]";

9 var validChars

= "\[^\\s" + specialChars + "\]";

10 ...

11 }

Figure 5: An example of a Type I false positive bug.

1 function foo(rvs) {

2 var h = parseInt(rvs[i]).toString(16);

3 if (h < 16) {

4 h = "0" + h

5 }

6 }

7 function bar(rvs) {

8 var h = parseInt(rvs[i]);

9 var s = h.toString(16);

10 if (h < 16) {

11 s = "0" + s

12 }

Figure 6: An example of a Type III false positive bug.

function foo stores the string of a number in variable h,

while function bar stores the number in h and the string in s.

They both use h < 16 in their if statements, which is still

correct in foo owing to the type coercion rules of JavaScript.

We cannot resolve this unless we have a good way to identify

that both h and s hold the same “semantic value” in bar.

7. Related Work

The most closely-related is natural language processing

work that exploits corpus statistics. A common way to

use corpus statistics in information retrieval is via the stan-

dard tf-idf formulation [26]. Brants, et al. [2] described an

n-gram language model that featured a very large Web-

derived training corpus and a simple method for smooth-

http://www.pets-memories.com/js/wz_tooltip.js
http://wiki.ext-livegrid.com/chrome/common/js/jquery.js
http://talentedtom.liquidpoker.net/calc/codeBehind.js
http://www.vcdd.org.uk/js/slideshowPart1.js
http://www.tutvid.com/SpryAssets/xpath.js
http://www.iconutils.com/menu.js
http://www.shopconcordmall.com/includes/js/fading_slideshow.js
http://bostonballet.org/WorkArea/java/webtoolbar.js
http://www.myradiationsign.com/xp/xp5_searchbar.js
http://es.tuaviso.net/template/_global/js/drop.js
http://minnesota.kudzu.com/content/includes_kudzu/video3/js/util.js
http://www.greenindiastandards.com/includes/pull-down3.js
http://homefreetrade.com/js/floatbox.js


ing probability estimates in the face of sparse data. Recent

research [8, 21, 24] showed evidence that various natural

language processing techniques, including the sequential n-

gram model, can be applied to programming languages as

well for code completion. But to our knowledge, the n-gram

model has not been applied to rank the importance of sub-

graphs in a program dependency graph to aid program anal-

ysis. We also contribute by building two program analysis

tools based on this information.

Plagiarism Detection — To our knowledge, we are the first

to have used large program corpus statistics to weigh the

importance of code segments, and apply that for plagiarism

detection. Existing plagiarism detection algorithms can be

categorized into one of the following types: string-based,

token-based [7, 11, 22, 25], abstract-syntax-tree-based [4,

10], and program-dependence-graph-based [6, 13, 16].

One of the most widely used plagiarism detection sys-

tems is MOSS [25]. It supports JavaScript. It uses a local

fingerprinting algorithm that hashes sets of tokens in a fixed-

size window that scans over the entire program text, and im-

proves the results with secret heuristics. It fails to detect pla-

giarized code that introduces many small local changes (e.g.,

code insertion). Our program dependence graph based solu-

tion addresses this problem. Also, MOSS has no notion of

the importance of code segments.

GPLAG [16] transforms program statements into pro-

gram dependence graphs, and then attempts to find isomor-

phic subgraphs among these graphs. However, like MOSS, it

does not have a notion of the importance of code segments.

Green, et al. [7] proposed to detect plagiarism by finding

programs that share unusual sequential trigrams, where a tri-

gram is more unusual if it occurs in fewer programs. How-

ever, like MOSS, this method fails for plagiarized code that

is obfuscated with code insertion, because its analysis is not

based on a program dependence graph. Also, they derive

the importance of a trigram from a small set of programmer

specified programs, not a large corpus built from the Web.

Copy-paste Bug Finding — Copy-paste bugs are a known

category of software defect [11]. But our system is the first

tool that finds copy-paste errors in JavaScript code, and

also the first to use corpus-driven program analysis to find

potential copy-paste candidates. The most relevant work is

CP-Miner et al. [14], which finds copy-paste bugs in a large

software system. It detects code clones by finding frequent

statement sequences, and then finds copy-paste bugs through

detecting inconsistencies between code clones. It only finds

bugs when a variable name remains unchanged by mistake

when copy-pasting code. In contrast, our system is capable

of detecting erroneous renaming of variable names. Jiang, et

al. [10] detect code clone bugs by finding inconsistencies

between abstract syntax trees using various heuristics. They

find code clone bugs that cannot be found by CP-Miner, but

their overall precision is lower than CP-Miner and our tool.

8. Conclusions

We have proposed a technique for processing large corpora

of source code in order to build a statistical summary of dif-

ferent programming patterns. The result is a general-purpose

statistical resource that can be applied to programming prob-

lems. We demonstrated its utility in finding plagiarized code

pairs, and obtained much higher precision rates than a state-

of-the-art tool. We also used the statistical resource to locate

29 previously-undiscovered copy-paste programming errors,

asking a human observer to examine just a handful of candi-

dates for each true error found.

A. Canonical Transformation

In this section, we describe the function that transforms a

JavaScript program to its canonical form. While we handle

most common features in the JavaScript language, we do not

handle some features such as dynamic scoping and exception

handling precisely (Section A.5). As a result, we may miss a

few dependencies in the program dependency graph (PDG)

we construct. Fortunately, our statistical corpus-driven ap-

proach can tolerate these inaccuracies in the PDGs.

The canonical transformation functionχ takes a JavaScript

statement or an expression as input, and transforms it into a

pair (val , stmt∗), where stmt∗ is a list of canonical state-

ments that describes the functionality of the input statement

or expression, and val holds the result of the statement or

expression. Depending on the type of the input statement or

expression, val can be an l-value, a constant literal, or none

is no result is generated.

To understand how the transformation rules are stated, let

us start with the following example. Consider the following

rule:

expr → expr1 op expr2
(val1, S1) = χ(expr1)
(val2, S2) = χ(expr2)
var = NewTemp()

χ(expr) = (var , 〈S1, S2, var = val1 op val2;〉)

The first line specifies the context-free reduction rule that

is used to parse the expression. In this case, it says that the

above rule is applied when the input expression is a binary

operation. The remaining equations above the horizontal

line are the preconditions for the rule, and post-condition

of the transformation rule is listed below the line. So the

above rule states that if expr1 is transformed into (val1, S1)
and expr2 is transformed into (val2, S2), and if we create

a temporary variable var through the NewTemp() special

function, then the resulting canonical statement consists of

S1 and S2, followed by the statement that assigns the results

of expr1opexpr2 into var .

For convenience, we use the following two special func-

tions to simplify the representation: the NewTemp() function

that returns an unused name for creating temporary vari-

ables, and the Replace(stmt∗,var1,var2) function that



replaces var 1 with var2 in stmt∗ and returns the new state-

ments.

A.1 Simple Expressions and Statements

We start with defining the canonical transformation for an

expression in JavaScript. If the expression is a variable or a

literal (a constant or a function literal), the transformation is

straightforward:

expr → var

χ(expr) = (var , 〈〉)

expr → literal

χ(expr ) = (literal , 〈〉)

The transformations for the unary, binary and ternary

operations are defined as follows. We do not perform any

short circuit for logical operators and ternary operators since

the goal of this transformation is to preserve semantics, not

optimization.

expr → op expr1
(val1, S1) = χ(expr1)
var = NewTemp()

χ(expr) = (var , 〈S1, var = op val1;〉)

expr → expr1 op expr 2
(val1, S1) = χ(expr1)
(val2, S2) = χ(expr2)
var = NewTemp()

χ(expr) = (var , 〈S1, S2, var = val1 op val2;〉)

expr → expr1 ? expr2 : expr3
(val1, S1) = χ(expr1)
(val2, S2) = χ(expr2)
(val3, S3) = χ(expr3)
var = NewTemp()

χ(expr) = (var , 〈S1, S2, S3, var = val1 ? val2 : val3;〉)

The naive way to transform an assignment is to get the

result of its right-hand-side expression, and assign it to its

left-hand-side expression (which should be an l-value), but

this generates redundant dummy assignments since a new

temporary variable might be generated by its right-hand-

side expression, causing a change to the distribution of the

grams. Therefore we check and remove the temporary vari-

able when necessary.

expr → expr1 = expr2
(val1, S1) = χ(expr1)
(val2, S2) = χ(expr2)

val2 is a variable created by NewTemp()

χ(expr) = (val1, Replace(S1,val1,val2))

expr → expr1 = expr2
(val1, S1) = χ(expr1)
(val2, S2) = χ(expr2)

val2 is an ordinary variable or a literal

χ(expr ) = (val1, 〈val1 = val2;〉)

For compound assignments (such as += and -=) and count

operations (++ and --), we first transform them into the

form of expr1 = expr1 op expr2, then use the above rules

to complete the transformation. We omit the rules here.

After the transformations for expressions are defined, we

can now show some transformation for simple statements

in JavaScript. First, we simply throw all no-ops away (it

won’t cause any problem even when the no-op is in an empty

loop—see below). And for those statements containing only

a single expression, we use the following transformation:

stmt → expr;

(val , S) = χ(expr )

χ(stmt) = (none, S)

A.2 Functions

For the convenience of program dependence analysis, we

add a begin and an end statement in the canonical form

of a function:

expr → function identifier(var∗) { stmt∗ }
(none, S) = χ(stmt∗)

χ(expr ) =
(function identifier(var∗){begin;S end;}, 〈〉)

Anonymous functions without names are similar.

For function call expressions, we can either use a name

with an argument list to call a function or write down an

anonymous function literal before providing the argument

list. Since JavaScript treats a named function as a function

object referenced by a variable of the given name, these two

syntices of function calls can actually be unified. Hence the

transformation of a function call with n arguments is defined

as:

expr → expr0(expr1,..., exprn)

(val0, S0) = χ(expr0)
(val1, S1) = χ(expr1)

...

(valn, Sn) = χ(exprn)
var = NewTemp()

χ(expr ) =
(var , 〈S0, S1, ..., Sn, var = val0(val1,...,valn);〉)

Instead of using a stack to manage the arguments in other

three address code, we preserve the whole list of arguments

in the function call statement. And we enforce every function

call to have a variable to store the returned value, even if it

has none, to simplify the canonical form.

The new expression is similar to function calls and we

omit its rule here.



A.3 Field and Array Accesses

In JavaScript, field and array accesses are actually the same

thing. The syntices are interchangeable if the index of an

array access is known at compile time. However, to retain

more high-level code structures provided by programmers,

our canonical form distinguishes these two forms of property

accesses. Furthermore, the transformation should return a

dot or bracket expression as val when the field or array

access is used as an l-value. We also design it to return

the dot or bracket expression if it serves as a function call

to preserve the code structure. The rules are presented as

follows.

expr → expr1.identifier

(val1, S1) = χ(expr1)
expr is an r-value

var = NewTemp()

χ(expr) = (var , 〈S1, var = val1.identifier;〉)

expr → expr1.identifier

(val1, S1) = χ(expr1)
expr is an l-value or a function in a call expression

χ(expr ) = (val1.identifier , S1)

expr → expr 1[expr2]

(val1, S1) = χ(expr1)
(val2, S2) = χ(expr2)

expr is an r-value

var = NewTemp()

χ(expr) = (var , 〈S1, S2, var = val1[val2];〉)

expr → expr 1[expr2]

(val1, S1) = χ(expr1)
(val2, S2) = χ(expr2)

expr is an l-value or a function in a call expression

χ(expr ) = (val1[val2], 〈S1, S2〉)

A.4 Control Flow Statements

To simplify the control flow statements, the condition com-

ponents in these statements must be a single value in their

canonical form. Therefore the transformation for the if

statement is:

stmt → if (expr) stmt1 else stmt2
(val , S) = χ(expr)

(none, S1) = χ(stmt1)
(none, S2) = χ(stmt2)

χ(stmt) = (none, 〈S, if (val) {S1 } else {S2 }〉)

The transformation for the while statement is similar,

except that we need to update the condition value at the end

of the loop body:

stmt → while (expr) stmt1
(val , S) = χ(expr)

(none, S1) = χ(stmt1)

χ(stmt) = (none, 〈S, while(val) {S1 S }〉)

For the do-while and for loops, since they can be eas-

ily transformed to equivalent while loops, we apply such

transformations before generating the canonical forms:

stmt → do stmt1 while(expr);
(none, S1) = χ(stmt1)
(val , S) = χ(expr )

χ(stmt) = (none, 〈S1, S, while (val) {S1 S }〉)

stmt → for (expr1; expr2; expr3) stmt4
(val1, S1) = χ(expr1)
(val2, S2) = χ(expr2)
(val3, S3) = χ(expr3)
(none, S4) = χ(stmt4)

χ(stmt) = (none, 〈S1, S2, while(val2) {S4 S3 S2 }〉)

For the for-in and switch statements, since it changes

the code a lot to transform them to their while and if equiv-

alences and thus loses some high-level structures, we keep

these two constructs in the canonical form with their com-

ponents properly transformed. For statements continue,

break, return, we simply keep them the same after their

components are canonicalized.

A.5 Limitations

We may miss a few dependencies as we do not handle dy-

namic scoping (with statement). For try-catch-finally

statements, we only keep the try block and the finally

block, assuming the program would not generate any ex-

ception because it is hard to pinpoint where an exception

happens based on only the source code. Since most catch

blocks only do error handling and do not serve an important

functionality in a function, we believe this simplification has

only very little effect on our analysis.
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