

Control synthesis for large collections of systems with counting constraints

Necmiye Ozay, EECS University of Michigan, Ann Arbor

ExCAPE Webinar February 1, 2016

Research partly funded by

Petter Nilsson

Johanna Mathieu

Motivation and applications

SMART GRID

- Large-scale, complex, distributed sensing, actuation and control systems:
 - Smart grid, Smart buildings, Aircraft systems, Automotive, Robotics, Manufacturing & Automation, Security & Surveillance

Observations:

- A very large number of (discrete & continuous) states and decision variables
- Complex requirements → need controllers too complex to be designed/analyzed b Scalable

Scalable tools for control design and verification (theory and software) are lagging!!!

Formal methods in control

- Models for:
- the system (usually hybrid/ switched ODEs, with continuous/ discrete inputs, disturbances and parametric uncertainty)
- the environment (faults, external events)
- Formalized assumptions and requirements
- linear temporal logic and its extensions
- Methods for verification and synthesis
- algorithms that can process formal models and requirements to do analysis and control synthesis

Correct by construction! ³

System models

Differential equations (continuous-time):

$$\dot{x} = f(x, u_c, u_d, \epsilon_c, e)$$

Or, difference equations (discrete-time):

 $x(k+1) = f(x(k), u_c(k), u_d(k), \epsilon_c(k), e(k))$

 $x \in \mathcal{X}$: state $u_c \in \mathcal{U}_c$: continuous control input $u_d \in \mathcal{U}_d$: discrete control input

 $\epsilon_c \in \mathcal{D}_c$: disturbance input

 $e \in \mathcal{D}_d$: discrete uncontrollable input

Some characteristics:

- Hard constraints (on input and states)
- Infinite horizon specifications
- Hybrid (either the system or the controller or both)
- Robust/reactive

 $\mathcal{X} \subset \mathbb{R}^N$

State-of-the-art in formal methods in control (incomplete list!)

- Hard state/input constraints, hybrid dynamics, complex specifications (e.g., temporal logics)
 - Belta, Fainekos, Girard, Liu, Pappas, Tabuada, Wongpironsarn, Zamani
- Applications (with "small" state-space dim.)
 - Robotics, building thermal management, adaptialized aircraft subsystems, traffic control
- "Medium"-scale systems
 - Monotonicity (Hafner & Del Vecchio 11, Coogan & Arcak 15)
 - Multi-scale abstractions for safety (Girard et al. 13)
- "Large"-scale (but not synthesis)
 - Parametric verification of rectangular hybrid automata (Johnson & Mitra 12)
 - Abstractions of large collections of stochastic systems (Soudjani & Abate 15)

Recurring theme:

structural properties

Large collections of systems

Example 1: Emergency response with a robotic

Creative commons public license

swarm

- Deploy a large collection of robots (e.g., quadrotors, ground vehicles) for search and rescue mission
- Plan trajectories by taking dynamic constraints into account
- Requirements:
 - <u>Enough many</u> robots in certain areas at any given time
 - <u>Not too many</u> robots in certain regions (danger zones)
 - Collision avoidance
 - Charging/reporting constraints

Large collections of systems

Example 2: Coordination of thermostatically controlled loads (TCLs)

TCLs

- Thermostatically controlled loads (e.g., refrigerators, air conditioners, water heaters) for demand response
- Thermal dynamics can be controlled via ON/OFF switches
- Requirements:
 - <u>Not too many</u> TCLs ON at the same time (to avoid line overload)
 - <u>Enough many</u> ON all the time (to utilize renewable energy)
 - Local temperature constraints (never out of desired temperature range)

Mathieu, Koch, Callaway, IEEE Trans. on Power Systems

Common structural properties

- Large number of systems, small number of classes
- Counting constraints: "how many in each mode?", "how many in what region?"
- Identity of individual systems is not important

For simplicity, assume:

- dynamics are identical within each class
- (wlog) there is only one class

Mathematical formulation: TCLs

The temperature θ in a room with a TCL has dynamics

$$\dot{\theta}_i = \begin{cases} f_{on}(\theta), & \text{ if TCL is on} \\ f_{off}(\theta), & \text{ if TCL is off} \end{cases}$$

Suppose we have a collection of rooms with TCL's $\{\theta_i\}_{i \in [N]}$.

• Customers: Want room temperature to be close to a desired temperature θ_i^{des} , but small deviations are allowed.

$$\|\theta_i - \theta_i^{des}\| \le \Delta \tag{1}$$

• Utility company: Wants to control aggregate demand, i.e. the number of TCLs that are on

$$\sum_{i=1}^{N} \mathbb{1}_{\{\text{TCL } i \text{ is on}\}}$$
(2)

Goal: Find a switching (i.e., on/off) strategy that exploits the flexibility in (1) so that (2) can be controlled.

Mathematical formulation: General

• N identical switched system with M modes:

$$\dot{x}_i(t) = f_{\sigma_i(t)}(x_i(t)), \quad \sigma_i : \mathbb{R} \mapsto [M],$$

- Mode-specific unsafe sets: \mathcal{U}_m , $m \in [M]$
 - Equivalent to forced mode switches.
- Mode-counting bounds:

$$\underline{K}_m \le \sum_{i=1}^N \mathbb{1}_m(\sigma_i(t)) \le \overline{K}_m \tag{3}$$

Want to synthesize a switching strategy σ_i such that (3) satisfied over time.

Structural property: both the dynamics and the specification (counting constraints) are permutation invariant!

Solution overview

- Construct symbolic abstractions and aggregate dynamics and define "equivalent" problems on these structures
- (Analyze abstractions to understand fundamental limitations if any)
- An optimization-based solution approach
- Analysis of the solution approach

Abstraction of individual dynamics

• Assume dynamics are δ -GAS with \mathcal{KL} functions β_i

$$\|\phi_t^i(x) - \phi_t^i(y)\|_{\infty} \le \beta_i \left(\|x - y\|_{\infty}, t\right).$$
(4)

• With discretization in time (τ) and space (η) , an ϵ -approximate bisimilar model is obtained if $\beta_i(\epsilon, \tau) + \frac{\eta}{2} \leq \epsilon$.

Abstraction of individual dynamics

• Assume dynamics are δ -GAS with \mathcal{KL} functions β_i

$$\|\phi_t^i(x) - \phi_t^i(y)\|_{\infty} \le \beta_i \left(\|x - y\|_{\infty}, t\right).$$
(4)

 v_2

 v_6

 v_{10}

 v_{14}

 v_3

 v_7

 v_{11}

 v_{15}

• With discretization in time (τ) and space (η) , an ϵ -approximate bisimilar model is obtained if $\beta_i(\epsilon, \tau) + \frac{\eta}{2} \leq \epsilon$.

• Mode 1 abstraction

Abstraction of individual dynamics

• Assume dynamics are δ -GAS with \mathcal{KL} functions β_i

$$\|\phi_t^i(x) - \phi_t^i(y)\|_{\infty} \le \beta_i \left(\|x - y\|_{\infty}, t\right).$$
(4)

• With discretization in time (τ) and space (η) , an ϵ -approximate bisimilar model is obtained if $\beta_i(\epsilon, \tau) + \frac{\eta}{2} \leq \epsilon$.

Mode 2 abstraction

mode-transition graph G = (V, E)

Aggregate dynamics on graph

Let $V = \{v_1, \ldots v_K\}$ denote the nodes of mode-transition graph G = (V, E). Introduce the states $w_k^{m_1}$ and $r_k^{m_1, m_2}$.

- w_m^i represents number of systems in mode m at v_k .
- $r_k^{m_1,m_2}$ represents number of systems at v_k that switch from m_1 to m_2 .
- The dynamics become

$$(w_k^{m_1})^+ = \sum_{j \in \mathcal{N}_k^{m_1}} \left(w_j^{m_1} + \sum_{m_2} r_j^{m_2, m_1} - r_j^{m_1, m_2} \right),$$

• Constrained control actions:

$$0 \le \sum_{m_2} r_k^{m_1, m_2} \le w_k^{m_1},$$

• Compact description: $\mathbf{w}^+ = A\mathbf{w} + B\mathbf{r}$

Equivalent problem on aggregate dynamics

Theorem 1:

Consider aggregate dynamics $\Sigma_G : \mathbf{w}^+ = A\mathbf{w} + B\mathbf{r}$ with safety and mode-counting constraints:

$$w_k^m(t) = 0 \quad \forall k \in U_m, \tag{5}$$

$$\underline{K}_m, \le \sum_{i \in [N]} w_i^m(t) \le \overline{K}_m.$$
(6)

Then,

- if ∃ sequence of control inputs r^ω for Σ_G that enforce (5) and
 (6) with U_m + B_ε, then ∃ a solution to the original problem.
- if ∄ a sequence of control input r^ω for Σ_G that enforces (5) and (6) with U_m − B_ε, then no solution to the original problem.

We will focus on aggregate dynamics. We need infinite horizon strategies!

Solution strategy: from a given initial state, steer the system, while respecting the constraints, to a **nice state** from which a periodic input suffices.

Controllability-like conditions

Solution strategy: from a given initial state, steer the system, while respecting the constraints, to a **nice state** from which a periodic input suffices.

- Let's put the mode-counting constraints aside.
- Are there any fundamental limitations on what states can be reached from an initial condition?

Definition: The period n of a strongly connected graph is the greatest common divisor of the lengths of its cycles.

Theorem 2: If the connected components of mode-transition graph has period n=1, any state is reachable from any other state (within the connected component). If n>1, then the reachable states live on a hyperplane arrangement with n hyperplanes.

Solution strategy

Solution strategy: from a given initial state, steer the system, while respecting the constraints, to a **nice state** from which a periodic input suffices.

- **Prefix:** for a fixed horizon T, given initial state, we will steer the state at time T to "**nice**" cycles
- **Suffix:** let individual systems circulate in the cycles

Cycle terminology

- Cycle $C = \{v_{c_1}, \dots, v_{c_{|C|}}\}$ in G
- A cycle assignment for C is a function $\alpha : C \mapsto \mathbb{R}^+$.

Mode-counts on for a cycle assignment:

- Max-count Ψ^m(C, α): maximal number of individual systems simultaneously in mode m when circulating α in C:
- Min-count $\underline{\Psi}^m(C, \alpha)$: minimal number of individual systems simultaneously in mode m when circulating α in C:

• Big cycle C_1 , assignment $\alpha_1 = [1, 2, 0, 2, 3]$, gives red counts

$$\underline{\Psi}(C_1, \alpha_1) = 2, \quad \Psi(C_1, \alpha_1) = 5$$

Mode-counting constraints $\underline{\Psi}^{m}(C, \alpha) \geq \underline{K}_{m}, \ \overline{\Psi}^{m}(C, \alpha) \leq \overline{K}_{m},$ can be represented as linear constraints $\underline{K}_{m}\mathbf{1} \leq Y_{C}^{m}\alpha \leq \overline{K}_{m}\mathbf{1}$

 Y_c^m is a circular matrix.

• Big cycle C_1 , assignment $\alpha_1 = [1, 2, 0, 2, 3]$, gives red counts

$$\underline{\Psi}(C_1, \alpha_1) = 2, \quad \overline{\Psi}(C_1, \alpha_1) = 5$$

• Small cycle C_2 , assignment $\alpha_2 = [3, 0, 2]$, gives red counts

$$\underline{\Psi}(C_2, \alpha_2) = 0, \quad \overline{\Psi}(C_2, \alpha_2) = 3$$

Solution via linear programming

For cycles C_1, \ldots, C_m , required mode-counts K_m , horizon T

find
$$\alpha_1, \ldots, \alpha_J$$
 cycle assignments,
 $\mathbf{r}(0), \ldots, \mathbf{r}(T-1),$
 $\mathbf{w}(0), \ldots, \mathbf{w}(T),$
s.t. K Feasibility problem with linear constraints:
 \cdot integrality constraints on the inputs
(ILP)
 \cdot relaxing integrality (LP)
 Λ Number of constraints and variables are
independent of the number of systems N!
 $\mathbf{w}(t+1) = A\mathbf{w}(t) + B\mathbf{r}(t), \quad t = 0, \ldots, T-1,$
 $\Lambda(\mathbf{w}(0)) = \lambda_0,$
 $\sum_{m_2} r_j^{m_1,m_2} = w_j^{m_1} \text{ for all } j \in \bigcup_{i \in U_{m_1}} \mathcal{N}_i^{m_1},$
 $r_j^{m_2,m_1} = 0 \text{ for all } m_2 \in [M], j \in U_{m_1},$
control constraints.

- Integer solutions (ILP)
 - Completeness of prefix-suffix solutions: There exists a finite T and some maximal cycle length L such that ILP with all cycles with length less than L provides a complete solution to the original problem
 - From any feasible ILP solution, we can extract a solution to the original problem

• Non-integer solutions (LP):

- Enough to consider simple cycles
- Gives certificates for non-existence of solutions
- Rounding a non-integer solution:
 - A non-integer solution over the cycles can be rounded to an integer feasible solution with mode counting loss at most

$$\underline{\Psi}^{m}(C,\alpha_{int}) \leq \underline{\Psi}^{m}(C,\alpha_{avg}) + \frac{|C|}{4}$$

Intuition behind cycles: TCLs

$$\dot{\theta}_i = -a(\theta_i - \theta_a) - bP_m$$

 θ :room temperature θ_a :ambient temperature $P_m = 0$ when OFF

 $P_m = 5.6$ when ON

local safety $\theta_i \in [21.5, 23.5]$

For an individual system if only local ON/OFF control is used (no demand response for extra switching), the temperature evolves as follows:

Roughly, cycles are defining new "bands" within the dead-band allowed by the local safety constraints. That is, we are changing the duty cycle.

Results on TCLs

N = 10000 units

10000-D state-space with 2¹⁰⁰⁰⁰ modes!

 $\dot{\theta}_i = -a(\theta_i - \theta_a) - bP_m$

 θ :room temperature θ_a :ambient temperature

 $P_m = 0$ when OFF $P_m = 5.6$ when ON

local safety $\theta_i \in [21.5, 23.5]$

Two different runs with different mode-counting constraints (also stricter constraints at the suffix)

Parameters from Mathieu, Koch, Callaway, IEEE Trans. on Power Systems, 2013

Summary: structure for scalability

- A control synthesis method for large collections of systems
 - exploits the symmetry (permutation invariance) in the dynamics and in specifications
 - works across scales (10 to 10K or more systems)
 - with potential applications in different domains
- Current work
 - within class variability, uncertainty, partial information
 - non-deterministic abstractions (for not incrementally stable systems), asynchronous switching
 - tighter rounding bounds between LP and ILP