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Observations:

Motivation and applications

Large-scale, complex, distributed
sensing, actuation and control
systems:

— Smart grid, Smart buildings, Aircraft
systems, Automotive, Robotics,
Manufacturing & Automation,
Security & Surveillance

SMART GRID
Avsi — a network
ds that can

eeeeeee

A very large number of (discrete &
continuous) states and decision
variables

Complex requirements = need

controllers too compjaxtala
designed/analyzed b| ~Scalable tools for control design and

verification (theory and software) are
lagging!!! = ..




* Models for:

— the system (usually hybrid/
switched ODEs, with continuous/ Model-based GPPPOGCh
discrete inputs, disturbances and
parametric uncertainty)

requ}ilrements r':1ssur'rllptions
. on the system | |(on the unknowns, e.g.,
— the environment (faU|t5: external ( behaviz;r) (environment behavio%) System

events)
. L l
* Formalized assumptions and —— System
requirements @

— linear temporal logic and its
extensions
* Methods for verification and @

synthesis
— algorith ms that can process . iolated controller that render  no such
. (+::'rc'lts}2§gte) (+cou\r,1'::a?;iample) the system to, controller
formal models and requirements satisfy the spec’s exists

to do analysis and control
synthesis Correct by construction! -



Differential equations (continuous-time):

T = f(CU, Uc, Ud, €, 6)
Or, difference equations (discrete-time):

z(k+1) = f(x(k), uc(k), ua(k), ec(k), e(k))

xr € X : state

Formal

u. € U, : continuous control input
ug € Uy : discrete control input

€. € D, : disturbance input

X c RY

e € D, : discrete uncontrollable input

Some characteristics:

Hard constraints (on input and states)

Infinite horizon specifications

Hybrid (either the system or the controller or both)
Robust/reactive




(incomplete list!)

Hard state/input constraints, hybrid dynamics, complex
specifications (e.g., temporal logics)

— Belta, Fainekos, Girard, Liu, Pappas, Tabuada, Wongpironsarn, Zamani
Applications (with “small” state-space dim.)

— Robotics, building thermal management, adapt —
aircraft subsystems, traffic control Recurring theme:
“Medium”-scale systems structural properties

— Monotonicity (Hafner & Del Vecchio 11, Coogan & Arcak 15)
— Multi-scale abstractions for safety (Girard et al. 13)

“Large”-scale (but not synthesis)

— Parametric verification of rectangular hybrid automata (Johnson &
Mitra 12)

— Abstractions of large collections of stochastic systems (Soudjani &
Abate 15)




Example 1: Emergency response with a robotic

swarm
o e * Deploy a large collection of robots (e.g.,
L™ N quadrotors, ground vehicles) for search
and rescue mission
o e

* Plan trajectories by taking dynamic
7] constraints into account

* Requirements:
* Enough many robots in certain areas at
any given time
* Not too many robots in certain regions
(danger zones)
e Collision avoidance
* Charging/reporting constraints .

Creative commons public license



Example 2: Coordination of thermostatically
controlled loads (TCLs)

1 * Thermostatically controlled loads (e.g.,

refrigerators, air conditioners, water

heaters) for demand response

-  Thermal dynamics can be controlled via

ON/OFF switches

o * Requirements:

substation bus  Not too many TCLs ON at the same time
(to avoid line overload)

 Enough many ON all the time (to utilize
renewable energy)

thermostatically

O * Local temperature constraints (never out

(TCLs)

of desired temperature range) .
Mathieu, Koch, Callaway, IEEE Trans. on Power Systems
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controlled loads
(TCLs)

Large number of systems, small number of classes

Counting constraints: “how many in each mode?”, “how
many in what region?”

|ldentity of individual systems is not important

For simplicity, assume:
 dynamics are identical within each class

* (wlog) there is only one class




The temperature 6 in a room with a TCL has dynamics
. ) Jon(0), if TCL is on \g g

b {foff(e), if TCL is off

Suppose we have a collection of rooms with TCL's {6;};cn-

TCLs

e Customers: Want room temperature to be close to a desired
temperature 0%, but small deviations are allowed.

16; — 7] < A (1)

e Utility company: Wants to control aggregate demand, i.e. the
number of TCLs that are on

N
Z ]l{TCL iis on} (2)
1=1

Goal: Find a switching (i.e., on/off) strategy that exploits the
flexibility in (1) so that (2) can be controlled.



e NV identical switched system with M modes:

Ti(t) = foiry(@i(t)), 03 : R [M],

e Mode-specific unsafe sets: U,,, m € [M]
e Equivalent to forced mode switches.

e Mode-counting bounds:

N
58, < Z]lm(ai(t)) < Kn, (3)
1=1

Want to synthesize a switching strategy o; such that (3) satisfied
over time,

Structural property: both the dynamics and the specification
(counting constraints) are permutation invariant!




Construct symbolic abstractions and
aggregate dynamics and define “equivalent
problems on these structures

(Analyze abstractions to understand
fundamental limitations if any)

An optimization-based solution approach
Analysis of the solution approach

’)



e Assume dynamics are 0-GAS with KL functions 3;

193 (z) = Bt (¥)lloo < Bi (12 = ylloos 1) - (4)

e With discretization in time (7) and space (), an e-approxi-
mate bisimilar model is obtained if §;(e,7) 4+ 4§ < €.



e Assume dynamics are 0-GAS with KL functions 3;

193 (z) = Bt (¥)lloo < Bi (12 = ylloos 1) - (4)

e With discretization in time (7) and space (), an e-approxi-
mate bisimilar model is obtained if §;(e,7) 4+ 4§ < €.

e Mode 1 abstraction
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e Assume dynamics are 0-GAS with KL functions 3;

193 (z) = Bt (¥)lloo < Bi (12 = ylloos 1) - (4)

e With discretization in time (7) and space (), an e-approxi-
mate bisimilar model is obtained if §;(e,7) 4+ 4§ < €.

e Mode 2 abstraction
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Let V = {w1,...vx} denote the nodes of mode-transition graph

G =

(V,E). Introduce the states w;"* and r, """

1

 represents number of systems in mode m at vy.

w

r. "% represents number of systems at v, that switch

from mq, to mo.

The dynamics become

mi\t _ m1 ma,m1 M1,m2
(wp) "= > (Wit T
JEN, m2

N—

Constrained control actions:

mi,ma mi
0< g Ty < w, ",
ma

R
PR

Compact description: wt = Aw + Br



Theorem 1:
Consider aggregate dynamics Y : w© = Aw + Br with safety

and mode-counting constraints:

w(t) =0 Vk e Upy, (5)
Ko <> wi'(t) < K. (6)
i€[N]

Then,
e if 4 sequence of control inputs r for X that enforce (5) and
(6) with U,, + B, then 3 a solution to the original problem.
e if 7 a sequence of control input r* for ¥; that enforces (5)
and (6) with U,, — Be, then no solution to the original
problem.

We will focus on aggregate dynamics. We need infinite horizon strategies!

Solution strategy: from a given initial state, steer the system, while respecting the
constraints, to a nice state from which a periodic input suffices.



Solution strategy: from a given initial state, steer the system, while
respecting the constraints, to a nice state from which a periodic input
suffices.

* Let’s put the mode-counting constraints aside.

* Are there any fundamental limitations on what states can be
reached from an initial condition?

Definition: The period n of a strongly connected graph is the greatest
common divisor of the lengths of its cycles.

Theorem 2: If the connected components of mode-transition graph
has period n=1, any state is reachable from any other state (within the
connected component). If n>1, then the reachable states live on a
hyperplane arrangement with n hyperplanes.



Solution strategy: from a given initial state, steer the system, while
respecting the constraints, to a nice state from which a periodic input
suffices.

* Prefix: for a fixed horizon T, given initial state, we will steer the
state at time T to “nice” cycles

» Suffix: let individual systems circulate in the cycles



o Cycle C' ={vey,..., v} In G
e A cycle assignment for C is a function o : C — RT.

Mode-counts on for a cycle assignment:
e Max-count U""(C, «): maximal number of individual systems
simultaneously in mode m when circulating a in C":

e Min-count ¥"*(C, a): minimal number of individual systems
simultaneously in mode m when circulating « in C"






lllustration: cycles




e Big cycle 'y, assignment a1 = [1,2,0, 2, 3], gives red counts
i(cla Oél) — 27 E(Cyla Oél) =9

22



9 @ e Mode-counting constraints
gm(C,Oé) Z Kma Em(c7a) S ?77%
can be represented as linear
e e @ constraints
K 1<Yla<Knl

a e Y™ is a circular matrix.

002670

e Big cycle (1, assignment o1 = [1,2,0, 2, 3], gives red counts
E(Claal) :27 ﬁ(leaal) =95
e Small cycle Cy, assignment s = [3,0, 2], gives red counts

2(027 042) — 07 ﬁ(C727 a2) =3

23



For cycles C'1, ..., Cy,, required mode-counts K,,, horizon T'

find «a1,...,a  cycle assignments,
r(0),...,r(T — 1),
w(0),...,w(T),
s.t. K| D T O ] mode-counting during prefix

| Feasibility problem with linear constraints:
il ¢ integrality constraints on the inputs

(ILP) pde-counting during suffix
} * relaxing integrality (LP)

A| Number of constraints and variables are ~ pundary conditions between
independent of the number of systems N! [€fixand suffix

w(t+1) = Aw(t) + Br(t), t=0,...,7 —1,

A(w(0)) = Ao, system dynamics
mi,mo m1 . mi

er = w; for all j € U N,

mo lEUml

ri®" =0 for all mg € [M],j € U, , local safety constraints

control constraints. 24



* Integer solutions (ILP)

— Completeness of prefix-suffix solutions: There exists a finite T and
some maximal cycle length L such that ILP with all cycles with length
less than L provides a complete solution to the original problem

— From any feasible ILP solution, we can extract a solution to the original
problem
* Non-integer solutions (LP):
— Enough to consider simple cycles
— Gives certificates for non-existence of solutions

* Rounding a non-integer solution:

— A non-integer solution over the cycles can be rounded to an integer
feasible solution with mode counting loss at most
C

Y"™(C, aint) < ¥"(C, agug) + R

To appear at HSCC 2016



9.@' — —a,(H,,; — Qa) — me

0 :room temperature

0, :ambient temperature
P,, = 0 when OFF
P,, = 5.6 when ON

local safety
6, € [21.5,23.5]

For an individual system if only local ON/OFF control
is used (no demand response for extra switching), the
temperature evolves as follows:

24

23.5F

23+

22.51

22

21.5
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Roughly, cycles are defining new “bands” within the
dead-band allowed by the local safety constraints.
That is, we are changing the duty cycle.

Parameters from Mathieu, Koch, Callaway, IEEE Trans. on Power Systems, 2013



Two different runs with different mode-counting

N = 10000 units constraints (also stricter constraints at the suffix)
10000-D state-space with = 4500 | | | | |
210000 modes! $ 4000 ]
. 8 3500 3
0, =—a(0;, —0,) —bP, %; 3000 F T ]
= 2500 | ! ! ! =
0 :room temperature 0 2 4 6 8 10
0, :ambient temperature t
Py, = 0 when OFF Lower mode-count: Higher mode-count:
P,, = 5.6 when ON gg% S 2.0
=31l . E
local safety 1) I 1T
6; € [21.5,23.5] ! ;

27
Parameters from Mathieu, Koch, Callaway, IEEE Trans. on Power Systems, 2013



structure for scalability

* A control synthesis method for large collections of
systems

— exploits the symmetry (permutation invariance) in the
dynamics and in specifications

— works across scales (10 to 10K or more systems)
— with potential applications in different domains

e Current work

— within class variability, uncertainty, partial information

— non-deterministic abstractions (for not incrementally
stable systems), asynchronous switching

— tighter rounding bounds between LP and ILP

Preprints and more information available @ http://web.eecs.umich.edu/~necmiye/




