

Dynamics-based Information Extraction: A Hybrid Systems Approach

Necmiye (N-edge-me-ye) Ozay EECS, University of Michigan

Joint work with Mario Sznaier, Octavia Camps (Northeastern), Constantino Lagoa (Penn State), Farshad Harirchi (Michigan)

> IMA Annual Program Year Workshop Optimization and Parsimonious Modeling

Research partly funded by

Outline

Dynamics-based Information Extraction: A Hybrid Systems Approach

- Motivation
 - Control + Dynamics + Data + Information +Parsimony??
- Hybrid dynamical models (hybrid systems)
 and their use in information extraction
- Tools from optimization
- Three concrete problems
 - Identification of hybrid models
 - Model (in)validation for hybrid models
 - Fault detection for hybrid models

Motivation

Control + Dynamics + Data + Information +Parsimony??

Motivation

Control + Dynamics + Data + Information +Parsimony??

Observation 1: Dynamics enable parsimonious modeling

Dynamics enable parsimony

A sparse set of features suffices for identifying and understanding dynamic events!

Dynamics enable parsimony

Dynamics enable parsimony

A sparse set of features suffices for identifying and understanding dynamic events!

Motivation

Control + Dynamics + Data + Information +Parsimony??

Observation 1: Dynamics enable parsimonious modeling

Observation 2: Control requires parsimonious modeling

Control requires parsimony

Useful/actionable models for (i) control design, (ii) fast simulations (iii) system monitoring, (iv) anomaly detection, etc.

Overview of mixture models

Common in many fields:

- Gaussian mixtures
- Subspace arrangements
- Hybrid systems

Collection of simple models that can explain complex objects!

- Two fold difficulty in learning such models:
 - Data association
 - Parameter estimation

Hybrid systems

- "mixture models" for dynamical systems
- Switched systems

$$y(t+1) = G_{\sigma_t}(y(t:t-n_a), u(t:t-n_c))$$

where mode signal $\sigma_t \in \{1, \ldots, s\}$

- For this talk, G_i 's are polynomial (or affine)
- Global approximators even when G is affine!
- Identification from data is not easy!
- Two fold difficulty:
 - Estimation of the mode signal (data association)
 - Estimation of the parameters (identification)

Information extraction as an Identification Problem

- Hybrid Dynamical Models
 - Simple models for complex phenomena
- Two-fold difficulty
 - Estimation of mode signal (data association)
 - Estimation of parameters (identification)

- Model data streams as outputs of switched linear systems

A Simple Problem: Event Detection

• Key observation: as new modes get excited, complexity (order) of the system increases

Look for changes in model complexity.

A Simple Problem: Event Detection

- Key observation: as new modes get excited, complexity (order) of the system increases
- Order of the system is given by the rank of the Hankel matrix

$$H_{y} = \begin{bmatrix} y_{1} & y_{2} & \dots & y_{n} \\ y_{2} & y_{3} & \dots & y_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m} & y_{m+1} & \dots & y_{m+n-1} \end{bmatrix}$$

Look for changes in the rank of the Hankel matrix. (no need to explicitly find the model!)

Fast Event Detection

Use SVD to estimate the rank of the Hankel Matrix. (five lines of Matlab code, runs on a laptop)

A Simple Problem: Event Detection

• A few issues: delays, fast switching, $H_y = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \\ y_2 & y_3 & \cdots & y_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ y_m & y_{m+1} & \cdots & y_{m+n-1} \end{bmatrix}$

Moments-based convex relaxations to polynomial optimization (Lasserre's hierarchy).

18

A functional optimization problem over the set of probability measures μ with support K

 $\tilde{p}_K^* := \min_{\boldsymbol{\mu} \in \mathcal{P}(\boldsymbol{K})} \mathbb{E}_{\boldsymbol{\mu}}[p(x)]$

 $p_K^* := \min_{\mathbf{x} \in \mathbf{K}} p(\mathbf{x})$

Multivariate polynomial optimization problem on a compact basic semi algebraic set
$$K$$

polynomial optimization (Lasserre's hierarchy).

Moments-based convex relaxations to

$$p_{K} - p_{K}$$

$$p(x)$$

$$p(x)$$

$$x^{*}$$

 $\tilde{n}^* - r^*$

(P1)

(P2)

19

A functional optimization problem over the set of

probability measures μ with support K

$$\tilde{p}_K^* := \min_{\mu \in \mathcal{P}(K)} \mathbb{E}_{\mu}[p(x)]$$

 $\tilde{p}_K^* = p_K^*$ p(x) x^*

Moments-based convex relaxations to polynomial optimization (Lasserre's hierarchy).

Multivariate polynomial optimization problem on a compact basic semi algebraic set K

 $p_K^* := \min_{\mathbf{x} \in \mathbf{K}} p(\mathbf{x})$

P1 is equivalent to P2

(P1)

(P2)

(P2)

20

A functional optimization problem over the set of probability measures μ with support K

 $\tilde{p}_K^* := \min_{\boldsymbol{\mu} \in \mathcal{P}(\boldsymbol{K})} \mathbb{E}_{\boldsymbol{\mu}}[p(x)]$

unctional antimization problem over the set

a compact basic semi algebraic set K $p_K^* := \min_{\mathbf{x} \in K} p(\mathbf{x})$ (P1)

Moments-based convex relaxations to polynomial optimization (Lasserre's hierarchy).

The tool (my big hammer

Multivariate polynomial optimization problem on a compact basic semi-algebraic set K

P1 is equivalent to P2

(P2)

21

Moments-based convex relaxations to polynomial optimization (Lasserre's hierarchy).

Multivariate polynomial optimization problem on a compact basic semi algebraic set ${\cal K}$

$$p_K^* := \min_{\mathbf{x} \in \mathbf{K}} p(\mathbf{x}) \tag{P1}$$

A functional optimization problem over the set of probability measures μ with support K

$$\tilde{p}_K^* := \min_{\mu \in \mathcal{P}(K)} \mathbb{E}_{\mu}[p(x)]$$

$$\tilde{p}_{K}^{*} = p_{K}^{*}$$

$$p(x) \qquad \mu^{*}$$

$$\tilde{p}_{K}^{*}$$

$$\tilde{p}_{K}^{*}$$

P1 is equivalent to P2

Moment-based relaxations for polynomial optimization

A functional optimization problem over the set of probability measures μ with support K

$$\tilde{p}_K^* := \min_{\mu \in \mathcal{P}(K)} \mathbb{E}_{\mu}[p(x)] \tag{P2}$$

Equivalent to an SDP with countably infinite variables, where variables are moments of the distribution μ .

Moment-based relaxations for polynomial optimization

A functional optimization problem over the set of probability measures μ with support K

$$\tilde{p}_K^* := \min_{\mu \in \mathcal{P}(K)} \mathbb{E}_{\mu}[p(x)]$$
(P2)

Equivalent to an SDP with countably infinite variables, where variables are moments of the distribution μ .

If K = [a, b] univariate polynomial on an interval, there is a finite exact SDP (Hausdorf moment problem).

Moment-based relaxations for polynomial optimization

A functional optimization problem over the set of probability measures μ with support K

$$\tilde{p}_K^* := \min_{\mu \in \mathcal{P}(K)} \mathbb{E}_{\mu}[p(x)] \tag{P2}$$

Equivalent to an SDP with countably infinite variables, where variables are moments of the distribution μ .

If K = [a, b] univariate polynomial on an interval, there is a finite exact SDP (Hausdorf moment problem). If there is a sparse structure in the polynomial and constraints defining K, possible to get a hierarchy where we have smaller LMIs at each relaxation order (Lasserre, Nie, Waki, Kojima).

Three problems

- Identification of switched affine systems (SARX Id)
- Model (in)validation for switched affine systems (SARX invalidation)
- Fault/anomaly detection for systems with polynomial state-space models

Given that we will be using polynomial optimization affine or polynomial or switched or non-switched makes a little difference.

Switched System Identification

- Particular interest to switched linear models in control and system identification communities.
- Problem Formulation:
 - Given experimental input/output data, and bounds on noise and submodel orders (n_a, n_c)
 - Find a switched linear autoregressive model with exogenous inputs (ARX) of the form:

$$y(t) = \sum_{i=1}^{n_a} a_i(\sigma_t) y(t-i) + \sum_{i=1}^{n_c} c_i(\sigma_t) u(t-i) + \eta(t)$$
$$y(t) = \mathbf{p}(\sigma_t)^T \mathbf{r}(t) + \eta(t) \quad ||\eta(t)|| \le \epsilon$$

Ill-posed, always have a trivial solution!

 $\sigma_t \in \{1,\ldots,s\}$

 \mathbf{G}_{σ_t}

11

η

Hybrid System Identification

- Particular interest to switched linear models in control and system identification communities.
- Problem Formulation:
 - Given experimental input/output data, and bounds on noise and submodel orders (n_a, n_c)
 - Find a switched linear autoregressive model with exogenous inputs (ARX) of the form:

$$y(t) = \sum_{i=1}^{n_a} a_i(\sigma_t) y(t-i) + \sum_{i=1}^{n_c} c_i(\sigma_t) u(t-i) + \eta(t)$$
$$y(t) = \mathbf{p}(\sigma_t)^T \mathbf{r}(t) + \eta(t) \quad ||\eta(t)|| \le \epsilon$$

Possible objectives:

- Minimum # of switches
- Minimum # of submodels
- Fixed # of submodels

 $\sigma_t \in \{1,\ldots,s\}$

 \mathbf{G}_{σ_t}

11

η

Hybrid System Identification

- Particular interest to switched linear models in control and system identification communities.
- Problem Formulation:
 - Given experimental input/output data, and bounds on noise and submodel orders (n_a, n_c)
 - Find a switched linear autoregressive model with exogenous inputs (ARX) of the form:

$$y(t) = \sum_{i=1}^{n_a} a_i(\sigma_t) y(t-i) + \sum_{i=1}^{n_c} c_i(\sigma_t) u(t-i) + \eta(t)$$
$$y(t) = \mathbf{p}(\sigma_t)^T \mathbf{r}(t) + \eta(t) \quad ||\eta(t)|| \le \epsilon$$

Possible objectives:

- Minimum # of switches (non-convex polytime exact algorithms exist)
- Minimum # of submodels
- Fixed # of submodels

 $\sigma_t \in \{1,\ldots,s\}$

 \mathbf{G}_{σ_t}

11

η

SARX Id in noise-free case

- GPCA: an algebraic geometric method due to Vidal *et al.*
- Main Idea:

hybrid decoupling constraint

$$\mathbf{b}(\sigma_t)^T \mathbf{r}_t = \mathbf{0}, \quad \sigma_t \in \{1, \dots, s\}$$

Neither the mode signal nor the parameters, b, are known!

$$p_s(\mathbf{r}) = p_s[\mathbf{r}_i^s]_{i=1} (\mathbf{p}_i^s]_{i=1}^s \mathbf{r}_{t_i}) (\mathbf{p}_i^T \mathbf{q}_{s_t}) \nu_{s_t}(\mathbf{r}_{\theta}) = 0$$

Independent of mode signal, linear in parameters, c!

SARX Id in noise-free case

- GPCA: an algebraic geometric method due to Vidal *et al.*
- Main Idea: hybrid decoupling constraint **3-D** $p_s(\mathbf{r}) = \prod_{i=1}^s (\mathbf{b}_i^T \mathbf{r}_t) = \mathbf{c}_s^T \nu_s(\mathbf{r}_t) = \mathbf{0}$ Embed the data in a higher $\nu_s(\mathbf{r}_t)$ 2-D dim. space via Veronese map $\nu_s([x_1,\ldots,x_n]^T) = [\ldots,\xi^s,\ldots]^T$ where $\xi^s \doteq x_1^{s_1} x_2^{s_2} \dots x_n^{s_n}$, $\sum s_i = s_i$

30

What happens when data is noisy?

- Veronese map $\nu_s(\mathbf{r}_t)$:
 - Polynomial mapping
 - Lifts the data to higher
 dimensional space where
 parameter vector is in the
 nullspace of embedded data
 matrix
- Noisy case $u_s(\mathbf{r}_t,\eta_t)$:
 - Lifted data depends on noise polynomially!
 - Need to find an admissible noise sequence to estimate the nullspace

$$\mathbf{V_s}\mathbf{c_s} \doteq \left[egin{array}{c}
u_s(\mathbf{r}_{t_0})^T \ dots \
u_s(\mathbf{r}_T)^T \end{array}
ight] \mathbf{c_s} = \mathbf{0}$$

Noisy embedded data matrix V_s

 1^{st} order system: $n_a = n_c = 1$, ٠ $\mathbf{r}_t = [-y_t, y_{t-1}, u_{t-1}]^T$ with 2 modes: s=2

$$\nu_{2}(\mathbf{r}_{t},\eta_{t})^{T} = \begin{bmatrix} y_{t}^{2} - 2y_{t}\eta_{t} + \eta_{t}^{2} \\ -y_{t}y_{t-1} + y_{t-1}\eta_{t} \\ -y_{t}u_{t-1} + u_{t-1}\eta_{t} \\ y_{t-1}^{2} \\ u_{t-1}^{2} \end{bmatrix}^{T}$$
$$\mathbf{V}_{s}(\mathbf{r}_{t},\eta_{t}) \doteq \begin{bmatrix} \nu_{s}(\mathbf{r}_{t_{0}},\eta_{t_{0}})^{T} \\ \vdots \\ \nu_{s}(\mathbf{r}_{T},\eta_{t})^{T} \end{bmatrix}$$

 V_s is polynomial in noise Need to find a rank deficient V_s

Optimization Problem 1:

minimize $_{\eta_t}$ rank $\mathbf{V_s}(\mathbf{r}_t, \eta_t)$ subject to $\|\eta_t\|_{\infty} \leq \epsilon$

Optimization Problem

Rank is not a polynomial function.
 Can we use ideas from polynomial optimization?

– YES.

- Can we utilize the problem structure to find an efficient formulation?
 - YES. Main Idea: Noise is independent. Define one dimensional distributions for each noise term.

Optimization Problem 1:

 $\begin{array}{ll} \text{minimize}_{\eta_t} & \text{rank} \mathbf{V_s}(\mathbf{r}_t, \eta_t) \\ \text{subject to} & \left\| \eta_t \right\|_{\infty} \leq \epsilon \end{array}$

Noisy embedded data matrix V_s

$$\nu_{2}(\mathbf{r}_{t},\eta_{t})^{T} = \begin{bmatrix} y_{t}^{2} - 2y_{t}\eta_{t} + \eta_{t}^{2} \\ -y_{t}y_{t-1} + y_{t-1}\eta_{t} \\ y_{t-1}^{2} \\ y_{t-1}^{2} \\ u_{t-1}^{2} \end{bmatrix}^{T} \qquad \mathbf{m}_{i}^{(t)} = [m_{1}^{(t)}, \dots, m_{s}^{(t)}] \\ m_{i}^{(t)} = \mathbf{E}_{\mu^{t}}(\eta_{t}^{i}) \\ \mathbf{m}_{i}^{(t)} = \mathbf{E}_{\mu^{t}}(\eta_{t}^{i}) \\ \mathbf{p}_{t-1}^{2} \\ \mathbf{p}_{t-1}^{2}$$

Optimization Problem

- "Theorem"
 - There exists a rank deficient solution for Problem 2 if and only if there exists a rank deficient solution for Problem 1.
 - If c belongs to the nullspace of the solution of Problem 2, there exists a noise value η^* with $||\eta^*||_{\infty} \leq \epsilon$ $V_s(\mathbf{r}, \eta^*)$ such that c belongs to the nullspace of

Optimization Problem 1:

 $\begin{array}{ll} { {\rm minimize}_{\eta_t}} & { {\rm rank} {\bf V_s}({\bf r}_t,\eta_t)} \\ { {\rm subject to}} & { \left\| \eta_t \right\|_\infty \leq \epsilon } \end{array}$

Optimization Problem 2:

 $\begin{array}{ll} \mbox{minimize}_{\mathbf{m}^{(t)}} & \mbox{rank} \tilde{\mathbf{V}}_{\mathbf{s}}(\mathbf{r}_t, \mathbf{m}^{(t)}) \\ \mbox{subject to} & \mbox{each } \mathbf{m}^{(t)} \mbox{ is a} \\ & \mbox{moment sequence} \end{array}$

Convex constraint set:

Finite Hankel matrix of moments should satisfy to LMIs
 no relaxation!!

Optimization Problem

Problem 2

- Matrix rank minimization
- Subject to LMI constraints
- Use a convex relaxation (e.g. log-det heuristic of Fazel *et al.*) to solve Problem 2
- Find a vector c in the nullspace
- Estimate noise by root finding (V_sc = 0 polynomials of one variable)
- Proceed as in noise-free case

Optimization Problem 1:

 $\begin{array}{ll} \text{minimize}_{\eta_t} & \text{rank} \mathbf{V_s}(\mathbf{r}_t, \eta_t) \\ \text{subject to} & \left\| \eta_t \right\|_{\infty} \leq \epsilon \end{array}$

Optimization Problem 2:

 $\begin{array}{ll} \mbox{minimize}_{\mathbf{m}^{(t)}} & \mbox{rank} \tilde{\mathbf{V}}_{\mathbf{s}}(\mathbf{r}_t, \mathbf{m}^{(t)}) \\ \mbox{subject to} & \mbox{each } \mathbf{m}^{(t)} \mbox{ is a} \\ & \mbox{moment sequence} \end{array}$

Can also "handle" missing data, outliers

SARX (In)validation Problem

• Given:

Unknown switches: Consistency set is nonconvex!

– A nominal hybrid model of the form.

$$\begin{aligned} \mathbf{y}_t &= \sum_{k=1}^{n_a} \mathbf{A}_k(\sigma_t) \mathbf{y}_{t-k} + \sum_{k=1}^{n_c} \mathbf{C}_k(\sigma_t) \mathbf{u}_{t-k} + \mathbf{f}(\sigma_t) \\ \tilde{\mathbf{y}}_t &= \mathbf{y}_t + \boldsymbol{\eta}_t \end{aligned}$$

- A bound on the noise ($||\eta||_{\infty} \leq \epsilon$) $\sigma_t \in \{1, \dots, s\}$
- Experimental input/output
- data $\{\mathbf{u}_t, \mathbf{\tilde{y}}_t\}_{t=t_0}^T$

- Determine:
 - whether there exist noise and switching sequences consistent with a priori information and experimental data

Semialgebraic Consistency Set

• If ith submodel is active at time t

$$egin{aligned} \mathbf{A}_1(i)(ilde{\mathbf{y}}_{t-1}-oldsymbol{\eta}_{t-1})+\ldots+\mathbf{A}_{n_a}(i)(ilde{\mathbf{y}}_{t-n_a}-oldsymbol{\eta}_{t-n_a})-(ilde{\mathbf{y}}_t-oldsymbol{\eta}_t)\ +\mathbf{C}_1(i)\mathbf{u}_{t-1}+\ldots+\mathbf{C}_{n_c}(i)\mathbf{u}_{t-n_c}+\mathbf{f}(i)=\mathbf{0} \end{aligned}$$

 – all components of the output evolve with ith submodel (logical AND)

$$[h_{t,i}^{(1)}(\boldsymbol{\eta}_{t:t-n_a}) = 0] \wedge \ldots \wedge [h_{t,i}^{(n_y)}(\boldsymbol{\eta}_{t:t-n_a}) = 0]$$

 \iff
 $g_{t,i}(\boldsymbol{\eta}_{t:t-n_a}) \doteq \sum_{j=1}^{n_y} [h_{t,i}^{(j)}(\boldsymbol{\eta}_{t:t-n_a})]^2 = 0$

• One of the submodels is active at time t (logical OR)

$$[g_{t,1}(\boldsymbol{\eta}_{t:t-n_a}) = 0] \lor \ldots \lor [g_{t,s}(\boldsymbol{\eta}_{t:t-n_a}) = 0]$$
$$\Leftrightarrow$$
$$p_t(\boldsymbol{\eta}_{t:t-n_a}) \doteq \prod_{i=1}^s g_{t,i}(\boldsymbol{\eta}_{t:t-n_a}) = 0$$

Semialgebraic Consistency Set

• The model is invalid if and only if

$$\mathcal{T}'(\boldsymbol{\eta}) \stackrel{:}{=} \left\{ \boldsymbol{\eta} \mid \epsilon^2 - [\eta_t^{(j)})]^2 \ge 0 \; \forall t \in [0, T], j \in \mathsf{N}_{n_y} \text{ and} \\ p_t(\boldsymbol{\eta}_{t:t-n_a}) = 0 \; \forall t \in [n_a, T] \right\}$$

is empty.

• Structured polynomial optimization problem:

Polynomial Optimization

Problem has a sparse structure (running intersection property holds)

$$o^* = \min_{\boldsymbol{\eta}} \sum_{t=n_a}^{T} p_t(\boldsymbol{\eta}_{t:t-n_a})$$

s.t.
$$f_{t,j}(\boldsymbol{\eta}_t^{(j)}) \ge 0 \quad \forall t \in [0,T], j \in \mathsf{N}_{n_y}.$$

- We can create a convergent SDP hierarchy with O((n_an_y)^{2N}) variables using structure (instead of O((Tn_y)^{2N}) variables), where N is the relaxation order.
- Theorem (O., Sznaier, Lagoa, TAC 14): The hierarchy converges latest at N = s^{T-na+1}+1.

where s: # of submodels, n_a: regressor order, T: time horizon

A fun example in information extraction

Normal behaviors: walking and waiting Walking dynamics are learnt from training data using sys id, waiting dynamics are trivial

Example: Activity monitoring via model invalidation

A priori hybrid model: walking (learned from data) and waiting, 4% noise

WALK, WAIT

WALK, JUMP

Not Invalidated

Invalidated Necmiye Ozay, Michigan, EECS Invalidated

Model Invalidation – fault detection?

• Can be easily extended to uncertain models:

$$\Sigma: \begin{array}{c} x(t+1) = f_{\sigma(t)}(x(t), u(t), \delta(t), \Delta) & \stackrel{\mathbf{u}}{\longrightarrow} & \stackrel{\mathbf{v}}{\longrightarrow} & \stackrel{\mathbf{v}$$

There is a basic semialgebraic consistency set.

- Can be used to:
 - Run-time: do anomaly detection (abnormal with respect to model and spec)
 - **Design-time:** find tight *provable error bounds* on uncertain parameters

No need to have explicit fault models (complex systems can fail infinitely many different ways!) Can handle missing data!

 $\boldsymbol{\sigma_t} \in \{1, \dots, s\}$

Fault detection

- Model invalidation directly applies but the problem size increases with time...
- What if we have fault models?

$$\Sigma : \begin{array}{c} x(t+1) = f_{\sigma(t)}(x(t), u(t), \delta(t), \Delta) \\ y(t) = g_{\sigma(t)}(x(t), u(t), \delta(t), \Delta) \end{array}$$

$$\Sigma_F : \begin{array}{c} x(t+1) = f^F_{\sigma(t)}(x(t), u(t), \delta(t), \Delta) \\ y(t) = g^F_{\sigma(t)}(x(t), u(t), \delta(t), \Delta) \end{array}$$

• Can we use the models to bound the amount of data needed to do fault detection?

ACC16

T-detectability

- Given a system model and fault model with associated state, input and noise bounds, if there exists a T such that for any initial condition and any input/noise realization the "T-length behaviors" deviate, the fault is said to be Tdetectable for the system.
- ➔ intersection of the consistency sets for the system and fault models for horizon T should be empty!
- ➔ For fixed T, polynomial optimization problem (need to iterate on T)

T-detectability

- ➔ intersection of the consistency sets for the system and fault models for horizon T should be empty!
- ➔ For fixed T, polynomial optimization problem (need to iterate on T) – sufficient conditions for T-detectability

"Theorem": If T-detectability certificate is obtained with a relaxation order N, then using the same relaxation order for model invalidation problem gives a N&S condition for online fault detection. $\epsilon^* :=$

$$\begin{aligned} \epsilon^* &:= \min_{\{\mathbf{u}(k), \mathbf{y}(k)\}_{k=t}^{t+T}} \epsilon_o(\{\mathbf{u}(k), \mathbf{y}(k)\}_{k=t}^{t+T}) \\ \text{s.t.} \quad \{\mathbf{u}(k), \mathbf{y}(k)\}_{k=t}^{t+T} \in \mathcal{B}_{poly}^T(G^f). \end{aligned}$$

Anomaly detection in building control

Boiler fails at time 8:00 (supply temp drops)

Switched affine model:

- -- switching due to control actions
- -- six states (room temperatures, pipe temperatures)

-- only a sensor measuring pipe temperature

-- noisy sensor measurements

Invalidation algorithm detects the failure in 2 steps!

$$C_r \dot{T}_c = \sum_{i=1}^2 K_{r,i} (T_i - T_c) + K_w (T_w - T_c),$$

$$C_i \dot{T}_i = K_{r,i} (T_c - T_i) + \sum_{j \neq i} K_i j (T_j - T_i)$$

Summary

Goal: go from **data** to **information** to **control** in a rigorous way with correctness guarantees.

- Dynamics based information extraction:
 - Hybrid dynamical models as compact representation for complex data streams
 - Lots of structure in problems involving dynamics
 - Optimization is a good lens to look at these problems

★ connections between system identification/invalidation and information extraction/machine learning

Computational efficiency through

- Convex Relaxations
- Structural decompositions