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Motivation

— Control + Dynamics + Data + Information
+Parsimony??

Hybrid dynamical models (hybrid systems)
— and their use in information extraction
Tools from optimization

Three concrete problems

— |ldentification of hybrid models

— Model (in)validation for hybrid models
— Fault detection for hybrid models



Control + Dynamics + Data + Information
+Parsimony??



Control + Dynamics + Data + Information
+Parsimony??

Observation 1: Dynamics enable parsimonious
modeling



A sparse set of features suffices for identifying and understanding dynamic events!
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Control + Dynamics + Data + Information
+Parsimony??

Observation 1: Dynamics enable parsimonious
modeling

Observation 2: Control requires parsimonious
modeling
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Complex models
L

Big ’data

i

Useful/actionable models for (i) control design, (ii) fast simulations
(iii) system monitoring, (iv) anomaly detection, etc.
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Common in many fields:

e (Gaussian mixtures

* Subspace arrangements
* Hybrid systems )

* Two fold difficulty in

Collection of simple _
learning such models: o

models that can explain o
| biects! * Data association
compiex objects: * Parameter estimation
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* “mixture models” for dynamical systems

e Switched systems

y(t+1) =Go, (y(t : t —ng),u(t: t —ne))
where mode signal o: € {1,...,s}
* For this talk, G;'s are polynomial (or affine)
* Global approximators even when G is affine!
* Identification from data is not easy! Ot éD
e Two fold difficulty: O

* Estimation of the mode signal (data association)
* Estimation of the parameters (identification)
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e Hybrid Dynamical Models

e Simple models for complex

phenomena or€{l,...,s}
e Two-fold difficulty

e Estimation of mode signal u G | y
(data association) o | T

e Estimation of parameters
(identification) features, pixel values, ...

e Model data streams as outputs of switched linear systems
e “Interesting” events «=» Changes in model invariants

e “Homogenous” segments <«=» Output of a single submodel
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A Simple Problem: Event Detection

e Key observation: as new modes get excited, complexity
(order) of the system increases

Look for changes in model complexity.
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A Simple Problem: Event Detection

e Key observation: as new modes get excited, complexity
(order) of the system increases

e QOrder of the system is given by the rank of the Hankel
matrix

I Y1 Y2 Yn ]
Y2 Y3 Yn+1
| Ym Ym+1 -+ Ym4n—1

Look for changes in the rank of the Hankel matrix.
(no need to explicitly find the model!)
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e J ln p f Original Trajectory (x.y) Estimated System Rank

600 10
400
5
200
0 > 0
0 200 400 0 200 400
Singular Values for Current Frame Singular Values History
1 1
05 0.5
00 2 4 6 8 00 200 400

Use SVD to estimate the rank of the Hankel Matrix.
(five lines of Matlab code, runs on a laptop)
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A Simple Problem: Event Detection

U1 Y2

. . . Y2 Y3

e Afew issues: delays, fast switching, m,=| " ,
noise and outliers Um Yt

\ G,
4’| NG,

* How to more rigorously reason about noisy data?
* What if we want to learn individual dynamics?
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0‘
Moments-based convex relaxations to
polynomial optimization (Lasserre’s hierarchy).
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0‘
Moments-based convex relaxations to
polynomial optimization (Lasserre’s hierarchy).

Multivariate polynomial optimization problem on

a compact basic semi algebraic set /K P1is equivalent to P2
P ‘= min p(x) (P1) Pk = Pk
xEK p(z)

A functional optimization problem over the set of
probability measures u with support /K

5% = min E P2
Pk = min ulp(T)] (P2)
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0‘
Moments-based convex relaxations to
polynomial optimization (Lasserre’s hierarchy).

Multivariate polynomial optimization problem on

a compact basic semi algebraic set /K P1is equivalent to P2
P ‘= min p(x) (P1) Pk = Pk
xEK p(z)

A functional optimization problem over the set of \ ;\m /\ /\

probability measures p with support K ‘\J \_J v‘ \
v 77[;

DG 1= in E P2 B *
Pk MEI?DI(I}Q u[p(x)] (P2) x
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0.
Moments-based convex relaxations to
polynomial optimization (Lasserre’s hierarchy).

Multivariate polynomial optimization problem on

a compact basic semi algebraic set /K P1is equivalent to P2
o = min p(x P1 Pk = Pk
Pk e Kp( ) (P1) p(x)

A functional optimization problem over the set of

probability measures u with support /K -
e /).
o
x

5 .= min E P2
Pk = Inin ulp(T)] (P2)
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0‘
Moments-based convex relaxations to
polynomial optimization (Lasserre’s hierarchy).

Multivariate polynomial optimization problem on

a compact basic semi algebraic set /K P1is equivalent to P2
Pk = min p(x) (P1) Pk =Pk
xe K
p() e
A
A functional optimization problem over the set of
probability measures u with support /K B
K
~x : | l
P = min K, |p(x P2 —r
= min E,[p() (P2) -
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A functional optimization problem over the set of
probability measures u with support K

e = min E P2
Pic = min_ E,[p(r) (P2)

Equivalent to an SDP with countably infinite vari-
ables, where variables are moments of the distri-
bution u.
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A functional optimization problem over the set of
probability measures u with support K

e = min E P2
Pic = min_ E,[p(r) (P2)

Equivalent to an SDP with countably infinite vari-
ables, where variables are moments of the distri-
bution u.

If K = [a,b] univariate polynomial on an inter-
val, there is a finite exact SDP (Hausdorf moment
problem).



A functional optimization problem over the set of
probability measures u with support K

e = min E P2
Pic = min_ E,[p(r) (P2)

Equivalent to an SDP with countably infinite vari-
ables, where variables are moments of the distri-
bution u.

If K = [a,b] univariate polynomial on an inter-
val, there is a finite exact SDP (Hausdorf moment
problem).

If there is a sparse structure in
the polynomial and
constraints defining K,
possible to get a hierarchy
where we have smaller LMIs
at each relaxation order
(Lasserre, Nie, Waki, Kojima).



 |dentification of switched affine systems (SARX
Id)

 Model (in)validation for switched affine systems
(SARX invalidation)

* Fault/anomaly detection for systems with
polynomial state-space models

Given that we will be using polynomial optimization affine or
polynomial or switched or non-switched makes a little
difference.



* Particular interest to switched linear models in control o € {1 s}
L . . . . . t ’ . L ’
and system identification communities.

* Problem Formulation: u J’ y
* Given experimental input/output data, and bounds :\ Gat I_’
n

on noise and submodel orders (1, 1)

* Find a switched linear autoregressive model with
exogenous inputs (ARX) of the form:

u(0) =Y ailonyt i) + Y cloult = i) + (0

y(t) = plo) v(t) +0(t) )l <e

lll-posed, always have a trivial solution!
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* Particular interest to switched linear models in control o € {1 s}
L . . . . . t ’ . L 7
and system identification communities.

* Problem Formulation: u J’ y
* Given experimental input/output data, and bounds :\ Gat I_'
n

on noise and submodel orders (1, 1)

* Find a switched linear autoregressive model with
exogenous inputs (ARX) of the form:

u(0) =Y ailonyt i) + Y cloult = i) + (0

y(t) = plo) v(t) +0(t) )l <e

Possible objectives:
*  Minimum # of switches (non-convex — polytime exact algorithms exist)
*  Minimum # of submodels
* Fixed # of submodels



e GPCA: an algebraic geometric method due to
Vidal et al.

e Main ldea:

hybrid decoupling constraint

T, — . .
b(O't> r+ = O, ot & {]_, Ce ey S} Neither the mode signal nor the

parameters, b, are known!

ps(1) %SH:L#WQP(ET%sw-é@) =0 Independent ;fagﬁeet:'inill linear in

29



e GPCA: an algebraic geometric method due to
Vidal et al.

e Main ldea:

hybrid decoupling constraint

ps(r) = Hf:l(biTrt) — CSTVS(I't) =0 y

.......................................

* Embed the data in a higher

2-D vs(re)
dim. space via Veronese map ; 5’
vs([z1, ... zn]t) = [..,€%, .. " N w

where

S = S1 ,.,52 Sn C —
£ =zirs ...z, § S; =S8
30




* Veronese map vs(ry)

31

— Polynomial mapping

— Lifts the data to higher
dimensional space where
parameter vector is in the

nullspace of embedded data Vscs =

matrix

Noisy case vs(re,me) :
— Lifted data depends on
noise polynomially!

— Need to find an admissible

noise sequence to estimate
the nullspace 2D

US(E'

u

> uy



e 1stordersystem:n. =n_=1,
. Y o I't = [—yt,yt—l,ut—l]T
with 2 modes: s=2

_ 4T

y7 — 2y H nf

—YtYt—1 + Y¢—17}t

—Ytut—1 + Ut—17
vo(re, m)’ = Y 2 ! : L :

Y1 V, is polynomial in noise
Yt—1Ut—1
i uf_l | Need to find a rank deficient V.,
Vs (Tho, M) T ]
Vs(rs,m) = : Optimization Problem 1:

. i vs(rr, me)’ ] minimize,, rankVs(rs, n:)

subject to  ||n|,, < €



* Rankis not a polynomial function.
Can we use ideas from polynomial
optimization?

— YES.

* (Can we utilize the problem
structure to find an efficient
formulation?

— YES. Main Idea: Noise is
independent. Define one

dimensional distributions for
each noise term.

Optimization Problem 1:

minimize,, rankVs(re, n:)
subject to |||, < e



Noisy embedded data matrix V

_ 2T
y2 — 2y + n?
—YtYt—1 + Ye—1Mt
— Y Up— Up_
l/z(rt,nt)T — Jih ylz_t (=1t m®) = [mgt),..-,m.gt)]
t— .
yt_lzut—l mz(t) = Eu(n;)
- Hie T () 4y ® T
th — 2ytm1 + ms
—YtYi—1 + yt—1m§(t))
'
E, [I/Q(I‘t, Ut)T] = | TYl-1 g_ Ut=111
Yi_1
yt—12ut—1
i Ui 4 _
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“Theorem”

— There exists a rank deficient

solution for Problem 2 if and only if
there exists a rank deficient
solution for Problem 1.

If c belongs to the nullspace of the
solution of Problem 2, there exists a
noise value 7" with ||7*||co < €
Vs(r,n*) such that c belongs to
the nullspace of

Optimization Problem 1:

minimize,,
subject to

rankVS(rt, 7775)
7] 0 < €

Optimization Problem 2:

minimize,o rankVs(ry, m®)
subjectto  each m® is a
moment sequence

Convex constraint set:

- Finite Hankel matrix of moments
should satisfy to LMIs

no relaxation!!



Problem 2
— Matrix rank minimization
— Subject to LMI constraints

Use a convex relaxation (e.g.
log-det heuristic of Fazel et al.)
to solve Problem 2

Find a vector c in the nullspace

Estimate noise by root finding
(V.c = 0 polynomials of one
variable)

Proceed as in noise-free case

Optimization Problem 1:

minimize,, rankVs(re, n:)
subject to |||, < e

Optimization Problem 2:

minimize,o rankVs(ry, m®)
subjectto  each m® is a
moment sequence

Can also “handle” missing data, outliers



° : . Unknown switches:
G ven:. Consistency set is non-

convex!

— A nominal hybrid model of the fGr

Yo i Ak(o)yi—k + D> 1 Cr(o)w—i + £(ov)
yt +mn,

Xt
Y

— A bound on the noise (||n||cc <€) or€{l,...;8}

— Experimental input/output u 1 y
3 \ G, ? ‘ |
— data {u, ¥y}, n !

e Determine:

— whether there exist noise and switching
sequences consistent with a priori information
and experimental data



e Ifith submodelis active at time t

A()(ye-1—m1) + o+ A () (T, — My_p,) — (Yt — M)
+C1 ()1 + ...+ Co (D), + £(i) = 0

— all components of the output evolve with it submodel
(logical AND)

[0 (Myyn) = 1A A RS (1,,) = O
<

gt,i(nt:t—na> = Z] 1 [h(j)(ntt Na )] =0
* One of the submodels is active at time t (logical OR)
[gt,l(nt:t—na) — O] V...V [gt,S(nt:t—na) — O]

<
. S
pt(ntit—na) — Hi=1 gt,i(/r’t:t_na) =0



* The model is invalid if and only if

7'(n)

IS empty.

{n1e—m2>o0vte(0T],j € Nyand

pt(Myi—p,) = 0 VL € [na,T]}

e Structured polynomial optimization problem:

(0]

*

. T
miny thna pt(nt:t—na)

S.t.

Model is invalid iff
o0*>0




Problem has a sparse structure (running intersection property
holds)

. T
o = miny thna pt(nt:t—na)
S.t.

fri(nf?) > 0 Vt € [0,T],5 € Ny,
We can create a convergent SDP hierarchy with O((n,n, )*")
variables using structure (instead of O((Tn,)*N) variables),
where N is the relaxation order.

Theorem (O., Sznaier, Lagoa, TAC 14): The hierarchy
converges latest at N = s™na+14],
where s: # of submodels, n_: regressor order, T: time horizon



Normal behaviors: walking and waiting
Walking dynamics are learnt from
training data using sys id, waiting
dynamics are trivial

Example: Activity monitoring via model invalidation

A priori hybrid model: walking (learned from data) and waiting, 4% noise
WALK, WAIT RUN

Invalidated

Not Invalidated
Necmiye Ozay, Michigan, EECS
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feature, pixel value, ...

WALK, JUMP

Invalidated




or€{1,...,s}

Can be easily extended to uncertain models:

. |
Ca(t+ 1) = oy (@(t), ut),d(t), A) Go, Y
2 6(t), A) n:l I_’

y(t) = 9o (t) (z(t), u(t),d(t

There is a basic semialgebraic consistency set.

e (Can be used to:
* Run-time: do anomaly detection (abnormal with respect to model and spec)
* Design-time: find tight provable error bounds on uncertain parameters

No need to have explicit fault models (complex systems can fail infinitely many
different ways!)
Can handle missing data!



or€{1,...,s}

e Model invalidation directly applies but the |
problem size increases with time... u y
e What if we have fault models? U:l Go, ‘
E ] Zl?(t T 1) — fa(t)(x(t)a u(t)a 5(t)7 A)
. y(t) = Yo (t) (I(t), u(t)7 5(t)7 A)
2t +1) = [l (@(t), ut), 8(t), A)
ZF .

y(t) = gf(t) (z(t), u(t),d(t), A)

e Can we use the models to bound the amount of data needed to
do fault detection?



e Given a system model and fault model
with associated state, input and noise
bounds, if there exists a T such that for

any initial condition and any input/noise —'

realization the “T-length behaviors”
deviate, the fault is said to be T-
detectable for the system.

=>» intersection of the consistency sets for

the system and fault models for horizon T
should be empty!

=» For fixed T, polynomial optimization
problem (need to iterate on T)

ACC16

Add more data

Without T-detectability

Receding Horizon _

e fem— With T-detectability




=» intersection of the consistency sets for
the system and fault models for horizon T

should be empty!

=>» For fixed T, polynomial optimization
problem (need to iterate on T) —
sufficient conditions for T-detectability

“Theorem”: If T-detectability certificate is
obtained with a relaxation order N, then
using the same relaxation order for model
invalidation problem gives a N&S con-
dition for online fault detection. "

€ =

ACC16

Add more data

Without T-detectability

Receding Horizon _

e fem— With T-detectability

min  e,({u(k), y(k)}:7)

{u(k), y(k)}t+T

st {u(k),y(k)}:" € BT

poly

(G7).



Switched affine model:

-- switching due to control actions
-- six states (room temperatures,
pipe temperatures)

-- only a sensor measuring pipe
temperature

-- noisy sensor measurements

1/28/16

I

Faulty
= =Normali
= Normal2

Temperature in Celsius

Boiler fails at time 8:00 (supply temp drops)

Invalidation algorithm detects the failu

in 2 steps!
. 2
C’I"TC = ZKT,Z(E - TC) + Kw(Tw — T
i=1
CiTy = K i(T. — Th) + Y Kij(T; — T)

J#i
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Goal: go from data to information to /
control in a rigorous way with correctness :

Infcerprete
guarantees. sgnal e(t) |

Discrete

 Dynamics based information extraction: = crt!u H pecision making i,

Continuous

Perception [€ N\

A

raw
Controller sensory

* Hybrid dynamical models as compact e
representation for complex data —_— '
Streams o acuaton Jj—  Prvscs L
* Lots of structure in problems involving

dynamics

* Optimization is a good lens to look at

External Dynamic Environment

these problems : —
: Computational efficiency through
% connections between system .
* Convex Relaxations

identification/invalidation and « Structural decompositions

information extraction/machine
learning
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