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Abstract— This paper proposes a guardian architecture,
consisting of an estimation and a supervisor module
providing a set of inputs that guarantees safety, in driving
scenarios. The main idea is to offline compute a library of
robust controlled invariant sets (RCIS), for each possible
driver intention model of the other vehicles, together with
an intention-agnostic albeit conservative RCIS. At run-
time, when the intention estimation module determines
which driver model the other vehicles are following, the
appropriate RCIS is chosen to provide the safe and
less conservative input set for supervision. We show that
the composition of the intention estimation module with
the proposed intention-aware supervisor module is safe.
Moreover, we show how to compute intention-agnostic and
intention-specific RCIS by growing an analytically found
simple invariant safe set. The results are demonstrated on a
case study on how to safely interact with a human-driven
car on a highway scenario, using data collected from a
driving simulator.

I. INTRODUCTION

As more and more autonomy-related functionalities
are integrated into modern passenger vehicles, questions
on safety and trust arise. Some recent research efforts
have tried to address the safety issue from the formal
verification [1], [16] and correct-by-construction control
synthesis perspectives [15]. In these formal approaches,
set invariance plays a central role in guaranteeing safety
[5], [17]. The boundary of an invariant set can be thought
of as a barrier that separates the part of the state-space
the system can safely operate in from the part that is
deemed unsafe. This boundary can be represented by
level-sets of differentiable functions [2], polyhedra, or
approximate solutions of partial differential equations
capturing the safety problem [3].

Finding robust controlled invariant sets, sets that can
be rendered invariant with the right choice of control
inputs in a way that is robust to the factors controlled
by external agents (such as behavior of other drivers,
disturbances) and model uncertainty, is a key problem in
safety control. However, in a driving scenario, trying to
develop a single model that covers all possible behaviors
of the other drivers often leads to conservatism, i.e.,
smaller invariant sets, as we assume the worst-case
scenario in the invariant set computation. The goal of
this paper is to show how online estimation of the
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behavior models (or intentions) of other drivers can
reduce conservatism by developing a library of RCIS
offline for different intention models and selecting an
appropriate one at run-time. Learning or extracting mod-
els/intentions of other drivers or learning controllers
that mimic humans [6], [19], [13] are relevant, yet
orthogonal, to our work as our main focus is to develop
a framework to show how such models and their online
estimation can lead to more permissive, yet safe, driving.

II. PRELIMINARIES

This section introduces the notation and provides
certain concepts that are used throughout the rest of the
paper. For a given set S, P≥n(S) denotes the set of
subsets of S with at least n elements, S∗ is the set of all
finite sequences from S (including the empty sequence).

A discrete-time affine system has the following state
update equation:

q+ = Aq +Bu+Bww + F (1)

where q is the state of the system, u is the con-
trolled input to the system, w is the uncontrolled input
(disturbance), and the matrices (A,B,Bw, F ) are of
the appropriate dimensions. The state space, space of
allowed inputs, and the space of feasible uncontrolled
inputs are referred to as Q, U , and W , respectively.

A piecewise-affine (PWA) system is defined by a set
f = {(f i, Di)}mi=1 that describes the evolution of the
states in different regions of the state space, that is,

q+ = f i(q, u, w) for q ∈ Di (2)

where D = {Di}mi=1 form a partition of the state space
Q and each f i : Di × U ×W 7→ Q is a discrete-time
affine system in the form of (1), denoting the dynamics
used in Di. With a slight abuse of notation, we also
write

q+ = f(q, u, w) (3)

to represent the PWA system corresponding to f .
Given a PWA system f , a set C ⊆ Q of states is called

robust controlled invariant if

∀q ∈ C : ∃u ∈ U : ∀w ∈ W : f(q, u, w) ∈ C. (4)

In words, trajectories that start inside an RCIS can be
enforced to stay there indefinitely.



A. Invariant Set Computation

There are many methods in the literature for com-
puting or approximating controlled invariant sets [4],
[5], [8], [18]. The main computational building block
of these algorithms is the one-step backward reachable
set operation, that we denote as Pre(·). For a given set
R and dynamics f , the one-step backward reachable set
of R under f is defined as

Pref (R) = {q ∈ Q | ∃u ∈ U : f(q, u,W) ⊆ R}. (5)

Given a safe set Qsafe, under mild conditions, the fol-
lowing iterations converge from outside to the maximal
controlled invariant set in Qsafe when initialized with
C0 = Qsafe:

Ci+1 = Pref (Ci) ∩Qsafe. (6)

If the update rule reaches a fixed point, i.e., Ci ⊆
Pref (Ci), then the solution to that equation is the max-
imal invariant set contained in Qsafe. On the other
hand, although this is a monotonically non-increasing (in
the set inclusion sense) sequence, the iterations are not
guaranteed to terminate in finitely many steps, a problem
that can be mitigated by approximation techniques [8],
[18].

Alternatively, if one has an initial simple RCIS C0,
computed either analytically or numerically, contained
in some safe set Qsafe, this set can be progressively
expanded again via the same update rule (6). In this
case, we obtain a monotonically non-decreasing se-
quence of sets Γk

.
=
⋃k

i=1 Ci, each of which themselves
are robustly controlled invariant. Therefore, it can be
terminated at anytime and one would obtain an RCIS.
We call this method the inside-out algorithm.

Crucially, for PWA systems and sets described with
unions of polytopes, the invariant set computation re-
duces to a set of polytopic operations. Moreover, when
finding the exact Pre(·) is computationally hard, using an
under-approximation does not compromise correctness
when using the iterative algorithms in the sense that
upon termination, the algorithm still results in an RCIS.

III. PROBLEM STATEMENT AND ARCHITECTURE

We start by describing the abstract problem that we
are interested in solving. Let PWA system f of the form
(3) represent the interaction of an ego agent with other
agents where q ∈ Q is the combined states of all agents,
control input u = [u>e u>o ]> ∈ Ue × Uo is partitioned
into two parts where ego input ue is controlled by
the ego agent and external input uo is controlled by
all other agents, and disturbance w ∈ W captures
model uncertainty. We assume that the other agents
behave according to a fixed intention model Ii∗ : Q →
P≥1(Uo), which is a set valued mapping that returns a
set of external control inputs given a state. That is, if

the system is currently at q, then the external control
input uo is restricted such that uo ∈ Ii∗(q) ⊆ Uo. While
the actual specific intention model Ii∗ is unbeknownst to
the ego agent, a finite set I = {I1, . . . , In} of intention
models is known a priori such that Ii∗ ∈ I. There are
two sources of uncertainty from the perspective of the
ego agent: one due to the fact that i∗ is not known,
another due to Ii∗ being a set-valued map, capturing
the variability within a specific intention. With a slight
abuse of notation, we define I(q)

.
=
⋃

I∈I I(q), the set
of all possible external control inputs that the ego agent
presumes, given the current state q.

Our goal is to design a supervisor module, which
restricts the inputs of the ego agent when needed, to
ensure that the states of the system remain indefinitely
in a safe set Qsafe ⊆ Q. However, due to the dynamics
and disturbances in (3), we can only enforce that the
system stays in a subset of Qsafe, which is an RCIS
that is computed according to Section II-A.

Let us define a supervisor module before stating the
problem of interest formally.

Definition 1. Given a system in the form of (3), a set of
intention models I, and a safe set Qsafe, a supervisor
module

SI : Qsafe 7→ P(Ue) (7)

takes a state measurement q and outputs a set SI(q) ⊆
Ue of admissible ego inputs such that the admissible
inputs ue ∈ SI(q) enforce the system to indefinitely
remain in the safe set regardless of the external input
and the disturbance, i.e., SI(q) 6= ∅ =⇒ SI(q+) 6= ∅
for all ue ∈ SI(q), uo ∈ I(q) and w ∈ W where
q+ = f(q, u, w).

A supervisor’s goal is to keep the system in the safe
set. If the admissible ego input safe is empty, the system
must either be in an unsafe state, or it is not possible
for the ego agent to guarantee that the system stays in
the safe set indefinitely. That is, there exists a finite
sequence of external inputs, over which the ego agent
has no control, and a finite sequence of disturbances
that would eventually steer the system into an unsafe
state, regardless of the ego input. On the other hand, the
above definition implies that the set C = {q ∈ Qsafe |
SI(q) 6= ∅} is an RCIS. Given two supervisors S1

I and
S2
I , we say S1

I is more permissive if S2
I(q) ⊆ S1

I(q)
for all q ∈ Qsafe. The key insight in this paper is that,
intuitively, a smaller set of intention models should lead
to more permissive supervisors. That is, if Ĩ ⊂ I, for
any SI , there exists SĨ that is more permissive.

We now formally define the problem we are interested
in solving and provide a solution method.

Problem 1. Let a PWA system f in the form of (3), a
set of intention models I and a safe set Qsafe ⊂ Q be
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Fig. 1: Guardian architecture proposed to solve Problem 1.

given. Find a supervisor module SI as in Definition 1
and a set of initial states C ⊆ Qsafe such that any
trajectory that starts from an arbitrary state q0 ∈ C is
guaranteed to indefinitely remain in C as long as the
control input ue is chosen from the set of admissible
inputs, i.e., ute ∈ SI(qt) for all t.

Problem 1 can be solved using existing methods such
as [15]. However, as previously mentioned, uncertainty
in the external input uo is larger from the perspective
of the ego agent since the intention of other agents
is unbeknownst to the ego agent a priori. As a re-
sult, the supervisor SI must be designed so that it
would guarantee safety for any intention model, which
is conservative and not desirable. In reality, the ego
agent could observe the other agents and decrease the
uncertainty by invalidating intention models that are not
consistent with the observed external inputs. Inspired
by this observation, we propose a less conservative
guardian architecture, which is illustrated in Figure 1, to
solve Problem 1, that consists of a library of supervisor
modules and an intention estimation module:

Definition 2. An intention estimation module

E : (Q× Ue)∗ 7→ P≥1(I)

maps any state-ego input trajectory qut
e =

{(q0, u0
e

)
, . . . , (qt, ute

)
}, to a non-empty subset

It+1
v = E(qut

e) ⊆ I of valid intentions such that there
exist an external control input uko and disturbance wk

that satisfy the following for all k ∈ {0, . . . , t}:
qk+1 = f(qk, [uke uko ], wk), and

uko ∈ Ii(qk) for all Ii ∈ It+1
v .

(8)

An estimation module indicates the set of intention
models that are valid by invalidating the intentions that
are inconsistent with a given state-input pair. Since the
true intention Ii∗ of the other agents is assumed to be
constant over time, it is always included in the set of
valid intentions, i.e., Ii∗ ∈ E(que),∀que ∈ (Q× Ue)∗.
Note that, lengthening the state-input pair can only refine
the set of valid intentions, thus, intention estimation over
time is a monotonically non-increasing set for a system.

Given an instance of Problem 1, a more permissive
supervisor can be designed by leveraging the informa-
tion gained from such an intention estimation mod-
ule. To do so, we compute a library of supervisors
{SI ,SI1 ,SI2 , . . . ,SIn}1. As the notation indicates, we
design a supervisor SIi for each possible intention model
Ii, together with an intention-agnostic supervisor SI .
During run-time, we switch between the supervisors,
depending on the output of the intention estimation
module E . This approach enables us to change the level
of permissiveness depending on the observations, while
still guaranteeing safety. That is, we use the supervisor
module SI when the true intention of the other agents
is not yet known, and guarantee that the system remains
in the safe set. Once the true intention Ii∗ is revealed by
the estimation module E , we switch to the corresponding
supervisor SIi∗ , which is more permissive. As a result,
the overall architecture is less conservative.

IV. THE SCENARIO AND SYSTEM MODELS

To illustrate the concepts that are presented in this
paper, we choose a simple autonomous driving scenario
and explain the solution method referring to this sce-
nario. However, the concepts we propose in this paper
apply to the general framework explained in Section III.

Imagine two vehicles moving on a straight road with
two lanes as illustrated in Fig 2. One of these vehicles,
the ego vehicle, is controllable through ue and can move
both in lateral and longitudinal directions. The other
vehicle is called the lead vehicle and its longitudinal
motion is controlled by a fixed intention model chosen
from a set of intention models. Intention models are
assumed to react to the ego vehicle when the distance
between the cars is less than some threshold. As stated
earlier, while this set of intention models is known to the
ego vehicle, the specific intention model that controls the
lead vehicle is not. We assume that the lead vehicle has
no lateral motion and always drives along the center of
the right lane. The safety requirement for the ego vehicle
is to keep a minimum safe distance between the vehicles,
in both the longitudinal and the lateral directions.

We now provide dynamics that captures the aforemen-
tioned scenario and formally define the safety require-
ments.

A. Dynamics
The vehicles are treated as point masses, and their

motion is modeled as follows:
v+
e,x = ve,x + (ae,x − beve,x)∆t+ we,x∆t,

y+
e = ye + ve,y∆t+ we,y∆t,

v+
L,x = vL,x + (aL,x − bLvL,x)∆t+ wL,x∆t,

(9)

1An even more permissive design can be achieved if we compute
a supervisor for each subset of intentions, i.e., compute SIv for each
Iv ∈ P≥1(I). However, such an approach would be computationally
more expensive as a trade-off.



where ∆t (= 0.1) is the sampling time, ve,x is the
longitudinal velocity of the ego vehicle, ye is the lateral
displacement of the ego vehicle with respect to the center
of the right lane, and vL,x represents the longitudinal
velocity of the lead vehicle. The ego vehicle is controlled
through its longitudinal acceleration ae,x and lateral
velocity ve,y . The longitudinal acceleration of the lead
vehicle, aL,x, depends on the intention and is treated
as external disturbance. Terms be (= 0.1) and bL (=
0.1) are drag coefficients and we,x(k) ∈ [−.15, .15],
we,y(k) ∈ [−.09, .09] and wL,x(k) ∈ [−.05, .05] are
process noises. The relative longitudinal distance be-
tween the two vehicles is denoted by h and evolves
according to the following:

h+ = h+ (vL,x − ve,x)∆t. (10)

As indicated by (10), positive values for h imply that
the ego vehicle is behind the lead vehicle.

We now define the vectors q = [ve,x, ye, h, vL,x]>,
ue = [ae,x, ve,y]>, uo = [aL,x], u = [ue, uo]>, w =
[we,x, we,y , wL,x]>, and combine (9) and (10) in to the
form (1), where Q = [vmin

e,x , vmax
e,x ]× [ymin

e , ymax
e ]×R×

[vmin
L,x , v

max
L,x ].

B. Intention Models

We consider two driver intentions, denoted by I ∈
{Ia, Ic}, corresponding to Aggressive and Cautious
drivers2. Here, these drivers react to the ego vehicle only
when it is close enough, that is, when the absolute value
of the longitudinal distance is less than some threshold.
This area is called the reaction zone and is illustrated
in Fig. 2. When the ego vehicle is inside the reaction
zone, the external input uo is determined by an affine
state-feedback policy; otherwise only a bound on the
velocity is imposed in the choice of uo. Having the
reaction zone captures two properties: (i) since intentions
are feedback policies in our setup, it is reasonable to
assume feedback occurs when the vehicles are in the
vicinity of each other, (ii) fixed intention assumption is
automatically relaxed to intention being unchanged only
within the reaction zone as outside the reaction zone the
assumptions on all vehicles are the same. In addition to
the acceleration bounds captured by Uo, we assume the
lead car velocity is bounded by vL,x ∈ [vmin

L,x , v
max
L,x ].

One thing to note is that an affine state-feedback might
lead to violation of the assumed acceleration and veloc-
ity bounds. These bounds mimic the physical limitations
of the vehicles, thus, it is assumed not possible to exceed
them. Thus, external input uo is saturated when needed.

2We choose two intentions to clearly illustrate these concepts and
stress to the reader that our framework is general enough to incorporate
as many intention models as available.

The resulting dynamics for each intention model can be
represented as a PWA system as shown below3:

1) Aggressive Driver: Tries to match the speed of the
ego vehicle when the ego vehicle is inside the reaction
zone, thus making it harder to overtake:

aL,x =

{
max(min(Kaq, α1), α2) + w∆, if |h| ≤ hr,

max(min((vdesL,x − vL,x), α1), α2) + w∆, o.w.
(11)

where

α1 = min (amax
L,x ,

vmax
L,x − (1− bL∆t)vL,x

∆t
)− wmax

∆ − wmax
L,x

α2 = max (amin
L,x ,

vmin
L,x − (1− bL∆t)vL,x

∆t
)− wmin

∆ − wmin
L,x .

(12)

The min and max operations in (11) and (12) ensure
that the acceleration and velocity bounds for the lead
vehicle are always respected. Note that the action of
the aggressive driver is non-deterministic due to the
term w∆ ∈ [wmin

∆ , wmax
∆ ], which captures the variability

within each intention model. Due to min and max
operators used, resulting dynamics fa = {(f ja , Dj

a)}9j=1

is a PWA system with nine regions.
2) Cautious Driver: Tends to maintain its desired

speed and makes it easier for ego vehicle to change lane
or overtake. The cautious driver is modeled as follows:

aL,x =

{
max(min(Kcq+kcv

des
L,x, α1), α2) +w∆, if|h| ≤ hr,

max(min((vdesL,x − vL,x), α1), α2) +w∆, o.w.
(13)

where α1 and α2 are defined as in (12). The resulting
dynamics fc = {(f jc ,Dj

c)}9j=1 is a PWA system with
nine regions.

3) Bounded Velocity: When the intention of the lead
vehicle is not known, we assume the worst case scenario
and let vL,x to change arbitrarily fast. That is, v+

L,x can
take any value between the lower and the upper bound,
regardless of vL,x. By doing so, we capture the behavior
of both intentions. We use this conservative model when
the intention of the lead vehicle is not known.

C. Safety Requirements

The ego vehicle is required to keep a minimum
distance between two vehicles at all times. In this case,
we can represent the set Qsafe of safe states as follows:

Qsafe
.
= Q1

safe ∩Q2
safe ∩Q3

safe, (14)

where Q1
safe

.
= {q ∈ Q | |h| ≥ hmin or ye ≥ |ymin

e |}
capturing safe distance during takeover, Q2

safe
.
= {q ∈

3The parameter values used in our experiments for these models
are: amax

L,x = −amin
L,x = 3m/s2, wmax

∆ = −wmin
∆ = 0.1,

vmin
L,x = 0m/s, vmax

L,x = 33.5m/s, Kdes = 1, Ka = [1, 0, 0,−1],
Kc = [0,−0.1, 0.1,−0.01], kc = 0.01, vdes

L,x = 30m/s, hr =

60m, hmin = 10m, vmin
e,x = 16m/s, vmax

e,x = 36m/s, ymin
e =

−0.9m, ymax
e = 2.7m. The input bounds used are given by Ue =

[−3, 3]× [−1.8, 1.8] and Uo = [−3, 3].



Fig. 2: The red and blue vehicles represent the lead vehicle
and ego vehicle, respectively. The red and blue boxes indicate
the unsafe and the reaction zone, respectively.

Q | ye ∈ [ymin
e , ymax

e ]} capturing lane keeping con-
straints, and Q3

safe
.
= {q ∈ Q | ve,x ∈ [vmin

e,x , vmax
e,x ]}

capturing the speed limits. Note that, the resulting set
Qsafe of safe states is not convex, but it can be
represented as a union of polyhedra.

V. THE GUARDIAN FOR THE OVERTAKE SCENARIO

Together, a library of RCIS for each intention in IV-B
and an intention estimation module define the guardian
for the overtake scenario. So, this section begins by
discussing guarantees and methods for constructing a
library of RCIS. Then, an intention estimation module
is formally defined. Finally, we prove that integrating
these two parts provides safety and is less conservative
than previously considered models.

A. Library of RCIS

An RCIS can be constructed using any of the methods
described in Section II-A. Specifically, we leverage the
inside-out algorithm of [15] to compute an RCIS for
each intention model Ij ∈ I. The reader can recall
that the inside-out algorithm uses an initial RCIS and
expands it to obtain a final RCIS. One fact that we can
use to generate such an initial, simple RCIS is given as
follows:

Proposition 1. The set Cleft .
= {q ∈ Q | ye ∈

[0.9, 2.7]} of states corresponding to the left lane is
an RCIS for any intention.

The proposition is stated without proof because the
lead car cannot move laterally (i.e., it cannot change it’s
y position in the lane); thus, the proposition immediately
follows from the model definition.

Given this proposition, one can apply the inside-out
algorithm by setting the ‘left lane’ states as the initial
RCIS, i.e., C0 = Cleft, for any of the intention models
discussed in Section IV-B. A more involved, but helpful
result that can be used to ease computation is:

Proposition 2. Any set Cbnd ⊆ Qsafe that is a con-
trolled invariant set for the bounded velocity model is
also a controlled invariant set for the aggressive and the
cautious driver intention models.

Proof (sketch). While the acceleration of the lead ve-
hicle aL,x has a specified bound for the aggressive
and the cautious driver intention models, the bounded
velocity model has no such bound on the lead vehicle’s
acceleration (i.e., the lead car may change its velocity
arbitrarily fast). Thus, if it is possible to remain robustly
safe in the bounded velocity model, then when the lead
car’s acceleration is more restricted than the bounded
velocity model allows, it should be the case that the ego
vehicle can remain safe in all states in Cbnd.

Thus, the previous two propositions can be used
to synthesize a set of RCIS, corresponding to each
of the intention models described in Section IV-B
{Cbnd, Ca, Cc}. Specifically, one can use Proposition 1
to identify the left lane as the initial RCIS, i.e., set
C0 = Cleft, and apply the inside-out algorithm for
the bounded velocity model to obtain Cbnd. After that,
the resulting set Cbnd can be used as the initial RCIS
for the inside-out algorithm according to Proposition 2,
for each of the two intentions. Each of these RCISs
induces a supervisor. For instance, for i ∈ {a, c}, we
have SIi(q) = {ue ∈ Ue | fi(q, u, w) ∈ Ci,∀w ∈
W,∀uo ∈ Ii(q)}. And, SI is defined similarly from
Cbnd. Moreover, these supervisors by construction satisfy
the following:

Proposition 3. SI ⊆ SIi and CI ⊆ CIi for i ∈ {a, c}.

B. Intention Estimation

Intention estimation techniques can roughly be cat-
egorized into two categories: active [7], [9] and pas-
sive [12], [14] methods. The former assumes that the
intention estimation method can modify the controller’s
commands. The latter, on the other hand, assumes that
the intention estimation module cannot modify control
signals and must perform the discrimination operation
using the observations gathered by the sensors. Our
guardian architecture uses a passive intention estimation
scheme to allow maximal permissiveness and to avoid
violation of any safe input constraints.

Given a state-input trajectory qut
e =

{(q0, u0
e), . . . , (qm, ute)} and two intention models

I = {Ia, Ic} as in Section IV-B, intention estimation
aims to determine whether or not the state-input
trajectory is consistent with model i ∈ {a, c}. This
problem can be posed as a linear program at each time



t, similar to [10]:

find {uko , wk}t−1
k=max (t−N,0)

s.t. for all k ∈ {max (t−N, 0), . . . , t− 1}
qk+1 = f ji (qk, uk, wk) if qk ∈ Dj

i ,

uk0 ∈ Ii(qk) and wk ∈ W

(LPt
i)

where N is a horizon to keep the estimator of finite
memory. Note that, infeasibility of LPt

i implies that the
intention model is not Ii. Therefore, the estimator E is
defined as:

E(qut
e) =



Ia, if E(qut−1
e ) = Ia

or LPt
c is infeasible,

Ic, if E(qut−1
e ) = Ic

or LPt
a is infeasible,

I, otherwise.

(15)

C. Putting things together

Having designed a library of RCIS and the intention
estimation module, at run-time, we initialize the esti-
mated intention for the intention-aware supervisor as the
bounded velocity model, i.e., I0

v = I. As the intention
estimation model E refines the valid intention models
Iv by collecting data, the intention-aware supervisor is
updated accordingly.

Theorem 1. Assume that the intention of the other
vehicle is not changing with time (i.e., Ii∗ is constant
for the driving scenario) and Ii∗ ∈ I = {Ia, Ic}. If q0 ∈
Cbnd and ute ∈ SItv (qt) for all t where Itv = E(qut−1

e ),
then we have qt ∈ Qsafe for all t.

Proof. First note that the linear program (LPt
i) will

always be feasible for i = i∗ as we assume Ii∗ is
constant over time. Therefore, Ii∗ ∈ Itv for all t. The
intention estimation is initialized with I. By construc-
tion, SI(q0) 6= ∅ for all q ∈ Cbnd. Now, assume that
the intention estimation module never detects the correct
intention (i.e., Itv = I for all t). Since SI(q0) 6= ∅, it
follows from Def. 1 by induction that SItv (qt) 6= ∅ and
qt ∈ Cbnd ⊆ Qsafe for all t. Now, assume that intention
estimation module eventually reveals the true intention
Ii∗ , i.e., there exists a t∗ such that It∗v = Ii∗ . We know
that the state of the system is safe (qt ∈ Cbnd ⊆ Qsafe)
for t < t∗ by using SI . Moreover, by Proposition 3, at
time t∗, SIi∗ (qt

∗
) ⊇ SI(qt

∗
) 6= ∅ and qt

∗ ∈ Cbnd ⊆ Ci∗ .
By Eq. (15) and the assumption on constant intention,
we will have Itv = Ii∗ for all t ≥ t∗. Now, again, it
follows from Def. 1 by induction that SItv (qt) 6= ∅ and
qt ∈ Ci∗ ⊆ Qsafe for all t ≥ t∗.

VI. RESULTS

In this section, we discuss the results of the proposed
solution to Problem 1 for the driving scenario presented

(a) Projection of the invariant
set onto (ve,x, ye, h) space

(b) Sliced invariant sets given
the ve,x and vL,x (in m/s)

Fig. 3: The invariant sets for the bounded velocity model (red)
and the model of the cautious driver intention (red+blue, the
result after 5 iterations).

in Section IV. We briefly describe the tools and methods
used to implement the invariant set algorithms. We then
illustrate the intuitive conclusions that can be made
about the RCIS and safe (admissible) input sets of
various estimated intentions.

A. Implementation and Experimental Setup

We use the inside-out method described in Section
II-A to compute RCIS and safe input sets. We use
polyhedra (or union of polyhedra) representation of sets
in our algorithm, since it forms a closed class of objects
under set operations such as intersection and projection.
The code is implemented on top of the Multi-Parametric
Toolbox 3.0 (MPT3) [11], a MATLAB toolbox with
efficient implementations of polyhedra manipulations.
The system dynamics, intention models and the safety
requirements are as stated in Section IV.

B. RCIS Computation Results and Discussion

We first compute an RCIS for the bounded velocity
model. The seed set for the inside-out algorithm is
chosen as the left lane, i.e., C0 = Cleft, which is shown
to be robust controlled invariant in Proposition 1. The
algorithm converges in 12 iterations and the resulting
RCIS is shown as the red regions in Figures 3a and 3b.

Due to Proposition 2, RCIS for the bounded velocity
model is also robust controlled invariant for the other
intentions. Thus, we initialize the inside-out algorithm
with this new seed in the following computations. The
resulting set after 5 iterations for the cautious driver
intention model is shown as the union of the red and blue
regions in Figures 3a and 3b. The blue region indicates
the difference between the RCIS of the cautious driver
and the bounded velocity model. The results show that,
by estimating the intention model, we indeed have a
larger invariant set. On the other hand, RCIS obtained for
the aggressive intention is almost visually indistinguish-
able with the invariant set for the cautious intention, but
as can be shown in Figure 4, their sets of admissible
inputs corresponding to the same state can be different.
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Fig. 4: Safe inputs (blue regions) at state
[25, −0.297, 16.52, 20]> for aggressive driver intention
(left), cautious driver intention (middle) and bounded velocity
model (right).

Note that, as shown in Figure 4, the safe input set
can be non-convex. In that case, the projection to each
dimension can be done in an order, according to a user
defined priority. For example, speed change may be
perceived as less “invasive” compared to a steering angle
change from the human user perspective. In this case,
projection onto the throttle input space may be preferred
over the projection onto the steering input space.

C. Overtaking Simulation

We perform an overtaking simulation in MATLAB to
show how the ego car and the lead car behave with
and without the supervisor, with a baseline switched
MPC controller for the ego car that is chosen to mimic
a human driver that undertakes the overtaking task. In
the supervised case, the supervisor is implemented using
the controlled invariant sets obtained by our proposed
algorithm. On the other hand, the lead car behaves
according to one of the two intentions. To view the
simulation videos, please refer to our YouTube channel
4.

Figure 5a shows the MPC control inputs over time in
the simulations with no supervision for the case where
the lead car driver is cautious. The red lines show the
MPC inputs and the blue shadow shows the safe range of
throttle/steering inputs (obtained by slicing the safe input
set at each time) given the user-selected steering/throttle
inputs. The region without blue shadow corresponds to
the time when the ego car is out of the invariant set,
since no supervision is applied. In Figure 5a, the blue
shadow in the second row covers more time steps than
the first row, which implies that the invariant set for the
cautious driver intention contains more states than the
invariant set for the bounded velocity model. Therefore,
once the intention of the lead vehicle is discovered
(shown by cyan vertical dashed lines), the supervisor
will behave less conservatively (i.e., will allow more
user-selected inputs) by switching to the supervisor for
the estimated intention. This is indeed the case, as can
be seen in Figure 5b, where the intention estimation and
the guardian/supervisor are engaged.

4https://tinyurl.com/y69w989x

(a) MPC without supervision

(b) MPC with supervision

(c) Human driver without supervision

Fig. 5: The control inputs (red lines) of the ego vehicle over
time (in seconds) for the following scenarios with and without
supervision: ego car tailgates the lead car for a few seconds
and then overtakes. The ego car in (a), (b) is controlled by an
MPC controller, but in (c) is controlled by a human driver using
the vehicle simulator in Figure 6. The lead car has cautious
intention. The blue lines and shadow label the range of safe
inputs given by the invariant sets. The cyan dash line labels the
time when the intention estimation gives the correct intention.
The green line in (b) labels the time when the ego car’s inputs
are overridden by the supervisor. The safe input ranges in the
first and second rows in (a), (c) are computed with respect to
the bounded velocity model and the cautious driver intention
model respectively.

In the YouTube video list, Simulation 1 shows the
animation that compares the results in Figure 5a and
5b. The same scenario with the aggressive intention is
shown in Simulation 2. In addition, in the videos of
Simulations 3 and 4, MPC is tuned to mimic a safe
driver and a “bad” driver (more likely to crash with the
lead car), respectively. Simulation 3 shows how such a
“bad” driver crashes into the lead car in this scenario,
but with supervision the driver is prevented from causing
a crash. Furthermore, experimental results in Simulation
4 suggest that if the ego driver is already very careful,
e.g., always keeping a safe distance with the lead car,
the supervisor rarely needs to override.

D. Results from Driving Simulator

We also collected data using a driving simulator,
where a human-driver is asked to perform an overtak-
ing maneuver as described in the previous subsection.

https://tinyurl.com/y69w989x


The dynamics are implemented in MATLAB/Simulink
which interfaces with Unreal Engine 4 for visualization.
The hardware used is a Logitech Driving Force G920
Racing Wheel for human control inputs (steering and
acceleration). Fig. 6 shows the setup of the simulator.
Fig. 5c shows the data from human-driver overlaid with
the guardians assessment of its safety. As can be seen
in the figure, the estimation of the intention significantly
reduces the times human input needs to be overridden
to guarantee safety.

Fig. 6: Driving Simulator

VII. CONCLUSION

In this paper, we propose a guardian architecture
that combines a library of RCIS-based supervisors with
online intention estimation to decide on a set of safe
inputs. The supervisor then compares these inputs with
the driver inputs of a guardian-equipped car, and mod-
ifies driver’s inputs as needed. Our results show that
intention estimation enables more permissive driving
that interferes with human inputs less frequently. The
results are demonstrated via simulation data and data
collected from a human-driver on a driving simulator.
We note that the framework is general and can be
used in different scenarios involving different dynamical
models, and with different invariant set computation
formalisms that we will explore in the future. Our future
work also includes learning a richer set of intention
models from driving data by clustering trajectories [6].
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