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Abstract— Inspired by the work of Tsiamis et al. [1], in this
paper we study the statistical hardness of learning to stabilize
linear time-invariant systems. Hardness is measured by the
number of samples required to achieve a learning task with
a given probability. The work in [1] shows that there exist
system classes that are hard to learn to stabilize with the core
reason being the hardness of identification. Here we present
a class of systems that can be easy to identify, thanks to a
non-degenerate noise process that excites all modes, but the
sample complexity of stabilization still increases exponentially
with the system dimension. We tie this result to the hardness
of co-stabilizability for this class of systems using ideas from
robust control.

I. INTRODUCTION

Learning-based control plays an increasingly important
role in many application domains such as power systems
[2], robotics [3], self-driving cars [4], where it might be
hard to perfectly model the system and its environment.
Many learning-based control algorithms assume the existence
of an initial stabilizing controller in order to simplify their
analysis. Such simplifying assumptions are prevalent both
in model-based [5]–[11] and model-free [12]–[18] learning-
based control algorithms. However, learning to stabilize is a
fundamental problem in learning-based control, with several
algorithms tackling this issue [19]–[25].

Understanding the fundamental limits or the corner cases
of learning-to-stabilize algorithms can inform future algo-
rithm design and is crucial for applications of these algo-
rithms in safety-critical domains. Therefore, it is important to
understand how the system properties affect the performance
of the learning-to-stabilize algorithms. In particular, we are
interested in the number of samples required to learn a sta-
bilizing controller with a given probability as a performance
measure. We say a class of systems is hard to learn to
stabilize if this number grows exponentially with the system
dimension, independent of the algorithm choice.

We focus on fully observed linear time-invariant systems
and consider the task of learning a static stabilizing linear
state-feedback controller from a single trajectory. In this
setting, Tsiamis et al. [1] show that when the process
noise is degenerate, i.e. the noise covariance matrix being
singular, there are some classes of systems that are hard to
learn to stabilize, by transferring the hardness of learning-
to-stabilize into the hardness of system identification. The
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system classes constructed in their work are based on a
(marginally) stable hard-to-stabilize pair. In this work, we
significantly extend the class of systems that are hard to
learn to stabilize by considering systems that are, even
though close in the parameter space and generate similar
state-input trajectories, not co-stabilizable with the same
controller. This is achieved by a novel analysis technique
that uses Ackermann’s formula to compute all stabilizing
linear state-feedback gains analytically and characterize the
minimal level of perturbations to the parameters that render
co-stabilizability infeasible. Different from the prior work,
our analysis allows us to consider system classes that may
only include systems with eigenvalues strictly outside of the
unit circle, for which stabilizability is arguably more critical.
Notation: We use lower case, lower case boldface, and upper
case boldface letters to denote scalars, vectors, and matrices
respectively. For a matrix M ∈ Rm×n, M⊤ denotes its
transpose, M (i,j) denotes its element in the ith row and the
jth column. For a square matrix M ∈ Rn×n, M ≻ 0 (⪰ 0)
denotes that M is positive definite (positive semidefinite),
ρ(M) denotes its spectral radius, and det(M) denotes its
determinant. For a vector v ∈ Rn, its ith element is denoted
by v(i). By poly(·) we denote a polynomial function of its
arguments. By exp(·) we denote an exponential function of
its arguments. We use In to denote the identity matrix in
Rn×n. A sequence of vectors xt, xt+1, ..., xt+N is denoted
by xt:t+N for short. By convention, xi:j is an empty set if
j < i.

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

We consider the following fully-observed discrete-time
linear time-invariant (LTI) system:

xt+1 = Axt +But +wt, (1)

where xt ∈ Rn, ut ∈ Rp, wt ∈ Rn are the state, input, and
process noise at time t. For simplicity, we assume x0 = 0.
The random process wt over t is zero-mean i.i.d. Gaussian,
with covariance matrix σ2

wIn. In the remainder of the paper,
we denote a system in the form (1) by the tuple (A,B).

Let Cn be a class of systems (A,B) in dimension n,
parameterized by some unknown parameters.

Definition 1. A learning-to-stabilize algorithm π with respect
to the class Cn is a sequence of functions π = {πt}Nt=0. For
t = 0, ..., N − 1, πt(u0:t−1,x0:t) specifies the probability
distribution of the input ut ∈ Rp at time t, conditioned on
the previous state-input trajectory u0:t−1 and x0:t. Then at
t = N , the function πN maps the entire state-input trajectory
u0:N−1 and x0:N to a state-feedback gain in Rp×n. This



learned state-feedback gain K̂N = πN (u0:N−1,x1:N ) is
called stabilizing if ρ(A+BK̂N ) < 1.

Intuitively, the algorithm π consists of an exploration
policy in the first N − 1 steps and decides on the gain
K̂N using the data generated during exploration at step
N . As such, exciting the system with some open-loop
persistently exciting input as in data-driven control [26],
applying some i.i.d. input and computing the gain afterward
using the generated data [27], or active learning policies
can all be considered as special types of learning-to-stabilize
algorithms.

Given a system S = (A,B) ∈ Cn and a learning-to-
stabilize algorithm π, let PN

S,π denote the probability measure
of the input-state samples u0:N−1 and x1:N (with fN

S,π

denoting the corresponding probability density function), and
EN
S,π denote the expectation of the respective probability

measure. We make the following assumptions on the class
Cn and the algorithm π.

Assumption 1. For all n ≥ 1 and all (A,B) ∈ Cn, the norm
of matrices A,B is bounded by a positive constant M , that
is, maxn≥1,(A,B)∈Cn

max {∥A∥2, ∥B∥2} ≤ M .

Assumption 2. The second moment of the norm of the input
signal ut, generated by the algorithm π, is bounded by some
constant σ2

u > 0. That is, ES,π

[
∥ut∥22

]
≤ σ2

u.

Next, we recall the definition of poly(n)-stabilizable sys-
tem classes from [1]. If a class Cn of discrete-time LTI
systems is poly(n)-stabilizable, it is statistically easy to learn
linear state-feedback controllers to stabilize systems in this
class.

Definition 2 (poly(n)-stabilizable system classes [1]). Un-
der Assumptions 1 and 2, a class Cn of systems is poly(n)-
stabilizable if there exists a learning-to-stabilize algorithm
π such that for all confidence levels 0 ≤ δ < 1

inf
S∈Cn

PN
S,π (ρ (A+BπN (u0:N−1,x1:N )) < 1) > 1− δ,

(2)

if the sample size N satisfies Nσ2
u ≥ poly(n, log(1/δ),M).

This definition essentially tells that a class is poly(n)-
stabilizable if it is possible to find an algorithm that can
learn a stabilizing linear state-feedback controller with high
probability, even for the worst-case system in this class, as
long as there are polynomially many samples in the system
dimension n. Since the polynomial dependency on n is mild,
we say learning to stabilize is easy for this class. On the
other hand, being hard refers to a class that is not poly(n)-
stabilizable.

A closely related concept is the hardness of identifica-
tion [28], i.e., whether the system can be learned with ϵ
accuracy using poly(n, log(1/δ), 1/ϵ) many samples. When
the process noise is degenerate, by transferring the hardness
of learning to stabilize into the hardness of system identi-
fication, Tsiamis et al. [1] prove that there exists a class

of systems, for which the worst-case sample complexity of
learning to stabilize is at least exponential with the system
dimension. Our work is complementary as we seek to answer
the following question.

Problem 1. Is there a class of linear systems that are
not poly(n)-stabilizable when the process noise wt is non-
degenerate?

The following lemma follows directly from Definition 2.

Lemma 1. For two classes of systems C1
n and C2

n, if C1
n is

a subset of C2
n and C1

n is not poly(n)-stabilizable, neither is
C2
n.

Lemma 1 turns Problem 1 into the problem of finding a
pair of systems that are not poly(n)-stabilizable. Specifically,
if a pair of systems is not poly(n)-stabilizable, then any
class containing this pair of systems is also not poly(n)-
stabilizable.

The next two definitions are related to the co-stabilizability
and distinguishability of a pair of systems.

Definition 3 (Co-stabilizability). A pair of systems S1 =
(A1,B1) and S2 = (A2,B2) is co-stabilizable if there exists
a state-feedback gain K such that both A1+B1K and A2+
B2K are stable.

Remark 1. Co-stabilization problem for two dynamical
systems has been studied in robust control [29], e.g., by using
the gap metric [30].

We will use KL divergence to measure the distance
between the distributions of state-input trajectories generated
when the same exploration policy is applied to two different
systems. A small KL divergence means that it is hard to
distinguish two systems.

Definition 4 (Kullback–Leibler (KL) divergence). The KL
divergence between the continuous distributions P and Q is
defined as

KL(P,Q) =

∫ +∞

−∞
p(x) log

p(x)

q(x)
dx,

where p(x) and q(x) denote the probability densities of P
and Q and p(x) is absolutely continuous with respect to
q(x).

Our main insight behind constructing not poly(n)-
stabilizable pairs in the next section is as follows. If we
have two different systems and excite all the modes of
these systems, as we increase the trajectory length N , we
expect that the KL divergence between the trajectories will
increase and we will be able to distinguish the systems.
On the other hand, if the KL divergence remains small
independent of the exploration policy, then we cannot expect
the learning-to-stabilize algorithm to result in significantly
different controller gains. Moreover, if these two systems are
not co-stabilizable, then learning to stabilize these systems
will be hard.



III. HARD TO LEARN TO STABILIZE SYSTEMS

Consider the following system of the form (1) with (A,B)
defined parametrically as

A =


r v 0 · · · 0
0 0 v · · · 0

. . . . . .
0 0 0 · · · v
0 0 0 · · · 0

 ∈ Rn×n, B =


b(1)

0
...
0
v

 ∈ Rn,

(3)
where n ≥ 2, r > 1, 0 < v < r−1

2 , and b(1) ≥ 0.

Remark 2. When b(1) = −vn/rn−1, the system in (3) is
uncontrollable. To avoid this trivially hard-to-stabilize case,
we let b(1) ≥ 0.

The following proposition proves that there exist two
systems in the parametric family (3) differing only in b(1),
such that for a feedback gain to be able to stabilize both
systems at the same time, the difference in b(1) should be
exponentially small in the system dimension.

Proposition 1. Let S1 = (A,B1), and S2 = (A,B2), where
A is as in (3), and B1 and B2 equal to B in (3) with
b(1) = 0 and b(1) = m ≥ 0, respectively. Let K ∈ R1×n be
any stabilizing linear state-feedback gain for S1 such that
ρ(A+B1K) < 1. Let pcl1 , p

cl
2 , . . . , p

cl
n be the eigenvalues of

A + B1K with 0 ≤ |pcl1 |, |pcl2 |, . . . , |pcln | < 1. Then ρ(A +
B2K) < 1 only if

0 ≤ m < vn
n∏

i=1

1 + pcli
r − pcli

. (4)

The proof, which uses Ackermann’s formula (Lemma 2)
to analytically compute any stabilizing feedback gain of
(A,B1) and Jury stability test (Lemma 4) to verify the
closed-loop stability of (A,B2) when using the stabilizing
gain of the former, is given in Appendix A.

Next, we upper bound the KL divergence between the
probability distributions of length N input-state trajectories
generated by the two LTI systems defined in Proposition 1.
Similar upper bounds of the KL divergence between two LTI
systems can also be found in [1], [28], [31].

Proposition 2. Let the systems S1, and S2 be the same as
those defined in Proposition 1. Let π be any learning-to-
stabilize algorithm that satisfies Assumption 2. Then, the KL
divergence between PN

S1,π
and PN

S2,π
satisfies

KL
(
PN
S1,π,P

N
S2,π

)
≤ Nm2σ2

u

2σ2
w

.

The proof is given in Appendix B.
The next theorem states that there exist some classes of

systems with non-degenerate process noise, for which the
worst-case sample complexity of learning to stabilize is at
least exponential with the system dimension n.

Theorem 1. Consider S1 and S2 defined in Proposition
1, with m = 2

(
2v
r−1

)n

. Consider any class Cn of systems
including S1 and S2, which satisfies Assumption 1. Then, for
all learning-to-stabilize algorithms π satisfying Assumption
2 and for all confidence levels 0 < δ < 1/2, the requirement

inf
S∈Cn

PN
S,π (ρ (A+BπN (u0:N−1,x1:N ) < 1) ≥ 1− δ (5)

is satisfied only if

N ≥ σ2
w

2σ2
u

(
r − 1

2v

)2n

log
1

3δ
,

where n ≥ 2, r > 1, and 0 < v < r−1
2 .

The proof of Theorem 1 can be found in Appendix C. In
the proof we show that if the same algorithm π is applied
to S1 and S2, for the stabilization probability in (5) to
be high for both, exponentially many samples are needed.
This indicates that for any class containing S1 and S2,
polynomially many samples will not be sufficient for the
satisfaction of requirement (5), therefore such classes cannot
be poly(n)-stabilizable.

Comparing the systems S1 and S2 in our proof to cor-
responding system pairs in [1], our pairs are individually
not necessarily “hard to identify” but the distance m in the
parameter space between the pairs shrinks exponentially fast
as we increase n. As shown in Proposition 2, the input-state
trajectory distributions our pairs of systems generate look
very similar; this is expected since the system parameters
get closer with n. In general, one may expect if two systems
are close to each other in the parameter space, they can
be co-stabilized by the same controller K. However, our
pairs cannot be co-stabilized (as shown in Proposition 1)
with a single gain K although the systems are very close in
parameter space, which is the main source of hardness.

Remark 3. Our proof technique can also be extended to
show the hardness of learning to stabilize for classes of
systems containing single-input systems with diagonal state
matrices and n unstable eigenvalues in a compact range,
presented in [32]. In that case, when the input vector is
the all-one vector, the controllability matrix of the system
is a Vandermonde matrix, which allows us to again use
Ackermann’s formula to obtain the explicit form of all
stabilizing linear state-feedback gains. Results similar to
Proposition 1 and Theorem 1 can be established in this case
too.

IV. NUMERICAL EXPERIMENTS

In this section, we implement two numerical experiments,
i.e., certainty equivalent linear quadratic regulator (LQR) and
robust control, to show the hardness of stabilization.

A. Certainty Equivalent LQR

Since solving LQR problems always gives stabilizing
controllers (under mild regularity conditions), the first exper-
iment considers the certainty equivalent LQR control [27].
Specifically, a controller is computed by solving an LQR
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Fig. 1. Required trajectory length N for 90% stabilization rate vs. system
dimension n: σ2

u = 32, σ2
w = 0.005, v ∈ {1.01, 1.05, 1.09}

problem using some estimated system dynamics and then
applied to the ground truth system. The infinite-horizon LQR
problem, simplified as dLQR(A,B,Q,R), is as follows.

min
u0,u1,···

lim
T→∞

E

[
1

T

T∑
t=0

(
x⊤
t Qxt + u⊤

t Rut

)]
s.t. (1)

(6)

where Q,R are positive semi-definite cost matrices. Its
solution is given by ut = Kxt where the controller K can
be computed by solving the Riccati equation. Consider the
system (A,B1) defined in Proposition 1, and let Q = In,
and R = 1. Since the analysis of Theorem 1 is established
on perturbing b(1) in B1, we consider a simplified setting
where only b(1) is unknown and to be estimated using the
least squares estimator, which is denoted by b̂(1). Let B̂1

denote the matrix by replacing b(1) with b̂(1) and K̂ denote
the certainty equivalent controller for (A,B1) obtained by
solving dLQR(A, B̂1,Q,R). We let the input ut

i.i.d.∼
N (0, σ2

u). Since there is only a single unknown parameter
and its regressor ut is independent, this system is trivially
easy to identify.

For each dimension n, we run M = 200 independent
experiments. Let K̂i,N ′ denote the controller obtained using
the first N ′ data points, i.e., {u0:N ′−1,x1:N ′}, in the ith

experiment. We record the smallest trajectory length N under
which at least 90% of the experiments produce stabilizing
controllers, i.e.

N := min
{
N ′ ∈ N :

1

M

∑
i∈[M ]

I{ρ(A+B1K̂i,N′ )<1} ≥ 0.9
}
,

(7)
where I denotes the indicator function.

The results are given in Fig. 1. According to Fig. 1, we
have that as the system dimension increases, the required
number of samples for a given frequency of stability in-
creases exponentially with the system dimension.

B. LMI-based Sufficient Condition for Co-stabilizability

In this section, we numerically demonstrate the hardness
of co-stabilizability of S1 = (A,B1) and S2 = (A,B2(m))
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Fig. 2. v = 1.01, 1.05, 1.09, and r = 3.2. The x-axis is the system
dimension n and the y-axis is the logarithm of the largest m such that the
problem in (8) is feasible.

using ideas from robust control, where we leave m as a
parameter. We use the following feasibility problem, which
can be converted to an LMI, to check sufficient conditions
of co-stabilizability.

find K,P

s.t. (A+B1K)
⊤
P (A+B1K) ≺ P

(A+B2(m)K)
⊤
P (A+B2(m)K) ≺ P

P ≻ 0

. (8)

We use the bisection method to find the largest m such
that the problem (8) is feasible. The results are shown in
Fig. 2. According to this figure, we see that as the system
dimension increases, the largest m such that the LMI opti-
mization problem in (8) is feasible decreases exponentially
with increasing system dimension, which is consistent with
Eq. (4) in Proposition 1.

V. CONCLUSION AND FUTURE WORK

In this work, we identified an extended class of LTI
systems that are hard to learn to stabilize with static state
feedback. The main idea in constructing such examples is
to find pairs of systems whose parameters become expo-
nentially close to each other as the dimension increases,
yet they are not co-stabilizable. One interesting observation
is that the entries of stabilizing gains for these pairs are
also growing exponentially (see, Eq. (17)). In the future,
we want to investigate the ramifications of this observation
in gradient-based learning algorithms used for control as in
[33].
Acknowledgments: The authors would like to thank Prof.
Peter Seiler of University of Michigan for some early dis-
cussions that motivated this work.

APPENDIX

A. Proof of Proposition 1

We first introduce a few lemmas used in the proof of
Proposition 1. The first lemma parameterizes all stabiliz-
ing state-feedback gains for single-input controllable LTI



systems. Recall that the controllability matrix of a system
(A,B) is defined by

Ctr(A,B) =
[
B AB · · · An−1B

]
. (9)

Lemma 2 (Ackermann’s formula [34] ). Consider the fol-
lowing order n single-input controllable system (A,B) with
state feedback K ∈ R1×n:{

xt+1 = Axt +But

ut = Kxt

.

Given n desired eigenvalues of A + BK, the unique state
feedback that achieves these closed-loop eigenvalues is:

K = −e⊤nCtr−1
(A,B)∆

cl(A), (10)

where en is the last column of the n × n identity matrix,
and ∆cl(A) is the characteristic polynomial of A+BK
evaluated at A.

The next lemma derives the expression of the first element
of any stabilizing state-feedback gains for (A,B1), param-
eterized by the stable closed-loop poles.

Lemma 3. For the system (A,B1) defined in Proposition 1
and any stabilizing state feedback K ∈ R1×n, let {pclk }nk=1

be the eigenvalues of A+B1K, with {pclk }nk=1 all inside the
unit circle. Then, the first element k1 of the state feedback
K satisfies

k1 = −
(
r − pcl1

) (
r − pcl2

)
· · ·

(
r − pcln

)
vn

. (11)

Proof. By Lemma 2, since (A,B1) is single-input and
controllable, the state feedback K satisfies

K = −e⊤nCtr−1
(A,B1)

∆cl(A), (12)

where the characteristic polynomial ∆cl(A) of the closed-
loop system A+B1K evaluated at A is

∆cl(A) =

n∏
i=1

(A− pcli In). (13)

By the definition of A in (3), for all i = 1, 2, ..., n,

A− pcli In =


r − pcli v 0 · · · 0

0 −pcli v · · · 0
. . . . . .

0 0 0 · · · v
0 0 0 · · · −pcli

 . (14)

Based on (14), the element of ∆cl(A) at the first row and
the first column is[

∆cl(A)
](1,1)

=
(
r − pcl1

) (
r − pcl2

)
· · ·

(
r − pcln

)
. (15)

Furthermore, due to the special structures of (A,B1), it can
be shown that the last row of the inverse of the controllability
matrix Ctr(A,B1) is

e⊤nCtr−1
(A,B1)

=
[
v−n 0 · · · 0

]
. (16)

Thus, according to (12), (15), and (16), the first element of
the state feedback K is

k1 = −v−n
[
∆cl(A)

](1,1)
= −

(
r − pcl1

) (
r − pcl2

)
· · ·

(
r − pcln

)
vn

.
(17)

The next lemma provides a necessary condition for the
stability of discrete-time LTI systems.

Lemma 4 (Jury stability test, Theorem 4.6 in [35]). For the
polynomial

∆(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0 = 0,

with an > 0, the roots of the polynomial are inside the unit
circle only if {

∆(1) > 0

(−1)n∆(−1) > 0
. (18)

Now, we are ready to present the proof of Proposition 1.

Proof. Consider the two systems (A,B1) and (A,B2) in
Proposition 1. Let K be any stabilizing state-feedback gain
of (A,B1). By Lemma 3, the first element of K satisfies

k1 = −
(
r − pcl1

) (
r − pcl2

)
· · ·

(
r − pcln

)
vn

, (19)

where pcl1 , pcl2 , ..., pcln are the eigenvalues of A + B1K
with |pcl1 |, |pcl2 |, . . . , |pcln | < 1. Next, it can be shown that
the characteristic polynomial ∆cl

n (z) of A+B1K is

∆cl
n (z) :=det(zI−A−B1K)

=zn − (r + vkn) z
n−1

+

n−2∑
j=0

vn−j−1 (rkj+2 − vkj+1) z
j

. (20)

Similarly, one can show that the characteristic polynomial
∆̂cl

n (z) of A+B2K satisfies

∆̂cl
n (z) := det(zI−A−B2K)

=zn − (r + vkn + k1m)zn−1+
n−2∑
j=0

vn−j−1(rkj+2 − vkj+1)z
j

= ∆cl
n (z)−mk1z

n−1.

(21)

Thus, by (21), we have{
∆̂cl

n (1) = ∆cl
n (1)−mk1,

∆̂cl
n (−1) = ∆cl

n (−1)− (−1)n−1mk1.
(22)

By Lemma 4, the matrix A+B2K is stable only if{
∆̂cl

n (1) > 0

(−1)n∆̂cl
n (−1) > 0

. (23)



Also, note that{
∆cl

n (1) =
∏n

i=1(1− pcli )

∆cl
n (−1) = (−1)n

∏n
i=1(1 + pcli )

. (24)

Combining (22), (23), and (24), we have that A +B2K is
stable only if

0 ≤ m < vn
n∏

i=1

1 + pcli
r − pcli

, (25)

with |pcl1 |, |pcl2 |, . . . , |pcln | < 1.

B. Proof of Proposition 2

For simplicity of notation, we denote Pt
Si,π

, f t
Si,π

, and
Et
S1,π

by Pt
i, f

t
i , and Et

1 respectively, for i = 1, 2, and 0 ≤
t ≤ N . With this notation, Proposition 2 can be proven as
follows.

Proof. Starting with the definition of KL divergence (i.e.,
Definition 4), we have

KL
(
PN
1 ,PN

2

)
=EN

1

[
log

fN
1 (u0:N−1,x0:N )

fN
2 (u0:N−1,x0:N )

]
= EN

1

[
log

∏N
t=0 f

t
1 (xt | x0:t−1,u0:t−1)∏N

t=0 f
t
2 (xt | x0:t−1,u0:t−1)

]

+ EN
1

[
log

∏N−1
t=0 f t

1 (ut | x0:t,u0:t−1)∏N−1
t=0 f t

2 (ut | x0:t,u0:t−1)

]

=

N∑
t=0

Et
1

[
log

f t
1 (xt | xt−1,ut−1)

f t
2 (xt | xt−1,ut−1)

]
,

(26)

where the second equality is from the properties of the con-
ditional probability density functions and the third equality
is because the exploration policies of these two systems are
the same and the discrete-time LTI system has the Markovian
structure.

Based on the special structure of (A,B) of S1 and S2,
we have the following relationships between every element
of state vectors of these systems:

S1 :


x
(1)
t = rx

(1)
t−1 + vx

(2)
t−1 + w

(1)
t−1

x
(j)
t = vx

(j+1)
t−1 + w

(j)
t−1, for j = 2, . . . , n− 1

x
(n)
t = vut−1 + w

(n)
t−1

,

(27)

S2 :


x
(1)
t = rx

(1)
t−1 + vx

(2)
t−1 +mut−1 + w

(1)
t−1

x
(j)
t = vx

(j+1)
t−1 + w

(j)
t−1, for j = 2, . . . , n− 1

x
(n)
t = vut−1 + w

(n)
t−1

.

(28)
Due to (27), (28) and the fact that w(j)

t for j = 1, . . . , n are
mutually independent, we have for i = 1 and 2,

f t
i (xt | xt−1,ut−1)

=f t
i

(
x
(1)
t | x(1)

t−1, x
(2)
t−1,ut−1

)
·

n−1∏
j=2

f t
i

(
x
(j)
t | x(j+1)

t−1

)
f t
i

(
x
(n)
t | ut−1

)
.

(29)

According to (27) and (28), we also have
f t
1

(
x
(j)
t | x(j+1)

t−1

)
= f t

2

(
x
(j)
t | x(j+1)

t−1

)
for j = 2, . . . , n− 1

f t
1

(
x
(n)
t | ut−1

)
= f t

2

(
x
(n)
t | ut−1

) , (30)

and 

f t
1

(
x
(1)
t | x(1)

t−1, x
(2)
t−1,ut−1

)
∼

N
(
rx

(1)
t−1 + vx

(2)
t−1, σ

2
w

)
f t
2

(
x
(1)
t | x(1)

t−1, x
(2)
t−1,ut−1

)
∼

N
(
rx

(1)
t−1 + vx

(2)
t−1 +mut−1, σ

2
w

)
, (31)

where N denotes the Gaussian distribution.
Then, (26) is equal to

KL
(
PN
1 ,PN

2

)
=

N∑
t=1

Et
1

log f t
1

(
x
(1)
t | x(1)

t−1, x
(2)
t−1,ut−1

)
f t
2

(
x
(1)
t | x(1)

t−1, x
(2)
t−1,ut−1

)


=

N∑
t=1

Et
1


(
w

(1)
t−1 +mut−1

)2

−
(
w

(1)
t−1

)2

2σ2
w


=

N∑
t=1

Et
1

[
(mut−1)

2

2σ2
w

]
≤ Nm2σ2

u

2σ2
w

,

(32)

where the first equality is due to (29) and (30), the second
equality is due to (27), (31), and the definition of the Gaus-
sian distribution, the third equality is by the noise process
being zero mean and w

(1)
t−1 and ut−1 being independent, and

the last inequality is due to Assumption 2.

C. Proof of Theorem 1

Before presenting the proof of Theorem 1, we first intro-
duce Birgé’s inequality, a classical inequality from informa-
tion theory.

Lemma 5 (Birgé’s Inequality, Theorem 4.21 in [36]). Let Ω
be a set and E be a σ-algebra on the set Ω. Let P1,P2 be
probability measures on the probability space (Ω, E) and let
E1, E2 ∈ E be disjoint events. If 1−δ ≜ mini=1,2 Pi (Ei) ≥
1/2 then

KL (P1,P2) ≥ (1− δ) log
1− δ

δ
+ δ log

δ

1− δ
.

Next, we present the proof of Theorem 1.

Proof. Given S1 and S2, let us define two events:

E1 = {u0:N−1,x1:N | ρ (A+B1πN (u0:N−1,x1:N )) < 1} ,
E2 = {u0:N−1,x1:N | ρ (A+B2πN (u0:N−1,x1:N )) < 1} .

Since m = 2
(

2v
r−1

)n

> vn
∏n

i=1
1+pcl

i

r−pcl
i

for any stable
closed-loop poles, by Proposition 1, S1 and S2 cannot be
co-stabilized. Hence, E1 and E2 are disjoint events.



Suppose (5) is true, which implies{
PN
S1,π

(E1) ≥ 1− δ,

PN
S2,π

(E2) ≥ 1− δ.
(33)

Therefore, we can apply Lemma 5 to obtain

KL
(
PN
S1,π,P

N
S2,π

)
≥ (1− δ) log

1− δ

δ
+ δ log

δ

1− δ

≥ log

(
1

3δ

)
.

(34)

According to Proposition 2, the KL divergence between
PN
S1,π

and PN
S2,π

satisfies

KL
(
PN
S1,π,P

N
S2,π

)
≤ Nm2σ2

u

2σ2
w

≤ 2N σ2
u

σ2
w

(
2v

r − 1

)2n

.

(35)
Combining (35) and (34), we have that (5) holds only if

N ≥ σ2
w

2σ2
u

(
r − 1

2v

)2n

log

(
1

3δ

)
. (36)
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