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Abstract— In many multi-agent systems, communication is
limited by bandwidth, latency, and energy constraints. De-
signing controllers that achieve coordination and safety with
minimal communication is critical for scalable and reliable
deployment. This paper presents a method for designing con-
trollers that minimize inter-agent communication in multi-agent
systems while satisfying safety and coordination requirements,
while conforming to communication delay constraints. The
control synthesis problem is cast as a rank minimization
problem, where a convex relaxation is obtained via system
level synthesis. Simulation results on various tasks, including
trajectory tracking with relative and heterogeneous sensing,
demonstrate that the proposed method significantly reduces
inter-agent transmission compared to baseline approaches.

I. INTRODUCTION

Multi-agent systems, such as robotic swarms, distributed
sensor networks, and autonomous vehicle fleets, are increas-
ingly deployed to perform complex tasks in dynamic and
uncertain environments. These systems are often composed
of individual agents with decoupled dynamics and limited,
heterogeneous sensing capabilities. For instance, fleets of
vehicles may only have access to relative position mea-
surements with respect to nearby neighbors, rather than
absolute coordinates [1]. Therefore, agents must rely on
communication to share information and coordinate actions.
However, communication in such systems is often con-
strained by factors such as latency, bandwidth limitations,
and network topology. For example, in space exploration,
planetary rovers must share information about terrain and
obstacles with minimal communication to preserve energy
[2], [3]. Therefore, designing control algorithms that enable
multi-agent systems to accomplish prescribed tasks while
minimizing communication is a key challenge [4].

There has been extensive research on communication-
efficient control in networked systems. Event-triggered con-
trol has been widely used to reduce unnecessary transmis-
sions by only communicating when certain state-dependent
conditions are met [5]–[7]. If the communication structure
and other constraints of the network are pre-defined, dis-
tributed control can be used to design structured controllers
[8]–[12]. Another approach is to develop low-rank approx-
imations and sparsity-promoting controllers that result in
sparse communication among agents [13]–[16].

More recently, a line of work has investigated control
designs that minimize the number of messages transmitted
from the sensors to the actuators within a single agent system
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for finite-horizon control problems [16], [17]. This approach
formulates sensor-to-actuator transmission optimization as
a rank minimization problem, enabling the design of con-
trollers that are guaranteed to achieve safe control tasks with
the minimal number of sensor-to-actuator messages.

Inspired by [16], in this work, we formulate the multi-
agent minimal communication control problem and pro-
pose an algorithm based on rank minimization and system
level synthesis [18] to compute a distributed controller.
Our method naturally handles communication delays in the
network. The numerical experiments show that the proposed
controller significantly reduces the number of messages
sent among agents for safe control tasks compared to the
benchmarks.

Notation. The set of positive integers is denoted as
N+. We denote by I the identity matrix, with dimension
determined by context unless explicitly stated otherwise.
The notation blkdiag(A1 . . . , An) denotes a diagonal block
matrix with diagonal blocks A1, . . . , An. Given an index set
N , we write N−i to mean the set excluding the element i,
i.e., N \ {i}. For a matrix M ∈ Rm×n, M(i, j) denotes its
element in the ith row and the jth column.

II. PROBLEM STATEMENT

Consider a network of N agents indexed by the set
N := {1, 2, . . . , N}. Each agent i has decoupled linear
time-varying dynamics with coupled measurements
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over a finite horizon T , where xi
t ∈ Rni
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y represent local state

vector, control action, state disturbances, measurement, and
measurement noise, respectively. The state dynamics of each
agent is decoupled and time-varying, driven by [A]iit and
[B]iit . The set Oi contains the indices associated with the
agents that influence the measurements of agent i.

We use xt ∈ Rnx , ut ∈ Rnu , wt ∈ Rnx , yt ∈ Rny and
vt ∈ Rny to denote the joint vectors of the N agents with

xt =
[(
x1
t

)⊤
;
(
x2
t

)⊤
; · · · ;

(
xN
t

)⊤]⊤. The concatenated
vectors ut, wt, yt, vt are defined similarly. We define the
global dynamics matrices at time t, denoted by At, Bt, and
Ct, by assembling the submatrices [A]ijt , [B]ijt , and [C]ijt
into block matrices. Specifically, each [ · ]ijt is placed in the
(i, j)th block of the corresponding global matrix.

In this paper, we assume the coordination task and the
safety constraints for the agents can be collectively expressed



as constraint sets. In particular, we consider polyhedra Xt ⊂
Rnx , Wt ⊂ Rnx , Ut ⊂ Rnu , and Vt ⊂ Rny .

Constraint 1 (Safety). For all x0 ∈ X0, wt ∈ Wt, and
vt ∈ Vt, ensure that ut ∈ Ut and xt ∈ Xt for all t ≤ T .

To maintain safety, each agent is equipped with a local
controller. The local control action for each agent i at time t
is computed using a combination of its previously collected
local measurements and the measurements transmitted from
other agents j:
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where [K]ii(t,τ) ∈ Rni
u×ni

y and [K]ij(t,τ) ∈ Rni
u×nj

y for

all τ = 0, 1, . . . , T . We will use [ui
t]j ∈ Rni

u to denote∑
τ≤t[K]ij(t,τ)y

j
τ , i.e., the contribution of agent j’s informa-

tion to the computation of the control action of agent i at
time t. Moreover, we denote the concatenation of [K]ij(t,τ)
over t, τ ∈ {0, . . . , T} for fixed i, j ∈ N as

Kij =


[K]ij(0,0) 0 . . . 0

[K]ij(1,0) [K]ij(1,1) 0
...

...
. . . 0

[K]ij(T,0) · · · [K]ij(T,T−1) [K]ij(T,T )

 , (3)

where Kij ∈ R(T+1)ni
u×(T+1)nj

y is block lower-triangular.
Networked systems often experience communication de-

lays due to the limited bandwidth of communication chan-
nels. In this paper, we will model the communication delay
from agent j to i as a fixed worst-case latency ℓij ∈ N+,
meaning that at time t, agent i has access to agent j’s
information only up to time t − ℓij . This delay imposes
additional sparsity constraints on the local controllers, as
detailed below.

Constraint 2 (Communication delay). For all i, j ∈ N and
i ̸= j, [K]ij(t,τ) = 0 if t− τ ≤ ℓij − 1.

We will assume that the communication delay constraints
satisfy the quadratic invariance (QI) property [9], [19], which
guarantees that any such constraints on the controller can be
translated to convex constraints after controller reparameteri-
zation, enabling convex reformulation of optimal constrained
control design via approaches such as Youla reparameteriza-
tion [20] and system level synthesis [10]. In practice, QI is
often satisfied in settings where the communication pattern
mirrors the physical dynamics coupling, such as vehicle
platoons and power grid frequency regulation.

Note that without further structural constraints on the gains
[K]ij(t,τ), the implementation of (2) essentially requires each
agent to transmit their measurements to all other agents at
every time step t. However, in applications where communi-
cation across agents is costly or difficult, such as underwater
vehicles, the number of inter-agent transmissions should be
minimized. Moreover, some coordination tasks inherently

do not require frequent inter-agent communication to be
effectively executed. Motivated by [16] where the authors
decompose the controller with an encoder-decoder structure
in order to minimize sensor-to-actuator message transmis-
sions in the single-agent setting, we similarly decompose
the computation of [ui

t]j for each j ∈ N−i in (2) with the
following structure: for 0 ≤ t1 ≤ t2 ≤ . . . ≤ trij ≤ t with
rij ∈ N+, let
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where eij(k,τ) ∈ Rnj
y serves as a linear encoder at agent j, and

each mij
k ∈ R is an encoded message sent from agent j to

agent i at time tk. The number of messages sent from j to i
is rij . The contribution of agent j’s information to ui

t is then
computed by using a local decoder dij(t,k) ∈ Rni

u at agent i.
This controller structure is illustrated in Figure 1.

Decomposition (4) can be interpreted as a low-rank fac-
toring Kij = DijEij where

Dij :=


d ij
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...
...

d ij
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...
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(rij ,T )
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(5)

A key insight from Aspeel et al. [16] is that the matrix
Kij always admits such a factorization that provides a causal

encoder
{
eij(k,τ)

}τ=0,...,tk

k∈[rij ]
, causal decoder

{
dij(k,τ)

}τ=0,...,tk

k∈[rij ]
,

and the corresponding message sending times {tk}k∈[rij ]

(with a total number of rij messages), which can be used to
construct local controllers (4). In particular, given a matrix
Kij , the message sending times, encoder, and decoder can
be computed with Algorithm 1 of [16].

Lemma 1 ( [16, Theorem 1]). For all i, j ∈ N , there exists a
causal factorization of matrix Kij such that Kij = DijEij

with rij = rank
(
Kij

)
. Moreover, there exists {tk}k∈[rij ]

such that 0 ≤ t1 ≤ t2 ≤ . . . ≤ trij ≤ T , and it holds that
eij(k,τ) = 0 whenever τ > tk and dij(t,k) = 0 whenever tk > t.

Based on (5), problem statement of this paper is as follows.

Problem 1. Given the dynamics in (1) and the controller
structure in (4), find message transmission times {tk}k∈[rij ],

corresponding encoder-decoder matrices
{
eij(k,τ)

}τ=0,...,tk

k∈[rij ]
,

and
{
dij(k,τ)

}τ=0,...,tk

k∈[rij ]
for all agents i, j ∈ N such that

Constraint 1 and Constraint 2 are satisfied for all initial
conditions, disturbance and noise realizations, and the total
number of inter-agent messages, i.e.,

∑
i, j∈N rij , is mini-

mized.



Fig. 1: Local controller structure with encoder and decoder
where Dij and Eij are defined in (5).

To address Problem 1, we now generalize the approach of
[16] to the networked system setting by transforming Prob-
lem 1 into an equivalent rank minimization problem over the
local gains [K]ij(t,τ). This is enabled by the following result
that relates the number of inter-agent messages required by
(4) and the rank of Kij .

Proposition 1. The optimal solution to Problem 1, i.e., the
minimum number of inter-agent messages, is equal to the
minimum of the following optimization problem:

min
Kij

∑
i, j∈N , i ̸=j

rank
(
Kij

)
s.t. (1), (2), Constraint 1 and 2.

(6)

Proof: By Lemma 1, there exists a causal factorization for
any Kij with corresponding rij message sending times. Note
that rij is the number of messages agent j sends to agent i
using controller (2) implemented with Kij and rank

(
Kij

)
=

rij . Therefore, minimizing the total number of inter-agent
messages is equivalent to minimizing the sum of rank of
Kij over all i, j ∈ N with i ̸= j. □

Thus, Problem 1 is effectively reduced to the rank mini-
mization problem (6).

III. CONVEX RELAXATION VIA SLS

We note that even if we replace the rank minimization
objective function in (6) with a convex envelope, Constraint 1
and Constraint 2 still make (6) non-convex. In particular, it
is well established that general sparsity constraints, which
capture delays and other communication constraints in dis-
tributed controllers, lead to non-convex constrained control
problems. When the sparsity constraints satisfy quadratic
invariance [9], the constrained control problem can be cast as
an equivalent convex program through a reparameterization
of the controller, e.g., Youla parameterization, input-output
parameterization [21], and SLS [10]. Furthermore, it has
been shown that Constraint 1 can be expressed equivalently
as linear constraints in terms of the SLS parameter [22].
Therefore, in this section, we leverage SLS to perform
convex relaxation of (6).

A. System level synthesis (SLS)

We now give a brief introduction to SLS. Define notation
x :=

[
x⊤
0 · · · x⊤

T

]⊤
, u :=

[
u⊤
0 · · · u⊤

T

]⊤
, y :=

[
y⊤0 · · · y⊤T

]⊤, w :=
[
x⊤
0 w⊤

0 · · · w⊤
T−1

]⊤, v :=[
v⊤0 · · · v⊤T

]⊤
, A := blkdiag(A0, . . . , AT−1, 0), B :=

blkdiag(B0, . . . , BT−1, 0), C := blkdiag(C0, . . . , CT ),
and let Z be the block-downshift operator. Then the global
dynamics of (1) can be written as

x = ZAx+ ZBu+w

y = Cx+ v .
(7)

SLS parameterizes all achievable closed-loop responses of
(7) under a linear output feedback control law u = Kx
where K ∈ R(T+1)nu×(T+1)ny and

K :=


K(0,0)

K(1,0) K(1,1)

...
. . . . . .

K(T,0) · · · K(T,T−1) K(T,T )

 . (8)

Note that this is a centralized description for the local
controllers (2) (equivalently (3)). For all t, τ , the sub-block
K(t,τ) is itself a block matrix, whose (i, j)th mini-block
corresponds to [K]ij(t,τ) in (3). Now consider[

x
u

]
=

[
Φxx Φxy

Φux Φuy

] [
w
v

]
(9)

where Φ := (Φxx, Φxy, Φux, Φuy) is the closed-loop
response that maps exogenous disturbances w and measure-
ment noise v to x and u in the closed loop under controller
K. In particular, Φxx = (I −ZA−ZBKC)−1, Φxy =
ΦxxZBK, Φux = KCΦxx, Φuy = K + KCΦxxZBK,
where Φxx, Φux, and Φuy are block lower triangular matri-
ces while Φxy is strictly block lower triangular matrices.

SLS provides an affine characterization of the space of all
achievable Φ and a direct relationship between Φ and K in
the following result.

Lemma 2 ( [23, Lemma 1]). For system (7), the following
are true:

1) The affine subspace defined by[
I −ZA −ZB

] [Φxx Φxy

Φux Φuy

]
=

[
I 0

]
[
Φxx Φxy

Φux Φuy

] [
I −ZA
−C

]
=

[
I
0

] (10)

parameterizes all possible closed-loop responses (9)
under a linear output feedback controller u = Kx.

2) For any block lower triangular matrices
Φxx,Φxy,Φux,Φuy satisfying (10), the controller

K = Φuy −Φux (Φxx)
−1

Φxy (11)

achieves the desired closed-loop system response (9).

B. Reformulation via SLS

As discussed in [16], [22], the safety Constraint 1 can be
expressed equivalently as convex constraints in terms of Φ.
Moreover, the control problem (6) with the communication
delay Constraint 2 can be expressed as an equivalent convex
optimization problem in Φ [18]. Therefore, we aim to



express and solve (6) in terms of Φ by searching over
all the Φ that satisfy (10) and Constraints 1 and 2. By
computing the global controller K from Φ using (11), the
local controller Kij can then be identified by setting [K]ij(τ,t)
as the (i, j)th mini-block of sub-blocks K(τ,t) from K for
all t, τ ∈ {0, 1, . . . , T}.

However, due to the nonlinear relationship between K
and Φ in (11), it is unclear how the objective function of
(6) should be expressed in terms of Φ. We now present a
result that upper bounds the rank of Kij with the rank of Φ,
enabling a convex relaxation of (6) via SLS.

Following the convention of (8), we denote the (t, τ)th
sub-block matrix of Φxx as Φxx

(t,τ) ∈ Rnx×nx for t, τ ∈
{1, . . . , T} with Φxx

(t,τ) = 0 for all τ > t and analogously
for Φxy

(t,τ), Φ
ux
(t,τ), and Φuy

(t,τ). Furthermore, we will denote
the (i, j)th ni

x by nj
x mini-block matrix of Φxx

(t,τ) as Φxx, ij
(t,τ)

for i, j ∈ N and analogously for Φxy, ij
(t,τ) , Φux, ij

(t,τ) , and Φuy, ij
(t,τ) .

Concatenating all Φxx, ij
(t,τ) similar to (3), we denote the final

block lower triangular matrix Φxx, ij ∈ R(T+1)ni
x×(T+1)nj

x ,
and define Φxy, ij ∈ R(T+1)ni

x×(T+1)nj
y , Φux, ij ∈

R(T+1)ni
u×(T+1)nj

x , and Φuy, ij ∈ R(T+1)ni
u×(T+1)nj

y sim-
ilarly. For simplicity, we will focus on the case of N = 2
agents in the following.

Proposition 2. For any block lower triangular matri-
ces Φxx,Φxy,Φux,Φuy satisfying (10), if for all τ, t ∈
{1, . . . , T}, Φxx, ij

(t,τ) = 0 either for all i > j or for all
i < j, then the corresponding controller K computed with
(11) satisfies that for i, j ∈ {1, 2} and i ̸= j,

rank(Kij) ≤
∑

∗∈{xx,xy,ux,uy}

rank(Φ∗, ij). (12)

The proof can be found in the Appendix. With Propo-
sition 2, (6) can be heuristically solved with a convex
relaxation via the SLS parameterization. Instead of directly
minimizing the number of messages, we minimize its up-
per bound. Moreover, we will use a surrogate objective
function by replacing the rank term in the upper bound
from Proposition 2 with its reweighted nuclear norm. The
resulting SLS controller will then satisfy all safety, input,
and communication delay constraints.

Remark 1. Since Φxx is the closed-loop response that maps
disturbances w to the state x, the condition that Φxx, ij

(t,τ) = 0
either for all i > j or for all i < j essentially enforces
a unidirectional disturbance propagation structure in the
closed loop, whereby disturbances affecting one agent can
affect its downstream neighbors, but not upstream. Such a
requirement is common in applications such as connected
vehicles, where disturbances affecting trailing vehicles do
not influence the states of those ahead.

IV. NUMERICAL EVALUATION

To evaluate the performance of the proposed minimal
communication controller, we consider a multi-agent system
composed of N vehicles, each modeled as a two-dimensional
double integrator (dropping the agent indexing i for brevity

of notation): p̈x = ux, p̈y = uy , where (px, py) represent the
(x, y) position of the vehicle driven by the force (ux, uy).
The state of each vehicle is x =

[
px py ṗx ṗy

]⊤. We discretize
the vehicle dynamics with unit step over a finite time horizon
T = 10. For different tasks, we shall specify different mea-
surement neighbors Oi and measurement parameter matrices
[C]ijt for all i, j ∈ N and t ≤ 10. We add independently and
identically distributed uniform disturbance wt and noise vt to
each agent. Unless otherwise specified, we set all coordinates
of the disturbances wt to be in range [−0.05, 0.05] and vt to
be in range [−0.05, 0.05] for all agents. For all experiments,
the global control actions are constrained to be within u ∈
[−2, 2]2N .

To validate the effectiveness of the proposed method in
reducing inter-agent communication overhead, we compare
it against 2 benchmark controllers:

1) BASELINE: We apply the minimal-communication
controller for single-agent systems proposed in [16]
to the multi-agent setting. BASELINE minimizes the
number of messages transmitted from sensors located
at all agents to actuators located at all agents, without
considering whether the message is an inter-agent
message. That is, it also tries to minimize an agent’s
use of its own sensory information.

2) DECENTRAL: We consider the fully decentralized con-
troller where no inter-agent communication is allowed.
The controller is synthesized by searching for any
feasible SLS controller such that Φ∗, ij = 0 for all
∗ ∈ {xx, xy, ux, uy} and i ̸= j.

To minimize the rank of the SLS parameters as described
in (12), we use the nuclear norm as a convex relaxation.
To make the optimization process of nuclear norm more nu-
merically stable, the reweighted nuclear norm minimization
method is applied [24].

A. Distance tracking under asymmetric control and noise

In this experiment, we consider two vehicles where Ve-
hicle 1 has very little control authority and experiences
significantly larger state disturbances than Vehicle 2. In
particular, for the global disturbance vector wt ∈ R8

where the first four coordinates correspond to Vehicle 1, we
set wt ∈ [−0.25, 0.25] × [−0.60, 0.60] × [−0.05, 0.05]3 ×
[−0.10, 0.10] × [−0.05, 0.05]2. We also set the global mea-
surement noise vector vt ∈ [−0.05, 0.05]4, where the first
two coordinates correspond to Vehicle 1. Simultaneously, we
equip Vehicle 2 with more control authority than Vehicle 1.
The safe control task here is for the two vehicles to start
and end at specified positions, while tracking their relative
distance to each other. In particular, the distance between the
two agents is required to satisfy the L1-distance at specific
time steps defined as

∥xi
t(1 : 2)− xj

t (1 : 2)∥1 ≤ dt(i, j), (13)

where xi
t(1 : 2) denotes the first 2 coordinates of Vehicle

i’s state at time t and dt(i, j) > 0 is the specified distance
requirement at time t. We consider d3(1, 2) = d7(1, 2) = 5
and dt(1, 2) = 12 for all t ∈ {1, . . . , 10} in this experiment.



In Table I, we report the number of inter-agent messages
required by the benchmark controllers and the proposed
method. It is evident that the proposed controller significantly
reduces the number of messages transmitted between the
two agents compared to BASELINE. On the other hand,
due to the noise and control asymmetry, in order to satisfy
the control task, Vehicle 2 must gather information from
Vehicle 1 through communication. Therefore, DECENTRAL
is infeasible in this case.

In Figure 2, we plot two runs, visualized with two trajec-
tories, of this experiment using the proposed controller with
different initial positions. Interestingly, to ensure safe control
using only a single message, the proposed controller adopts a
proactive strategy. In particular, Vehicle 2 deliberately over-
shoots the distance-tracking requirement to preempt the need
for future communication, anticipating the large disturbances
affecting Vehicle 1.

Fig. 2: Two sets of trajectories generated by proposed con-
troller for the experiment with asymmetric control and noise.

B. Trajectory tracking with various sensing scenarios

In this experiment, we consider two vehicles where each
vehicle has its own task of passing through a middle way-
point (indicated with a box) at time t = 5. Under this task, we
consider three different sensing scenarios that are common
in practice:

• Decoupled measurements: Vehicle 1 and 2 can observe
their own positions and communicate with each other.

• Relative measurements: Vehicle 1 is equipped with
accurate positional devices, while Vehicle 2 can only
measure the relative positional information relative to
the first vehicle.

• Heterogeneous sensors: Vehicle 1 is equipped with
sensors that can measure lateral positions, i.e., the x
positions. Therefore, Vehicle 1 can measure the x-axis
positions of both vehicles. On the other hand, Vehicle 2
can only measure the y-axis positions for both vehicles.

The two vehicles are required to maintain an L1 distance
of dt(1, 2) = 15 for decoupled measurements, 15 for
relative measurements, and 14 for heterogeneous sensors
experiments, for all t ∈ 1, . . . , 10.

In Figure 3, we illustrate four sets of trajectories generated
by the proposed method with different initial positions for

the relative measurements and heterogeneous sensors experi-
ment. We report the number of inter-agent messages required
by the benchmark controllers and the proposed method in
Table I for all three cases. Similar to the previous experiment,
the proposed method requires the least number of inter-agent
messages compared to benchmarks.

To understand the effect of communication delay on the
proposed controller, we impose increasing uniform com-
munication delays on the experiment with heterogeneous
sensors. The result is shown in Figure 4. Indeed, as the
amount of delay in inter-agent communication increases, the
amount of transmission also increases. We note that the
proposed method seems more sensitive to communication
delay than BASELINE. It will be interesting to understand
fundamental limitations imposed by communication delays
on minimal inter-agent communication control design.

Fig. 3: Four sets of trajectories generated by proposed con-
troller in experiments of two vehicles with different sensing
strategies.

Fig. 4: Relationship between delay and the number of mes-
sage for the baseline and proposed controller in experiment
with heterogeneous sensing vehicles.

C. Four vehicles chasing with relative measurement
In this experiment, we consider four vehicles with relative

measurement, where Vehicle 1 is equipped with accurate
sensors that provide absolute position measurements. On the
other hand, Vehicle 2 and 4 can only measure their relative
position with respect to Vehicle 1, while Vehicle 3 can only
measure its position relative to Vehicle 2. All vehicles are
required to pass through a middle box-shaped waypoint at
t = 5 and achieve a counter-clockwise trajectory along way
points.



We visualize the experiment in Figure 5 where we plot
four different runs using the proposed controller with dif-
ferent initial positions. Take Vehicle 1 (pink) in Figure 5 as
example, starting from the lower-left box, it is required to
pass the yellow middle box at t = 5 and arrive at the upper-
right pink goal box at t = 10. During the process, all vehicles
are required to stay close to others. This constraint is effec-
tively equivalent to a coordinated chasing task among the
four vehicles. Specifically, dt(1, 2) = dt(2, 3) = dt(3, 4) =
dt(4, 1) = 10 for all t ∈ {1, ..., 10}. The resulting number
of inter-agent messages for different controllers can be found
in Table I. In particular, the proposed method uses 53% less
inter-agent transmissions compared to the baseline.

Fig. 5: Four sets of trajectories generated by proposed con-
troller designed for four vehicles with relative measurements.
Different colors of start and end boxes correspond to the
vehicle trajectories with the same color.

Task (# Message) BASELINE DECENTRAL Ours

IV-A: Asymmetric Control and Noise
21 (12,9) − 1 (1,0)

IV-B: Decoupled Measurements
16 (8,8) 0 0

IV-B: Relative Measurements
25 (14,11) − 12 (12,0)

IV-B: Heterogeneous Sensors
delay = 0 16 (8,8) − 4 (2,2)
delay = 1 16 (8,8) − 4 (3,3)
delay = 2 18 (9,9) − 14 (7,7)

IV-C: Four Vehicles
94 − 44

TABLE I: Inter-agent message counts under different control
strategies. The bold number indicates the total inter-agent
messages sent, while the numbers in parentheses indicate
the messages sent from Vehicle 1 to 2 and from Vehicle 2
to 1, respectively. The sign ”-” means the controller is not
feasible for that task.

V. CONCLUSION

This paper proposes an algorithm to design controllers that
minimize inter-agent communication for multi-agent systems
while ensuring the satisfaction of coordination, safety, and
communication delay constraints. By formulating the control
design problem as a rank minimization problem and em-
ploying the System Level Synthesis framework, we derive a
tractable convex relaxation. Simulation results demonstrate
that our method achieves substantial reductions in inter-
agent transmissions compared to existing benchmarks. A
current limitation is that our theoretical analysis presently
covers only two-agent systems. Future research will focus
on extending the theoretical analysis to general multi-agent
networks and investigating the fundamental impact of com-
munication delays on minimal-communication control.
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APPENDIX

Notation. We say a matrix N ∈ Rn×n is nilpotent
if there exists k ∈ N+ and k ≤ n such that Nk = 0.
We use binary matrices to denote sparsity patterns. For two
binary matrices S1 and S2, the operation S1 + S2 performs
an element-wise OR. Let sp (M) denote the sparsity of a
matrix M ∈ Rm×n where sp (M) ∈ {0, 1}m×n. We say
M ∈ S if sp (M) + S = S. Furthermore, we will define
three special sparsity patterns for Φ∗. In particular, we define
the following sparsity patterns for block lower triangular
matrices with T by T many sub-blocks:

• Pattern D: all sub-blocks are composed of block diag-
onal mini-blocks

• Pattern U : the (1, 2)th mini-block inside all sub-blocks
are non-zero and zero everywhere else

• Pattern L: the (2, 1)th mini-block inside all sub-blocks
are non-zero and zero everywhere else,

where for any ∗ ∈ {xx, xy, ux, uy}, the sub-blocks of Φ∗ are
Φ∗

(t,τ) for all t, τ ∈ {0, . . . , T} and t ≤ τ . The mini-blocks
inside the sub-blocks of Φ∗ are Φ∗,ij

(t,τ) for i, j ∈ {1, 2}.
For simplicity, we sometimes overload the notation and use
S (M) for a binary matrix S and a matrix M to mean
the application of a masking operation of S on M , where
S (M) (i, j) = 0 if S(i, j) = 0 and S (M) (i, j) = M(i, j)
otherwise.

Simple matrix facts. For the rest of the appendix, we
will use the fact that adding zero rows and columns to
a matrix does not change its rank. We will also invoke
the following inequalities: F1) rank(A + B) ≤ rank(A) +
rank(B), F2) rank(AB) ≤ min{rank(A), rank(B)}, and F3)
rank

(∑n
k=1 αkA

k
)
≤ rank(A) for all αk ∈ R.

A. Proof of Proposition 2

First, note that if for all τ, t ∈ {0, . . . , T}, Φxx, 12
(t,τ) = 0,

then Φxx ∈ (D+L). Without loss of generality, we assume
this is the sparsity pattern of Φxx. The case of Φxx ∈ (D+
U) can be handled analogously.

To show rank(K21) ≤
∑

∗∈{xx,xy,ux,uy}
rank(Φ∗, 21), we

will show that K21 is composed of linear combination of
L
(
(Φxx)

−1
)

and Φ∗,21 for ∗ ∈ {xy, ux, uy}. In particular,
due to (11), it is clear that Φuy,21 contributes an additive
component to K21.

We now consider the term Φux (Φxx)
−1

Φxy . First, we
claim that (Φxx)

−1 ∈ (D+L). To see this, note that due to
the affine subspace constraint (10), Φxx is required to have
Φxx

(t,t) = I for all t ∈ {0, . . . , T}. Therefore, Φxx = I +N

with I ∈ R(T+1)nx×(T+1)nx and N a block strictly lower
triangular matrix, which is nilpotent. In particular, there
exists n ≤ T +1 such that Nn = 0. Therefore, we can write
(Φxx)

−1
= I +

∑n−1
k=1(−1)kNk. Since multiplication and

summation of block lower triangular matrices remain block
lower triangular, (Φxx)

−1 ∈ (D+L). Furthermore, note that
Φxx,21 corresponds to the entries of Φxx supported on the
sparsity pattern defined by L. Referring to Table II, which
can be verified via simple calculation, we see that if A ∈ D
and B ∈ L, then A2 ∈ D, B2 = 0, and AB ∈ L. Therefore,
for all k ∈ {1, . . . , n}, the entries of Nk supported on the
sparsity pattern defined by L are all linear combination of
summation of multiplication of Φxx,21. Consequently, the
same holds for (Φxx)

−1. Using F1 and F3, the rank of
L
(
(Φxx)

−1
)

is at most rank(Φxx,21).

For each one of Φux, (Φxx)
−1, and Φxy , we ap-

ply a masking operation using the three binary matrices
D, U , and L. This operation decomposes each matrix in
{Φux, (Φxx)

−1
, Φxy} into three additive components, cor-

responding to the sparsity patterns defined by the masks.
In particular, the component matrices that are constructed
with L corresponds to the entries of Φux,21, L

(
(Φxx)

−1
)

,
and Φxy,21, while the component matrices that are con-
structed with U corresponds to the entries of Φux,12 and
Φxy,12. By examining the outcome of the all nine pos-
sible multiplications of the component matrices for the
operation of Φux (Φxx)

−1
Φxy , which is listed in Ta-

ble II, we see that indeed K21 is entirely made up of
linear combination of Φuy,21, Φux,21, L

(
(Φxx)

−1
)

, and
Φxy,21. Therefore, using F1 and F2, we have rank

(
K21

)
≤∑

∗∈{xx,xy,ux,uy}rank(Φ∗, 21). The same argument above
holds true for K12. This concludes the proof.

□

D L U
D D L U
L L 0 D
U U D 0

TABLE II: Resulting sparsity structure from the product of
two sparse matrices.
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