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Abstract—1In this paper we propose a value-iteration based
algorithm to compute controlled invariant sets in cases where
the range of certain parameters in the system model are not
known a priori. By defining the value function in a way that is
related to parameter ranges, the proposed computation allows
us to analyze parameter sensitivity for the controlled invariant
set. The convergence properties of the algorithm are analyzed
for certain classes of systems. Finally, a vehicle team power
management case study is used to illustrate the efficacy and
scalability of the proposed algorithm.

I. INTRODUCTION

This paper concerns safety control synthesis problem for
dynamical systems. The term safety control synthesis refers
to finding a controller that guarantees a system’s state to
stay in a specified set of safe states for all time [14].
While searching for this safety controller, we first need to
ask what the set of all the initial states from where such
a controller exists is, and this amounts to computing the
maximal controlled invariant set that is contained in the safe
set. The topic of controlled invariant sets is well studied
by the control theory community both for discrete state
and continuous state systems (see, for instance, [12] for
the discrete case and [3] for the continuous case, and the
references therein).

Often times, the system models we deal with are para-
metric, that is, the systems’ dynamics, admissible control
input sets and disturbance input sets may all vary with
parameters, whose values are not known exactly. If a safety
controller is synthesized for such a system, there will be
a trade off between tolerating (being robust to) a large set
of parameter values and having a large controlled invariant
set. We will refer to the problem characterizing this trade
off as “parameter sensitivity analysis of controlled invariant
sets”. In the context of temporal logic control synthesis,
the problem is also known as parameter synthesis [5] or
assumption mining [10], which asks the following question:
given a state =, what is the maximal set P(x) of parameter
values under which the given specification (safety in our
case) can be enforced when starting from x?

Answering the above question is useful for many reasons.
First, from a control point of view, we may need different
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control laws to handle different set of parameter ranges
[15]. In addition, for interconnected systems, one can design
contracts by treating the output values of a subsystem as
parameter values for another subsystem [7], [10] so that
the controller of the overall system can be designed in a
compositional manner. Second, from the point of view of
analysis, finding P(z) is useful to understand how sensitive
the controlled invariant sets are against a change in parameter
values. This is useful information at design time for instance
for sizing or selecting components. Moreover, the set P(x)
can be used for system verification and testing. It is shown in
[4] that controlled invariant sets can be used to generate non-
trivial test cases to verify/falsify a system. In this context,
one may want to run more test cases near a state z where
P(z) shrinks dramatically after a small perturbation to x.

In this paper, we propose a value iteration based approach
in order to do parameter sensitivity analysis of controlled
invariant sets. In fact, many fixed point algorithms computing
controlled invariant sets that iterate over a set X of states,
e.g., [1], [2], [13], can also be viewed as an iteration over a
value function V}, which is the indicator function of the set
X. Such value iteration interpretation is powerful, especially
when one wants to extend controlled invariance to more
quantitative settings. For example, in recent works [6], [7],
instead of iterating over an indicator function, the authors
propose a more complicated fixed point algorithm that iter-
ates a multi-valued function, so that a safety score is assigned
to each state in the controlled invariant set. Similarly, yet in
a probabilistic setting, the paper [8] uses value iteration to
compute the probability of constraint violation of each initial
state in a controlled invariant set.

We follow this line of work and propose a value iteration
to perform parameter sensitivity analysis for a special class of
parametric systems, whose admissible disturbance input set
(relevant to sensitivity to model uncertainty) or control input
set (relevant to actuator sizing) is parametrized by a non-
negative scalar. We prove the convergence of the proposed
iteration for certain classes of systems, and then, similar
to [6], we obtain a characterization of the value function’s
level sets as a family of parametrized controlled-invariant
sets. The main difference between our work and [6] is that
the value function obtained by our approach has a direct
physical meaning that arises from the disturbance or control
input. More importantly, since the parameter value restricts
the disturbance set or the control set, there is an extra player
picking the parameter values in the max-min game defining
the value iteration, which makes our value iteration different
from that in [6]. In addition to this, we do not limit ourselves
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to finite transition systems and link our results to the linear
system case, for which the convergence of the value iteration
is guaranteed. Finally, to illustrate the developed approach,
we apply it to a finite transition system that arises from a
vehicle team power management problem.

II. PRELIMINARIES

In this section, we introduce necessary preliminaries on
controlled invariant sets. Consider system

a(t+1) = f(z(t), ut),d(t)) (1)

where z(t) € X is the state, u(t) € U is the control input
and d(t) € D is the disturbance. Let K : X — 2U be
a feedback control mapping, a trajectory generated by the
system under K is an infinite sequence z(0)x(1)z(2)...
such that z(t + 1) = f(2(t), u(t),d(t)) for some d(t) € D
and u(t) € K (x(t)).

Definition 1: (Robust Controlled Invariant Set) A set C' C
X 1is robustly controlled invariant (“controlled invariant” for
short in the rest of the paper) w.r.t. system in Eq. if for
all z € C, there exists a feedback control law K : C — 2V
such that the all trajectories generated by the system starting
from x under K stay in C for all time.

Remark 1: Clearly, given a set Xy C X of safe states,
there exists a unique maximal controlled invariant set, de-
noted by Coo(f, Xo, U, D), that is contained by X, because
the union of any collection of controlled invariant sets in X
is also controlled invariant.

Proposition 1: (Proposition 1 in [1])A set C' is controlled
invariant if and only if C' C CPre(C'), where

CPre(C) :=

{reX|uelU:¥deD: f(z,u,d) € C} (2)

is the set of controllable predecessors of set C.

III. PROBLEM STATEMENT

In this paper, we are interested in performing parameter
sensitivity analysis of the maximal controlled invariant set.
The problem is formally stated in the sequel. Here, we
will focus on the case where the disturbance input set is
parametric. A similar problem can be defined for the case
where the control input set is parametric, but we will not
state the problem for the second case here.

Problem 1: (Parameter Sensitivity Analysis of the Max-
imal Controlled Invariant Set) Let the system dynamics be
defined by Eq. (I) with state © € X, control v € U and
disturbance d from a parametric set D(p), where p is a scalar
parameter from the interval [0,7]. Given a safe set X, and
any state x € X, our goal is to verify whether there exists

p € [0,] such that z € Cu(f, Xo,U, D(p)), and if yes,
find the maximal set of such p.

Assumption 1: We assume that D(p) is monotone in the
parameter p, that is, p < p’ implies that D(p) C D(p').
Assumption E] holds, for instance, when the parameter p is

used to describe the upper bound of the disturbance input,
e.g., when D(p) = {d € R™* | ||d||- < p}.

IV. MAIN RESULTS FOR GENERAL SYSTEMS

We define a value iteration in Egs. (3), (@) to solve
Problem [l The outcome of the value iteration is a function
Voo defined on the state space such that [0, V. (z)] is the
tolerable set of parameter values at state x. In this section,
we do not make any further assumptions on the dynamics f.

To show V. indeed solves Problem [I] we state and prove
some properties of the proposed value iteration and its fixed
points. In what follows, let us denote iteration on value
function V' by (V)% to ease the notation.

First, we introduce two lemmas useful for later proofs.

Lemma 1: Tteration (@) is monotone in the sense that
V'(z) > V(zx) for all x implies that (V')*(z) > (V)™ (z)
for all x.

Proof: Let V' be no smaller than V' pointwise, and let
x € X be arbitrary. Define

L. (p,u,d) := min {p7 V' (f(z,u,d)), V’(x)}, 5)
L,(p,u,d) := min {p7 V(f(x, u,d)%V(x)}. (6)

Clearly L (p,u,d) > L;(p,u,d) for any p,u,d. Let
p*,u*, d* be the optimizers that solve the max min problem
in Eq. @) with objective function L, and let p°, u°,d° be
the optimizers solving the max min problem with L’ . Also

define d° = arg minge p,) L5, (p*, u*, d), we have

(V)+(m) = Lw(p*, u’, d*>
< Ll’(p*vu 7d0)
< Ly(p*,u",d°)
< Ly(p°u®,d%) = (V') (x) (7
Since x € X is arbitrary, this finishes the proof. [ ]

Lemma 2: Given a value function V' and any positive
number &, let V9 denote another value function such that
Vo(x) = V(z) + 6 for all z € X. Then (VO)*(x) <
(V) (z) + 6.

Proof: Let x € X be arbitrary, define

L3 (p,u,d) = min {p, V' (f(a,u,d)). V'(@) },  (®)
Lao(p,u,d) := min {p,V(f(x,u,d)),V(x)}. )



Clearly LS(p,u,d) < L,(p,u,d) + 6 for any p,u,d. Let
p*,u*, d* be the optimizers that solves the max min problem
in Eq. with objective function L., and let p°, u®,d° be
the optimizers solving the max min problem with Li. Also
define d° = arg min,¢ 0y L (p®, u®, d), we have

(VO)F () = L3(p°, u®,d°)
< Ly(p°,u®, d?)
< Lao(p°u®,d%) +6

< Ly(p*,u*,d*)+ 6= V) (x)+4  (10)

Since x € X is arbitrary, this finishes the proof. [ ]

With Lemma [T] and [2] in the next theorem, we give some
conditions under which V), converges to a fixed point of
iteration M that is maximal in certain sense.

Theorem 1: (Convergence of Value Iteration (@) Let
{Vi,}2., be the value function at the k™ iteration for k =
0,1,2,..., the followings hold.

(i) V converges to a function V, pointwise as k — oc.
(i) If in addition to (i) we suppose that Vi uniformly
converges to Vo, on X, then V,, is a fixed point of
iteration defined by Eq. @), i.e., (Voo)"(2) = Vao(x)
for all z € X. Moreover, V., is the maximal fixed point
among all value functions from V := {V | V(z) <
Vo(x)Vz} in the sense that Vi (z) > V(x) for all x
given that V' € ) also satisfies V' = (V) pointwise.
Proof: First, to prove bullet (i), let x € X be arbitrary.
By (), Vi(z) is a monotonically nonincreasing sequence,
ie., Vit1(z) < Vi(x). Also note that and Vj(z) is lower
bounded as Vj(z) > —1 for all k, hence limy_, o Vi(2)
exists.

Let V., be such that Vi, (z) := limg_ o Vi(z), we now
prove that V, is a fixed point of iteration (@) given that V},
converges to V,, uniformly on X. Again let = be arbitrary,
we have (Voo)T(z) < Vo(z) by Eq. @). In what follows,
we show that (V)™ (z) > Voo (2) also holds, which implies
that (Voo) T (2) = Vo (2).

Since V}, converges to V, uniformly on X, we have

V6 >0:3k: Ve e X : Vi(x) < Voo(x)+ 4 11

Now applying Lemma [2] yields

Vo6 >0:3k:Vee X :
Voo () < Viya1(2) < (Voo (2)) T () + 4,

where Voo (z) < Viyi1(z) holds earlier. Since 6 > 0 is
arbitrary, this proves that Voo (z) < (Voo(z))* () for any
x € X. Also recall that Vo, (z) > (Voo (2)) () for x € X,
hence we have Vo, (7) = (Voo (7)) T (z) on X.

Finally, we show that V is the maximal fixed point. Let
V be any function from V that also satisfies V = (V)T
pointwise. Note that V; > V pointwise, hence by Lemma
we know that V; = (Vo)™ > (V)" =V pointwise. It can be
proved by induction that Vj > V pointwise for all k, hence
Vo = limg_ oo Vi > V pointwise. |

Remark 2: Although V), always converges to V., point-
wise, there is no guarantee in general that V} converges to

12)

Vs uniformly. However, in case X is finite, the convergence
occurs in finite time and therefore this reduces to a special
case of uniformly convergence.

Next we state and prove the connection between the
fixed points of iteration @) and controlled invariant sets.
This connection holds regardless of the fixed point and the
controlled invariant set being maximal or not.

Theorem 2: (Connection between Fixed Points and Con-
trolled Invariant Sets) If V' € V is a fixed point of iteration
@), then Cy,, = {& € X | V() > p} is a controlled
invariant set under disturbance d € D(p); if set C C X is
a controlled invariant set for all disturbance d € D(p), then
Vec,p defined by

Vo (2) i {p ifzeC

. (13)
—1  otherwise

is a fixed point of iteration (4)).
Proof: First, let V € V be a fixed point of iteration (4]),
and let z € Cy,p, ie., V(z) =p’ > p. Then we know that

" €[0,pl,uec U :Vde D@p"):
min {p", V(f(x, u,d)),V(az)} = =V(a).

This implies that

(i) p” > p' > p (hence D(p") 2 D(p) by Assumption|[l) ,
(i) V(f(z,u,d)) >p' > p.
Combining Eq. and observation (ii) yields

JueU:Vde D) : V(f(z,u,d) >p,

(14)

15)

which, together with observation (i) and the definition of
Cvp, implies that

JueU:V¥de D(p): f(z,u,d) € Cy,p.

In other words € CPre,(Cy,), where CPre,(C) :=
{r € X | 3u €U :Vd € Dp) : f(z,u,d) € C}
consists of the controllable predecessors of set C' under
disturbance d € D(p). Since x is arbitrary from Cy,,, we
know that Cy,, C CPre,(Cy,), and this proves that Cy,
is a controlled invariant set by Proposition [}

Second, let C' be a controlled invariant set under distur-
bance d € D(p) and V¢, be defined by Eq. (I3), we show
that V¢, is a fixed point of iteration ] To this point, we
consider the two cases where x ¢ C and = € C respectively.

(1) For x ¢ C, Vo,(xz) = —1 by definition. Note that
(Vop) T (x) cannot take value smaller than —1 by iter-
ation while (Ve ) (z) < Vi (), thus (V)T (z) =
-1 = Vc,p(:L’).

(2) For ¢ € C, Vg,(x) = p by definition. Since C is
controlled invariant under d € D(p), this means

JuelU:Vde D(p): f(z,u,d) € C
= JueU:Yde D) : Ve, (f(z,u,d)=p
= JueU:Vde D(p):

min {p, Vo (f(:lc7 u, d)), Vc}p(x)} =p
= (V)™ (2) > p.

(16)

a7)



On the other hand, we also know that (Vo)1 (z) <

Ve p(x) = p. Hence (V)T (2) = Ve, (x) = p in this
case.

Now we have proved that (V)" (2) = Vo p(z) both for

x ¢ CandxeC,ie, Vg, is a fixed point of iteration ().

|

With Theorem [I] and Theorem [2] we can characterize
a family of parametrized controlled invariant sets by the
level sets of V,,. We formally state this result by following
corollary.

Corollary 1: Suppose that V, converges to V., uniformly
on X, then the p-suplevel set of V., is the maximal
controlled invariant set under disturbance d € D(p), i.e.,
{z € X | Veo(x) > p} = Coo(f, X0, U, D(p)).

Proof: To ease notations, let CZ, =
Cwo (f, Xo, U, D(p)). Let Cy,_, denote the p-suplevel
set of Vo and let Ve ,, be defined as in Theorem @ We
know that Vr , is a fixed point of iteration (4) by Theorem
while V, is the maximal fixed point of iteration (@) by
Theorem [Tl Hence

Ch ={r e X | Ver p(2) 2 p}

C{re X |Vulx)>p}=Cv_,p. (18)

However, we know that C'y_ ,, is also a controlled invariant
set under d € D(p) by Theorem 2] while CZ, is the maximal
controlled invariant set under d € D(p). Hence

19)
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Eq. and implies that Cy_ , = CZ_, which is what
we want to prove. |

Through the characterization in Corollary [I] it can be seen
that Problem [I] is solved by the value iteration in the sense
that, at a given state © € X, the set of all parameters under
which safety can be enforced is the interval [0, Voo (z)]. In
other words, if p € [0, Voo ()], we will have x € CZ,. This
is true because p < Vi (z) implies that z € {z | Vo (z) >
p} = Cyv., p, which is equal to C%, by Corollary

As promised in the introduction, we also consider the case
where the control input set is parametric, i.e., the control
set U(q) varies with a parameter ¢ € [0,g|. In this case,
a similar sensitivity analysis can be done for the maximal
controlled invariant set against parameter ¢. To this end, we
define another value iteration by Eq. and (2I). Similar
results can be obtained for this value iteration and we will
not present them here.

V. APPLICATION TO CERTAIN SYSTEM CLASSES

Although the proposed value iteration in Eq. @) solves
Problem 1, it is hard to compute in general. In addition,
the uniform convergence of V), which guarantees that V
is indeed a fixed point of the iteration, is not always easy
to prove. In this section, we discuss two special classes
of systems for which V, is assured to be equal to the
largest fixed point, and the proposed value iteration can be
implemented in practice.

A. Finite Transition Systems

For a finite transition system, whose state set X, control
set U and disturbance set D are finite, the proposed value
iteration can be performed in practice. Such systems can be
viewed as abstractions of continuous-state systems and are
studied in similar work like [6]. In this case, V} converges
to V. after finite round of iterations, and V., indeed solves
Problem [I] by Remark [2] and Corollary [I]

B. Linear Systems

In this part, we consider linear systems of the form:

xz(t+1) = Az(t) + Bu(t) + Ed(t), (22)
where the safe set X, the control set U and the parametrized
disturbance set D(p) are polytopes in Euclidean spaces, and
set D(p) satisfies Assumption |1} Moreover, we assume that
the vertex coordinates of the polytopic set D(p) are linear in
the parameter p. This is the case, for example, when D(p) =
{d € R™ | |Ad||o < p} where A € R™¢*" js a diagonal
positive semi-definite matrix.

For the systems described above, the value iteration in Eq.
(@) can be done relatively efficiently.

Theorem 3: Define an iteration over a set & by Eq. (26),
(28), & is a polytope that can be computed efficiently.
Moreover, V. defined by Eq. can be recovered from &
in the following sense:

X, ={z|3p: (z,p) € &},
max{p | (z,p) € &} ifz € Xy
-1 otherwise
The proof of Theorem [3| can be found in the appendix.
Essentially, Theorem [3] says that & is the region below
the surface defined by function Vj}, and above the hyperplane
{(z,p) | p = 0}. Also note that Vi(xz) = —1 whenever
Vi(x) < 0, hence computing set & is equivalent to comput-
ing function Vj. In fact, Theorem [3]is not surprising because
by Corollary [I} if V is the maximal fixed point, set £ :=
{(z,p) | p € [0,p],z € Cy,_ p,} is the maximal controlled
invariant set contained by X x [0, p] of the following system:

(23)

Vi(z) = (24)

z(t+1) = Az(t) + Bu(t) + Ed(t),

p(t+1) = p(t) (25)
where d(t) € D(p(t)). Set iteration in Eq. (28) is exactly
the same as that proposed by [1], which converges to the
maximal controlled invariant set of the linear system with
the above dynamics. Based on this interpretation with the
augmented system in Eq. (23)), it can be also seen that Vj
does converge to the maximal fixed point of the iteration in
Eq. @) in the linear system case, because & is known to
converge to £ in this case [13]. Meanwhile it is difficult
to prove such convergence directly using Theorem [I] by
showing that V}, converges to its limit uniformly for arbitrary
systems.
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VI. CASE STUDIES
A. A Numerical Example

In this section, we first illustrate the value iteration pre-
sented in Section [V-B] using a simple 2D linear system:

a(t+1) = Az(t) + B(u(t) +d(1),  ©9)
where
0.9930  0.0358 0.0053
A= Z02240 0.9930 ] » B= [ 0.1205 } . (30)

and z € Xo = [-1,5,1.5) x [-1,1, u e U = [-1,1], d €
D(p) = [-p,p] and p € [0,p] = [0,0.3]. We compute the
value function Vj, via computing set & in Eq. (28). Figure
|I| shows the converged set after 51 iterations, i.e., £51, and
the resulting V51 (z) is defined by Eq. (24). As mentioned in
Section [V-B] the surface of polytope & can be interpreted
as the graph of value function V}, and Vj(x) is the maximal
parameter value that can be tolerated at state x. It can be
seen from Figure [I] that there is a plateau in the middle of
VZ,s graph, this means a larger parameter value (hence more
disturbance) can be tolerated in the middle of the safe set X.
The slope at the boundary of the graph (along x;-dimension)
corresponds to the fast drop of such tolerance while state z;
approaching its limit. On the other hand, we can see that of
the maximal controlled invariant set is not very sensitive to
the parameter along xs-dimension within the given safe set
Xo.

B. Vehicle Team Power Management

In the rest of this section, we consider a power manage-
ment problem among a team of vehicles and multiple military
camps. The problem is abstracted from [9]. Fig. [2] shows
an illustration of the system. In this problem, we consider
a network of military camps. Each camp is equipped with
a static power generator, and has an uncertain time-varying
power request to meet. At each camp, there is also an energy
storage unit serving as a buffer against sudden peak power
requests. If peak level power is kept being requested at a
camp, we are allowed to send vehicles with smaller on-
board power generators to that camp and support its power

Fig. 1: Plot of set 51, obtained by applying iteration in Eq. 28)
to a 2D linear system until convergence.

generation. The goal of the power management is to meet the
power requests at all camps by dynamically allocating such
a group of identical vehicles from one camp to another.

In this work, we model the system as a finite transition
system 7 = (M, X, U, D(p), f), where

e M is a map that captures the routing topology,

e X is the set of states,

e U is the set of control actions,

e D(p) is the parametrized set of disturbance,

e f: X xU x D(p) — X is the nondeterministic

transition relation parameterized by p.

Here we assume that all the sets are finite. In what follows,
we will define each of the above components in details.
1) Map M: A map M = (L, L.,0) is a directed graph
consisting
« a finite set L of locations;
e aset Lo C L of camp locations;
e a transition relation ¢ C L x L such that (i,7) € o
for all + € L. (i.e., we assume that vehicles are always
allowed to stay steady at a camp).

Map M describes the topology of the camp-network. The
non-camp locations in L \ L. can be also used to capture



the distance between two camps. For example, we can insert
intermediate non-camp nodes between two camps if they are
far away from each other.

2) State Set X: The overall state set is defined by

:HSiXH-

i€L.

3D

In Eq. (1), S; is a finite set of possible energy storage levels
at the camp indexed by ¢ € L., and H contains all possible
distributions of vehicles over the set L of locations. Let m
be the total number of vehicles, H is defined to be the set
{h = (hi,h2,....h) | ;e he = m}, where h; denotes
the number of vehicles at location ¢ € L. In the sequel,
a state will be denoted as (s,h) where s consists of the
energy level s; € S; of each camp ¢ € L. and h describes
the vehicle distribution. Since all the vehicles are assumed
to be identical, the distribution h is sufficient to describe
the location of the vehicles and using h as part of the state
dramatically reduces the size of the state space [11].

3) Control Set U: The control action set U C H x
H x {1,2,...,m}/Ll is defined as follows. Let h
(hl,...,hw‘),h/ = ( i”hiL\) € H and v
{1,2,...,m}Eel consists of v; for i € Le, u = (h, h',v)
U iff there exists a set {¢ k) }(s,k)co Such that

i) ¢, k) are non-negative integers;

i) Vie L: Z(l K)eo ek = his

€
S

iii) Vi € L: h/ h; = Z(Z i)Eo ¢(£ i) = Z(i,k)ea ¢(i,k);
iv) Vi € L. : v; < min{h}, h;}.
A control action u = (h,h',v) is feasible iff it satisfies

the above conditions. We now present some intuition in the
following. Components h and h’ captures the evolution of the
distribution by moving the vehicles. The evolution must be
consistent with the moves allowed by map M. This amounts
to finding a set of flows ¢, ) on each transition (¢, k) € o,
where o is the transition relation of map M, such that A’
can be obtained from h under such flow. The v part of the
control action captures how many vehicles are involved in
power generation. Here v; is the number of vehicles that are
commanded to generate power at camp ¢. We assume that
a vehicle can only generate power at camp ¢ if it does not

,B"Z'S@

Fig. 2: Vehicle team power management problem [9]. The large
circles are camp nodes, the small circle in the middle is a non-
camp node, and the blue line segments correspond to the connection
between two camps.

move. Note that the maximal number of steady vehicles at
camp i is tightly bounded by min{h}, h;}, this hence leads
to bullet iv).

4) Disturbance Set D(p): Let r; be the power requested
at camp ¢ € L, r is a tuple that contains r; for all ¢ € L.
The disturbance set D(p) is then given by

D(p) := {r | np of r;’s take value from [pregular, p|,

and the rest r; = pregular}a (32)

where pregular i a given constant power level, and p is the
upper bound of the peak power level, which is the parameter
we are interested in. For example, in Fig. 3] the plots on
the left illustrate a case where at most two of four camps
may experience peak power request (upper bounded by p =
5) while the rest of the camps have regular power request
(Pregular = 2 in this example).

5) Transition Mapping f: The transition mapping f : X x
U x D(p) x X is a partial map that determines the next state
of the transition system 7. Let  := (s, h), u := (h", W/, v),
d = r, then f(z,u,d) is well defined iff h = h”. Denote
f(z,u,r) by a1 := (sT,hT), s, hT are defined as follows:

o« ht = h’

o Vi€ L, —32—|—gz—|—gvvz—rZ
where g; is the power generated by the static generator at
camp i, and g, is the power generated by one vehicle. Both
g; and g, are given constants.

6) Requirement: We wish to meet the power request at all
camps, i.e., to provide exactly r; unit of power as requested
at camp . This requirement can be actually treated as a safety
requirement because we can always extract power from the
storage unit and the only concern is to avoid overdischarging
the energy storage unit. Hence we assume the extra power
beyond the generation capability of a camp is always drawn
from the storage, and pose the requirement as s; > 0, where
s; is the energy storage level at camp 4, for all time and all
i € Le.

7) Results and Discussion: Given the above system model
and requirement, we want to compute the largest peak power
p that can be achieved without violating energy storage limit
at each initial state. To this end, we applied the proposed
value iteration to this vehicle team power management
problem. TABLE [I] shows the results obtained for systems
of different sizes. It can be seen from each row that the
controlled invariant set’s size reduces as we increase the
parameter, which characterizes the disturbance level. It can
also be seen that the size of the controlled invariant set
increases with the total number of vehicles. Since we use
the distribution of the vehicles, instead of the location of
each vehicle, to describe the system’s state, the system’s
size scales better w.r.t. the number of vehicles. For instance,
thanks to this representation, the system in the last row of
TABLE [[| has only 178750 states whereas naively taking
the location of each vehicle to be a state would require
approximately 6.5 x 108 states in total. On the other hand,
the state space increases much faster with the number of
the camps/locations in the map. Finally, the time consumed
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Fig. 3: Simulation of the closed loop system (corresponding to the
last row of TABLE (I)) with four camps and the topology in Fig.
The dashed red lines in the plots on the right mark the safety
bounds.
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by the value iteration is usually much shorter than that of
computing the transition system itself. Fig. [3] shows the
closed-loop behavior of the system in the last row of TABLE
[l The system is simulated with peak power level p = 5 in
this case. It can be seen that the safety requirement is always
satisfied.

j
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-
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5

Fig. 4: Illustration: using the parameter analysis to determine the
size of energy storage unit at design time. The yellow star s;, s}
marks a size of the energy storage unit at camp ¢ and j. Picking
larger storage unit is unnecessary when p = 5 is the upper bound
of the peak level of the requested power.

We would also like to point out that this parameter
sensitivity analysis is useful at the design time of the system.
For example, we can use the computed V. (x) to determine
the necessary size of the energy storage unit at each camp
when a prior knowledge on the parameter (peak level of
the requested power) is assumed. Fig. [] illustrates the idea.
Assume that the parameter p takes integer values, and let
p = 5 be the largest possible peak power. Then picking
energy storage units with size larger than s and s} does not
gain us anything in terms of avoidance of over-charging/over-
discharging the units, and hence is unnecessary. One key
benefit of the proposed approach is that it allows us to do
such analysis at design time in a systematical way for large
systems.

VII. CONCLUSION

In this paper, we considered systems with parametric
disturbance and control input sets, and studied the parameter
sensitivity analysis problem of the maximal controlled invari-
ant sets for such systems. A value iteration based algorithm
was proposed. We analyzed the convergence properties of
this value iteration and gave a useful interpretation of the
level sets of its fixed points, which are shown to solve
the parameter sensitivity analysis problem. The developed
approach was then applied to a vehicle team power man-
agement case study. The algorithm was shown to scale well
with respect to the number of vehicles and can be used to
determine certain system parameters at design time. In the
future, we will extend the framework to parameter sensitivity
of winning sets for more complex specifications beyond
safety (e.g., those given by temporal logic formulas).

APPENDIX: PROOF OF THEOREM 3]

Here, we will only discuss the case where d is a scalar and
d € D(p) = [—p, p] for simplicity, but the results developed
below easily extend to the general case.

The following property of set & is useful for later proofs.

Lemma 3: Let &, be defined by Eq. (26), (28), and define

X ={z|3Ip: (z,p) € &}, (33)
if X
Yk(I‘) — max{p | (va) € gk} e . k . (34)
-1 otherwise
Then, we have
Vo,p € [0,p] : p < Yi(z) & (2,p) € & (35)

Proof: *“<” holds by definition of Yj. To prove the
other direction, let p < Y (z). Given that U is a closed
polytope, it can be easily seen from the definition that &
is also a closed set. Hence there exists p’ > p such that
(z,p') € &. Again, by the definition of &, we can prove
by induction that (z,p') € & = (z,p) € &, whenever
p’ > p. Hence (z,p) € & holds. [ ]

Next, we prove Theorem E} Since X is assumed to be a
polytope, & is also a polytope, and & can be then proved
to be a polytope by induction. Hence what is left to verify
is the following statement.

Proposition 2: Let Vj, be defined by Eq. (3), @) and Y
be defined by Eq. (24), we have Y, = V}, for all k.

Proof: 'We prove this by induction. Clearly, Yy(z) =
Vo(z). Now assume that Y = Vj, we will show that Yy, =
Vi+1. To this end, we show that, for any z, Y;11(z) <
Vi+1(x) and Yiq1(z) > Viy1(x) hold respectively.

We first show Yii1(2) < Vigi(z). Let p° := Yiiq(2).
By Lemma [3| we know that (z,p°) € £;41. This means

(z,p°) € &k, (36)
Ju° €U :Vd e [-p°,p°]: (Ax + Bu® + Ed,p°) € &.

(37)

By Lemma [3] and the induction hypothesis, Eq. yields

p° < Yi(z) = Vi(2), (38)



TABLE I: Numerical results of systems with different sizes

CasesStatistics total size of controlled invariant set (# states) cpu time (s) # iterations
np [ [L] [TL] [m ||#states| p=2] p=3[p=4][p=>5]p=6]p="7]computing 7 [value iteration
1 2 2 3 100 100 90 62 0 0 0.28 0.02 4
1 2 2 4 125 125 115 95 0 0 0.49 0.06 6
1 2 2 6 175 175 165 145 115 0 0 1.06 0.09 6
1 2 2 8 225 225 215 195 165 125 0 1.78 0.18 6
2 3 3 6 3500 | 3500 | 2990 | 2135 0 0 54 4.28 6
2 3 3 7 4500 | 4500 | 3915 | 2910 0 0 84.64 7.37 6
2 3 3 8 5625 | 5625 | 4965 | 3810 | 2289 0 0 130.16 7.86 4
2 3 3 10 || 8250 | 8250 | 8250 | 7440 | 5985 | 1614 0 260.39 17.05 4
2 3 3 12 || 11375 | 11375 | 10415 | 8660 | 6365 | 3875 0 542.58 50.95 6
2 3 4 7 || 15000 | 15000 | 12379 | 8303 0 0 764.02 68.06 6
2 3 4 8 || 20625 | 20625 | 17344 | 12113 | 6261 0 0 1345.3 81.64 4
2 3 4 9 || 27500 | 27500 | 23484 | 16948 | 9799 0 0 2652.3 235.95 6
2 3 4 10 || 35750 | 35750 | 30924 |22933]13939| O 0 4544.7 403.7 6
2 3 5 9 || 89375 | 89375 | 73458 |59259 | 38309 | 22513 | 8573 20474 1042.1 3
2 4 4 9 || 137500 | 137500 | 110275 | 68100 0 0 11074 795.59 6
2 4 4 10 || 178750 | 178750 | 146075 | 94385 {38729 | 0 0 18782 1013.6 4
while Eq. yields REFERENCES
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