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Abstract: In this paper, we consider the robustification and parametrization of an invariance
switching controller with respect to a scalar variable (parameter) that affects the system
dynamics. By robustification, we mean searching for a switching controller that guarantees
invariance of a set, under a large enough range of the parameter values. In case such a robust
controller does not exist, we do parametrization, i.e., searching for a collection of controllers, each
one robust to a smaller range of parameter values. A parametrized controller can be applied
in real-time by picking the appropriate switching surfaces based on the measurement of the
parameter. To be more specific, assuming (i) the system dynamics is affine, and is monotone
in the considered parameter, (ii) the invariance switching controller is defined on a rectangle in
the state space, we show that the robustification and parametrization problems can be reduced
to solving a sequence of linear programming problems. The proposed approach is illustrated by
several numerical examples.

Keywords: set invariance, switched affine systems, robustification, parametrization of
controllers

1. INTRODUCTION

Control systems in many safety-critical applications, for
example in automotive and aerospace domain, are required
to keep the states of the system away from certain unsafe
regions. For instance, in an autonomous car, the unsafe
region may be determined by the distance to the other
vehicles or pedestrians; or in an aircraft, the unsafe re-
gion may be determined by flight envelopes or runway
boundaries. These hard state constraints can be enforced
by designing controllers that render the complement of the
unsafe regions invariant. Hence, set invariance is crucial in
many safety-critical applications (Blanchini (1999)).

We consider controlled invariant sets of switched sys-
tems, systems with discrete actuators or those that can
switch among predetermined low-level controllers (Liber-
zon (2012)). Often times, there are uncertain parameters
in system dynamics. Given a controlled invariant set for a
switched system and a nominal switching controller that
renders this set invariant, for some nominal value of the
uncertain parameters, we are interested in the following
question: for what ranges of the uncertain parameters,
can we perturbed the controller parameters and/or the
invariant set itself so that the invariance is preserved? This
question is important for understanding the robustness of
the controller to parameter variations. Secondly, the ques-
tion is computationally interesting because searching for
perturbations of the nominal controller allows us to avoid
the potentially expensive computations required for ob-
taining these controllers directly from scratch. Moreover,
if the controllers are implemented as a look-up table; since
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our construction of the perturbed controllers preserves the
size and structure of the table and just changes the values
in it, this facilitates code reuse and can reduce certifica-
tion efforts (Tsai et al. (2005)). Finally, the question is
also relevant for compositional synthesis, in which case
the uncertain parameter is indeed an output of another
subsystem (Kim et al. (2016); Smith et al. (2016)). Finding
the maximal range of uncertain parameters against which
invariance can be preserved is similar to finding least re-
strictive assumptions in contract-based design (Benvenuti
et al. (2008); Chatterjee et al. (2008)), though we use a
different formalism for representing the assumptions.

We limit our attention to rectangular invariant sets and
switched affine dynamics that monotonically depend on
a scalar uncertain parameter. Rectangular invariant sets
naturally arise when considering monotone or multiaffine
systems (Belta and Habets (2006); Abate et al. (2009);
Meyer et al. (2016); Sadraddini and Belta (2016)). They
are also common when the invariant set is obtained via an
abstraction-based synthesis technique (Nilsson and Ozay
(2014); Yang et al. (2016); Coogan and Arcak (2015)). For
this class of dynamics and invariant sets, we show that
a switching controller with rectangular switching surfaces
can be robustified or parametrized using a sequence of
linear programs. A notable property of the proposed linear
program is that its size depends only linearly on the state-
space dimension. We illustrate the proposed approach on
several examples.

2. PRELIMINARIES

Let Rn be n dimensional Euclidean space. For a set S ⊆
Rn, let ∂S be its boundary, int(S) be its interior, relint(S)



be its relative interior, and cl(S) be its closure. For a point
x ∈ Rn, xi denotes its ith component.

2.1 Rectangle & Rectangular Boundary Cover

In the paper we consider controlled invariance of a rectan-
gle. In particular, the controller is defined on the boundary
of the considered rectangle. In what follows, we define
rectangle, boundary cover of a rectangle, and perturbation
of a boundary cover.

Rectangle A set R ⊆ Rn is a rectangle if R = {x ∈ Rn |
li ≤ xi ≤ ui, i = 1, . . . , n}. The minimal and maximal
point of rectangle R are defined to be l(R) := [l1, . . . , ln]T ,
u(R) := [u1, . . . , un]T . A rectangle R is full dimensional
if li < ui for all i. If li = ui for some i, i is called a flat
dimensions of rectangle R. In particular, if rectangle R
has exactly one flat dimension i, we write flat(R) = i. For
rectangle R, define its lower facet and upper facet along
the ith dimension to be

Li(R) :={x ∈ R | xi = li}, (1)

Ui(R) :={x ∈ R | xi = ui}. (2)

Let L(R) =
⋃n

i=1 Li(R) be the lower boundary of set
R, and U(R) =

⋃n
i=1 Ui(R) be the upper boundary of

R. It can be easily shown that ∂R = L(R) ∪ U(R). The
definitions of l(R), u(R), Li(R), Ui(R) are illustrated on
a 3-dimensional example in Fig. 1.

Rectangular Boundary Cover Suppose R is a rectangle,
F = {F1, . . . , FN} ⊆ 2∂R is called a rectangular boundary
cover of R (“cover of R” for short) if Fj ’s are rectangles

such that
⋃N

j=1 Fj = ∂R. Moreover, a cover F of R is

called proper if (i) Fj has exactly one flat dimension for
all j, and (ii) relint(Fj) ∩ relint(Fj′) = ∅ if j 6= j′. In
what follows we will only consider proper covers. Suppose
R is a full dimensional rectangle, for each Fj from proper
cover F of R, since Fj ’s are rectangles with exactly one
flat dimension, we have either Fj ⊆ L(R) or Fj ⊆ U(R).
Let normal(Fj) ∈ Rn denote the normal vector of facet
Fj , normal(Fj) is defined element-wisely as follows:

(
normal(Fj)

)
i

=

1 if Fj ⊆ Li(R)

−1 if Fj ⊆ Ui(R)

0 otherwise

. (3)

The definition in (3) guarantees the normal vector of Fj

always points inwards the set R.

Perturbation of a Cover Let F = {F1, . . . , FN} be a
proper cover of rectangle R. F is defined by l(Fj) and
u(Fj) for each rectangle Fj . Therefore one can “perturb”
the cover F by perturbing the values of l(Fj) and u(Fj).
The following proposition provides a sufficient condition
ensuring that R is still properly covered after perturbing
l(Fj) and u(Fj).

Proposition 1. Let F = {F1, . . . , FN} be a proper cover of

rectangle R, and let F̃ = {F̃1, . . . , F̃N} be a collection of

rectangles with exactly one flat dimension. F̃ also properly
covers set R if the followings hold for all indices j and j′:

(1) flat(Fj) = flat(F̃j),

(2) if Fj ∩ Fj′ 6= ∅, the order of li(F̃j), li(F̃j′), ui(F̃j),

ui(F̃j′) is the same as li(Fj), li(Fj′), ui(Fj), ui(Fj′)
1 ,

1 That is, the inequality between these values is preserved strictly.

(3) lflat(Fj)(Fj) = l
flat(F̃j)

(F̃j).

Proof. Pick facet Li(R) as an example. Define index set
J i to be such that j ∈ J i ⇔ Fj ⊆ Li(R). We first show

that
⋃

j∈Ji
F̃j = Li(R). Since a similar result holds for

Ui(R) and dimension index i is arbitrary, this will prove

∂R =
⋃n

i=1

(
Li(R) ∪ Ui(R)

)
=
⋃N

j=1 F̃j .

In order to show
⋃

j∈J
i
F̃j = Li(R), we will show that

(i)
⋃

j∈J
i
F̃j is a rectangle, (ii) the extreme values of this

rectangle are the same as those of Li(R).

(i) Let j1, jP ∈ J i be such that l(Li(R)) ∈ Lj1 and
u(Li(R)) ∈ LjP . By condition (1) (3), we know for

all j ∈ J i, F̃j lie on the same affine space as Li(R).
This affine space is given by {x ∈ Rn | xi = li(R)}.
Apply Lemma 1 in Appendix A on this affine space,

we know set L̃i :=
⋃

j∈J
i
F̃j is a rectangle, and

L̃i = {x ∈ Rn | xi = li(R),

li′ (F̃j1 ) ≤ xi′ ≤ ui′ (F̃jP ) for i′ 6= i}. (4)

(ii) Next we show for all i′ 6= i, li′(F̃j1) = li′(R). Since
point l(Li(R)) ∈ Fj1 , Fj1 must intersects with some
Fj′ ⊆ Li′(R), and

li′ (Fj1 ) = li′ (Fj′ ) = li′ (R). (5)

By condition (2), this gives li′(F̃j1) = li′(F̃j′). But

li′(F̃j′) = li′(R) because of condition (3), we hence

showed li′(F̃j1) = li′(R). A similar argument can be

applied to show upper values ui′(F̃jP ) = ui′(R), thus

the extreme values of L̃i dfined by (4) are the same
as Li(R), and this finishes the proof. �

If two covers F and F̃ satisfy the conditions in Proposition

1, F̃ is called a perturbation of cover F . We will use
perturbation of a cover to define “perturbation” of a
controller in the following parts.

2.2 Switched System

A general continuous-time switched system is governed by
the following differential equation:

ẋ = fa(x, v, d),

x ∈ X ⊆ Rn, a ∈ A,

v ∈ V ⊆ Rm, d ∈ D ⊆ Rp, (6)

where x is the state variable, a is the control action
from a finite set A, v is the measured external input (i.e.,
parameter) and d is the disturbance. Let fai denote the ith

component of vector field fa.

In this paper, we consider switched systems that satisfy
the following assumptions:

(A1) X,V,D are rectangles;
(A2) V ⊆ R, thus V is an interval by (A1);
(A3) for all a ∈ A, fa is affine in x;
(A4) for all a ∈ A, fai is continuously differentiable and has

sign stable partial derivatives with respect to x, v, d
in X × V ×D.

Systems satisfying assumption (A4) are within the class of
mixed monotone systems (Coogan and Arcak (2015)).



2.3 Rectangular Controlled Invariant Set

In this part, we define controlled invariance of a set and the
class of controllers considered in this paper, and then give
a necessary and sufficient condition to check the controlled
invariance of a rectangle under the considered controllers.

Controlled Invariant Set A vector y ∈ Rn is called a
feasible direction of a set S ⊆ Rn at x ∈ S if there exists
ε > 0 such that x + δy ∈ S for all δ ≤ ε. The tangent
cone of a set S at x is defined to be TS(x) := cl({y |
y is feasible direction of S at x}).
Given a switched system in form of (6) with state space X
and action set A, let closed set S ⊆ X. A switching con-
troller is a map K : ∂S → 2A \∅. Set S is called controlled
invariant under switching controller K at parameter v if
(Blanchini (1999))

∀x ∈ ∂S, a ∈ K(x), d ∈ D : fa(x, v, d) ∈ TS(x). (7)

Remark 1. Note that controller K maps a state x ∈ ∂S
to a nonempty set of control actions. We thus have
“ambiguity” in the sense that there might be multiple
controls at a point x ∈ ∂S. For controller K to be robust
to such ambiguity, we need fa(x, v, d) ∈ TS(x) for all
a ∈ K(x) in Eq. (7).

Valid Switching Function & Controlled Invariance of a
Rectangle Consider a proper cover F of a rectangle R,
and a switched system in form of (6) with action set A. We
define switching function a : F → A that assigns a control
action to each Fj ∈ F . Fj equipped with a control is called
a switching facet. A cover F together with a switching
function a induces a switching controller KF,a : ∂R→ 2A

in the following sense:

∀x ∈ ∂R : KF,a(x) = {a(Fj) | x ∈ Fj , Fj ∈ F}. (8)

A switching function a is called valid if a(Fj) = a(Fj′)
for all Fj , Fj′ ∈ F satisfying the following:

flat(Fj) 6= flat(Fj′ ), Fj ∩ Fj′ 6= ∅,
∀x ∈ Fj , y ∈ Fj′ : normal(Fj)T (x− y) ≤ 0, (9)

normal(Fj′ )
T (y − x) ≤ 0.

If switching facet Fj and F ′j satisfy condition (9), we say
Fj and Fj′ form a convex wedge. The right part of Fig. 1
shows an example of two facets forming a convex wedge.
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Fig. 1. Left: illustration of minimal point l(R), maximal
point u(R), lower facet Li(R), upper facet Ui(R)
along the 3rd dimension. Right: two facets F1 (green)
and F2 (red) form a convex wedge.

Proposition 2. Given a switched system in the form of
(6) with state space X and action set A, a rectangle
R ⊆ X with a proper cover F = {F1, . . . , FN}, and a valid
switching function a : F → A, let KF,a be the switching
controller induced by F and a. Set R is controlled invariant

under controller KF,a for a nominal parameter v if and
only if for all F ∈ F :

normal(F )T fa(F )(x, v, d) ≥ 0 ∀x ∈ F, d ∈ D. (10)

Proposition 2 says: if the controller is induced by a valid
switching function, it is necessary and sufficient to verify
the invariance of set R by checking Eq. (7) on each facet
Fj from a cover. There is no need to check condition
(7) on ridges, edges, vertices, etc. of set R. Note that
condition given by Eq. (10) is necessary for invariance
but not sufficient without validity of switching function
a. For not valid switching functions, it is required to check
Eq. (10) for all lower dimensional faces of the set R,
which are exponentially many. Therefore, constraining the
search to valid switching functions, significantly improves
the computational complexity of invariance check. We also
note that valid switching function assumption is not too
restrictive in that whenever the set R can be rendered
contractive, there exists a valid switching function.

2.4 Perturbation of a Switching Controller

Let KF,a be a switching controller induced by a proper
cover F of a rectangle R and a switching function a defined

on F . Let F̃ = {F̃1, . . . , F̃N} be a perturbation of cover

F = {F1, . . . , FN}. Define ã : F̃ → A to be such that

ã(F̃j) = a(Fj), that is, the control action assigned to a
facet is preserved after perturbation.

Proposition 3. Let F be a proper cover of rectangle R, and

let a be a switching function defined on F . Suppose F̃ is
a perturbation of F , the corresponding switching function
ã (defined as above) is valid if a is valid.

Proof. Consider condition (9). First by definition of per-

turbed cover F̃ , flat(F̃j) = flat(Fj). Since perturbation

F̃ is still a cover of the rectangle R, for any F̃j , F̃j′ ∈ F̃
satisfying flat(F̃j) 6= flat(F̃j′), we have normal(F̃j)

T (x−
y) ≤ 0 and normal(F̃j′)

T (y−x) ≤ 0 for all x ∈ F̃j , y ∈ F̃j′ .
Finally it can be shown that perturbing the cover F does
not create new intersections. That is, if Fj , Fj′ ∈ F are

such that Fj ∩ Fj′ = ∅, we have F̃j ∩ F̃j′ = ∅. Hence if

two facets F̃j , F̃j′ from the perturbed cover satisfy condi-
tion (9), their corresponding facets Fj , Fj′ in the original
cover also satisfy condition (9). By validity of a we have

a(Fj) = a(Fj′). This implies ã(F̃j) = ã(F̃j′) by definition
of ã. Therefore ã is valid. �

The perturbed cover F̃ and its corresponding switching
function ã induce a new switching controller KF̃ ,̃a

. Con-

troller KF̃ ,̃a
is called a perturbation of controller KF,a. We

denote the set of all the perturbed controllers of KF,a to
be KF,a.

3. PROBLEM STATEMENT

We are in a position to define the problem considered
in this paper, with the definitions and notations given in
section 2.

Problem 1. (Parametrization of Switching Controller) Con-
sider a switched system governed by differential equation
in (6), satisfying assumptions (A1)-(A4). Let S ⊆ X be



a set that is controlled invariant under a given controller
KF̂,â at nominal parameter v̂. Our goal is to find

(i) a large enough interval [v, v] ⊆ V that contains v̂,
(ii) a mapping π : [v, v]→ KF̂,â such that S is controlled

invariant under controller π(v) at v.

Problem 2. (Robustification of Switching Controller) The
same as Problem 1 except that we want π(v1) = π(v2) for
all v1, v2 ∈ [v, v].

Note that in both problems we assume that there al-
ready exists a controller working for nominal parameter v̂.
Whenever we can find a controller robust over v ∈ [v, v],
there is no need to search for a parametrized controller
over the same interval. In this case, solving Problem 2
(robustification) is enough. However, it may not always
be possible to find a robust controller over a large enough
range, in which case, parametrization is required.

4. SOLUTION APPROACH

We solve Problem 1 and Problem 2 by solving a sequence
of linear programming problems. The proposed approach
can be decomposed into an inner part formulating the
linear programming problems, and an outer loop doing line
search. To be specific, we start from the given set R that
is controlled invariant under switching controller KF̂,â at
nominal parameter v̂. A linear programming feasibility
problem parametrized w.r.t. v, denoted as PF̂,â(v), is

formulated based on F̂ , â and the knowledge of the
dynamics. We proceed by solving a series of such linear
program for different values of parameter v. A feasible
solution of problem PF̂,â(v) defines a cover F and a
switching function a, from which a controller KF,a can
be extracted. Under controller KF,a, set R is guaranteed
to be invariant at parameter v. By proceding this way we
can parametrize controller KF,a w.r.t. v. At the end of this
procedure, a condition is given to check if robustification
is possible on the overall range of v.

In what follows, we first give the formulation of the
linear programming feasibility problem, then we show how
to solve robustification and parametrization problem by
solving a sequence of such linear programming problems.
Pseudo codes summarizing the overall procedure are also
given.

4.1 Finding Feasible Controller by Linear Programming

Given a rectangle set R, let F̂ be a proper cover of R, â
be a valid switching function defined on F̂ , and KF̂,â be

the switching controller induced by F̂ , â. Suppose that set
R is controlled invariant at nominal parameter v̂ under
controller KF̂,â. In what follows, A feasibility problem is

formulated to give all the switching controllers that (i) are
perturbed from nominal controller KF̂,â, and (ii) make set
R controlled invariant at a certain parameter v.

Define feasibility problem PF̂,â(v) with variable u, l and

parameter v, and let Feasible
(
PF̂,â(v)

)
denote the feasible

set of problem PF̂,â(v):

find l, u

s.t. f
â(F )

flat(F )
(xF , v, dF ) ≥ 0, ∀F ∈ F̂ , F ⊆ L(R), (C1)

f
â(F )

flat(F )
(xF , v, d

F
) ≤ 0, ∀F ∈ F̂ , F ⊆ U(R), (C2)

uF
i > lFi , (C3)

∀F ∈ F̂ , i ∈ {1, . . . , n} \ {flat(F )},

uF
flat(F ) = uflat(F )(F ),

lFflat(F ) = lflat(F )(F ), (C4)

∀F ∈ F̂ ,

order of lFi , lEi , uF
i , uE

i same as
li(F ), li(E), ui(F ), ui(E), (C5)

∀E,F ∈ F̂ : E ∩ F 6= ∅.

(PF̂,â(v))

Next, we explain in details the meaning of variables and
each constraint in the above feasibility problem PF̂,â(v).

Variables l, u l and u are the variables of the feasibility
problem, they are aggregation of lFj and uFj 2 , i.e.,

l = [(lF1 )T , . . . , (lFN )T ]T , (11)

u = [(uF1 )T , . . . , (uFN )T ]T . (12)

lF , uF define a rectangle F̃ := {x ∈ Rn | lFi ≤ xi ≤ uFi }.
The aggregated variable l, u hence define

F̃l,u = {F̃ | F ∈ F̂}, (13)

We can also define the corresponding switching function

ãl,u : F̃l,u → A to be such that

ãl,u(F̃ ) = â(F ). (14)

(C1) f
â(F )
flat(F ) is the vector field component along the flat

dimension of facet F , under control action â(F ), which is

equal to ãl,u(F̃ ). v is the parameter of problem PF̂,â. xF ,

dF are the minimizer of f
â(F )
flatF ) over F̃ × D, where D is

the rectangular domain of disturbance d defined in Eq. (6).
The constraint says, if F is part of lower boundary cover

of S, the minimum value of f
a(F )
flatF ) on F̃ is positive. In

particular, xF , dF are defined element-wise by

xF
i =

lFi if
∂f

a(F )

flat(F )

∂xi
≥ 0

uF
i if

∂f
a(F )

flat(F )

∂xi
< 0

, dFj =

lk(D) if
∂f

a(F )

flat(F )

∂dk
≥ 0

uk(D) if
∂f

a(F )

flat(F )

∂dk
< 0

∀F ∈ F̂ , F ⊆ L(R), i ∈ {1, . . . , n}, k ∈ {1, . . . , p} (15)

Note that xF is defined by variables lF , uF , while dF

is a constant vector. It can be shown easily that xF , dF

minimizes f
a(F )
flatF ) on F̃ under assumption (A4).

(C2) Similar to constraint C1, the maximum value of

vector field component f
â(F )
flatF ) on F̃ is negative if F is part

of a upper facet. xF , d
F

maximizes f
â(F )
flatF ) on F̃ , defined

element-wisely by

xF
i =

uF
i if

∂f
a(F )

flat(F )

∂xi
≥ 0

lFi if
∂f

a(F )

flat(F )

∂xi
< 0

, d
F
j =

uk(D) if
∂f

a(F )

flat(F )

∂dk
≥ 0

lk(D) if
∂f

a(F )

flat(F )

∂dk
< 0

∀F ∈ F̂ , F ⊆ U(R), i ∈ {1, . . . , n}, k ∈ {1, . . . , p} (16)

2 Note that lF , uF are different from l(F ), u(F ). the latter pair are
the minimal and maximal points of F defined in section 2, while lF ,
uF are variables used to define the perturbation of F ∈ F̂ .



By assumption (A3), f â is affine. Hence constraints C1,
C2 are linear inequalities.

(C3) The constraint ensures that F̃ := {x ∈ Rn |
lFi ≤ xi ≤ uFi } is well defined along all dimensions except
flat(F ).

(C4) The constraint ensures that flat(F̃ ) = flat(F ),

and l
flat(F̃ )

(F̃ ) = lflat(F )(F ). Together with constraint

C3, we know F̃ has exactly one flat dimension.

(C5) The constraint ensures that facets F and E satisfy
condition (2) in Proposition 1. Note that constraint C5 are
set of linear inequalities.

The feasibility problem PF̂,â(v) gives all the switching
controllers perturbed from nominal controller KF̂.â that
make set R controlled invariant at a certain parameter v.
The result is formal stated by the following theorem.

Theorem 1. For any l, u ∈ Feasible
(
PF̂,â(v)

)
, define F̃l,u,

ãl,u by Eq. (13) (14). F̃l,u is a proper cover of rectangle R.

Moreover, let KF̃l,u ,̃al,u
be the controller induced by F̃l,u

and ãl,u, the set
{
KF̃l,u ,̃al,u

| l, u ∈ Feasible
(
PF̂,â(v)

)}
={

K ∈ KF̂,â | K makes set R invariant
}

.

Proof. First F̃l,u’s defined by l, u satisfying constraint C3,

C4, C5 are exactly the perturbations of nominal cover F̂ .

By interpretation of constraint C3 and C4, every F̃ ∈ F̃l,u

is well defined, has exactly one flat dimension, and satisfies
condition (1) and (3) in Proposition 1. By constraint

C5, any two facet from F̃l,u also satisfy condition (2) in

Proposition 1. Hence, by Proposition 1, we know F̃l,u also
covers the rectangle R. Conversely, given any perturbation

F̃ of nominal cover F̂ , and F̃j ∈ F̃ , one can check that

l := [l(F̃1)T , . . . , l(F̃N )T ]T , u = [u(F̃1)T , . . . , u(F̃N )T ]T

satisfy constraint C3, C4, C5.

Secondly, set R is controlled invariant under the induced

controller KF̃l,u ,̃al,u
. As already shown, F̃l,u is indeed a

proper cover, by Proposition 3, the corresponding switch-
ing function ãl,u is always valid. Therefore, by Proposition
2, condition (7) is necessary and sufficient for invariance of
set R. But condition (7) is captured exactly by constraint
C1 C2, the feasible solutions of PF̂,â hence defines all the
controllers within KF̂,â that makes set the R controlled
invariant. �

4.2 Solving Robustification/Parametrization by Line Search

By Theorem 1, one can search for invariance controllers for
different parameters v ∈ [v, v] by solving feasibility prob-
lem PF̂,â(v). In order to solve Problem 1 (parametriza-

tion), however, it requires solving infinitely many such
problems on interval [v, v]. To avoid intractability, we
desire to (i) find a grid partition of interval [v, v], denoted
by V := {v, v1, . . . , vM , v}, and (ii) search for finitely many
controllers, each one robustly guarantees the invariance of
set R for all v ∈ [vk, vk+1]. Under assumption (A4) in
section 2.2, the dynamics is monotone in parameter v.

We can leverage monotonicity and obtain the following
theorem.
Theorem 2. : Assume that

(l, u) ∈ Feasible
(
PF̂,â(v1)

)
∩ Feasible

(
PF̂,â(v2)

)
(17)

then l, u is also feasible to PF̂,â(v) for all v ∈ [v1, v2]

(assume v1 < v2 w.l.o.g.).

Proof. First note that the value of parameter v only
affects constraint C1 and C2 in problem PF̂,â(v). Let

F ⊆ L(R) and take condition C1 as an example. Suppose
there exists solution l, u satisfying condition (17), and let

xF , dF be the variables defined from l, u by Eq. (15), we
have

f
â(F )

flat(F )
(xF , v1, d

F ) ≥ 0, f
â(F )

flat(F )
(xF , v2, d

F ) ≥ 0. (18)

Let v ∈ [v1, v2]. By assumption (A4),
∂fa

i

∂v is sign stable

on X × V ×D. If
∂fa

i

∂v ≥ 0 on X × V ×D, v ≥ v1 implies

f
â(F )
flat(F )(x

F , v, dF ) ≥ f
â(F )
flat(F )(x

F , v1, d
F ) ≥ 0; if

∂fa
i

∂v ≤ 0,

v ≤ v2 implies f
â(F )
flat(F )(x

F , v, dF ) ≥ f
â(F )
flat(F )(x

F , v2, d
F ) ≥

0. That is, l, u satisfy constraint C1 at v in either case. A
similar argument can be applied to constraint C2, and this
finishes the proof. �

By Theorem 2, we can expand our parametrization start-
ing from V = {v̂}. Then we pick a vi and solve PF̂,â(vi),
if its feasible region has nonempty intersection with the
feasible region of PF̂,â(v̂), then we know that any u, l from
this intersection induce a cover F and a switching function
a, under which R is controlled invariant robustly for all
v ∈ [v̂, vi]. We can proceed by expanding V in two di-
rections. If the new linear programming problem PF̂,â(vi)

has empty intersection with all
⋃

v∈V Feasible(PF̂,â(v)),
then we have to shrink the step size. This procedure will
continue until the step size is smaller than a predefined
minimum step. Algorithm 2 gives the pseudo code for the
above parametrization procedure, returning V, π to solve
Problem 1. In particular, if

Feasible

(
PF̂,â

(
min(V)

))
∩ Feasible

(
PF̂,â

(
max(V)

))
(19)

then parametrization is actually not necessary because
by Theorem 2 we can instead have a robust controller. A
robust controller is better than a parametrized one because
we do not need to switch between controllers according to
the measurements. Algorithm 1 checks condition (19) and
declare either Problem 1 (parametrization) or Problem 2
(robustification) is solved accordingly.

5. EXAMPLES

In this section, we illustrate the proposed approach by two
numerical examples, one for parametrization, and one for
robustification.
Example 1. The following is a switched affine system with
three modes. The system satisfies assumptions (A1)-(A4).

ẋ = Aax + Ka(v),

x ∈ [0, 50]× [0, 50], a ∈ {1, 2, 3}, V ∈ [1, 50],

A1 =

[
−1 0
0 −2

]
, A2 =

[
−1 −0.5
0.1 1

]
, A3 =

[
−1 0.5
0.5 −1

]
,

K1(v) =

[
30
40

]
,K2(v) =

[
−12.5 + v

33

]
,K3(v) =

[
10− v

1

]
. (20)

A rectangular controlled invariant set [10, 20]× [10, 30] is
found by abstraction-based synthesis (Nilsson and Ozay



Algorithm 1 (V, π) = ParametrizeRobustify(v̂, F̂ , â, V )

Require: nominal parameter v̂, corresponding cover F̂
and switching function â, parameter set V

Ensure: finite set V, mapping π
ε := minimum allowable quantization scale of V
δ := default quantization scale of V
Initialize V = {v̂}, π(v̂) = (F̂ , â)

(V, π) = ExpandForward(V, π, ε, δ, F̂ , â, V )

(V, π) = ExpandBackward(V, π, ε, δ, F̂ , â, V )
v := min(V)
v := max(V)
if Feasible

(
PF̂,â(v)

)
∩ Feasible

(
PF̂,â(v)

)
6= ∅ then

V = {v, v}
π(v) = KFu,l,au,l

, where

(u, l) ∈ Feasible
(
PF̂,â(v)

)
∩ Feasible

(
PF̂,â(v)

)
and Fu,l, au,l are defined by (13),(14)
declare robustification

else
declare parametrization

return V, π

Algorithm 2 (V, π) = ExpandForward(V, π, ε, δ, F̂ , â, V )
(ExpandBackward can be defined similarly)

Require: finite set V, mapping π,
ε, minimum allowable quantization scale of V, and δ,
default quantization scale of V,
cover F̂ and switching function â for a nominal param-
eter from set V

Ensure: Expanded V and mapping π
Initialize δ+ = δ
while δ+ > ε do

v = max(V)
v = v + δ+

if Feasible
(
PF̂,â(v)

)
∩ Feasible

(
PF̂,â(v)

)
6= ∅ and

v ≤ max(V ) then
V = V ∪ {v}, δ+ = δ
π(v) = KFu,l,au,l

, where

(u, l) ∈ Feasible
(
PF̂,â(v)

)
∩ Feasible

(
PF̂,â(v)

)
and Fu,l, au,l are defined as (13),(14)

else
δ+ = δ+/2.

return V, π

(2014)) under nominal value v̂ = 0, then algorithm 1 is
used to find a set of parametrized controllers over interval
[v, v] = [0, 47.375]. The grid of the interval is given by
V = {0, 3, 6, 9, . . . , 42, 45, 46.5, 47.25, 47.375}. The left part
of Fig. 2 shows in X×V space the controlled invariant set
and the actions defined on its boundary. Each “slice” in
the figure corresponds to the controller on a sub-interval
[vk, vk+1], where vk, vk+1 are two consecutive numbers
from grid V. It can be seen that the switching surfaces
change with parameter v. For this example, no robust
controller can be found for v ∈ [min(V),max(V)].

Example 2. Consider the following switched affine model
for thermal dynamics of an engine (Yang et al. (2016)):

ẋ =Aa(v, d)x + Ka(v, d),

x ∈[380, 400]× [260, 310], a ∈ {1, 2, 3, 4},
v ∈[260, 310], d ∈ [0.03, 0.045]× [1.5× 104, 1.9× 104], (21)

where Aa, Ka are defined by Eq. (22). In this example,
state x = [Te, Tr]

T , where Te, Tr denote the engine temper-
ature and radiator temperature, respectively. Parameter v
is the ambient temperature Ta. Disturbance d = [w, q] con-
sists of the coolant flow velocity w and the heat q generated
by engine combustion. Control a = {1, 2, 3, 4} corresponds
to four levels of cooling, from the most mild cooling (a = 1)
to the most aggressive cooling (a = 4). Fig. 3 shows
the results given by Algorithm 1 on Example 2. The
left figure shows the parametrized controller plot in the
X × V space, over the grid V = {280.875, 281.25, 282, 285,
288, 291, 292.5, 292.875}. In this example a robust con-
troller is also found and is shown in the right figure.

6. EXTENSION

The proposed approach does not change the size of the
controlled invariant rectangle R for different parameter
values. However, we can also have the set R’s size vary
with the parameter, by a modification to the feasibility
problem PF̂,â(v):

(i) add variables lR, uR, and modify constraint C4 into

lFflat(F ) = uF
flat(F ) = lRflat(F ) if F ⊆ L(R),

lFflat(F ) = uF
flat(F ) = uR

flat(F ) if F ⊆ U(R), (C4’)

lRflat(F ) < uR
flat(F ),

(iii) add constraints on lR, uR to avoid obtaining an
invariant set that is too large,

(iv) maximize the volume of the obtained invariant set by
minimizing −

∑n
i=1 log(uRi − lRi ).

This extension is applied to the system in Example 1. The
obtained controlled invariant set with varying size and the
parametrized controller are shown in the right part of Fig.
2. In this example, we pick smaller step size on parameter
v when expanding the parametrization, and we enlarge the
size of the invariant set when expanding is blocked, instead
of shrinking the step size.

In the future, we plan to extend the proposed framework
to handle unions of rectangles. Although this extension is
straightforward if one checks the invariance conditions on
all lower dimensional faces (leading to exponentially many
constraints in the feasibility problem), we are seeking more
efficient solutions as is done in this paper for rectangles.
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Fig. 2. Example 1. Parametrized controller that guarantees the invariance of rectangle R with fixing size (left), with
varying size (right). Red: a = 1, pink: a = 2, blue: a = 3.

A1(v, d) =

[
−0.133− 1.133d1 1.133d1

4.25d1 −4.25d1 − 4.269

]
, A2(v, d) =

[
−0.133− 1.133d1 1.133d1

4.25d1 −4.25d1 − 15.575

]
,

K1(v, d) =

[
1.333× 10

−3
d2 + 0.133v

4.269v
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, K2(v, d) =

[
1.333× 10

−3
d2 + 0.133v

15.575v
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K3(v, d) =

[
1.333× 10

−3
d2 + 0.133v
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[
1.333× 10

−3
d2 + 0.133v

15.575v
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Fig. 3. Example 2: parametrized (left) and robustified (right) controller. Red: u = 1, light blue: u = 3, dark blue: u = 4.
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Appendix A. LEMMA 1 AND ITS PROOF

The proof of Proposition 1 uses the following lemma.

Lemma 1. Given a rectangle R ⊆ Rn, and a collection of
rectangles {Rj}Nj=1 satisfying

(a1) R =
⋃N

j=1Rj ,

(a2) Rj ’s have disjoint interior, i.e., int(Rj)∩ int(Rj′) = ∅,
and a new collection of rectangles {R̃j}Nj=1 satisfying

(b1) Rj ∩ Rj′ 6= ∅ ⇒ the order of li(Rj), li(Rj′), ui(Rj),

ui(Rj′) is the same as the order of li(R̃j), li(R̃j′),

ui(R̃j), ui(R̃j′) for all i,

then
⋃M

j=1 R̃j is still a rectangle.

Note that assumption (b1) induces a relation between
rectangles with the same indices in collections {Rj}Nj=1

and {R̃j}Nj=1. This relation will be crucial in the proof.

Proof. We prove Lemma 1 by induction on dimension n.



1◦ For n = 1, R and Rj ’s are intervals. By assumption

(a1), we know
⋃N

j=1Rj is a single interval. By as-

sumption (a2) int(Rj) ∩ int(Rj′) = ∅, thus intervals
Rj = [l(Rj), u(Rj)] can be assumed to be sorted so

that u(Rj) = l(Rj+1). By assumption (b1), u(R̃j) =

l(R̃j+1), hence
⋃N

j=1 R̃j is also a single interval.
2◦ Assume Lemma 1 holds for n dimensional case. We

will show that it holds when the dimension is n+1. To
do so, we (i) define a rectangle R̃ using the collection

{R̃j}Nj=1, (ii) show it is non-empty, and (iii) show⋃N
j=1 R̃j = R̃ by induction hypothesis.

(i) First we define rectangle R̃. By assumption (a1),
R’s minimum point l(R) and maximum point u(R)
both belong to some Rj ’s. Suppose that l(R) ∈ R1,
and u(R) ∈ RN , define

R̃ := {x ∈ Rn | li(R̃1) ≤ xi ≤ ui(R̃N )}. (A.1)

(ii) Next we show that li(R̃1) ≤ ui(R̃N ), that is, R̃ is
non-empty. Consider the sub-collection of rectangles
{Rj}j∈Ji

such that ui(Rj) = ui(R) for all j ∈ J i.

Note that N ∈ J i. Any two rectangle Rj1 , RjM
in this sub-collection can be connected by a line
going through a sequence of distinct rectangles with
indices j1, j2, . . . , jM ∈ J i. Then, by assumption (b1),

ui(R̃j1) = ui(R̃j2) = · · · = ui(R̃jM ) = ui(R̃jN ). In

other words, for all j ∈ J i, the upper facets of R̃j

along the ith dimension lie on the same affine space

{x ∈ Rn | xi = ui(R̃N )}. Similarly, by defining J i to
be such that j ∈ J i ⇔ li(Rj) = li(R), we can show
for all j ∈ J i, the lower facet of Rj ’s all lie on the

affine space {x ∈ Rn | xi = li(R̃1)}.
Now, arbitrarily pick R̃j∗ , we claim that li(R̃1) ≤

li(R̃j∗) ≤ ui(R̃j∗) ≤ ui(R̃N ). To prove this, let Rj∗ be
the corresponding rectangle in the original collection,
and pick x∗ ∈ Rj∗ . Consider a line passing through
x∗ along the direction of the ith dimension. This
line crosses a sub-collection {Rjk}jk∈J∗ of rectangles.
Obviously j∗ ∈ J∗i . Note that Rjk ’s satisfy

li(Rj1 ) ≤ ui(Rj1 ) = li(Rj2 ) ≤ . . .

≤ ui(RjP−1
) = li(RjP ) ≤ ui(RjP ) (A.2)

where P := |J∗i |. By assumption (b1), we know that

R̃jk ’s preserve this order, that is

li(R̃j1 ) ≤ ui(R̃j1 ) = li(R̃j2 ) ≤ . . .

≤ ui(R̃jP−1
) = li(R̃jP ) ≤ ui(R̃jP ). (A.3)

Again, noting that j∗ ∈ J∗i , Eq. (A.3) thus gives

li(R̃j1 ) ≤ li(R̃j∗ ) ≤ ui(R̃j∗ ) ≤ ui(R̃jP ). (A.4)

Finally note that Li(Rj1) ⊆ Li(R), and Ui(RjP ) ⊆
Ui(R), thus j1 ∈ J i and jP ∈ J i. Therefore, we

have li(R̃j1) = li(R̃1), and ui(R̃jP ) = ui(R̃N ), which

when combined with Eq. (A.4) gives li(R̃1) ≤ ui(R̃N ).

Hence R̃ defined in Eq. (A.1) is non-empty.
(iii) Note that dimension index i and rectangle index
j∗ in argument (ii) are arbitrary, thus Eq. (A.4)

also shows that
⋃N

j=1 R̃j ⊆ R̃. Next we show R̃ ⊆⋃N
j=1 R̃j . For this purpose, we show respectively ∂R̃ ⊆⋃N
j=1 R̃j and int(R̃) ⊆

⋃N
j=1 R̃j .

(iii-1) ∂R̃ ⊆
⋃N

j=1 R̃j .

Let Li(R̃) be the lower facet of rectangle R̃ along the
ith dimension. We known by earlier argument that⋃N

j=1 Li(R̃j) lies on affine space {x ∈ Rn | xi =

li(R̃)}. Moreover, we know
⋃N

j=1 Li(R̃j) is a rectangle
on that affine space by induction hypothesis. Denote

this rectangle to be L̃i :=
⋃N

j=1 Li(R̃j), we know L̃i ⊆
Li(R̃) because

⋃N
j=1 R̃j ⊆ R̃. To show L̃i = Li(R̃), we

need li′(L̃i) = li′(R̃) for all i′ 6= i.
Consider facets of original rectangle R, Li(R) and
Li′(R), there must be a rectangle Rj that con-
tributes to both Li(R) and Li′(R), in the sense that

Li(Rj) ⊆ Li(R) and Li′(Rj) ⊆ Li(R). Let R̃j be

the corresponding rectangle in the new collection, R̃j

contributes to both L̃i and L̃i′ . This hence implies

li′(L̃i) ≤ li′(R̃j) = li′(L̃i′) = li′(R̃). Since the two
facets Li(R) and Li′(R) are arbitrarily picked, we

show li′(L̃i) = li′(R̃) for all i′ 6= i (similar for upper

values). Therefore L̃i = Li(R̃) (similar for upper

facets) and ∂R̃ =
⋃n

i=1

(
Li(R̃) ∪ Ui(R̃)

)
=
⋃n

i=1(L̃i ∪
Ũi) ⊆

⋃N
j=1 R̃j .

(iii-2) int(R̃) ⊆
⋃N

j=1 R̃j .
We prove this by contradiction. Assume otherwise,

there exists a point x◦ ∈ int(R̃) but x◦ /∈
⋃N

j=1 R̃j .

We know the ray {x ∈ Rn | x = x◦ + λei, λ > 0} 3
must intersect with some rectangles R̃j ’s because by

(iii-1) ∂R̃ ⊆
⋃N

j=1 R̃j . Let Rj◦ be the first rectangle
that intersects with this ray, and consider its lower

facet Li(R̃j◦). Facet Li(R̃j◦) is “exposed” in the sense

that Li(R̃j◦) *
⋃N

j=1,j 6=j◦ R̃j . Let Li(Rj◦) be the
same lower facet of the corresponding rectangle in the
original collection. We know, however, facet Li(Rj◦)
is fully covered because we can show it is not part

of Li(R): since x◦ ∈ int(R̃), we have li(Li(R̃j◦)) >

x◦i > li(R̃), but by assumption (b1), this implies
li(Rj◦) > li(R) and hence Li(Rj◦) cannot be part
of Li(R).
Coming back to argument (iii-2), define index set J◦i
to be such that j ∈ J◦i ⇔ Rj ∩ Li(Rj◦) 6= ∅ and j 6=
j◦. Also define Sj = Rj ∩ Li(Rj◦) for j ∈ J◦i . By

assumption (b1) we know that S̃j := R̃j ∩ Li(R̃j◦)
are also nonempty sets. Moreover, using arguments

from part (ii), we know S̃j ’s lie on the same affine

space as facet Li(R̃j◦). Hence by induction hypoth-

esis,
⋃

j∈J◦
i
S̃j is a rectangle on that affine space.

But by assumption (b1), l(R̃j◦), u(R̃j◦) ∈
⋃

j∈J◦
i
S̃j .

Therefore Li(R̃j◦) ⊆
⋃

j∈J◦
i
S̃j ⊆

⋃N
j=1,j 6=j◦ R̃j . But

this contradicts with the fact that Li(R̃j◦) is “ex-

posed”, i.e., Li(R̃j◦) *
⋃N

j=1,j 6=j◦ R̃j . To this point
the entire proof is completed. �

3 ei is the ith natural base.


