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Abstract— In this paper, we consider detectability analysis
for faults in systems governed by switched affine dynamics. By
a fault, we mean a sudden and permanent change in the system
dynamics. Given the model of the healthy system, such a fault
can be detected via model invalidation, i.e., by collecting past
observations over a finite horizon and checking whether these
observations can be generated by the healthy system model.
Whenever the faulty system model is also available, it is possible
to find T , the minimum length of the horizon, with which the
fault is guaranteed to be detected eventually (with a T -step
delay at most). The procedure for finding such T is known
as the fault detectability analysis, and can be accomplished by
solving a mixed integer linear program (MILP) for switched
affine systems. The main contribution of this work is to show
the possibility of reducing the value of T , by augmenting
the fault detectability analysis with additional linear temporal
logic (LTL) constraints on the switching signals, if any. We
express the LTL constraints (restricted in a finite horizon)
with a nondeterministic finite state machine called a monitor,
which is then transformed into a set of mixed integer linear
constraints that can be easily integrated in the MILP used
for the detectability analysis. The effectiveness of the proposed
approach is illustrated with a drone altitude consensus protocol
with switching communication topology.

I. INTRODUCTION

Run-time anomaly and fault detection is crucial for safe
operation of cyber-physical systems so that potential faults
can be quickly detected and contained before they lead to
system-wide catastrophes. Early anomaly and fault detection
is even more important for situations like space missions
where maintenance is very costly if at all possible. For
discrete (e.g., software-based) systems, several monitoring
and run-time verification techniques have been proposed [1],
[7], [13], [14]. Similarly, fault detection algorithms have also
been studied for continuous-state dynamical systems using
ideas from machine learning, filtering or optimization [8],
[4]. The goal of this paper is to bring together ideas from
these different communities to more effectively detect faults
for a class of hybrid systems, governed by both discrete and
continuous variables.

In particular, we consider systems whose dynamics are
given by a switched affine model. Such models can be
used to describe, for instance, physical systems with discrete
actuation or closed-loop systems with continuous plants
and logic-based controllers. Switching mode captures the
discrete, logic-based variables. We further assume that when

The authors are with the Dept. of Electrical Engineering and
Computer Science, Univ. of Michigan, Ann Arbor, MI 48109, USA
yliren,necmiye@umich.edu. This work is supported by an Early
Career Faculty grant from NASA’s Space Technology Research Grants
Program.

the system operation is normal (i.e., the system is healthy),
the switching mode signal satisfies a certain LTL formula;
and in case of faults, it satisfies a different (possibly trivial)
formula, capturing the potential switching patterns during
normal operation and anomalies, respectively. Given also a
potentially uncertain fault model, our goal is to analyze if the
fault can be detected and if so, how fast it can be detected.

We approach this problem from the perspective of model
invalidation [6], [12], [15]. Model invalidation problem is to
check whether some given input output data can be explained
by a given model. This is very similar to the model con-
formance problem studied in computer science community
[2], [16], in particular to the input/output conformance for
discrete-time systems [16], [17]. Given two models, one for
the healthy system and one for the faulty system, it is also
possible to ask whether, in the worst-case, the faulty system
can be distinguished from the healthy system in finite time
within the framework of model invalidation [6]. This is called
detectability analysis, and it essentially amounts to checking
whether the reachable sets of the healthy and faulty models
become disjoint at some time. In [5], [6], it is shown that
for switched affine systems, this analysis can be reduced to a
first order logic statement, which can be checked with MILP
or SMT solvers.

In essence, the approaches mentioned above can all be
viewed as worst case analysis. They may sometimes con-
clude conservatively that a fault is not detectable in finite
time in the worst case, while this may not be true in
practice. For a less conservative detectability analysis, these
approaches hence need to be enhanced with extra side
information, if any. From a control point of view, it is also
important to know that a fault can always be detected within
finite time because this knowledge can be easily incorporated
in correct-by-construction control frameworks, for example,
see [18], [19].

Our main contribution in this paper is to show that com-
bining dynamical models (given as switched affine systems)
and behavioral models (given as LTL formula), one can
reduce the worst-case fault detection time a receding horizon
algorithm guarantees. The fault detection with such LTL
switching mode constraints are motivated by many practical
scenarios. For example, consider a swarm of robots trying
to achieve consensus over a communication network. In
particular, they have to switch between several different
subnetworks due to limited communication bandwidth. If the
fault leads to one subnetwork to be broken, the fault will not
be revealed unless the broken subnetwork is eventually used.
This hence indicates that the worst-case detection delay is



infinitely long without extra specifications w.r.t. the switching
pattern. As a result, we cannot confidently perform the
detection with a finite memory without missing the fault.
On the other hand, switching among all the subnetworks
within certain amount of time is necessary for the robot
swarm to achieve consensus, and such extra information can
be captured by restricting the switching sequence satisfying
an LTL formula, with which we may reduce the worst-case
detection delay to finite time. In this scenario, knowledge
of the fact that the robots, trying to achieve consensus, will
visit each subnetwork frequently enough, constitutes a side
information.

In this work, we show that detectability analysis in this
setting can be conducted by creating a monitor finite state
machine for the LTL formula and encoding the restriction
the formula imposes on the system behavior as mixed
integer linear constraints, which is then incorporated into
the MILP for the offline worst-case detectability analysis.
Using a receding horizon approach, we avoid automaton de-
terminization. Therefore, our method provides a good trade-
off between conservatism and complexity. These ideas are
illustrated with an example where a collection of unmanned
aerial vehicles are implementing a consensus protocol over
a communication network with time-varying connectivity.
We show how detectability can be guaranteed when network
connectivity patterns change using the proposed approach.

II. PRELIMINARIES

We first define some basic notations. Let Rn be the n-
dimensional Euclidean space and N be the set of nonnegative
integers. For a given set Σ, Σ∗ denotes the set of all finite
words over Σ, and Σω denotes the set of all ω-words over
Σ. Given two positive integer a, b such that a < b, we use
[[a, b]] as a short notation of the set {c ∈ N | a ≤ c ≤ b}.

A. Fault Detection for Switched Affine Systems via Model
Invalidation

1) Switched Affine Systems: A discrete-time switched
affine system S is described by the following difference
equations:

xt+1 = Astxt +Bstut + Estwt +Kst ,

yt = Cstxt +Dstut + Fstvt, (1)

where
• x ∈ X ⊆ Rn is the unobserved internal state,
• u ∈ U ⊆ Rm is the observed input,
• w ∈W ⊆ Rl is the unobserved input,
• y ∈ Y ⊆ Rp is the observed output,
• v ∈ V ⊆ Rq is the unobserved measurement noise (can

be viewed as input),
• s is the observed switching mode from a finite set Σ =
{σ1, σ2, . . . , σK}.

We also assume that sets U, V,W,X, Y are polytopes in their
spaces, and that As , Bs , Cs , Ds , Es , Fs , Ks are matrices
with proper sizes.

2) Guaranteed Fault Detection via Model Invalidation:
In this work, we consider fault detection of switched affine
systems. By a fault, we mean a sudden and permanent change
of the system dynamics in Eq. (1), due to physical component
failures or extreme operating conditions. Such changes can
be reflected by dynamics being governed by different system
matrices, and by having larger admissible uncertainty set V
and W . Since the uncertainty w and v may “hide” a fault in
the worst case, the behavior of the faulty system may not be
distinguishable from the healthy one immediately after the
fault occurs. Our goal is to detect the fault occurrence as soon
as possible. In particular, the correctness of the detection
needs to be guaranteed, meaning that the fault must have
already happened, once detected.

It is shown in [6] that such guaranteed fault detection
can be done using a model invalidation approach. The
model invalidation problem addresses the following question:
at time instant t0, given a sequence {ut, st, yt}t0t=t0−N+1

of past inputs and outputs over a finite window of
length N , can we find an admissible unobserved sequence
{xt, wt, vt}t0t=t0−N+1 such that the output {yt}t0t=t0−N+1

is indeed generated by the system in Eq. (1) under input
{ut, st, wt, vt}t0t=t0−N+1? If no such unobserved sequences
can be found, the actual observation cannot possibly be
generated by the healthy system model (i.e., the model is
invalidated). We can hence claim that a fault that changes the
system dynamics must have occurred within the examined
time window.

For switched affine systems, the model invalidation prob-
lem can be formulated as a linear program (LP)

find {xt, wt, vt}t0t=t0−N+1

s.t. xt+1 =
∑|Σ|
k=1 a

t
k

(
Aσk

xt +Bσk
ut + Eσk

wt +Kσk

)
,

∀t ∈ [[t0 −N + 1, t0 − 1]],

yt =
∑|Σ|
k=1 a

t
k

(
Cσk

xt +Dσk
ut + Fσk

vt

)
,

∀t ∈ [[t0 −N + 1, t0]],
xt ∈ X,wt ∈W, vt ∈ V,∀t ∈ [[t0 −N + 1, t0]],

(2)
where atk is a binary indicator that takes value 1 if and
only if (iff) st = σk. Note that {ut, yt}t0t=t0−N+1 and atk
(which is known from {st}t0t=t0−N+1) are all parameters
rather than variables in the above feasibility problem, as
{ut, st, yt}t0t=t0−N+1 are observed at each time. This means
the feasibility problem in Eq. (2) does not contain integer
variables and is hence an LP.

To perform model invalidation based fault detection at run-
time, one needs to update the time window (i.e., horizon)
to incorporate newly collected data. As pointed out in [6],
there are two ways of changing the horizon at run-time: one
is called the growing horizon scheme (Fig. 1, left) and the
other is known as a receding horizon scheme (Fig. 1, right).
With the growing horizon scheme, we start at time t = 0
with a horizon of length N = 0, and increase N by one
at each time step. In this case, N → ∞ as time grows.
Under the receding horizon scheme, we stop growing the
horizon length whenever it reaches a certain value, and we



Fig. 1: Growing horizon scheme (left) versus receding horizon
scheme (right). The red boxes marked the growing/shifted time
window.

start to shift the time window after that. That is, at every time
instant t0, we collect the most recent history of the observed
variables from time window [[t0 − N + 1, t0]] and perform
the above model invalidation procedure. If the system is
invalidated, we claim a fault; otherwise we shift the time
window to [[t0−N+2, t0 +1]] and repeat the procedure with
the updated data in the shifted window. Theoretically, the
growing horizon scheme may lead to an earlier detection than
the receding horizon scheme because the latter one drops
older observations. We say the receding horizon detector is
more conservative compared to the growing horizon detector
in the sense the former may miss a fault that is detectable
by the latter. However, the growing horizon scheme is not
practical because it requires the memory to grow to infinity.
We hence always implement the receding horizon scheme in
practice to keep the memory finite.

3) Detectability Analysis: Note that the fault detection
technique via model invalidation may not be complete, in
the sense that a fault may remain undetected indefinitely.
There are two sources of this: (i) the fault dynamics can be
inherently indistinguishable from the nominal dynamics, (ii)
the invalidation process is conservative, e.g., due to using a
fixed horizon. For the latter issue, a longer window tends to
make the detector “closer” to being complete. On the other
hand, if the models of both the healthy system S and the
faulty system S f are known, it is possible to verify if the
detection is complete with a given window length N . That
is, if a fault occurs whether it will be detected within N time
steps by the receding horizon detector. We call a healthy-
faulty system pair (S,S f) to be “N -detectable” if this is the
case.

For a given healthy-faulty system pair (S,S f) and a posi-
tive integer N , the detectability analysis answer the following
question: is system pair (S,S f) N -detectable? If yes, what
is the minimal N such that the pair is N -detectable? From a
theoretical point of view, it is important if we can prove
N -detectability of a system pair because it allows us to
use a receding horizon detector without missing any faults
due to its conservativeness compared to the growing horizon
detector. From a practical point of view, it is also important
to find the minimal N so that the receding horizon detector
does not need to keep an unnecessarily long memory.

To analyze the detectability of system pair (S,S f), we
construct the so called N -behavior set BN (S) (and BN (S f),
respectively), i.e., the set of all observed input-output se-
quences of length N that can be possibly generated by the

healthy system S (or the faulty system S f , respectively), and
check if the two sets intersect. If BN (S) ∩ BN (S f) = ∅,
then the healthy and the faulty behavior must differ within
N time steps. In this case, the minimal horizon length
T that is necessary for the detection to be complete (i.e.,
T := min

{
N | BN (S) ∩BN (S f) = ∅

}
) can be computed

by a line search over ascending N , starting from N = 1.
If the dynamics of system S satisfies Eq. (1), the N -

behavior set of system S can be described by mixed integer
linear constraints. In this case, BN (S) ∩ BN (S f) = ∅ is
equivalent to a MILP being infeasible. Formally, BN (S) is
defined by Eq. (3). where the constraints in Eq. (3) can be
expressed with exactly the same set of the formulas in Eq.
(2) (after shifting the time window to [[1, N ]]), except that
now the observed sequences {ut, yt}Nt=1 and the auxiliary
binary variables atk are also variables rather than parameters
of the constraints, and that ut, atk, yt must satisfy

ut ∈ U, yt ∈ Y, ∀t ∈ [[1, N ]], (4)
atk ∈ {0, 1}, ∀t ∈ [[1, N ]], k ∈ [[1, |Σ|]], (5)

and atk must also satisfy∑
σk∈Σ

atk = 1, ∀t ∈ [[1, N ]]. (6)

Note that with atk being variables, the constraints describing
BN (S) now contain bilinear terms atkut, a

t
kxt, a

t
kwt, a

t
kvt

(see Eq. (2)). These bilinear constraints can be transformed
into linear ones by introducing some continuous-valued
auxiliary variables, which leads to a set of (mixed integer)
linear constraints. The detailed transformation procedure can
be found in [5]. To simplify the notations, we will denote
the obtained overall mixed integer linear constraints by

HSN

({
ut, {at

k}
|Σ|
k=1, yt, xt, wt, vt,

}N

t=1
, ξob, ξun

)
≤ 0,

at
k ∈ {0, 1}, ∀t ∈ [[1, N ]], k ∈ [[1, |Σ|]], (7)

where ξob is the continuous-valued auxiliary variable that
comes from atkut, and ξun is the auxiliary variable that
comes from atkxt, a

t
kwt, a

t
kvt, and HSN is an affine function

that depends on the system matrices of S and horizon length
N . With this notation, BN (S) ∩BN (S f) = ∅ is equivalent
to the following MILP being infeasible

find
{
ut, {at

k}
|Σ|
k=1, yt, xt, x

f
t, wt, w

f
t, vt, v

f
t

}N

t=1
, ξob, ξun, ξ

f
un,

s.t. HSN

({
ut, {at

k}
|Σ|
k=1, yt, xt, wt, vt,

}N

t=1
, ξob, ξun

)
≤ 0,

HS
f

N

({
ut, {at

k}
|Σ|
k=1, yt, x

f
t, w

f
t, v

f
t,
}N

t=1
, ξob, ξ

f
un

)
≤ 0,

at
k ∈ {0, 1}, ∀t ∈ [[1, N ]], k ∈ [[1, |Σ|]] ≤ 0.

(8)

B. Linear Temporal Logic Constraints on Switching Modes

In this work we consider fault detectability analysis
of switched affine systems whose mode sequences s =
s1s2s3 . . . must satisfy certain LTL formulas. In particular,
our goal is to show how such side information can improve
detectability analysis. In what follows, we briefly recall LTL
and some related concepts from automata theory that will be
useful to encode the LTL constraints on s.



BN (S) =

{
{ut, st, yt}Nt=1 ∈
(U × Σ× Y )N

∣∣∣∣∣ ∃{xt, wt, vt}Nt=1 ∈ (X ×W × V )N :
{ut, vt, wt, xt, yt, st}Nt=1 satisfy S’s dynamics

}
, (3)

1) Linear Temporal Logic: We first give the syntax and
the semantics of LTL.

a) Syntax: Let Σ be a finite set of modes, the syntax
of LTL formulas over Σ is given by

ϕ ::= σ | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1 U ϕ2 (9)

where σ ∈ Σ. With the grammar given in Eq. (9), we define
ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 := ¬ϕ1 ∨ ϕ2, ♦ϕ :=
True U ϕ, �ϕ := ¬♦¬ϕ,

b) Semantics: Let s be an ω-word over Σ (i.e., s ∈ Σω),
whose tth element is denoted by s(t). We interpret an LTL
formula over such sequences as follows:
• s, t |=σ iff s(t) = σ,
• s, t |=¬ϕ iff s, t 2 ϕ,
• s, t |=ϕ1 ∨ ϕ2 iff s, t |=ϕ1 or s, t |=ϕ2,
• s, t |= © ϕ iff s, t+ 1 |=ϕ,
• s, t |=ϕ1 U ϕ2 iff ∃s ≥ t : s, s |=ϕ2 and ∀r < s :
s, r |=ϕ1.

We write s |=ϕ if s, 1 |=ϕ.
2) Monitor: We introduce several concepts related to LTL

monitoring that will be used to encode the LTL constraints
in the fault detectability analysis.

Definition 1: Let ϕ be an LTL formula. A finite word p ∈
Σ∗ is called a bad prefix of ϕ if1 for all s ∈ Σω , ps 2 ϕ,
where ps is the ω-word obtained by concatenating s to p.
Otherwise we call p a (valid) prefix of ϕ.

Definition 2: Given and LTL formula ϕ, a monitor Mϕ

is a tuple (Σ, Q,Qinit, δ), where Σ is a finite set of letters,
Q is a finite set of states, Qinit ⊆ Q is a set of initial states,
and partial function δ : Q×Σ→ 2Q is the nondeterministic2

transition map. Moreover, Mϕ satisfies the following con-
dition: a finite word p = p1p2 . . . pN is a valid prefix of ϕ
if and only if there exists q = q1q2 . . . qN+1 ∈ QN+1 such
that q1 ∈ Qinit and qi+1 ∈ δ

(
qi, pi

)
for i ∈ [[1, N ]].

The monitor finite state machine Mϕ can be viewed as
a model that generates sequences exactly from {p ∈ Σ∗ |
p is a valid prefix of ϕ}. It is well known that a monitor
Mϕ can be constructed for every LTL formula ϕ [3].

C. Fault Detection versus Run-time Verification

We would like to point out the connection between the
model invalidation based fault detection and run-time verifi-
cation.

In run-time verification, we are given an LTL formula and
desire to verify if a sequence s = s1s2 . . . sM ∈ Σ∗ is a
bad prefix of ϕ. To this end, we construct monitor Mϕ =

1Note that ϕ has no bad prefixes if it specifies a liveness property, hence
a finite word being a bad prefix of ϕ is equivalent to the word being a bad
prefix of the safety closure of the language accepted by ϕ.

2Often times in the literature, the term “monitor” are used to refer to
the deterministic finite transition system that are determinzed from M
via standard power set construction. Here we follow [3] and use the term
“monitor” to refer to the nondeterministic finite transition system.

(Σ, Q,Qinit, δ) and check if s leads to a valid run on Mϕ.
The monitor Mϕ can be viewed as a model with internal
state set q ∈ Q, and the sequence s can be viewed as an
N -behavior that may be generated by the modelMϕ, under
some admissible nondeterministic transitions. The run-time
verification procedure reduces to computing a set QN of
the reachable states of Mϕ after reading s1s2 . . . sN and
checking if QN = ∅ for some N ≤M . If yes, the anomaly
(i.e., violation of ϕ) is claimed.

In the model invalidation based fault detection, we check
if a sequence of observation {ut, st, yt}Nt=1 is generated by
a model described by Eq. (1), with internal state x that is
analogue to q of a monitor, and with bounded uncertainty w,
v that are analogue to the nondeterministic transition of the
monitor. Very similar to the idea of run-time verification, the
model invalidation reduces to checking the emptiness of a set
XN , which consists of the healthy system’s reachable states
that are consistent with observation {ut, st, yt}Nt=1 under
some admissible uncertainty sequence {wt, vt}Nt=1. In fact,
set XN can be viewed as the projection (onto the internal
state space) of a high dimensional polytope that is described
exactly by the linear constraints in Eq. (2). However, unlike
the case in the run-time verification where the internal state
set QN is finite no matter what N is, XN consists of infinite
states and its representation complexity (i.e., the number of
linear constraints required to describe XN ) may blow up as
N → ∞. This can be viewed as another interpretation of
the issue that a growing horizon detector requires infinite
memory. Hence we have to use the receding horizon scheme
to compute an over approximation of XN , whose description
complexity is bounded. Detectability analysis tells us how
tight this over approximation should be so that no fault is
missed by the detector.

III. PROBLEM DESCRIPTION

In this work we consider fault detectability analysis for
switched affine systems whose mode sequences satisfy cer-
tain LTL constraints. To define the problem, we first define
how the LTL-based side-information can be incorporated
in the behavior description of the system. Let S be the
healthy system and S f be the faulty system, and ϕ and ϕf

be the corresponding LTL formulas. We assume the side-
information to be of following form:

(i) if the fault never occurs, s, 1 |=ϕ;
(ii) if the fault occurs at time to, then s1s2 . . . sto−1 is a

valid prefix of ϕ, and s, to |=ϕ
f .

As mentioned in Section II, we collect the input-output
pairs of length N in the receding horizon fault detection
process. The above extra LTL constraints further restrict the
sets of N -behaviors of the healthy and faulty systems, which
now take the form in Eq. (10) and (11)



BN (S, ϕ) =

{ut, st, yt}Nt=1

∣∣∣∣∣
∃{xt, wt, vt}Nt=1 ∈ (X ×W × V )N :

{ut, vt, wt, xt, yt, st}Nt=1 satisfy S’s dynamics
∃p ∈ Σ∗,w ∈ Σω : ps1s2 . . . sNw |=ϕ

 , (10)

BN (Sf , ϕf) =

{ut, st, yt}Nt=1

∣∣∣∣∣
∃{xt, wt, vt}Nt=1 ∈ (Xf ×W f × V f)N :

{ut, vt, wt, xt, yt, st}Nt=1 satisfy Sf ’s dynamics

∃w ∈ Σω : s1s2 . . . sNw |=ϕf

 . (11)

Fig. 2: Illustration of the timeline in the healthy and faulty case.

The key difference between the definitions of BN (S, ϕ)
and BN (S f , ϕf) is regarding the constraints on the N -
sequence of modes, which are highlighted with the boxes.
Fig. 2 shows an illustration that may help understanding this
difference. The blue line represents the switching sequence
when the system is always healthy, whereas the dashed red
line represents the switching sequence assuming the fault
occurs at time to. The shaded region highlights the switching
mode sequence within time window [[to, to + N − 1]], and
our goal is to check if the behavior generated by the healthy
system under the blue shaded mode sequence differs from
the behavior generated by the red faulty system under the
red shaded mode sequence. Since we require s, to |=ϕ

f ,
this suggests that the most recent N -segment of the mode
sequence (the red shaded area) must be a valid prefix of ϕf .
This hence leads to the boxed condition in Eq. (11). On the
other hand, we require s, 1 |=ϕ, the N-segment represented
by the blue shaded region can be completed into a valid
prefix of ϕ by adding p ∈ Σ∗ in the front, which leads to
the condition marked by the box in Eq. (10).

We now formally state the detectability analysis problem.
Problem 1: Assume the following are given:

(i) a healthy system S and a faulty system S f , both of
which have switched affine dynamics in form of Eq.
(1),

(ii) LTL formulas ϕ and ϕf that govern the switching mode
sequences of the healthy and the faulty system,

(iii) a positive integer N ,
determine whether BN (S, ϕ) ∩BN (S f , ϕf) = ∅.

As discussed in Section II-A.3, the minimal horizon length
T := min

{
N | BN (S, ϕ) ∩ BN (S f , ϕf) = ∅

}
can be

found through a line search over N , starting from N = 1.
The usefulness of studying Problem 1 is that the extra
LTL constraints may lead to a smaller T compared to
the detectability analysis without such constraints. This is
because these LTL constraints further restrict the behavior
set so that the healthy and faulty behaviors differ earlier. We
state this result with the following proposition.

Proposition 1: Let T1 := min
{
N | BN (S, ϕ) ∩

BN (S f , ϕf) = ∅
}

and T2 := min
{
N | BN (S)∩BN (S f) =

∅
}

, we have T1 ≤ T2.
Proof: By definition (see Eq. (3), (10), (11)), we have

BN (S, ϕ) ⊆ BN (S) and BN (S f , ϕf) ⊆ BN (S f). This
means BN (S)∩BN (S f) = ∅ ⇒ BN (S, ϕ)∩BN (S f , ϕf) =
∅. Hence

{
N | BN (S)∩BN (S f) = ∅

}
⊆
{
N | BN (S, ϕ)∩

BN (S f , ϕf) = ∅
}

, which implies T1 ≤ T2.

IV. SOLUTION APPROACH

In this section, we present a solution to Problem 1. The
main challenge is to express the condition in the boxes in
Eq. (10), (11) in a way that can be easily integrated in the
MILP in Eq. (8). Note that MILP encoding of bounded LTL
[10] is not applicable to impose the boxed constraints in Eq.
(10). Our solution is to first transfer the LTL formula into
a monitor that captures the boxed conditions in Eq. (10),
(11) induced from the given LTL formula. We then convert
the monitor into its boolean representation that can be easily
expressed as mixed integer linear constraints.

A. Monitor and System Behavior Constraints

We first connect the constraints marked by the boxes in
Eq. (10), (11) with a monitor.

Let ϕ, ϕf be the LTL formulas from Eq. (10), (11), and let
Mϕ,Mϕf

be the associated monitors. The condition marked
by the box in Eq. (11) says that s1s2 . . . sN is not a bad
prefix of ϕf , i.e., s1s2 . . . sN can be generated by Mϕf

. On
the other hand, the boxed condition in Eq. (10) says that
s1s2 . . . sN can be “completed" by adding a finite prefix p ∈
Σ∗ in the front so that ps1s2 . . . sN can be generated byMϕ.
This suggests that s1s2 . . . sN can be generated by another
monitor Mϕ′, which is exactly the same as Mϕ except for
the initial conditions. We formally state this fact with the
following proposition.

Proposition 2: Given an LTL formula ϕ and Mϕ =
(Σ, Q,Qinit, δ), the monitor that recognizes the valid prefixes
of ϕ, assume that all states in Q are reachable from Qinit

3,
the following are equivalent:

(i) there exist p ∈ Σ∗, w ∈ Σω such that
ps1s2 . . . sNw |=ϕ;

(ii) there exists q1q2 . . . qN+1 ∈ QN+1 such that q1 ∈ Q,
qt+1 = δ(qt, st) for all t ∈ [[1, N + 1]].

and the following are equivalent:
(iii) there exist w ∈ Σω such that s1s2 . . . sNw |=ϕ;

3This assumption can be made without loss of generality because states
in Q that are not reachable from Qinit can be removed without changing
the sequences generated by M.



(vi) there exists q1q2 . . . qN+1 ∈ QN+1 such that q1 ∈ Qinit,
qt+1 = δ(qt, st) for all t ∈ [[1, N + 1]].

B. MILP Encoding of Monitor

We present a technique to encode a monitor with mixed
integer linear constraints. The idea is to use Proposition 2 to
convert the two boxed constraints w.r.t ϕ and ϕf from Eq.
(10), (11) into two monitors, and then write the monitors
in their boolean representations and convert the boolean
representations into two sets of MILP constraints. Since the
encoding is for the nondeterministic monitor directly, it does
not require determinizing the monitor with the power set
construction and hence avoids an unnecessarily large MILP.

Let Mϕ = (Σ, Q,Qinit, δ) be a monitor of LTL formula
ϕ. At each time instant t, we associate each state qi ∈ Q
with a binary variable bti, which takes value 1 if the state
of Mϕ is equal to qi at time t and takes value 0 otherwise.
Similarly, we associate each letter σk ∈ Σ with a binary
variable atk that takes value 1 iff the monitor reads letter
σk at time t. To guarantee that the monitor’s state (or the
read letter) exists and is unique at any time, we impose the
following constraint:

∀t ∈ [[1, N + 1]] :
∑|Q|

i=1
bti = 1, (12)

∀t ∈ [[1, N ]] :
∑|Σ|

k=1
atk = 1. (13)

Moreover, the state indicator bt+1
i must update according

to the transition relation δ of the monitor. To this end, we
require the following constraints to hold:

∀t ∈ [[1, N ]], i ∈ [[1, |Q|]] : bt+1
i ≤

∑
j,k:qi∈δ(qj ,σk)

ptijk,

(14)

where ptijk is a binary variable satisfying:

∀t ∈ [[1, N ]], i, j ∈ [[1, |Q|]], k ∈ [[1, |Σ|]]
such that qi ∈ δ(qj , σk) :

1 + ptijk ≥ btj + atk, ptijk ≤ btj , ptijk ≤ atk. (15)

It might be useful to point out that Eq. (15) forces ptijk =
btj ∧ atk. In fact, variable ptijk can be viewed as an indicator
that takes value 1 iff there is a chance that the monitor’s state
is taken to qi (at time t+ 1) from qj , by reading letter σk at
time t. Then Eq. (14) guarantees that bt+1

i is set to 1 only if
there is such a chance for the state to be equal to qi at time
t+ 1. Note that bt+1

i can still be zero if some ptijk = 1, but
Eq. (13) and (14) together guarantee that there must be one
i′ ∈ {i | ∃j, k : qi ∈ δ(qj , σk), ptijk = 1} such that bt+1

i′ = 1.
This hence captures the nondeterministic transition relation
of the nondeterministic monitor Mϕ.

Note that if a transition of Mϕ is labeled as “True”, i.e.,
for all σk ∈ Σ, qi ∈ δ(qj , σk), then the constraint in Eq. (15)
can be simply replaced by ptijk = bti.

Finally, we constrain that the initial states are from Qinit:∑
i:qi∈Qinit

b1i = 1. (16)

The correctness of the construction so far is summarized
with the following proposition, which can be easily verified
using Proposition 2.

Proposition 3: Let ϕ be an LTL formula over mode set Σ
and Mϕ = (Σ, Q,Qinit, δ) be its monitor. For a finite word
s1s2 . . . sN ∈ Σ∗, assume that binary variable atk is such that
atk = 1 iff st = σk, then the following are equivalent:

(i) there exists q1q2 . . . qN+1 ∈ QN+1 such that q1 ∈ Q,
qt+1 = δ(qt, st) for all t ∈ [[1, N + 1]];

(ii) there exist binary variables bti, p
t
ijk such that together

with atk, Eq. (12)-(15) hold,
and the following are equivalent:
(iii) there exists q1q2 . . . qN+1 ∈ QN+1 such that q1 ∈ Qinit,

qt+1 = δ(qt, st) for all t ∈ [[1, N + 1]].
(vi) there exist binary variables bti, p

t
ijk such that together

with atk, Eq. (12)-(16) hold.
Remark 1: Note that if ϕ is in the form of conjunction

of several shorter formulas ϕi, i.e., ϕ =
∧
i ϕ, the overall

encoding can be done by stacking the mixed integer linear
constraints derived from each Mϕi . This may not reduce
the size of MILP formulation, but is useful when the size of
the monitor for the overall ϕ is too large and generating the
monitor becomes the bottleneck.

C. Detectability Analysis Augmented with LTL Constraints

Let ϕ and ϕf be the LTL formulas that constrain the mode
sequences of the healthy and faulty system respectively.
Denote the constraints in Eq. (13)-(15) that is derived from
ϕ by

Gϕ
N

(
{atk}

|Σ|,N
k=1,t=1,η

)
≤ 0, (17)

where η is a vector obtained by stacking auxiliary binary
variable bti and ptijk together, and Gϕ

N is an affine function
that depends on ϕ and N . Similarly, we denote the con-
straints in Eq. (13)-(16) that are derived from ϕf by

Gϕf

N

(
{atk}

|Σ|,N
k=1,t=1,η

f
)
≤ 0. (18)

The MILP used for detectability analysis with LTL con-
straints can be then formulated. That is, BN (S, ϕ) ∩
BN (S f , ϕf) = ∅ is equivalent to the following MILP being
infeasible:

find
{
ut, {at

k}
|Σ|
k=1, yt, xt, x

f
t, wt, w

f
t, vt, v

f
t

}N

t=1
,

ξob, ξun, ξ
f
un,η,η

f

s.t. HSN

({
ut, {at

k}
|Σ|
k=1, yt, xt, wt, vt,

}N

t=1
, ξob, ξun

)
≤ 0,

HS
f

N

({
ut, {at

k}
|Σ|
k=1, yt, x

f
t, w

f
t, v

f
t,
}N

t=1
, ξob, ξ

f
un

)
≤ 0,

Gϕ
N

(
{at

k}
|Σ|,N
k=1,t=1,η

)
≤ 0,

Gϕf

N

(
{at

k}
|Σ|,N
k=1,t=1,η

f
)
≤ 0,

at
k ∈ {0, 1}, ∀t ∈ [[1, N ]], k ∈ [[1, |Σ|]],

η ∈ {0, 1}|η|,ηf ∈ {0, 1}|η
f |,

(19)

where |η| and |ηf | are the length of vectors η and ηf

respectively.



D. Run-time Fault Detection

With the detectability analysis technique presented above,
we can determine the minimal N so that BN (S, ϕ) ∩
BN (S f , ϕf) = ∅. As a result of such analysis, we only need
to check whether the latest collected {ut, st, yt}t0t=t0−N+1 ∈
BN (S, ϕ) at the current time t0 and claim anomaly iff this
does not hold. To this end, it is sufficient to run the monitor
Mϕ (as described in Section II-C) and the model invalidation
LP (Eq. (2)) with horizon N in parallel. If no fault occurs,
the monitor keeps running with current state set Qt0 6= ∅ and
the model invalidation keeps being feasible, and no anomaly
is claimed in this case. If a fault occurs at time to, either the
switching sequence turns into a bad prefix of ϕ before time
instant to + N − 1 and the monitor detects violation of ϕ
immediately, or the switching sequence is still a valid prefix
of ϕ up until time instant to + N − 1, which validates the
boxed condition in Eq. (10) and hence the model invalidation
LP must turn infeasible at time t0 = to +N − 1 by the N -
behavior isolation of the faulty and healthy systems. In other
words, any fault is detected with at most N -delay without
any false alarm.

V. CASE STUDY: UAV ALTITUDE CONSENSUS

We use an unmanned aerial vehicle (UAV) altitude con-
sensus protocol to demonstrate the proposed detectability
analysis technique. We say that a set of UAVs reaches
altitude consensus if their altitude eventually converge to
the same value. There are several consensus protocols based
on local communication. In particular, we assume the UAVs
implement the nearest neighbor rules from [9]. Under this
protocol and assuming single integrator dynamics for vertical
motion, the altitude dynamics of the UAVs can be modeled
as follows. We let x = [x1, x2, . . . , x8]T ∈ R8 be the state
where xi is the altitude of the ith UAV. We assume that
a leader UAV, indexed by 1, reaches a set point while the
other UAVs adjust their own altitude according the nearest
neighbor protocol [9], induced from the UAVs’ commu-
nication topologies shown in Fig. 4 (Left). Let Aσk

,Kσk

be the system matrices representing the UAVs dynamics
while implementing this protocol. The ith rows of matrices
Aσ1 ,Kσ1 take the following form:

1) i = 1, (Aσ1
)11 = 0.9 and (Aσ1

)1j = 0 for j ∈ [[2, 8]],
(Kσ1

)1 = 0.3 this leads to a dynamics that guarantees
the leader altitude to converge a set point at x1 = 3
(i.e., x1

t+1 = 0.9x1
t + 0.3);

2) i 6= 1, the ith UAV update xi by averaging its own
height and those of its neighbors, i.e., (Kσ1)i = 0 and

(Aσ1
)ij =

{
1

1+d(i) if i connects j in topology 1

0 otherwise
,

(20)
where d(i) is the number of edges incident to node i.

Similarly, we define Aσ2
, Kσ2

for topology 2 with the same
leader UAV set point (i.e., x1 = 3); and define Aσ3

, Kσ3

(and Aσ4 , Kσ4 , respectively) for topology 1 (and topology
2, respectively) with the same leader UAV dynamics but a
different set point at x1 = 6.

Fig. 3: Communication topologies of the UAVs, where circles
represent UAVs with their indices.

We assume the changes in the communication topology
and fault detection scheme (high-level decisions) run at a
slower timescale than the consensus dynamics (low-level
control) – i.e., 15 times slower. Then the dynamics relevant
for fault detection can be written as the following switched
affine system (denoted by SUAV in the rest of the paper):

xt+1 = Aσixt +Kσi + Eσiwt (21)

where st ∈ Σ := {σ1, σ2, σ3, σ4}, and

Aσi = A15
σi
, Kσi =

∑15

t=1
At−1
σi

Kσi

Eσi
= [A14

σi
, A13

σi
, . . . , Aσi

, I]. (22)

Note that in this setting there is no continuous control input
ut, and for simplicity we assume that the output yt = xt
with no measurement noise vt. Finally, we assume that xt ∈
X := {x ∈ R8 | 0 ≤ xi ≤ 7, ∀i ∈ [[1, 8]]} and disturbance
wt ∈W := {w ∈ R120 | −0.1 ≤ wi ≤ 0.1, ∀i ∈ [[1, 120]]}.

The faulty system model S f
UAV we analyze results from

a failure in the communication links between nodes 3-5 and
4-6 in topology 2, changing the system matrices Aσ2

and
Aσ4

(both induced by topology 2) and the corresponding
Aσ2

, Kσ2
, Aσ4

, Kσ4
in Eq. (22). Note that the healthy-

faulty system pair (SUAV,S f
UAV) is not N -detectable for

any finite N because the fault will never be detected unless
the system switch to mode σ2 or σ4. However, we know
that switching to mode σ2 or σ4 infinitely often is required
to achieve consensus because communication topology 1
is not a connected graph. We can hence incorporate this
information in the detectability analysis to compute worst-
case detection delay.

We assume that the mode sequence satisfies the LTL
formula ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 under the healthy configuration,
where Formula ϕ1 and ϕ2 together restrict the dwell time for
set point changes by the leader UAVs to be within [[7, 20]],
while formula ϕ3 assures that each of the two communi-
cation topologies are used within every three time steps.
They together guarantee enough time and communication
for convergence to a consensus. We also assume that the
mode sequence does not need to satisfy any LTL formula
after the fault occurs, however in the example we choose
the mode sequence after the fault to be consistent with ϕ,
therefore a pure discrete monitor will not be able to detect
this fault without taking continuous dynamics into account.
Gurobi [11] is used to solve the obtained MILP. The obtained
minimal length of horizon T = 30, which is finite and this
result agrees with Proposition 1.



ϕ1 =
∧

(k,l)∈{(1,2),(3,4)}
�

(( 19∧
t=0

©t(σk ∨ σl)
)
→©20¬(σk ∨ σl)

)
, (23)

ϕ2 =
∧

(k,l)∈{(1,2),(3,4)}
�

((
¬(σk ∨ σl) ∧©(σk ∨ σl)

)
→

7∧
t=2

©t(σk ∨ σl))
)
, (24)

ϕ3 =
∧

(k,l)∈{(1,3),(2,4)}
�
(

(σk ∨ σl) ∨©(σk ∨ σl) ∨©2(σk ∨ σl)
)
. (25)
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Fig. 4: Fault detection of the UAV consensus system at run time.

Fig. 4 (Right) shows the fault detection results. The upper
plot shows the altitude of the eight UAVs (solid lines) and
the set point profile (dashed black line) when no fault occurs.
The middle plot shows the same set of trajectories of the
faulty system. The lower plot shows the alternating of the two
communication topologies. One can check that the given LTL
formula ϕ is satisfied (even after fault). In this illustration,
the fault occurs at time t = 8, at which time the consensus
is already achieved (with set point at 3). Hence the fault
does not lead to behavior isolation immediately. However,
the fault is detected later at time t = 23 after the set point
of the leader changes. The detection delay is 15, which is
shorter than the delay bound T = 30. This experiment hence
agrees with the theory. We also run the model invalidation at
a higher frequency, using the timescale of the dynamics, for
faster detection though this comes at the expense of solving
LPs of larger size (15 times larger) and more often.

VI. CONCLUSION

In this paper, we proposed a technique to analyze fault de-
tectability in switched affine systems whose mode sequences
must satisfy certain LTL formulas, given as side information.
Our approach was to transform the LTL constraints into a
monitor finite state machine, which is then converted into
mixed integer linear constraints that can be easily integrated
into a MILP used for the detectability analysis. It was shown
that the minimal length of the detector memory can be
reduced with such side information, and this was illustrated
with an example on UAV altitude consensus.
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