
Fault-tolerant output-feedback path planning with temporal logic
constraints

Liren Yang Necmiye Ozay

Abstract— In this paper, we consider searching for fault
tolerant control strategies for linear systems to satisfy some
high level requirements specified by linear temporal logic. By
the term fault tolerant, we mean the obtained control strategy
can respond to a fault that leads to a sudden change of the
system dynamics. We first show how open-loop fault tolerant
strategies (associated with each initial state) can be synthesized
by leveraging Mixed Integer Linear Programming (MILP)
based encodings used for linear temporal logic. These open-
loop strategies, however, are not robust to the disturbances
because of two reasons. First, since the disturbed system
cannot be predicted precisely, the fault will be detected with
a delay. Secondly, even if the faulty status is known, the
true system trajectory may still deviate from the planned
trajectory as the impact of the disturbance accumulates. To
solve the two problems, we present a MILP formulation of the
problem that incorporates finite detection delays, the open-loop
strategy defined by the MILP’s solution is then robustified with
additional linear regulation.

I. INTRODUCTION

With the advent of scalable numerical optimization tech-
niques, the use of hierarchical control architectures with a
high-level trajectory/path planner and a low-level regulator
has become a common practice in many application do-
mains [3]. While the low-level feedback regulator provides
robustness to the uncertainties in system dynamics, if the
path planning can be done online, it can provide robustness
or reactiveness to the uncertainties in the environment. For
instance, for simple tasks like reaching a goal while avoiding
obstacles that may appear on the fly, approaches based
on LQR trees [15] or contraction theory [14] have been
proposed along these lines.

For more complicated tasks specified by temporal logics,
there is a trade-off between reactiveness and scalability when
designing controllers that provably satisfy the given task
specification. On one hand, one can construct a discrete
abstraction of the underlying dynamics and use reactive
synthesis to design systems that can react to nondeterministic
events in the environment at run-time [11]. However such
approaches usually do not scale well with the continuous
state-space dimension; specifically, the size of the abstraction
can be exponential in the state-space dimension. On the
other hand, one can design nominal trajectories offline, using
mixed-integer linear programming (MILP) based encodings
of temporal logic constraints, which are shown to scale

The authors are with the Dept. of Electrical Engineering and
Computer Science, Univ. of Michigan, Ann Arbor, MI 48109, USA
yliren,necmiye@umich.edu. This work is supported in part
by Ford Motor Co., DARPA grant N66001-14-1-4045, NSF grants CNS-
1446298 and ECCS-1553873, and a NASA ECF award.

better (i.e., polynomially) with the continuous state-space
dimension [16]. However, since these approaches lead to
open-loop controllers, they tend not to be robust/reactive due
to lack of feedback. Recent work aimed at addressing this
latter issue includes counter-example-guided methods [13]
or searching for feedback controllers parametrized by dis-
turbance [5] together with MILP-based trajectory planning.
Though, the type of environment uncertainties against which
robustness/reactiveness can be achieved by these methods
is still limited. Therefore, there is a need for research that
provides reactiveness for different classes of uncertainties.

In this work, we consider a special type of uncertainty,
namely faults in the system, that we want the system to be
robust/reactive against. We consider a linear temporal logic
specification that captures the desired behavior of the system
when there is no fault and (a potentially degraded) desired
behavior after a fault occurs. A first natural attempt to solve
this problem is to consider control strategies parametrized by
fault occurrence time, that is, to design different trajectories
depending on when the fault occurs and to regulate the
system dynamics around these trajectories. However, when
there are disturbances affecting system dynamics or mea-
surements, a fault cannot be detected instantaneously but can
only be detected after some bounded delay [9]. Therefore,
the strategy should be robust against such detection delays as
well, while reacting to the faults. Synthesis of fault-tolerant
controllers for discrete transition systems has been addressed
in [6], and some results on handling detection delays in the
discrete setting are presented in [17]. While these approaches
can be leveraged in an abstraction-based scheme (see, e.g.,
[18]), scalability with respect to the continuous state-space
dimension is still a challenge.

Motivated by the above mentioned issues, we propose
a hierarchical fault-tolerant controller with a MILP-based
trajectory generation at the higher-level and an output-
feedback regulator at the lower-level. Our MILP formulation
incorporates reactiveness to faults while being robust to finite
detection delays and it scales polynomially with the contin-
uous state-space dimension. We further show that when the
system dynamics are linear, the lower-level regulator design
problem reduces to a quasi-convex optimization problem.
Finally, we demonstrate the proposed approach numerically
with a simple robot survailence task.

II. PRELIMINARIES

Let Rn be the n-dimensional Euclidean space. In this
paper, lowercase letters (e.g., x) are used for denoting a

vector in Rn, bold font lowercase letters are used for finite se-
quences of vectors (e.g., x = x1x2x3 . . . xN), and blackboard
bold font lowercase letters are used for infinite sequences
of vectors (e.g., x = x1x2x3 . . .). By convention, let x(i)
(or x(i), respectively) be the ith element in the sequence x
(or x, respectively), and let xi = x(i)x(i + 1)x(i + 2) . . .
be the sub-sequence starting from the ith position. We also
define the Minkowski sum of two sets X,Y ⊆ Rn to be
X ⊕ Y := {x + y : x ∈ X, y ∈ Y }, and their Minkowski
difference to be X 	 Y := {x : {x} ⊕ Y ⊆ X}.

A. Linear Temporal Logic

We use LTL to specify the desired closed-loop system
behavior. In what follows we briefly introduce the syntax
and the semantics of LTL, and refer the reader to [1] for
more details.

1) Syntax: Let AP be a set of atomic propositions, the
syntax of LTL formulas over AP is given by

ϕ ::= π | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1 U ϕ2 (1)

where π ∈ AP . With the grammar given in Eq. (1), we
define the other propositional and temporal logic operators
as follows: ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 :=
¬ϕ1 ∨ ϕ2, ♦ϕ := True U ϕ, �ϕ := ¬♦¬ϕ, ϕ1 R ϕ2 :=
¬(¬ϕ1 U ¬ϕ2). With these extra logical operators, an LTL
formula ϕ can be written into a formula ϕ′ in positive normal
form, that is, all the negations in ϕ′ only appears in front of
the atomic propositions [1].

2) Semantics: Let x = x1x2x3 . . . be a infinite se-
quence of points in Rn and let AP be a set of atomic
propositions. We define a labeling map L : Rn → 2AP

and interpret an LTL formula over the labeling sequence
L(x1)L(x2)L(x3) . . . as follows:
• x |=π iff π ∈ L(x1),
• x |=¬ϕ iff x 2 ϕ,
• x |=ϕ1 ∨ ϕ2 iff x |=ϕ1 or x |=ϕ2,
• x |= © ϕ iff x2 |=ϕ,
• x |=ϕ1 U ϕ2 iff ∃s ≥ 1 : xs |=ϕ2 and ∀t < s : xt |=ϕ1.

Given an infinite word x and an LTL formula ϕ, we say ϕ
holds for x (or x satisfies ϕ) iff x |=ϕ.

B. Mixed Integer Encoding of LTL

Given an LTL formula ϕ, it is well-known from the
literature [16] that x |=ϕ can be encoded with mixed integer
linear constraints in the following sense. Instead of imposing
constraints on the infinite sequence x, we search for a
finite sequence x = x1x2 . . . xk, xk+1...xN that satisfies the
following linear inequality constraint:

Hϕ,k,N (x,b) ≤ 0, (2)

where b is an N -sequence of auxiliary binary (hence integer)
vectors1, and Hϕ,k,N is an affine function in (x,b). In par-
ticular, Hϕ,k,N is constructed in such a way that the infinite
sequence x := (x1x2 . . . xk)(xk+1 . . . xN)ω , obtained by

1In practice, some variables in b need not be restricted as binary in
the formulation. Instead, they can be specified as real and will be binary
automatically as a result of the encoding.

unfolding x = x1x2 . . . xN at point k, is guaranteed to satisfy
ϕ. In this case, we say that finite sequence x satisfy ϕ with
a slight abuse of terminology.

With such mixed integer encoding technique, the path
planning problem of linear systems can be formulated as
a MILP. Let the system model be xt+1 = Axt + But + F
with state x ∈ X and control u ∈ U , where X ⊆ Rn and
U ⊆ Rm are polytopes, also let xinit be the initial state, the
MILP formulation is given by

find x,u,b
s.t. ∃1 ≤ k ≤ N − 1 : Hϕ,k,N (x,b) ≤ 0 and

Ax(N) +Bu(N) + F = x(k + 1),
x(t+ 1) = Ax(t) +Bu(t) + F, t = 1, . . . , N − 1,
u(t) ∈ U, b(t) ∈ {0, 1}, t = 1, . . . , N,
x(t) ∈ X, t = 1, . . . , N,
x(1) = xinit.

(3)

Suppose that the above optimization problem is feasible
and let (x,u,b) be one of its solutions, an infinite control
sequence u can be extracted from the finite sequence u, by
unfolding u at some point 1 ≤ k ≤ N − 1. This control
sequence leads to an infinite state sequence x that satisfies
the linear dynamics and LTL specification ϕ.

While formulating the MILP in Eq. (3), it is a common
practice to modify the state space labeling with an extra
∆-margin so that the specification is satisfied robustly [4],
[12], [10]. Such modification provides robustness against
uncertainties like disturbances or errors due to the sampling
of a continuous-time system. For example, if an unsafe
region is required to be avoided (i.e., ϕ = �¬πunsafe) under
uncertainties, one can expand the unsafe set Xunsafe := {x ∈
Rn : πunsafe ∈ L(x)} by ∆, i.e., define Xunsafe := Xunsafe⊕
{x : ‖x‖ ≤ ∆}. Then avoiding Xunsafe means that Xunsafe

is avoided with ∆-margin. Similarly, if some target region is
required to be reached (i.e, ϕ = ♦πtarget) robustly, one can
shrink the target set Xtarget := {x ∈ Rn : πtarget ∈ L(x)}
into Xtarget := Xtarget	∆. Reaching the shrunk set Xtarget

guarantees that set Xtarget is reached with ∆-margin. To
do such expansion and shrinking systematically for arbitrary
LTL formulas, one needs to rewrite the specification ϕ in
positive normal form [4]. If atomic proposition π has no
negation in the front, we shrink the set Xπ := {x ∈ Rn :
π ∈ L(x)} by ∆; and if π has a negation in the front, we
expand the set Xπ by ∆.

III. PROBLEM DESCRIPTION

In this section, we define the fault tolerant path planning
problem. The problem has two ingredients: (i) a system
whose dynamics can degrade suddenly due to a fault, and
(ii) an LTL formula that specifies the system’s “graceful
degradation”.

A. System Model

The system model considered in this paper is defined by

Σ : xt+1 = Aσtxt +Bσtut + Fσt + wt, (4)

σt+1

{
∈ {h, f} if σt = h

= f if σt = f
. (5)

where xt ∈ X ⊆ Rn is the state, ut ∈ U ⊆ Rm is
the control input, wt ∈ W ⊆ Rn is the disturbance, and
σt ∈ {h, f} is the fault status of the system. If σt = h,
the system is healthy and evolves with the dynamics defined
by (Ah, Bh, F h); if σt = f , this indicates that the fault has
occurred and the system evolves with the dynamics defined
by (Af , Bf , F f). By Eq. (5), the fault is permanent because
σt never recovers to h after it becomes f . In addition, we
make the following assumption on the faults.

Assumption 1: We assume that the fault is T -detectable
([9]), that is, if the fault occurs at time step to, it will be
detected at td where to + 1 ≤ td ≤ to + T .

For Assumption 1, it should be noticed that T is only
an upper bound on the detection delay, and the actual online
detection can be earlier than to+T . However, this fact cannot
be incorporated in the offline path planning phase because
the actual detection depends on the realization of wt.

B. LTL Specification

The desired behavior of the system with faults is specified
with an LTL formula. Let AP be the set of the interested
atomic propositions, and we also define an extra atomic
proposition πf that indicates the fault has already occurred.
In particular, to relate the atomic proposition πf with the
fault status σt of the system, we require the labeling map
L : X × {h, f} → 2AP∪{πf} to satisfy

πf ∈ L(xt, σt) iff σt = f. (6)

Now we define the so called “graceful degradation” by the
following LTL formula:

Φ =
(
(�¬πf) ∧ ϕh

)
∨
(
¬πf U (�πf ∧ ϕf)

)
, (7)

where ϕh and ϕf are arbitrary LTL formulas. Eq. (7) says:
either the system is always healthy and ϕh should hold, or the
system turns faulty and ϕf should be satisfied immediately
after the fault occurrence. In particular, typically ϕf is chosen
to be less stringent than ϕh, in which case the LTL formula
Φ captures a graceful degradation in the system performance.

C. Problem Statement

Problem 1: Given a system Σ defined by Eq. (4), (5),
an LTL formula Φ defined by Eq. (7), and a initial state
xinit, synthesize a control sequence u, under which the
trajectory generated by system Σ starting from xinit satisfies
specification Φ.

IV. SOLUTION APPROACH

The main difficulties of solving Problem 1 are due to the
uncertainties in the system. First, the fault occurrence time
is not known at the offline path planning phase. Even when
the fault is detected during the executions, the exact time
of fault occurrence is still unknown. Instead, we only know
that the fault occurs at most T step before the detection by
the T -detectability assumption. Finally, the true trajectory
may deviate from the planned trajectory as the impact of
disturbance accumulates.

To tackle the above challenges, we propose an
optimization-based solution approach that contains two in-
gredients: open-loop path planning and regulation. The con-
trol authority is split in two parts correspondingly, one part is
reserved for path planning and the other part for regulation.
First, we assume no disturbance acts on the system but the
fault is still detected with a delay of at most length T . We
then present a MILP formulation, whose solution defines a
strategy u, which leads to a nominal trajectory x that satisfy
the overall specification Φ robustly against the delay. In
particular, the state space labeling in formulating the MILP is
modified with an extra ∆-margin, so that the true, disturbed
trajectory x can still satisfy the specification. Secondly, in
order to guarantee that the true trajectory x indeed stays
∆-close to the nominal trajectories x, we add extra linear
regulation (i.e., u = u+K(x−x)) with the remaining control
authority. We show that the regulator gain K can be designed
by solving a quasi-convex optimization problem so that the
size of the required margin ∆ is minimized.

A. MILP Formulation of Fault Tolerant Path Planning

In this section, we formulate the fault tolerant path
planning problem as a MILP. The system is assumed to
be undisturbed (an assumption to be relaxed in the next
subsection) and have a fault that is T -detectable. In addition,
the labeling of the state space is robustified with a ∆-margin.
We will also assume that there is a way (to be presented in
the next subsection) to keep the true, disturbed trajectories
∆-close to a nominal trajectory as long as the system’s fault
status does not change.

We begin by sketching the strategy that achieves specifica-
tion Φ in Eq. (7). To satisfy Φ, the system can either stay in
the healthy mode forever and satisfy ϕh, or enter faulty mode
at some time to and start to satisfy ϕf from then on. However,
since the fault is beyond our control, we can only respond
to the fault occurrence passively. In particular, as long as the
fault has not been detected yet, there is a chance that the
the system is healthy and will be healthy forever. Hence we
need to achieve specification ϕh for the healthy mode in this
case. On the other hand, once the fault is detected, the first
half of Φ (i.e., (�¬πf)∧ϕh) can no more be satisfied. Hence
the strategy needs to respond to the fault by rendering the
system to satisfy ϕf .

The above analysis leads to a strategy visualized in Fig.
1 (upper part). Roughly speaking, strategy u should contain
two pieces: a sequence uh (black) that achieves ϕh under the
healthy dynamics, and a sequence uf (gray) that achieves ϕf

under the faulty dynamics. The two sequences uh and uf can
have different length (Nh, N f respectively), and both of them
can be unfolded to obtain infinite sequences (the loops that
are to be unfolded are marked with dashed line arrows in Fig.
1). In addition, there should be different control sequences uf

associated with different time instants of detection because
our strategy should respond to the fault detected at anytime.
We denote each control sequence associated with detection
time td by

uf [td]. (8)

Several important remarks on uf [td] are made in what
follows.

First, it should be noticed that sequence uf [td] starts from
time td, but it may correspond to any fault that occurs at
min{1, td − T} ≤ to ≤ td − 1, where min{1, td − T}
is the earliest possible fault occurrence time that associates
with td given T -detectability assumption. All of these fault
occurrences associated with the same td cannot be treated
separately because the exact fault occurrence time to is not
known in general. Instead, these different fault occurrences
are all controlled with uh and uf [td] in the following way:
• Within the so called “uninformed execution horizon”

(i.e., min{1, td − T} ≤ t ≤ td − 1), we do not know
the system is already faulty and have to apply uh until
time td − 1.

• Starting from time td, the fault is known and uf [td] is
applied.

With the above control strategy, each occurrence time to
corresponds to a different trajectory generated under the
faulty dynamics, denote by

xf [to, td], (9)

and our goal is to ensure that xf [to, td] can be unfolded
into an infinite sequence that satisfies ϕf for all td and
min{1, td − T} ≤ to ≤ td − 1.

The family of sequence xf [to, td] associated with a fixed td
has a notable property, that is, they all behave approximately
the same as one sequence xh within the uninformed execu-
tion horizon, where xh denotes the sequence generated by
uh under the healthy dynamics. In particular, xf [to, td] will
be ∆-close to xh at least until td − 1. This has to be true
given the assumption that the disturbed healthy trajectories
is always ∆-close to the nominal trajectory xh as long as the
system is healthy. Consequently, the fault should be detected
as long as the real trajectory is outside the ∆-tube of xh.
The fact that xf [to, td] is close to xh within the uninformed
execution horizon is highlighted with the blue box in the
lower part of Fig. 1.

The second remark is about the faults that are detected
on the loop. These situation needs to be handled with extra
care because it may correspond to multiple fault detections
after unfolding the loop. In Fig. 1, for example, if the fault
is detected at the black node denoting xh(6), the detection
time td = 6 + ml where l is the length of the loop and
m = 0, 1, 2, These cases need to be handled separately.

In particular, all the cases with ml ≥ T can be treated as
one. The number of cases is hence reduced to finitely many
and we only need to find uf [td] for 1 ≤ td ≤ Nh + T .

… …
(1) (2) (3) (4) (5) ()

[4](2)

[4](3)

[4]()

[4](1)

= 1 2 3 4 5 6 7 … … 1

(6)

Detection time = 4

(7) (N 1)

… …
(1) (2) (3) (4) (5) ()

[2,4](4)

[2,4](5)

[2,4](+)

[2,4](1) [2,4](2)
[2,4](3)

= 1 2 3 4 5 6 7 … … 1

(6)

Detection time = 4

Detection delay = 2

(7) (N 1)

Fig. 1: An Illustration of the fault tolerant path planning strategy
(upper) and associated trajectories (lower).

In what follows, we transform the above descriptions of
the strategy into MILP formulations.

1) Healthy Mode Path Planning: For the healthy mode
control sequence uh to achieve healthy specification ϕh

under the healthy dynamics defined by (Ah, Bh, F h), one
needs the following constraints:

∃1 ≤ kh ≤ Nh − 1 :

Hϕh,kh,Nh

(
xh, bh) ≤ 0 and

Ahxh(Nh) +Bhuh(Nh) + F h = xh(k + 1),

xh(t) = xh(t−Nh + k), uh(t) = uh(t−Nh + k),

t = Nh, . . . , Nh + T, (10)

xh(t+ 1) = Ahxh(t) +Bhuh(t) + F h,

t = 1, . . . , Nh − 1, (11)

xh(1) = xint, (12)

where xh is the trajectory generated by the healthy dynamics
under uh, Hϕh,kh,Nh is a function, encoding the specification
ϕh within a horizon of length Nh, that is affine in both xh

and auxiliary variables bh, and xinit is the initial state. Note
that we extend xh and uh by T in Eq. (10) to handle the
detection on the loop.

2) Faulty Mode Path Planning: We also require all the
possible faulty trajectories xf [to, td] to satisfy ϕf when they
are controlled by the faulty mode control uf [td], which leads
to the following constraints for 1 ≤ td ≤ Nh + T and
min{1, td − T} ≤ to ≤ td − 1:

∃1 ≤ kf [to, td] ≤ N f :

Hϕf ,kf ,Nf

(
xf [to, td], bf [to, td]

)
≤ 0 and

Afxf [to, td](N
f) +Bfuf [td](N

f) + F f = xf [to, td](k
f + 1),

(13)

xf [to, td](t+ 1) = Afxf [to, td](t) +Bfuf [td](t) + F f ,

t = T, . . . , N f − 1, (14)

xf [to, td](t) = xh(t+ to − 1),

t = 1, . . . , T, . (15)

where Hϕf ,kf ,N f encodes specification ϕf within horizon of
length N f . In particular, Eq. (15) requires the first T points
in sequence xf [to, td] overlaps with the corresponding points
in healthy sequence xh. This constraint captures the fact that
xh[to, td] stays close to xh within the uninformed execution
horizon. This constraint hence couples constraints (10)-(12)
with constraints (13)-(14).

In summary, let uf (xf , respectively) be the vector obtained
by stacking uf [td] (xf [to, td], respectively) for all td (to, td,
respectively), the fault tolerant path planning for nominal
system with detection delay can be formulated as the fol-
lowing MILP:

find xh, xf ,uh,uf ,bh,bf

s.t. Eq. (10)-(15),
xh(t), xf(t) ∈ X, ∀t,
uh(t),uf(t) ∈ U, ∀t,
bh(t),bf(t) ∈ {0, 1}, ∀t.

(16)

Comparing to regular path planning MILP formulation, the
fault-tolerant path planning MILP has more constraints and
variables. Let nfC, nfB and mf be the number of continuous
and binary variables and constraints respectively, which are
required to encode the faulty mode LTL specification of a
path of length N f , the extra number of continuous and binary
variables, and the number of constraints added on top of
regular path planning MILP is O(NhnfC), O(NhnfB) and
O(Nhmf) respectively. Particularly, these three quantities do
not depend on the detection delay T .

B. Robustification of MILP’s Solution via Regulation
From the previous section, we formulate an MILP whose

solution leads to a nominal trajectory x that satisfies the
specification Φ. In particular, we allow the real trajectory x to
deviate at most ∆ from the nominal (i.e., ‖x(t)−x(t)‖ ≤ ∆)
while still satisfying Φ. In this section, we show how to find
the minimum margin ∆ that can be achieved by a linear
regulator and the corresponding regulation gain by solving a
quasi-convex optimization problem.

In what follows we consider system

xt+1 = Axt +But + wt, (17)

where wt is disturbance satisfying ‖wt‖ ≤ d for all t, and
A, B can refer to the system matrices for the healthy system

or the faulty system. Note that the constant offset term F in
Eq. (4) is dropped because it only shifts the equilibrium of
the system and makes no difference when the regulation is
of our concern. We call a system to be nominal if wt = 0 for
all t. Given an initial state xinit and an open-loop strategy
u = u1u2 . . . uN , the trajectory x = x1x2 . . . xN generated
by nominal system is governed by

xt+1 = Axt +But, (18)
x1 = xinit. (19)

Under the given open-loop strategy, the actual trajectory may
deviate from the planned nominal trajectory in the presence
of nonzero disturbance wt. Moreover, such deviation may
accumulate with time because there is no feedback. In this
work, we introduce feedback to keep the actual trajectory
close to the planned nominal trajectory x as time evolves. The
block-diagram of the overall hierarchical closed-loop system
is shown in Fig. 2. Instead of applying nominal control ut
directly to the system, we use

ut = ut +K(x̂t − xt) (20)

where K is the state feedback gain, x̂t is the estimated state
that is assumed to satisfy

‖x̂t − xt‖ ≤ E. (21)

Our goal is to design feedback gain K, so that the difference
between the actual trajectory x and the planned nominal
trajectory x is bounded by a constant ∆ over time.

Plant:
𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡 + 𝑣𝑡

Observer:
ො𝑥𝑡+1 = 𝐴ො𝑥𝑡 + 𝐵𝑢𝑡 + 𝐿(ො𝑦𝑡 − 𝑦𝑡)

ො𝑦𝑡 = 𝐶 ො𝑥𝑡 + 𝐷𝑢𝑡

Feedback control:
𝑢𝑡 = 𝑢𝑡 + 𝐾(ො𝑥𝑡 − 𝑥𝑡)

Open-loop planner:
MILP: 𝑢𝑡 , 𝑥𝑡

𝑦𝑡

ො𝑥𝑡

𝑢𝑡

Controller

Fig. 2: Block-diagram of the closed-loop system (the extension with
output feedback can be found in the Appendix).

The rest of this section focuses on designing K such that
the uniform bound on ‖xt − xt‖ is minimized. Combining
Eq. (17), (18), (20), we have

xt+1 − xt+1 = (A+BK)(xt − xt) +BK(x̂t − xt) + wt,
(22)

which implies

‖xt+1 − xt+1‖ ≤‖(A+BK)(xt − xt)‖
+ ‖BK(x̂t − xt)‖+ ‖wt‖

≤‖A+BK‖∗‖xt − xt‖
+ ‖BK‖∗‖x̂t − xt‖+ ‖wt‖

≤‖A+BK‖∗‖xt − xt‖
+ ‖BK‖∗E + d, (23)

where d is the bound of ‖wt‖ and E is the error bound
on the state estimation from Eq. (21). Let ∆ be the desired
bound on ‖xt − xt‖, we require the following recurrence
relation:

‖xt − xt‖ ≤ ∆⇒ ‖xt+1 − xt+1‖ ≤ ∆. (24)

Eq. (23), (24) hence suggests that

‖A+BK‖∗ ≤
∆− d− ‖BK‖∗E

∆
. (25)

To minimize ∆, we formulate an optimization problem,

minimizeδ,K δ

s.t. ‖A+BK‖∗ ≤ δ−d−‖BK‖∗E
δ

δ ≥ 0

. (P1)

Proposition 1: The optimization problem (P1) is equiva-
lent to the following quasi-convex optimization problem:

minimizeK
d+‖BK‖∗E
1−‖A+BK‖∗

s.t. ‖A+BK‖∗ ≤ 1
. (P2)

Proof: We first prove the equivalence between the
optimization problems (P1) and (P2). Then, we prove that
the objective function of the second problem is quasi-convex.

First note that d and E are nonnegative, we hence have

‖A+BK‖∗ ≤ δ−d−‖BK‖∗E
δ

δ ≥ 0
⇔ δ ≥ d+‖BK‖∗E

1−‖A+BK‖∗
‖A+BK‖∗ ≤ 1.

(26)

Now let K?, δ? be an optimal solution of (P1). By Eq. (26),
we know that K◦◦ = K? is feasible for Problem (P2) and
leads to an objective value d+‖BK◦◦‖∗E

1−‖A+BK◦◦‖∗ ≤ δ
?. Similarly, let

K?? be an optimal to Problem (P2), we know that K◦ = K??

and δ◦ = d+‖BK?‖∗E
1−‖A+BK?‖∗ are feasible for (P1) and they lead to

the same objective value. This hence proves the equivalence
between the two problems.

Next, we show that d+‖BK‖∗E
1−‖A+BK‖∗ is quasi-

convex in K when ‖A + BK‖∗ ≤ 1, i.e.,
Ss :=

{
K
∣∣∣ d+‖BK‖∗E1−‖A+BK‖∗ ≤ s, ‖A+BK‖∗ ≤ 1

}
is a

convex set for any s. Without loss of generality, we only
need to consider s ≥ 0 as otherwise Ss = ∅. In that case,

Ss =

{
K

∣∣∣∣∣ ‖BK‖∗E + s‖A+BK‖∗ ≤ s− d,
‖A+BK‖∗ ≤ 1

}
. (27)

Since constants s, E ≥ 0, and ‖BK‖∗, ‖A + BK‖∗ are
convex functions in K, it follows that Ss is a convex set,
and this finishes the proof.

We highlight the following three points regarding the
above optimization problem. First, a quasi-convex optimiza-
tion problem can be solved by solving a sequence of convex
feasibility problems. The idea is to do a line search on
the objective value f(x) and check if Ss := {x feasible |
f(x) = s} is empty or not. Since Ss is a convex set by
quasi-convexity of f , this can be done relatively efficiently.
The detailed algorithm can be found in [2]. Secondly, for
the optimization problem (P2) to be feasible, it is necessary
(but not sufficient) that pair (A,K) is stabilizable. To see
this, consider the equivalent problem in (P1), in which we
require ‖A + BK‖∗ ≤ δ−d−‖BK‖∗E

δ < 1. If (A,B) is not
controllable, this constraint can not be satisfied with any
gain K. Finally, if the system in Eq. (17) has an output
function and the estimated state x̂t is given by an observer, a
similar quasi-convex problem can be derived to minimize the
estimation error bound E in Eq. (21). The detailed derivation
of the output feedback case can be found in the Appendix.

Several remarks are provided below, regarding the issues
when combining the path planning with the regulation.

(i) First, note that we need to design Kh for regulating
the health dynamics and Kf for the faulty dynamics,
which leads to ∆h and ∆f margin respectively. The state
labeling in the MILP formulation is hence modified with
∆h or ∆f correspondingly.

(ii) The second remark is on splitting the control au-
thority. Let Kh (Kf , respectively) be the solution of
the problem in Eq. (P2) formulated with the healthy
(faulty, respectively) dynamics. The control authority
required by linear regulation is Uh

reg = {u ∈ Rm :
‖u‖ ≤ ‖Kh‖∗∆}. Therefore Uh

plan, the control author-
ity reserved for path planning, need to be shrunk by
‖Kh‖∗∆h, i.e., Uh

plan = U 	 Uh
reg. The procedure of

splitting U for the faulty mode follows similarly.
(iii) The third remark is about determining the faulty nomi-

nal trajectory xf used in the regulation. Recall that the
regulator is in the form of ut = uf(t)+Kf(x(t)−xf(r))
where xt is define by xf [to, td] under the faulty mode,
but to is not known. However, we will only switch the
regulator gain from Kh to Kf at time td, after which
xf [to, td] are the same for all to.

(iv) Finally, note that the true trajectory x may not be ∆h-
close to the healthy nominal trajectory xh at detection
time td, although this is true for all t ≤ td − 1. Hence
extra error is introduced in this last step and need to be
added on top of ∆h. This extra error is bounded by

∆h + ‖Ah −Af‖∗‖x‖+ ‖Bh −Bf‖∗‖u‖
+ ‖F h − F f‖. (28)

However, depending on the criticality of the applica-
tion, this extra error can be neglected if the real-time
detection has high enough sampling rate, and thus can
report the fault as soon as the ∆ margin is violated by
a tiny amount.

We now summarize the above construction in Section IV-
A and Section IV-B with the following proposition:

Proposition 2: Suppose that the healthy system (and the
faulty system, respectively) are regulated by Kh (Kf , respec-
tively) found by solving problem (P2), around the trajectory
obtained by solving the MILP in Eq. (16), then the true
trajectory robustly satisfies specification Φ in Eq. (7). This
hence solves Problem 1.

V. NUMERICAL EXAMPLE

We present an example on robot path planning in this
section. For simplicity, we assume state feedback in this
example. The output feedback version of the problem can
be solved using the extension in the Appendix.

The considered system is modeled with a double integrator
on the plane. The healthy discrete-time system matrices
Ah, Bh, F h in Eq. (5) are obtained by sampling the following
continuous-time system with a sampling rate τ = 2s.

Ah
c =

 0 1 0 0
0 −20 0 0
0 0 0 1
0 0 0 −20

 , Bh
c =

 0 0
1 0
0 0
0 1

 , F h
c =

 0
0
0
0

 ,

(29)

For the faulty system dynamics, we assume that Af =
Ah, Bf = Bh, but there is a non-zero constant offset
term F h = [0, 1.5, 0, 0]T , resulting in an undesirable
drift. Let x = [x1, x2, x3, x4]T be the state and u =
[u1, u2] be the control input, we restrict that x ∈ X =
[−10, 10] × [−2, 8] × [−15, 15] × [−15, 15], and that u ∈
U = [−15, 15]× [−15, 15]. We also assume that there is an
additive disturbance w ∈ R4 as in Eq. (17). In particular,
disturbance w satisfy ‖w‖ ≤ 0.25. We assume that the fault
detection delay is bounded by 3 samples (i.e., T = 3).

The specification is defined by the LTL formula in Eq. (7)
with

ϕh =(�¬πr) ∧ (♦�πg) ∧ (�♦πb1) ∧ (�♦πb2), (30)

ϕf =(�¬πr) ∧ (♦�πg). (31)

The regions (in x1–x3 space) in which each atomic propo-
sition holds are marked in Fig. 3. In particular, the regions
for πr and πg are the rectangles with solid boundaries, and
the regions associated with πb1 (πb2, respectively) are to the
left (right, respectively) of the bold blue dashed line.

We first design a linear regulator by solving the quasi-
convex optimization problem in (P2). The quasi-convex
problem is solved with a standard line-search algorithm [2]
that reduces to solving a sequence of convex optimization
problems. These convex problems are then solved using
CVX [7]. In this example, since Af = Ah, Bf = Bh,
we only need one regulator gain K, and the extra error
introduced by detection delay in Eq. (28) can be bounded
by ‖F h − F f‖ (here we assume that the real-time detection
has high enough sampling rate so that this extra error can
be neglected). The obtained optimal regulator gain leads to
a margin ∆h = ∆f =: ∆ = 0.4604. We hence modify the
labeling by ∆. In Fig. 3, this modification corresponds to the
transparent margin surrounding the rectangles and the thinner
dashed lines close to the bold ones. Finally, we shrink the

control set U by ‖K‖∗∆, as discussed at the end of Section
IV-B in remark (ii).

The fault tolerant path planning is then solved with the
MILP formulated in Section IV-A. We solve the MILP with
Gurobi [8]. Fig. 3 shows (i) the scenario when the system
is always healthy, and (ii) a faulty scenario where the fault
happens at time instant to = 1 and is detected at td = 3. The
black dotted line represents the nominal healthy trajectory
xh and the red dotted line represents the nominal faulty
trajectory xf [to, td]. The dark gray solid curve is the disturbed
trajectory assuming that the system remains healthy forever,
and the purple solid curve is the disturbed trajectory under
the considered faulty scenario. The following observations
can be made based on these simulations:

(i) It can be seen that both the disturbed trajectories satisfy
the specification corresponding to their mode.

(ii) The two curves stay close until the fault detection,
where the nominal trajectory starts to deviate from the
healthy trajectory.

(iii) The healthy trajectory (gray) detours to the left more
than it requires to satisfy ϕh, as it needs to preserve
extra “room” for the faulty trajectory (purple) to avoid
the red obstacle.

b1b2

g

r

-10 -8 -6 -4 -2 0 2 4 6 8 10

x
1

-2

0

2

4

6

8

x 3

Fig. 3: The planned trajectories (dotted) and the disturbed trajec-
tories (solid) for health mode (black, gray) and faulty mode (red,
purple).

VI. CONCLUSIONS

In this paper, we presented a hierarchical fault-tolerant
control synthesis framework. The framework allows for
specifying different requirements for the healthy system and
the faulty mode, both of which can be given by arbitrary
LTL formulas. We then presented a MILP-based trajectory
generation technique for the upper-level that incorporates
reactiveness and robustness to faults and detection delays,
respectively. For the lower-level, we showed that a feedback
regulator can be designed using quasi-convex optimization.
Future work will consider handling multiple fault modes and
more general dynamics.

REFERENCES

[1] C. Baier and J. Katoen. Principles of Model Checking. MIT Press,
2008.

[2] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[3] J. W. Burdick, N. du Toit, A. Howard, C. Looman, J. Ma, R. M.
Murray, and T. Wongpiromsarn. Sensing, navigation and reasoning
technologies for the darpa urban challenge. Technical report, Califor-
nia Inst. of Technology, Pasadena, Jet Propulsion Laboratory, 2007.

[4] G. Fainekos, A. Girard, H. Kress-Gazit, and G. Pappas. Temporal
logic motion planning for dynamic robots. Automatica, 45(2):343–
352, 2009.

[5] D. Frick, T. A. Wood, G. Ulli, and M. Kamgarpour. Robust control
policies given formal specifications in uncertain environments. IEEE
control systems letters, 1(1):20–25, 2017.

[6] A. Girault and É. Rutten. Automating the addition of fault tolerance
with discrete controller synthesis. Formal Methods in System Design,
35(2):190, 2009.

[7] M. Grant, S. Boyd, and Y. Ye. Cvx: Matlab software for disciplined
convex programming, 2008.

[8] I. Gurobi Optimization. Gurobi optimizer reference manual. URL
http://www. gurobi. com, 2015.

[9] F. Harirchi and N. Ozay. Guaranteed model-based fault detection in
cyber-physical systems: a model invalidation approach. Automatica,
2018. to appear.

[10] J. Liu and N. Ozay. Finite abstractions with robustness margins for
temporal logic-based control synthesis. Nonlinear Analysis: Hybrid
Systems, 22:1–15, 2016.

[11] J. Liu, N. Ozay, U. Topcu, and R. M. Murray. Synthesis of reactive
switching protocols from temporal logic specifications. IEEE Trans-
actions on Automatic Control, 58(7):1771–1785, 2013.

[12] O. Mickelin, N. Ozay, and R. M. Murray. Synthesis of correct-by-
construction control protocols for hybrid systems using partial state
information. In Proc. of ACC, pages 2305–2311, 2014.

[13] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia.
Reactive synthesis from signal temporal logic specifications. In
Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control, pages 239–248. ACM, 2015.

[14] S. Singh, A. Majumdar, J.-J. Slotine, and M. Pavone. Robust online
motion planning via contraction theory and convex optimization. In
Robotics and Automation (ICRA), 2017 IEEE International Conference
on, pages 5883–5890. IEEE, 2017.

[15] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts. Lqr-
trees: Feedback motion planning via sums-of-squares verification. The
International Journal of Robotics Research, 29(8):1038–1052, 2010.

[16] E. M. Wolff, U. Topcu, and R. M. Murray. Optimization-based
trajectory generation with linear temporal logic specifications. In
Robotics and Automation (ICRA), 2014 IEEE International Conference
on, pages 5319–5325. IEEE, 2014.

[17] L. Yang and N. Ozay. Provably-correct fault tolerant control with
delayed information. In Decision and Control (CDC), 2017 IEEE
56th Annual Conference on. IEEE, 2017.

[18] L. Yang, N. Ozay, and A. Karnik. Synthesis of fault tolerant switching
protocols for vehicle engine thermal management. In American
Control Conference (ACC), 2016.

APPENDIX

A similar quasi-convex problem can be derived to min-
imize the estimation error bound E in Eq. (21), when the

system in Eq. (17) has an output function

yt = Cxt +Dut + vt. (32)

where vt is measurement noise satisfying ‖vt‖ ≤ e for all t.
In this case, the estimated state x̂t is given by an observer:

x̂t+1 = Ax̂t +But + L(ŷt − yt), (33)
ŷt = Cx̂t +Dut, (34)

where L is the observer gain. To find L such that ‖x̂t− xt‖
is bounded by a number E that is as small as possible, we
derive a recurrence relation on ‖x̂t − xt‖ that is similar to
Eq. (24). Combining Eq. (17), (32), (33), (34), we have

x̂t+1 − xt+1 = (A+ LC)(x̂t − xt)− wt − Lvt, (35)

which gives

‖x̂t+1 − xt+1‖ ≤ ‖(A+ LC)(x̂t − xt)‖+ ‖wt‖+ ‖Lvt‖
≤ ‖A+ LC‖∗‖x̂t − xt‖+ ‖wt‖+ ‖L‖∗‖vt‖
≤ ‖A+ LC‖∗‖x̂t − xt‖+ d+ ‖L‖∗e, (36)

where d and e are the bounds on the norm of disturbance
wt and noise vt respectively. Let E be the desired bound on
‖x̂t − xt‖, we need

‖x̂t − xt‖ ≤ E ⇒ ‖x̂t+1 − xt+1‖ ≤ E. (37)

Substituting Eq. (36) into recurrence relation in Eq. (37)
suggests that

‖A+ LC‖∗ ≤
E − d− ‖L‖∗e

E
. (38)

To minimize E, we formulate the following optimization
problem:

minimizeε,L ε

s.t. ‖A+ LC‖∗ ≤ ε−d−‖L‖∗e
ε

ε ≥ 0

. (39)

With a similar proof as that of Proposition 1, one can show
that the problem in Eq. (39) is equivalent to the following
quasi-convex problem:

minimizeL
d+‖L‖∗e

1−‖A+LC‖∗
s.t. ‖A+ LC‖∗ ≤ 1

. (40)

The problem in Eq. (40) is feasible only if (A,C) is
detectable.

