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Abstract— Thermal management is very important to guar-
antee ideal performance of compact vehicle engines. One
challenge in the vehicle engine thermal management is to
control the engine temperature in a small interval while
tolerating component failures and the uncertainties in complex
environment and different operating conditions. We formulate
this control problem as a temporal logic game for a switched
affine system and solve it by synthesizing a switching protocol
based on an abstraction. The existing algorithms for computing
abstractions either cannot handle parametric uncertainties in
the dynamics or can be computationally expensive. Besides,
they usually do not deal with possible component failures. The
main contribution of this work is to show: (i) how to compute
an abstraction more efficiently under the assumption that the
vector fields are multiaffine in constant uncertainties and affine
in state variables, (ii) how to result in a graceful degradation
in case of component failures.

I. INTRODUCTION

Thermal management is crucial to guarantee reliable per-
formance of compact automotive engines. The benefits in-
clude improvements in fuel efficiency, reductions in tailpipe
emissions and component failures due to excessive heat[13].
In conventional passive engine cooling systems, the coolant
pump is linked to the crankshaft and the coolant flow rate
is controlled by a wax element thermostat [13]. Recently
it has been shown that the performance of the engine can
be improved by introducing more actuators like a radiator
fan [18], or an electric coolant pump independent of the
crankshaft [4]. Introduction of new actuators has necessitated
the development of advanced active control strategies for
thermal management.

Many different control methods have been proposed for
engine thermal management including PID control [17]
and model predictive control [16], just to mention a few.
These methods primarily focus on continuous actuators and
nominal system operation. Continuous actuators are more
expensive, and usually discrete-valued (0-1) actuators are
found in automotive applications. This requires the synthesis
of switching control strategies (i.e., switching protocols).
Moreover, these strategies need to be robust to uncertainties
arising out of component variabilities or environment fac-
tors. And finally, component failures are common and they
must be mitigated properly. Motivated by these challenges,
we propose algorithms to synthesize correct-by-construction
switching protocols that are (i) robust against parameter
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uncertainty, (ii) fault tolerant in the sense that they result in
graceful degradation in case of component failures. We build
on recent results on abstraction-based switching protocol
synthesis [8], [12], [11], and in particular, extend them to
incorporate these two important aspects.

Abstraction-based correct-by-construction synthesis tech-
niques have attracted considerable attention in recent years,
with applications in robotic motion planning [6], autonomous
driving and cruise control [19], [3], [10], control of air-
craft subsystems [9], and building thermal management [5],
[11]. By correct-by-construction, we mean controllers that
are guaranteed to satisfy a given specification, typically
expressed using temporal logics, under explicitly spelled out
assumptions on the system model and the environment the
system operates in [15].

Our main contributions are to present (i) a framework
for modeling an uncertain system with failure modes and
specifying its desired behavior with possibly different re-
quirements for each degraded mode of operation, and (ii)
algorithms for synthesizing robust switching protocols for
systems specified in this framework to guarantee the satisfac-
tion of the “most stringent” requirements associated with the
current health status of the system at run-time. The engine
thermal management problem is specified in the proposed
framework and the closed-loop behavior with the synthesized
switching protocols is illustrated with simulations.

II. NOTATION AND PRELIMINARIES

Let Rn be the n dimensional Euclidean space. A half space
is a subset of Rn defined as {x ∈ Rn | αT x ≤ β, α ∈
Rn, β ∈ R}. A polyhedron is the intersection of finitely
many half spaces, and a polytope is a bounded polyhedron.
Hyper rectangles are special types of polytopes, which can
be defined as {x ∈ Rn | xi ∈ [ai, bi],∀i = 1, . . . , n} where
xi is the ith component of vector x. We say two polytopes
P1 P2 are adjacent if their intersection is a nonempty set. In
particular, if P1 ∩ P2 is an n− 1 dimensional polytope, we
define FP1,P2

:= P1∩P2 to be the adjacent facet of polytopes
P1 and P2. The normal vector of the adjacent facet FP1,P2

,
denoted as nP1,P2 , is a unit vector such that for all x ∈
FP1,P2 : nT

P1,P2
x = 0, and by convention nT

P1,P2
points from

P1 to P2 (i.e., for all x ∈ P1, xF ∈ FP1,P2 : nT
P1,P2

(x−xF ) ≤
0). A convex combination of {x1, . . . , xm} is

∑m
i θixi with

θi ≥ 0 and
∑m

i θi = 1. The convex hull of a finite set X ⊆
Rn, denoted as Conv(X), is the set of all possible convex
combination of X . A polytope P can always be written as
a convex hull of a finite set, the smallest such set is defined
to be the vertices of polytope P , denoted as VP .



A. Multiaffine Functions

Definition 1: A function f : X ⊆ Rn → Rm is said to
be multiaffine in x = [x1, . . . , xn]T ∈ X , if for all j ∈
{1, . . . ,m}, fj , the jth component of f , is in the form of

fj(x) =
∑

p1
j ,...,p

n
j ∈{0,1}

cp1
j ,...,p

n
j

n∏
i

(xi)
pi
j , (1)

where cp1
j ,...,p

n
j
∈ R are some constants.

Lemma 1: (Proposition 2 in [2]) Given a multiaffine func-
tion f : X → Rm, where X ⊆ Rn is a hyper rectangle, the
value of f at arbitrary point in X can be written as a convex
combination of its values at the vertices of X , i.e.,

∀x ∈ X : f(x) =
∑

xiv∈VX

θif(xiv), (2)

where θi ≥ 0,
∑|VX |

i θi = 1.
Lemma 2: Given a multiaffine function f : X ⊆ Rn → R

defined on a hyper rectangle X , f attains its maximum and
minimum at VX .

Lemma 3: Given a function h : X ⊆ Rn → R defined on
hyper rectangle X , if h is in the form of f/g, where f and
g are multiaffine in x and g is non-zero in X , then h attains
its maximum and minimum at VX .

B. Linear Temporal Logic

We use a fragment linear temporal logic (LTL) for spec-
ifying the correct behaviors of a system. Given a set AP
of atomic propositions, the fragment used is defined by the
following grammar: ϕ ::= π | ¬ϕ | ϕ∨ϕ | �ϕ, for π ∈ AP .
We write ϕ∧ψ and ϕ→ ψ as abbreviations for the formulas
¬(¬ϕ∨¬ψ) and ¬ϕ∨ψ, respectively. We also use the short
hand notation ♦ϕ, for ¬�¬ϕ. We refer the reader to [12] for
continuous semantics of LTL but just informally introduce
the meaning of formulas that are used subsequently. For a
propositional formula φ and a signal σ : [0,∞) → 2AP , σ
satisfies �φ if σ(t) satisfies φ for all t; σ satisfies ♦φ if there
exists a t∗ such that σ(t∗) satisfies φ; and σ satisfies ♦�φ
if there exists a t∗ such that σ(t) satisfies φ for all t ≥ t∗.

C. System with Failure Modes

We represent component failures with a finite set APF =
{π1, . . . , πN}, whose element πi is an atomic proposition in-
dicating that component i has failed. A fault configuration F
is a subset of APF. A fault configuration F = ∅ corresponds
to the case when no failure happens and the system is called
healthy when in this configuration. Let F = {F1, . . . , FM}
be a nonempty collection of such fault configurations. F is
a partially ordered set under set inclusion, i.e.,

∀Fi, Fj ∈ F : Fi � (≺)Fj if Fi ⊆ (()Fj . (3)

Under this partial order, for all E ⊆ F , let minimal and
maximal elements of E be min(E) = {F ∈ E | ∀Fi ∈ E :
Fi ⊀ F}, max(E) = {F ∈ E | ∀Fi ∈ E : F ⊀ Fi}. For a
fault configuration Fj ∈ F , the set of its strict successors is
defined as Succ(Fj) = min({F ∈ F | Fj ≺ F}).

For each fault configuration, the system dynamics are
governed by a (potentially different) continuous-time system.
In particular, in this paper we consider the following systems.

Definition 2: A continuous-time switched system with pa-
rameter uncertainties is a tuple Σ = (X,U , Q, {fu}u∈U ),
where X ∈ Rn is the domain, U ∈ Rp is a finite set of
control inputs, Q ∈ Rm is an uncertainty set, fu : Rn ×
Rm → Rn is the vector field with parameter uncertainties
under control u ∈ U . Let x ∈ X denote the state and q ∈ Q
denote the uncertainties, the dynamics of the system under
control u ∈ U is defined by ẋ = fu(x, q).

In what follows continuous-time switched systems with
parameter uncertainties are called switched system for short.

Definition 3: Given a finite collection F = {Fi}Mi=1 of
fault configurations Fi ⊆ APF with a unique minimum
Fi∗ = min (F), and the corresponding collection of switched
systems {Σi}Mi=1, a system with failure modes is defined
as a tuple ΣF = (X , Init,→ΣF , AP

F, hX ), where X =
{Σ1, . . . ,ΣM} is the domain, Init = Σi∗ is the initial state,
APF is the set of atomic propositions, hX : X → 2APF

,
hX : Σi 7→ Fi for i = 1, . . .M is the observation map, and
the transition relation →ΣF⊆ S × S is defined as:

∀Σi,Σj ∈ X , (Σi,Σj) ∈→ΣF iff hX (Σj) ∈ Succ(hX (Σi)).
(4)

A system with failure modes as defined above is a type
of hierarchical hybrid system [7] since each state in X is
itself a hybrid (switched) system. The transition relation as
defined in (4) captures the assumption that the failures are
permanent, that is, if a component fails, it does not recover.

D. Abstraction Refinement

Augmented finite transition systems (AFTS) will be used
to abstract the switched system dynamics. The definitions in
this section are adapted from [12], [11].

Definition 4: An augmented finite transition system is a
tuple T = (S,U ,→T ,G) where S is the finite set of states,
U is the finite set of inputs, →T ⊆ S ×U ×S is a transition
relation, and G : U → 22S

is a progress group map.
To compare the behaviors of an AFTS T and a switched
system Σ over a set AP S of atomic propositions, T and Σ
are decorated with observation maps, hS : S → 2APS

and
hX : X → 2APS

, respectively.
Definition 5: An augmented finite transition system T =

(S,U ,→T ,G, AP S, hS) is said to be an over-approximation
for the switched system Σ = (X,U , Q, {fu}u∈U , AP

S, hX),
denoted by T �Σ, if there exists a function α : X → S such
that the following statements hold.

1) For all ξ ∈ X , hX(ξ) = hS(α(ξ)).
2) Given states s, s′ ∈ S, there is a transition

(s, u, s′) ∈→T , if there exist ξ0 ∈ α−1(s), τ > 0,
and some parameter q ∈ Q such that the corresponding
trajectory x of the subsystem fu starting from ξ0, i.e.,
x : [0, τ ] → Rn with x(0) = ξ0, ẋ(t) = fu(x(t), q)
for all t ∈ (0, τ), satisfies x(τ) ∈ α−1(s′), x(t) ∈
α−1(s) ∪ α−1(s′), t ∈ [0, τ ].



3) The progress group map G is such that given an action
u ∈ U , for all G ∈ G(u), the set

⋃
s∈G α

−1(s) is
transient1 on mode u of Σ.

A proposition preserving partition of the domain X induces
a function α where each s ∈ S corresponds to a cell in the
partition (i.e., if item 1 is satisfied). Transitions of an over-
approximation T capture how the trajectories of Σ behave
across cells, and progress groups capture transient cells and
eliminate the effect of spurious cycles the transitions of T
might form. It is shown in [12] that if one can find a switch-
ing protocol for an over approximation T to satisfy an LTL
property, a switching protocol for the underlying switched
system Σ that guarantees the satisfaction of the same prop-
erty exists; and there exist ways to search for switching
protocols for AFTSs. If a given over-approximation T is not
enough for finding a switching protocol, it can be refined
to form a less conservative over approximation T̂ . A formal
definition of the refinement relation, denoted as T �T̂ , can
be found in [12], [11].

III. PROBLEM DESCRIPTION
A. Engine Thermal Model

This section describes a simplified model of the dynamics
of an engine thermal management system, shown in Fig. 1.
The heat is generated by combustion of fuel. Part of the heat
generated is transferred to the engine combustion chamber
walls. The engine block rejects the heat to the coolant which
increases the coolant temperature. Coolant rejects heat to
ambient at the radiator. These heat exchange processes are
affected by temperature of ambient air, actual vehicle speed
and the coolant pump flow rate. Our goal is to maintain the
engine temperature in a proper interval with limited control
on coolant flow valve position and the radiator grill shutter
opening.

Fig. 1: Schematic of thermal dynamics of an engine, showing the
heat exchange between (i) engine and ambient air, (ii) engine and
coolant, (iii) coolant and radiator

Let x = [Te, Tr]T ∈ R2 be state variables, where Te
denotes the engine temperature and Tr denotes the radia-

1A set Xo ⊆ X is called transient on mode u of Σ, if for all ξ ∈ Xo

and for all q ∈ Q, the trajectory that starts in ξ, eventually leaves Xo with
the flow of fu(x, q).

tor temperature. The temperature dynamics are modeled as
follows:{

Ṫe = cea(Te − Ta) + cer(v, w)(Te − Tr) + ce(h)

Ṫr = cra(s, g)(Tr − Ta) + cre(v, w)(Tr − Te),
(5)

where the coefficients cea, cer, cra(v, w), cre(s, g) depend
on engine heat h, vehicle speed s, coolant pump flow rate
w and ambient temperature Ta, coolant flow valve position
v and radiator grill shutter opening g. We assume h, s, w
and Ta are external inputs that can be measured, and g and
v are control inputs. The ranges of these variables are given
in Table I. To be specific, the coefficients are defined as

cea = −Uea/Ce, cer(v, w) = −Ccvw/Ce,
ce(h) = h/Ce, cre(v, w) = −Ccvw/Cr,
cra(s, g) = (−Ura − CaAaDasg)/Cr,

(6)

where the constants Uea, Ura, Ce, Cr, Ca, Cc, Aa, Da are heat
exchange speed from engine block to ambient air, heat
exchange speed from radiator to ambient air, heat capacity
of engine, heat capacity of radiator, specific heat of air,
specific heat of coolant, radiator frontal area, and density
of air, respectively.2 The functions defining coefficients in
(6) are multiaffine in h, s, and w. Note that the actual range
of external inputs h, s, w and Ta in reality can be larger than
the ones presented in Table I. But since these inputs can be
measured, we can synthesize different robust controllers for
different ranges of external inputs and switch among these
robust controllers according to the measurements.

TABLE I: Measured Inputs & Control Inputs

Symbol Physical Meaning Unit Range Used
h Heat from engine combustion W [15000, 19000]
s Vehicle speed m/s [10,20]
w Coolant pump flow rate kg/s [0.03,0.045]
Ta Ambient temperature K [282, 288]
v Flow valve position - {0.25,1}
g Radiator grill shutter opening - {0.25,1}

The operating region, i.e., the domain D is given by:

D := {x = [Te, Tr]
T ∈ R2 | 260 ≤ Te ≤ 500,

200 ≤ Tr ≤ 400}. (7)

Let the nominal uncertain parameter set be:

Q := {q = [h, s, w, Ta]T ∈ R4 | h ∈ [1.5, 1.9]× 104,

s ∈ [10, 20], w ∈ [0.03, 0.045], Ta ∈ [282, 288]}, (8)

and nominal set of inputs be

U := {u = [v, g]T ∈ R2 | v ∈ {0.25, 1} and g ∈ {0.25, 1}}.
(9)

We consider three fault configurations corresponding to
healthy operation (F1), radiator grill shutter stuck (F2),
and flow valve stuck (F3). A switched system Σi =
(D,Ui, Qi, {fui(x, qi)}ui∈Ui) for i ∈ {1, 2, 3} can be con-
structed to represent the dynamics in each configuration.

2We take Ce=750 J/K, Cr=200 J/K, Ca=1005 J/kg/K, Cc=3400 J/kg/K,
Uea=100 W/K, Ura=100 W/K, Aa=0.2m2, and Da=1 kg/m3.



For healthy system dynamics Σ1, we have U1 := U , and
Q1 := Q; for the dynamics Σ2 when the radiator grill shutter
is stuck, we have U2 := {u = v ∈ R | v ∈ {0.25, 1}}
and Q2 := Q × [0.25, 1], where g ∈ [0.25, 1] is added to
the uncertain parameters; and for dynamics Σ3 when the
flow valve is stuck in the middle, we have U3 := {u =
g ∈ R | g ∈ {0.25, 1}} and Q3 := Q × [0.62, 0.63],
where v ∈ [0.62, 0.63] is added to the uncertain parameters.
The vector fields fui(x, qi) are defined according to (5)
with the corresponding input and uncertainty sets for each
i ∈ {1, 2, 3} so that ẋ = fui

(x, qi) for fixed values of ui ∈ Ui
and qi ∈ Qi.

Letting πg
fail be an atomic proposition for radiator grill

shutter being stuck and πv
fail be an atomic proposition for

the flow valve being stuck, we get APF = {πg
fail, π

v
fail}

with F1 = ∅, F2 = {πg
fail} and F3 = {πv

fail}, and
F = {F1, F2, F3}. Putting everything together, we obtain a
representation of the engine thermal dynamics with different
fault configurations as a system with failure modes:

ΣF = (X , Init,→ΣF , AP
F, hX ) (10)

where X = {Σ1,Σ2,Σ3}, Init = Σ1, hX : Σi 7→ Fi and
→ΣF is defined by (4).

B. Specifications

In this section we specify the desired behavior of the
system ΣF in (10) using LTL. The main specification in
thermal management is to avoid high temperatures that can
lead to cracking of surfaces and to steer the temperature and
maintain it in a range where the engine operates efficiently.
Typically as the number of failed components increase,
the requirements on the system get more relaxed. In order
to capture this graceful degradation in performance, we
specify the required behavior for each fault configuration Fi

separately.
For each fault configuration Fi, we want the engine

temperature Te to reach and stay in a goal set Gi, while
avoiding an unsafe set Ui and remaining in the domain D.
For the goal sets, we have:

G1 := {x = [Te, Tr]
T ∈ D | 385 ≤ Te ≤ 395}, (11)

G2 := {x = [Te, Tr]
T ∈ D | 390 ≤ Te ≤ 400}, (12)

G3 := {x = [Te, Tr]
T ∈ D | 360 ≤ Te ≤ 410}, (13)

and, for the unsafe sets, we have

U1 = U2 := {x = [Te, Tr]
T ∈ D | Te ≥ 400}.

U3 := {x = [Te, Tr]
T ∈ D | Te ≥ 410} (14)

Let ρigoal : x ∈ Gi and ρisafe : x ∈ D \ Ui, then, the desired
behavior for i = 1, 2, 3 is given by:

Φi = ♦�ρigoal ∧�ρisafe, (15)

denoted by Φ(D,Gi, Ui) in parametrized form when neces-
sary. Since the specifications in (15) are conditioned on the

fault configuration, the desired behavior of the overall system
ΣF becomes:

Ψ =
∧

Fi∈F
(♦�Fi → Φi), (16)

where, with slight abuse of notion we use Fi to mean∧
aj∈Fi

aj .

C. Problem statement

We now state the engine thermal management problem.
Problem 1: Given engine thermal system model ΣF de-

fined in (10), and specification Ψ defined in (16), find a set
of initial states I ∈ D (failure tolerant winning set) and a
controller (failure tolerant switching protocol) K : I ×F →⋃

2Ui , with (x, Fi) 7→ ui ∈ Ui, such that while using K, all
the closed loop trajectories starting from I satisfy Ψ.

We propose an approach for the problem that seeks a set
I of initial states that is as large as possible but in general
there is no guarantee that it will be maximal.

IV. SOLUTION APPROACH

Problem 1 can be seen as a switching protocol synthesis
problem for a polynomial system with mode-target objec-
tives. Therefore, it can essentially be solved by combining
techniques from abstractions of polynomial systems [12] and
mode-target games [1]. However, it also admits some struc-
ture that can be utilized to develop more efficient solutions.
In this section we propose a solution approach that utilizes
this structure and that is applicable for a class of systems with
failure modes as long as the following assumptions hold.

Assumption 1: Let Σi = (D,Ui, Qi, {fui
}ui∈Ui) be a

switched system that corresponds to the ith fault configu-
ration of a system with failure modes. Then, for all control
ui ∈ Ui, fui

(x, qi) = Aui
(qi)x+Kui

(qi) where Aui
: Rm →

Rn×n and Kui
: Rm → Rn are multiaffine functions of qi.

Furthermore, for all qi ∈ Qi and all ui ∈ Ui, Aui
(qi) is full

rank and has no pure imaginary eigenvalues.
Assumption 2: Under all fault configurations Fi ∈ F ,

uncertain parameters qi are constant (but unknown) and the
allowable parameter set Qi ⊆ Rm is a hyper rectangle.

Assumption 3: The failures are permanent, that is, if a
component fails, it never recovers later.

For the engine thermal system with failure modes defined
by (10), the system Σi satisfies Assumption 1 in each fault
configuration Fi. One can show this by substituting (6) into
(5) and checking Aui

(qi), Kui
(qi) satisfies Definition 1 for

i = 1, 2, 3 and all ui ∈ Ui. All Qis are by definition
hyper rectangles in the engine model and the parameters qi
are close to being constant, therefore Assumption 2 is also
reasonable. Finally, Assumption 3 holds by definition of the
transitions of the system with failure modes in (4) and again
reasonable for the engine model.

Our approach to solve Problem 1 consists of two steps.
First, we show that by Assumption 3, the solution of Problem
1 can be reduced to solving a set of simpler subproblems
(of the form Problem 2 below) recursively one for each
fault configuration. Then, we present an abstraction based



approach to solve these subproblems. We first state this
simpler subproblem.

Problem 2: Given a continuous-time switched system
with parameter uncertainties Σ = (D,U , Q, {fu}u∈U ), a
polytopic goal set G ⊆ D and an unsafe set U , assume
Assumption 1 is true for Σ, and Assumption 2 is true for q
and Q. Find a set of initial states (wining set) I ⊆ D and a
controller (robust switching protocol) K : I → 2U such that
under K, all trajectories starting from I satisfy Φ(D,G,U)
defined as in (15).

A. Solution of Problem 1

In this section, we assume a solution approach for Problem
2 exists and we propose a solution for Problem 1 based
on it. Let Prob2(Φ,Σ) denote an instance of Problem
2 defined by specification Φ(D,G,U) and system Σ =
(D,U , Q, {fu}u∈U ) and let Win(·) denote the function
solving Problem 2. Also, let Prob1(Ψ,ΣF , Fj) denote an
instance of Problem 1 where ΣF starts operating from
the initial configuration Fj . With this notation, Problem 1
becomes Prob1(Ψ,ΣF , F1).

Algorithm 1 [Ij ,Kj ] = WinF(Prob1(Ψ,ΣF , Fj))
Compute the failure tolerant winning set Ij and controller
Kj for Prob1(Ψ,ΣF , Fj).

Input: Prob1(Ψ,ΣF , Fj).
Output: Failure tolerant winning set Ij and controller Kj

so that ΣF satisfies Ψ when starting from Fj .
1: Initialize Ij = ∅, Kj = ∅
2: if Fj ∈ max(F) then
3: [Ij ,Kj ] = Win(Prob2(Φj ,Σj))
4: Ij = Ij
5: Kj = {(x, Fj) 7→ Kj(x),∀x ∈ Ij}
6: else
7: Uj = Uj

8: for Fi ∈ Succ(Fj) do
9: [Ii,Ki] = WinF(Prob1(Ψ,ΣF , Fi))

10: Uj = Uj ∪ (D \ Ii)
11: Kj = Kj ∪ Ki

12: Φj = Φ(D,Gj , Uj)
13: [Ij ,Kj ] = Win(Prob2(Φj ,Σj))
14: Kj = Kj ∪ {(x, Fj) 7→ Kj(x),∀x ∈ Ij}
15: Ij = Ij
16: return Ij , Kj

Proposition 1: If Win(·) computes the maximal (in set in-
clusion sense) winning set for Prob2(Φ,Σ), then Algorithm
1 computes the maximal winning set of Problem 1.

Proof: To solve problem Prob1(Ψ,ΣF , Fj), Algorithm
1 first solves a set of similar problems Prob1(Ψ,ΣF , Fi)
for all configurations Fis that are strict successors of Fj . By
doing this we get the failure tolerant set Ii under configura-
tion Fi. Then we expand the unsafe set Uj to Uj by adding
the complement of the winning sets Iis. Then the failure
tolerant winning set for problem Prob1(Ψ,ΣF , Fj) can be
found by solving Problem 2 with the enlarged unsafe set

Uj . By doing this we are guaranteed that starting from fault
configuration Fj , if some failure happens and the system
ends up in one of Fj’s strict successors Fi, the states are
still in the failure tolerant winning set Ii under configuration
Fi by construction. Thus the system under configuration Fi

still satisfies corresponding specification Φi. By induction, it
can be shown that ΣF (Fj) satisfies Ψ from I1. Conversely,
from any state x not in I1, it is not possible to satisfy one
of Φi’s. Since, there is no restriction on how fast the system
can move between failure configurations, x is not contained
in the winning set of Problem 1.

B. Solution of Problem 2

To solve Problem 2, we follow the procedure proposed in
[11]. In short, we start with the coarsest possible partition
of the domain induced by atomic propositions. Then, we
construct an AFTS T , consistent with this partition, over-
approximating the switched system Σ, and synthesize a con-
troller by doing graph search on T . If a controller is found,
we stop; if not, we construct a refinement T̂ of T and go to
the previous step. Construction of the AFTS and refinement
involves three tasks: (i) given a polytopic partition of the
domain, how to effectively compute transitions between two
cells under all possible parameter uncertainties; (ii) how to
compute progress group under uncertainties; (iii) how to split
cells properly in abstraction refinement. In what follows, we
show how these tasks can be completed in a computationally
efficient way (compared to [12]) under Assumptions 1–2.

1) Computation of Transitions: To compute the transitions
from polytopic cell C1 to one of its adjacent polytopic cells
C2 under u, we need to check if fu(x, q) is pointing from cell
C1 to cell C2 or vice versa at some points on their intersec-
tion C1 ∩ C2 for some possible parameter uncertainties q ∈
Q. We say there exists a positive (negative) flow from cell C1

to cell C2 if there exists x ∈ FC1,C2 = C1 ∩ C2 and q ∈ Q
such that nT

C1,C2
fu(x; q) > 0 (< 0).3 For general nonlinear

systems, computing such transitions demands solving non-
convex optimization problems [12], but under Assumption 1,
it is sufficient to compute all nT

C1,C2
fu(x, q) on VFC1,C2

×VQ,
which is a finite set.

Theorem 1: Given f : Rn×Rm → Rn, (x, q) 7→ A(q)x+
K(q), where A : Rm → Rn×n and K : Rm → Rn are
multiaffine functions in q, also given x ∈ F and q ∈ Q,
where F is an adjacent facet in Rn with normal vector nF

and Q is a hyper rectangle in Rm, then

∀x ∈ F,∀q ∈ Q : nT
F f(x, q) ≶ 0⇔

∀x ∈ VF ,∀q ∈ VQ : nT
F f(x, q) ≶ 0, (17)

where VF , VQ are vertices of F and Q.
This result follows from (i) the fact that f(x, q) being

affine in x implies that the value of f(x, q) at arbitrary point
on polytope F can be written as a convex combination of

3When C1∩C2 has dimension less than n−1, a positive (negative) flow
exists if there exists x ∈ C1 ∩C2, q ∈ Q such that nT fu(x; q) > 0 (< 0)
for all n in the normal cone of C2 at x. Here, for simplicity, we only describe
the case where C1∩C2 has dimension n−1, but our implementation takes
into account lower dimensional intersections, which follows similar lines.



its values on VF , and (ii) Lemma 1. Detailed proof can be
found in Appendix A.

By Theorem 1 (or more precisely, the contrapositive of
Theorem 1), we immediately know that if there exists a
positive (negative) flow from cell C1 to cell C2 somewhere
on their adjacent facet FC1,C2

under some q ∈ Q, there
must be a positive (negative) flow from cell C1 to cell C2

at some vertex of facet FC1,C2
, under some extreme values

of uncertainties q. In other words, to compute all possible
transitions from cell C1 to cell C2, it is sufficient to compute
the transitions on VFC1,C2

× VQ. Algorithm 2 gives the
pseudo code to compute the transitions from C1 to C2 under
dynamics fu.

Algorithm 2 [→C1,C2
u ] = ComputeTrans(C1, C2, fu =

(Au,Ku), Q)
Compute all possible transitions between cells C1 and C2,
under control u and arbitrary parameter uncertainty q ∈ Q.

Input: Adjacent polytopic cells C1 and C2, vector field fu,
allowable set of parameter uncertainties Q.

Output: Transitions →C1,C2
u .

1: Initialize →C1,C2
u = ∅

2: F = getAdjacnetFacet(C1, C2)
3: nF = getNormal(F )
4: Assume nF points from C1 to C2

5: VF = getVertices(F )
6: VQ = getVertices(Q)
7: for x ∈ VF do
8: for q ∈ VQ do
9: if nT

F (Au(q)x +Ku(q)) > 0 then
10: →C1,C2

u =→C1,C2
u ∪{(C1,u, C2)}

11: if nT
F (Au(q)x+Ku(q)) < 0 then

12: →C1,C2
u =→C1,C2

u ∪{(C2,u, C1)}
13: return →C1,C2

u

2) Computation of Progress Groups: To compute the
progress group, it is important to be able to justify whether
a cell is transient or not. Under Assumption 1 and 2, the
set of all transient cells form a progress group, and a cell is
transient if it contains no equilibrium [14] under all possible
values of the uncertainty. Define the set of all possible
equilibria under parameter uncertainties q ∈ Q to be

Eu := {x ∈ Rn | ∃q ∈ Q : x = A−1
u (q)Ku(q)}. (18)

By arguments above, a cell is transient under control u if
it has empty intersection with Eu. For an arbitrary affine
system with uncertainties, it is usually difficult to compute
Eu precisely. We can, however, compute a hyper rectangle
containing Eu to approximate it under Assumption 1 and 2.
To show this we need Theorem 2.

Theorem 2: Given dynamic system ẋ = A(δ)x + K(δ),
where A = [δij ] ∈ Rn×n, K = [δl] ∈ Rn and
δ = [δ11, . . . , δnn, δ1, . . . , δn]T ∈ Rn2+n. Assume δij ∈
[mij ,Mij ], δl ∈ [ml,Ml], also assume for all δ, A(δ) is

always full rank, and define rectangular uncertainty set

∆ =

n,n∏
i,j=1

[mij ,Mij ]

n∏
l=1

[ml,Ml], (19)

and the set of all possible equilibria

E = {x ∈ Rn | ∃δ ∈ ∆ : x = A−1(δ)K(δ)}, (20)

then

E ⊆ RE :=

n∏
i=1

[min
x∈Ẽ

eTi x,max
x∈Ẽ

eTi x], (21)

where ei is the ith natural basis of Rn and Ẽ := {x ∈ Rn |
∃δ ∈ V∆ : x = A−1(δ)K(δ)}

In short, Theorem 2 says the maximum (or minimum)
coordinates of possible equilibra must be attained when δ is
at the vertices of the hyper rectangular uncertainty set ∆.
This is true because the equilibrium A−1(δ)K(δ) can be
written in the form of f(δ)/g(δ) where f and g are both
multiaffine functions in δ. Then by Lemma 3 we can prove
Theorem 2.

By Theorem 2, we can overestimate E by RE , which can
be found by computing the equilibria of the system at finitely
many δs. Furthermore if given ẋ = A(q)x+K(q) with q ∈ Q
satisfies Assumption 1 and 2, then we know δij = aij(q) is
multiaffine in q, and by Lemma 2, mij ,Mij ,ml,Ml can be
found at the vertices of Q, which is also a finite set.

3) Abstraction Refinement: In order to include all dy-
namic behavior of a switched system in its AFTS approxima-
tion T , it is usually inevitable to introduce some additional
nonexisting behaviors into T , which makes it harder to
synthesize a controller. One typical source of conservatism is
existence of a two-way flow between two adjacent cells C1

and C2. Such conservatism can be reduced to some extent
by splitting the cell C1 into two and constructing a refined
AFTS T̂ . Fig. 2 shows a sketch of the idea for splitting.

Fig. 2: Split cell C1 into C′
1, C′′

1 by hyperplane aTx = b, so that
only one transition exists between C′

1 and C2, or C′
1 and C3.

The following theorem shows, under Assumption 1 and 2,
how some of the two-way flows can be eliminated.

Theorem 3: Given an adjacent facet F in the state space
with normal vector nF , we can partition F into three parts
according to the direction of a given vector field f on F . To
be specific, F = D+ ∪D? ∪D−, where

D+ := {x ∈ F | ∀q ∈ Q : nT
F f(x, q) > 0}

D− := {x ∈ F | ∀q ∈ Q : nT
F f(x, q) < 0}

D? := {x ∈ F | ∃q1, q2 ∈ Q : nT
F f(x, q1) ≥ 0

and nT
F f(x, q2) ≤ 0}.



If f and Q satisfy Assumption 1 and 2, D+ and D− are
polytopes.

The proof of Theorem 3 can be found in Appendix B.
By Theorem 3, we can compute D+(D−) as polytopes and
do the splitting in Fig. 2 according to D+(D−). Note that
simply taking a set difference (e.g., C \D+) can lead to non-
convex cells. Therefore, we compute a splitting hyperplane
aT x = b using Algorithm 3. The following functions are
called in Algorithm 3:
1) Vdet = GetDeterminedVertex(C, fu, Q): Given poly-

topic cell C, and vector field fu under allowable uncer-
tainty set Q, return the set of vertices Vdet of polytope C,
at which the vector field has determined direction in terms
of all the facets incident to this vertex. That is, v ∈ Vdet

iff for all F incident to v, we either have nT
F fu(v, q) > 0,

for all q ∈ Q or have nT
F fu(v, q) < 0, for all q ∈ Q.

2) [a, b] = SplittingHyperplane(vd, V ): Find splitting hy-
perplane aT x = b by solving convex optimization prob-
lem:

minimizex ||x− vd||2
subject to x ∈ Conv(V )

(22)

Let x∗ be the minimal to (22), then the splitting hyper-
plane aT x = b is given by a = x∗ − vd, b = −aT x∗.

Algorithm 3 [C ′, C ′′] = SplittingCell(C, fu, Q)
Split cell C to reduce conservatism

Input: Polytopic cell C to split, vector field fu, uncertainty
set Q, assume there are two-way flows between C and
at least one of its adjacent cells.

Output: two children cells C ′ and C ′′.
1: V̂ = ∅
2: for Ci adjacent to C, with two-way flows between C

and Ci do
3: V̂ = V̂ ∪ VFC,Ci

4: Vdet = GetDeterminedVertex(C, fu, Q)
5: V̂ = V̂ ∩ Vdet

6: if V̂ 6= ∅ then
7: Let vd ∈ V̂
8: V = ∅
9: for F incident vd do

10: if nT
F f(vd, q) > 0 then

11: V = V ∪ (VD+ \ VC)
12: else
13: V = V ∪ (VD− \ VC)
14: [a, b] = SplittingHyperplane(vd, V )
15: C ′ = {x ∈ C | aT x ≤ b}
16: C ′′ = {x ∈ C | aT x ≥ b}
17: return

V. RESULTS

In this section, the proposed approach is used to solve the
engine thermal management problem (i.e., Problem 1). Figs.
(3a), (3b) show the winning sets found under fault configura-
tions F2 and F3. Fig. (3c) shows the failure tolerant winning
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Fig. 4: Plots of engine temperature. Left: Radiator grill shutter gets
stuck at 32.5s. Right: Coolant valve gets stuck at 32.5s.

set for ΣF defined by (10). The closed loop system behav-
ior is simulated under randomly picked allowable constant
uncertainties and possible component failures. Fig. 4 shows
the plots of engine temperature obtained by simulation.

VI. CONCLUSIONS

In this paper we formulated the engine thermal system as
a system with failure modes, specified the requirements in
thermal management problem using linear temporal logic and
proposed algorithms necessary to synthesize a failure tolerant
switching protocol. Simulation results showing the closed
loop trajectories of the system, controlled by a switching
protocol synthesized using the proposed framework, under
uncertainties and component failures were presented.

APPENDIX

A. Proof of Theorem 1

Given f(x, q) = A(q)x + K(q), where A and K are
multiaffine in q ∈ Q, and Q is a hyper rectangle in Rm, let
F ⊂ Rn be an adjacent facet and nF be its normal vector.
Denote g(x, q) = nT

F f(x, q) = nT
F (A(q)x +K(q)).

Since F is a polytope, we know

∀x ∈ F : ∃{θi} s.t. x =
∑

xiv∈VF

θixi
v, (23)

where
∑
θi = 1 and θi ≥ 0.

Substituting (23) into g(x, q), we have ∀x ∈ F : ∀q ∈ Q :

g(x, q) = nT
F (A(q)

∑
xiv∈VF

θixiv +K(q))

=
∑

xiv∈VF

θig(xi
v, q). (24)

Obviously, g(x, q) is multiaffine in q. Then by Lemma 1,

∀i : ∀q ∈ Q : ∃{λij} s.t. g(xiv, q) =
∑

qjv∈VQ

λijg(xi
v, q

j
v),

(25)

where
∑
λij = 1 and λij ≥ 0.

Substituting (25) into (24), we have ∀x ∈ F : ∀q ∈ Q :

g(x, q) =
∑

xiv∈VF

∑
qjv∈VQ

θiλ
i
jg(xiv, q

j
v) (26)

and
∑

i

∑
j θiλ

i
j = 1 and θiλij ≥ 0.
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(a) winning set I2 for system Σ2
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(b) winning set I3 for system Σ3

Engine temperature Te(K)

260 300 340 380 420 460 500

R
ad

ia
to

r 
te

m
pe

ra
tu

re
 T

r(K
)

200

240

280

320

360

400
Goal Set
Unsafe set
Winning: u = 0.25, g = 0.25
Winning: u = 1, g = 0.25
Winning: u = 0.25, g = 1
Winning: u = 1, g = 1
Not winning

(c) failure tolerant winning set I1 for system ΣF

Fig. 3: Winning sets (initial conditions from where the specification can be satisfied) under different fault configurations: (a) for
configuration F2, (b) for F3, (c) for F1 (computed recursively).

In other words, ∀(x, q) ∈ F ×Q, g(x, q) can be written as
a convex combination of g(xi

v, qjv) with (xiv, qjv) ∈ VF ×VQ.
Then it is obvious that

∀x ∈ F,∀q ∈ Q : nT
F f(x, q) ≶ 0⇔

∀x ∈ VF ,∀q ∈ VQ : nT
F f(x, q) ≶ 0.

B. Proof of Theorem 3

Here we only show D+ is a polytope (the same holds for
D−). Let F ⊆ Rn be an adjacent facet and nF be its normal
vector. Denote g(x, q) = nT

F f(x, q) = nT
F (A(q)x + K(q)).

Then D+ is given by

D+ = {x ∈ F | ∀q ∈ Q : g(x, q) > 0}. (27)

Define D+ := {x ∈ F | ∀q ∈ VQ : g(x, q) > 0}. Note that
D+ is a polytope. This is because for any specific q ∈ Q,
g(x, q) is affine in x and g(x, q) > 0 defines a half space.
Since VQ is a finite set, D+ is just the intersection of F with
finite number of half spaces. Next we show D+ = D+. To
show this, we show either set contains the other.

1) D+ ⊆ D+. Obviously because VQ ⊆ Q.

2) D+ ⊇ D+. ∀x ∈ D+, by definition of D+ we have

∀qv ∈ VQ : g(x, qv) > 0. (28)

Since g(x, q) = nT
F f(x, q) is multilaffine in q, and Q is

a hyper rectangle, by Lemma 1, we can write

∀q ∈ Q : g(x, q) =
∑

qiv∈VQ

θig(x, qiv), (29)

where
∑
θi = 1, and θi ≥ 0. It follows from (28) that

∀q ∈ Q : g(x, q) > 0, i.e., x ∈ D+ ⇒ x ∈ D+.
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