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Abstract— Thermal management is crucial for safe and
efficient operation of fuel cells. The goal of this paper is to
algorithmically synthesize a provably-correct controller for a
fuel cell thermal management system. For this purpose, we start
with developing a control-oriented model for the fuel cell ther-
mal management system and list the associated requirements.
Then, we identify some structural properties of the system
dynamics that can be leveraged for making the abstraction-
based synthesis algorithm computationally efficient. Finally, we
synthesize a controller for this system and demonstrate the
closed-loop system behavior via simulations.

I. INTRODUCTION

Fuel cells are electrochemical devices that convert chem-
ical energy of gaseous fuel (i.e., hydrogen) into electricity
[10]. In a fuel cell stack, electrochemical reaction of oxygen
and hydrogen generates electrical power, while heat and
water are produced as by-products. The fuel cell control
system needs to supply the reactant and remove the by-
product. In this work, we focus on developing the thermal
management portion of the controller, which guarantees the
fuel cell operates in a proper temperature range (340K to
350K), for a safety and efficiency consideration [5].

A simplified schematic of the fuel cell thermal manage-
ment system is shown in Fig. 1. The stack coolant inlet
temperature and the coolant flow-rate are the two main
factors that affect the heat supplied or removed from the fuel
cell stack, and hence the stack temperature. The coolant flow
rate is controlled by an electric pump, while the coolant inlet
temperature is regulated by appropriately flowing the coolant
through a radiator or a heater, where the flow path is selected
by a 2-position 3-way valve. Thus the system dynamics is
hybrid in its nature.

Fig. 1: Layout of fuel cell thermal management system.
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The electrical power requirements have a direct influence
on thermal management, and some of the aspects are studied
in [3]. The vehicle driving requirements at the motor are
met through appropriate power management between the
battery and the fuel cell stack. Heat generated in the stack
increases with increasing fuel cell power request. Additional
power requirements from the heater when used for warm-up
under cold conditions also affect power management. In this
paper, we provide some of the key requirements for fuel-cell
thermal management in presence of battery state of charge
energy constraints. These requirements are evaluated under
the case where the ambient temperature is near 283K, where
the fuel cell stack loses significant heat to the ambient due
to large temperature gradient.

In this paper we propose to synthesize a controller for
fuel cell thermal management system using abstraction-
based formal synthesis techniques. Such techniques allow
us to algorithmically generate a controller that is correct-
by-construction, meaning the controller can be proved to
satisfy a given specification, typically expressed in temporal
logic [11], rather than tested by Monte-Carlo simulations.
In order to apply abstraction-based synthesis to the complex
fuel cell dynamics, we extend the existing techniques in two
directions by (i) deriving a novel sufficient condition for
mixed monotonicity, a structural property of dynamics that
eases abstraction process; (ii) proposing multi-action state-
dependent progress groups to capture a rich set of transience
properties of underlying dynamics under different controls.

Fig. 2 summarizes the methodology used in this paper.
For modeling, we adopt the fuel cell stack thermal model
developed in [9] and enhance it using radiator and heater
model components. For specifications, we include require-
ments regarding to temperature targets, energy management
as well as requirements for battery state of charge (SOC),
and formally summarize them in linear temporal logic (LTL).
The model and specifications are further analyzed to develop
formally-correct-switching controller using abstraction-based
synthesis.

II. FUEL CELL MODEL

A block diagram of the fuel cell thermal management
system is shown in Fig. 3. The solid lines (red) are tem-
perature signals, the dotted lines (purple) are power signals,
the dashed lines (blue) are battery state of charge signals,
and thinner solid lines (black) are control/reference input
signals. The physical meanings of variables in Fig. 3 can be
found in Appendix A. Other operating conditions (such as
hydrogen and oxygen partial pressure, ambient temperature,



Computing Transition 
(Section V−A−3)

Discretization 
(Section V−A−1)

Specifications (Section III)

Switching Controller

Process: Synthesis 
(Section V−B)

Process: 
Abstraction 
(Section V−A)

Output: (Section VII)

Abstraction
without labeling 

Abstraction
with labeling 

Labeling
(Section V−A−2)

Input: Control problem (Section IV) 
Plant model (Section II)

Fig. 2: Methodology and paper organization.

vehicle speed) that affect system dynamics are not explicitly
included in the block diagram for simplicity.
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Fig. 3: Block diagram of fuel cell thermal management system.

In what follows, we give the formulas describing each
block in Fig. 3.

A. Fuel Cell Power Generation
The fuel cell stack output power and generated heat are

computed using the formulas developed in [9],

PFC,output = iAGEFC,stack, (1)

PFC,self−heat−up = iAG
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and
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where ∆hrxn

2F and Tavg
∆srxn

2F correspond to the effect of
enthalpies and entropies, iRΩ describes Ohmic loss due to
cell resistivity, and aMT( i

iMT
)bMT describes potential loss

caused by mass transport limitations. The variables hrxn,
srxn, i0, RΩ depend on fuel cell average temperature Tavg

and operating conditions [9].

B. Fuel Cell Temperature Dynamics
The fuel cell stack is divided into two control volumes to

capture its temperature gradient. One control volume is at the
coolant inlet side and the other is at the coolant outlet side.
The fuel cell temperature dynamics is described in terms
of the temperature of the two control volumes, i.e., T1, T2.
The temperature dynamics are governed by the following
differential equation [9]:

dT1
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dT2

dt
=

1

cFCρFC

(
ccoolwcool(T1 − T2)

nFC,cellAFCδFC/2

+
κT(T1 − T2)

(δFC/2)2
+ kamb→FC(Tamb − T2)

+
PFC,self−heat−up

VFCnFC,cell
− rv∆hv

)
, (5)

where the inlet coolant temperature TFC,in,cool in Eq. (4) is
defined as

TFC,in,cool = uHRTH + (1− uHR)TR, (6)

where uHR is the binary variable controlling the 2-position
3-way valve. The average fuel cell temperature used in Eq.
(3) is defined as Tavg = (T1 +T2)/2, while TFC,out,cool, the
outlet coolant temperature from fuel cell stack, is assumed
to be equal to T2.

C. Radiator and Heater Temperature Dynamics
The radiator and heater dynamics are given by
dTR

dt
=

1

CR

(
(1 − uHR)ccoolwcool(TFC,out,cool − TR)

+ cairε(v)v(Tamb − TR)
)
, (7)

dTH

dt
=

1

CH

(
uHRccoolwcool(TFC,out,cool − TH) + PH

)
. (8)

Note that when binary control uHR = 1 (or 0), the coolant
is fed to heater (or radiator). The term ε(v) in radiator
dynamics is the vehicle-speed-dependent effectiveness of
radiator, which is modeled as an affine function of vehicle
speed v. The outlet coolant temperature from radiator (heater,
respectively) is assumed to be TR (TH, respectively).

D. Battery SOC Dynamics
The battery SOC dynamics is adopted from the one given

in [6],

dSOCB

dt
= −nsnpEB,cell

EB,cell −
√
E2

B,cell −
4PB,outputrB,cell

nsnp

2rB,cellGB,stack,total
.

(9)

Note that in Eq. (9), PB,output can be negative, meaning
charging the battery.



E. Power Split Module
The power split module combines the output power from

the fuel cell and the battery, and passes part of the combined
power to the heater, and the remaining portion to the motor.
To deliver the required power to the motor, we assume the
battery always provide right amount of power to compensate
what is generated by the fuel cell, i.e.,

PB,output = PM + PH − PFC,output. (10)

III. SPECIFICATIONS

In this section we give the specifications (or requirements)
of fuel cell thermal management in both plain English and
linear temporal logic (TABLE I). The listed specification are
classified into 3 types, i.e., (i) “reach-stay” type, (ii) “avoid”
type, (iii)“ liveness” type.

A. Limitations of Fuel Cell Output Power
Fig. 4 gives the fuel cell output power predicted by

model in section II-A. This part impose some requirements
regarding to fuel cell output power.

Spec1: (avoid) The fuel cell output power PFC,output

should not drop below zero.
As show in Fig. 4, the model predicted fuel cell output

power becomes negative when the current density is too
high, which makes the model invalid at that value of current
density. We hence need this requirement to avoid operating
in the region where the model is invalid.

Spec2: (avoid) The fuel cell current density should not
exceed the one giving maximum output power PFC,max

because operating above PFC,max is inefficient and could
lead to irreversible degradation [4]. where i∗ is the current
density that gives the maximum fuel cell output power,
graphically illustrated by Fig. 4. Note that i∗ is a function
of state and operating conditions.
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Fig. 4: Fuel cell power vs current density, fuel cell average
temperature varies in [273, 360]K, membrane water content λ = 6.

By Fig. 4, it is obvious that Spec2 actually implies Spec1.
In this work, however, we have not included requirement
Spec2 because of the difficulty computing i∗. Thus we
consider requirement Spec1 instead.

B. Battery Energy & Power Limitations
Spec3: (avoid) The battery stack energy should not drop

below 10%, or exceed 90%.

Spec4: (liveness) Battery energy should always recover to
SOCB,target (with at most an error δ) in finite time, where
SOCB,target is a set point given by energy management
module. We omit this specification for now in this paper
because our current synthesis technique is specialized for
reach-stay-avoid specifications.

Spec5: (avoid) The battery power should not exceed peak
power requirements.

Spec6: (avoid) Power for battery charge should not exceed
maximum allowable charging power. Note that by our con-
vention, charging power (both PB,output and PB,charge,max)
is negative.

C. Regular Operation Requirements

Spec7: (reach-stay) Fuel cell block temperatures will
reach and then stay at target temperature range [340, 350]K.

By this requirement, when the fuel cell is temporarily shut
down and motor power is completely delivered by the battery,
we still want the fuel cell temperature to stay in the range.

Spec8: (avoid) Fuel cell block temperatures never exceed
maximum allowable temperature 353K.

TABLE I: Specifications in LTL

Specification LTL formula type
Spec1 ϕ1 = �(PFC,output ≥ 0) avoid X
Spec2 ϕ2 = �(i ≤ i∗) avoid x
Spec3 ϕ3 = �(0.1 ≤ SOCB ≤ 0.9) avoid X
Spec4 ϕ4 = �♦

(
SOCB = SOCB,target

)
liveness x

Spec5 ϕ5 = �(PB,output ≤ PB,output,max) avoid X
Spec6 ϕ6 = �(PB,output ≥ PB,charge,max) avoid X
Spec7 ϕ7 = ♦�

(
∧j=1,2 (Tj ∈ [340, 350])

)
reach-stay X

Spec8 ϕ8 = �
(
∧j=1,2 (Tj ≤ 353)

)
avoid X

“X”: the specification is considered in the synthesis.
“x”: the specification is omitted for now.

IV. PROBLEM STATEMENT

In this section we formally state the control problem,
by summarizing the plant model given in section II, and
selecting a set of requirements defined in section III.

As a short notation, denote the system dynamics described
in section II by

ẋ = f(x, u, d) (11)

where x = [T1, T2, TR, TH, SOCB]T denotes the state,
u = [i, wcool, uHR, PH]T denotes the control, d =
[PM, pO2 , pH2 , Tamb, v, λ, rv]T denotes the operating condi-
tion. In particular, vector field f are defined by Eq. (4) to
(9). Let X , U , D denote the domains for x, u, d. Set X , U ,
D are rectangular sets defined in Appendix A.

In this work we consider all requirements listed in section
III except Spec2 and Spec4. In addition to the selected
requirements, define LTL formula

�(x ∈ X), (ϕ9)

to constrain that the system states never leave the considered
domain X , and define assumptions on the environment

�(d ∈ D), (ϕenv)



to constrain that the operating conditions always stay in
allowable range. Then the overall specification for consid-
eration in LTL is given by

Φ := ϕenv →
9∧

i = 1
i 6= 2, 4

ϕi, (12)

that is, if the environment variables (operating conditions)
always stay in their allowable range, all the selected specifi-
cations are satisfied.

Problem 1: Given the plant model defined in (11), and
desired closed-loop behavior specified by LTL formula Φ,
defined by (12), synthesize a state feedback controller K :
X → U , under which all closed-loop trajectories governed
by ẋ = f(x,K(x), d), satisfy the LTL specification Φ.

V. SOLUTION APPROACH

We formulate the problem as a reach-stay-avoid game [7]
for a switched system and solve the game for a switching
protocol using abstraction-based synthesis technique. The
idea is: instead of solving the control problem directly on the
given model (concrete system), we create a finite transition
system (abstraction) with discretized control that captures
the properties of interest for the continuous dynamics of the
concrete system, and solve the control problem on the ab-
straction [11]. The obtained controller is provably correct for
the concrete system because by construction the behaviors of
the concrete system is a subset of that of the abstraction1. If
one can find a controller, under which all the closed-loop
behaviors of the abstraction satisfy specified requirement,
the closed-loop behaviors of the concrete system also satisfy
the requirement with the same controller, by the behavior
inclusion relation.

A. Abstraction

The abstraction process returns a finite transition system
for given plant model and specifications. The transitions
capture the flow of the continuous plant dynamics, and the
(discrete) states of the finite transition system are properly
labeled according to the given specification. For a formal
definition and algorithms generating abstractions, we refer
the reader to [8].

As shown in Fig. 2, abstraction process is decomposed
into three steps, i.e., discretization, labeling and transition
computation. For general nonlinear system, the computations
involved in the above process are hard. In the rest of
this section, we identify several system properties of the
considered fuel cell thermal management system that make
the abstraction computations relatively efficient.

1) Discretization: We first partition the state space of
given concrete system into finitely many regions. Each
region is mapped to a discrete state in the finite transition
system, called the symbol of that region. We use a manually
constructed non-uniform rectangular grid partition in the

1An abstraction may contain more behavior than the underlying concrete
system. The “bad” behaviors that exist in abstraction but not in concrete
system are called spurious.

state space and control space. Rectangular partition reduces
the computation effort required for abstraction significantly
under certain conditions, as will be shown in section V-A.2
and V-A.3.

2) Labeling: After state space partition, each region in the
partition needs to be labeled as “target”, “safe” and “unsafe”
according to the specification.

The selected requirements are either “reach-stay” or
“avoid” type. Consider “reach-stay” specification Spec7. The
regions contained by set {x ∈ X | T1 and T2 ∈ [340, 350]}
are labeled as “target”. For “avoid” specifications, a region is
labeled as “safe” if the specification is satisfied everywhere in
that region for all operating conditions, or labeled as “unsafe”
if the specification is violated somewhere in the region for
some operating conditions.

The challenge is that some “avoid” specifications are
implicitly related to states and operating conditions. For
example, requirement Spec1 requires fuel cell output power
PFC,output ≥ 0 (or equivalently EFC,stack ≥ 0 by Eq.
(1)), PFC,output is a function of both system state (fuel
cell temperature Tavg) and operating condition (membrane
water content λ, hydrogen-oxygen partial pressure pH2 , pO2 ).
Therefore, to label a region to be safe or unsafe in terms of
Spec1, we need to check the worst case in that region. That
is, if the minimum fuel cell output power PFC,output (or
equivalently EFC,stack) in the region is negative under some
operating conditions (which violate specification Spec1), the
region is labeled as unsafe. Spec1.

As described in section II-A, EFC,stack is a nonlinear
function in state x and operating condition d. Therefore,
finding the exact minimum value of EFC,stack requires to
solve a nonlinear optimization problem over x and d, which
might be intractable. However, function EFC,stack(x, d) al-
lows an efficient and reasonable approximation by Theorem
1 in Appendix B if the considered regions are rectangles.
Theorem 1 applies to function EFC,stack(x, d), because
EFC,stack(x, d) is continuously differentiable w.r.t. x and d
on compact set X×D. This means all the continuous partial
derivatives ∂EFC,stack

∂x
∂EFC,stack

∂d are bounded on X×D, thus
EFC,stack(x, d) satisfies the hypothesis of Theorem 1.

By Theorem 1, approximating the minimum (or maxi-
mum) value of EFC,stack reduces to evaluating EFC,stack

at two extreme points of the considered rectangular region.
The result of the approximation is illustrated using Fig. 5,
the dashed line is the maximum and minimum value when
x1, x2, or T1, T2 varies in [273, 360]K. As Fig. 5 shows, there
is a gap between approximated minimum value of EFC,cell

and real values. This gap indicates that the approximation is
conservative. However, when size of the region to be labeled
is smaller, the approximation is tighter.

3) Computing Transitions: We compute transitions in the
abstraction by arguing about the vector field directions of the
concrete system, over a region in state space, and also over
all operating conditions. In this part we give an efficient way
to compute these transitions using Theorem 1 and Theorem
2 in Appendix B.

As shown in the left part of the Fig. 6, Y1 and Y2 are
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two adjacent regions in state space of concrete system, F =
Y1 ∩ Y2 is the adjacent facet between two regions, dashed
line arrow nF is the normal vector of facet F (pointing from
Y1 to Y2), and the solid arrows on F are the vector field
f(x, u, d) under some given u and operating conditions d.
The right part of the figure shows the symbols in abstraction,
in particular, symbol q1 (q2) corresponds to region Y1 (Y2),
and the transitions between q1 and q2 are defined as follows

q1
u−→ q2 iff max

x ∈ F,
d ∈ D

nTF f(x, u, d) > 0. (13)

Assume a rectangular partition of the state space, the
adjacent facets are all rectangular facets, i.e., F = {x ∈
X | xj ∈ [xj , xj ]}, and their normal vectors are natural
basis vectors ei (a vector whose ith entry is one, and the
other entries are zeros). Also note that allowable operating
condition set D is also a rectangular set by definition, i.e.,
D = {d | dk ∈ [dk, dk]}. Eq. (13) thus becomes

q1
u−→ q2 iff max

xj ∈ [xj, xj ]

d ∈ [dk, dk]

fi(x, u, d) > 0. (14)

The optimum values in (14) can be over approximated using
Theorem 1. Fix control u, and let φu be the decomposition
function of f(·, u, ·) defined by Eq. (21), we have

max
xj ∈ [xj, xj ]

d ∈ [dk, dk]

fi(x, u, d) ≤ φui ([x, d], [x, d]), (15)

where x = [x1, . . . , xn]T and x = [x1, . . . , xn]T (similar for
d, d), and

q1
u−→ q2 if φui ([x, d], [x, d]) > 0, (16)

By Remark 1 in Appendix B, if the partial derivative ∂fi
∂xj

is not sign-stable, the approximations in Eq. (15) are not

tight. In that case we may create more transitions than
necessary by Eq. (16), and hence more spurious behavior
in the abstraction. This leads to a more conservative solution
but does not harm the correctness.

Note that the partial derivative ∂f3
∂v is not sign-stable,

where f3 = ṪR is defined by Eq. (7). The sign of ∂f3
∂v

depends on which one of TR and Tamb is larger. In this
case the conservatism can be reduced using Theorem 2 in
Appendix B. We show f3 is affine in state x and multi-affine
in [Tamb, w] where w := ε(v)v. By Theorem 2, to maximize
(minimize, respectively) vector field component f3, one only
needs to evaluate f3 at both upper and lower bounds of w,
and pick the maximum (minimum, respectively) f3 value.
This is equivalent to evaluating f3 at upper and lower
bounds of vehicle speed v, because w = ε(v)v is monotone
increasing in v. With this modification, Eq. (15), become

max
xj ∈ [xj, xj ]

d ∈ [dk, dk]

fi(x, u, d) ≤

max
{
φui ([x, d], [x, d]), φui ([x, d], [x, d])

}
, (17)

where d is the same as d except that its fifth entry (represent
vehicle speed v) takes upper bound value; and d is the same
as d except that its fifth entry takes lower bound value.

Note that to compute transition from q2 to q1, one only
need to pick the normal vector in Eq. (13) to be nF = −ei,
and the above approximation process still applies to this case.

B. Synthesis

We synthesize a controller for the given abstraction by
solving a reach-stay-avoid game using graph search algo-
rithms. By such algorithms we will assign each symbol with
a set of control actions (the set could be empty). The symbols
assigned with nonempty control actions are called “winning”.
Under assigned actions, the closed-loop path starting from
“winning” symbols will reach and stay in “target” symbols
in finite time, meanwhile never entering “unsafe” symbols.
Finally the obtained actions for each symbol are assigned to
corresponding regions in concrete system’s state space.

The synthesis algorithms used in this work are modified
from the ones given in [7]. Starting with “stay” requirements,
the algorithm first searches for a controlled invariant set
within the “target” symbols. Then the algorithm solves for
“reach” and “avoid” requirements by backwards expanding
starting from obtained controlled invariant set, meanwhile
avoiding “unsafe” symbols. In this process, control actions
will be assigned to the expanded symbols. In particular, to
solve the reachability part, we need to eliminate some spuri-
ous loops in abstraction that prevent target being reached. To
this end we encode in abstraction some liveness properties
of the underlining continuous system by progress groups.
A set of symbols (each symbol assigned a set of control
actions) form a progress group if these symbols correspond
to a transient2 region in original concrete system, under the

2A region is transient under some control actions if all trajectories starting
from that region eventually leave the region in finite time under assigned
control actions.



assigned actions.

C. Multi-action State-dependent Progress Group

In a previous work [8], the progress groups are defined
for single action and can be encoded in abstraction. For
this application, however, single action progress group is
insufficient for accommodating battery SOC requirement and
reachability requirement at the same time. We, hence, need
multi-action state-dependent progress groups.
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Fig. 7: System flow on SOCB-T1 subspace (left), abstraction with
single-action progress group (right (a), (b)) and abstraction with
multi-action state-dependent progress group (right (c)).

Fig. 7 shows why the battery SOC requirement Spec3 and
reachability requirement cannot be satisfied at the same time
by single-action progress groups. In the left part of the figure,
we plot the rectangular partition and vector field projected on
SOCB-T1 space. The green color marks the regions labeled
as target and grey color marks unsafe regions. To reach the
target region, we can either (i) let fuel cell do self-heat-
up, meanwhile generating excess power and charging the
battery (corresponding to action u1), or (ii) use heater to
warm up the fuel cell, and thus draw power from battery
(corresponds to action u2). Note that no action can keep
battery SOC to be a constant because of the uncertainty in
motor requested power PM—PM is an operating condition
whose range is defined in Appendix A. The right part of the
Fig. 7 shows the abstraction. By choosing a single action
(i.e., case (a) (b)) there is always a path leading to unsafe
symbols, therefore the battery SOC requirement is violated
on the abstraction. Note that such path is spurious because it
does not represent any real trajectories in concrete system
(e.g., choosing u1 at low battery SOC actually leads the
trajectory into target region before saturating the battery).
Such spurious behaviour exists in abstraction due to the
conservatism introduce by rectangular partition.

However the battery SOC requirement can be satisfied
by applying multiple actions, as shown in Fig. 7 (c), but
the reachability requirement is violated by the infinite loop
caused by alternatively choosing u1 and u2. We thus need

multi-action state-dependent progress groups to eliminate
such loops when they are spurious.

Since the number of multi-action state-dependent progress
groups grows exponentially in the number of available con-
trol actions, it easily exhausts time and memory to pre-
compute these progress groups and encode them in the
abstraction before synthesis. Therefore, instead of doing pre-
computation and storage before synthesis, we compute multi-
action state-dependent progress group in synthesis process,
and we will restrict the control actions on-the-fly based on
the synthesis. Specifically, we do the following:

1. starting from a controlled invariant set C, as initial
winning set, compute a set P of “safe” one-step-
predecessors3 of set C, with each symbol in P assigned
with a set of actions, so that C∪P is controlled invariant
under the assigned actions;

2. if the symbols in P correspond to a transient region
under some actions assigned to them, these predecessors
form a multi-action state-dependent progress group, and
are added to winning set;

3. repeat step 1, 2, 3 until winning set has satisfactory size.
The rest of this part shows how to check transience (step 2

in above process). Take Fig. 7 as an example, shaded symbols
form a multi-action state-dependent progress group when u2

is assigned to the two symbols on the top and u1 is assigned
to the bottom symbol. This is because the region represented
by these symbols is transient under corresponding actions.
The transience can be checked efficiently by arguing the
direction of vector field of underlying concrete system. As
shown in left part of Fig. 7, the union of three regions
Y1∪Y2∪Y3 is transient because the horizontal component of
vector field is always positive (i.e., pointing rightwards) when
control u2 is applied in Y1 Y2, and u1 is applied in Y3. More
generally, given a set of regions {Yk}mk=1 in n dimensional
state space, each region equipped with one control action uk,
Y =

⋃m
k=1 Yk is transient under assigned actions if there

exists v ∈ Rn,

∀k = 1 . . .m : max
x∈Yk,d∈D

vT f(x, uk, d) > 0. (18)

If vector v is ±ei (natural bases), and Yk are rectangles, the
optimization problem in (18), can be solved efficiently, by
the approach developed in section V-A.3.

VI. RESULTS AND DISCUSSION

By the solution approach described in section V, a switch-
ing protocol is synthesized. The controller is able to achieve
the specifications on the entire state domain X . The closed-
loop behaviors are illustrated by simulation in Fig. 8, from
which we make the following observations:

1. By Fig. 8 (1-1) (1-2) (5-2), all states stay in the domain,
fuel cell temperature reaches and stays in target range,
and battery SOC never exceeds upper or lower bounds.

2. By Fig. 8 (1-2), the heater temperature switch between
340K to 400K from about t = 20s to 90s. This is

3A symbol p is called a one-step-predecessor of a set Q, if there is a
transition (under some actions assigned to p) leading p to some symbols
q ∈ Q.



because heater needs to stay above 340K to be able
to warm up the fuel cell, while it also needs to stay
below its temperature upper bound (400K).

3. By Fig. 8 (1-1), the switching pattern of fuel cell
temperature changes at about t = 360s, this is caused
by low level of battery SOC at that time. To be specific,
after fuel cell temperature reaches target range at about
t = 90s, the controller starts to feed coolant through
heater so that the fuel cell stays warm by drawing
heat from coolant. Since heater draws power from
battery, battery SOC keeps decreasing until it reaches
allowable lower bound at t = 360s. In order to protect
battery from over-discharging, the controller starts to
alternatively use heater and radiator starting at t = 360s
(and hence alternatively discharging and charging the
battery), so that the battery SOC stops dropping, while
fuel cell temperature still stay in target range.

APPENDIX

A. Variables and Constants

Control u
uHR uHR = 1 indicating that the coolant flow goes through

the heater,
uHR = 0 indicating that the coolant flow goes through

the radiator
i [0,1.5] (A cm−2) Cell current density
PH [0, 35000] (W) Power requested by heater
wcool [0,800] (g s−1) Coolant mass flow rate

State x
SOCB [0,1] (-) Battery energy
T1 [273, 360] (K) Temperature of first control volumes
T2 [273, 360] (K) Temperature of second control volumes
TH [250, 400] (K) Heater temperature
TR [250, 340] (K) Radiator temperature

Operating Condition d
PM [2, 17] (kW) Power requested by motor
pO2

5× 104 (Pa) Oxygen partial pressure
pH2

1.5× 105 (Pa) Hydrogen partial pressure
rv [0, 10−7] (mol cm−3 s−1) Volumetric evaporating rate
v [10,20] (ms−1) Vehicle speed
Tamb [273,290] (K) Ambient temperature
λ [4,22] (-) Membrane water content

Other Variables
EFC,stack (V) Fuel cell stack electrical potential
i0 (A cm−2) Exchange current density
PB,output (W) Battery output power
PFC,output (W) Fuel cell output power
PFC,self−heat−up (W) Power for fuel cell self-heat-up
RΩ (Ω cm2) Cell resistivity
Tavg (J mol−1 K−1) Average fuel cell temperature
TFC,in,cool (K) Inlet coolant temperature (into fuel cell)
TFC,out,cool (K) Outlet coolant temperature (from fuel cell)
∆hrxn (J mol−1) Reaction enthalpy
∆hv (J mol−1) Evaporation enthalpy
∆srxn (J mol−1 K−1) Reaction entropy

Constants
cair (1.0 J g−1K−1) Air specific heat capacity
F (96485 C mol−1) Faraday constant
Pref (101325 Pa) Reference pressure
R (8.314 J mol−1 K−1) Universal gas constant

Parameters
aMT (V) Mass transfer potential loss coefficient
AFC (cm2) Fuel cell cross section area
AG (cm2) Fuel cell geometric area
bMT (-) Mass transfer potential loss exponent
ccool (J g−1K−1) Coolant specific heat capacity
cFC (J g−1K−1) Fuel cell specific heat capacity
CH (J K−1) Heater heat capacity
CR (J K−1) Radiator heat capacity
EB,cell (V) Battery cell open-circuit potential
GB,stack,total (Ws) Battery stack energy capacity
i0,ref (A cm−2) Reference exchange current density
iMT (A cm−2) Mass transfer current density
ix (A cm−1) Crossover current density
kamb→FC (W cm−3 K−1) Heat transfer coefficient: ambient to stack
kamb→H (W cm−3 K−1) Heat transfer coefficient: ambient to heater
np (-) Number of battery cells in parallel
ns (-) Number of battery cells in series
nFC,cell (-) Number of fuel cells in stack
rB,cell (Ω) Battery cell internal resistance
VFC (cm3) Fuel cell volume
α (-) Charge transfer coefficient
δFC (cm) Channel or cell length
κT (W cm−1 K−1) thermal conductivity
ρFC (g cm−3) Fuel cell density

B. Preliminary Results of System Properties

This part gives some useful results that make abstraction
computation efficient. The proofs can be found in [12].

Theorem 1: Assume f : Rn → Rm is differentiable, and

∂fi
∂xj

(x) ∈ [aij , bij ],∀x ∈ X ⊆ Rn, (19)

where aij and bij are finite real numbers, set X = {x ∈ Rn |
xj ∈ [xj , xj ]} is a rectangle, then the following inequality
holds in element-wise sense:

φ(x, x) ≤ f(x) ≤ φ(x, x),∀x ∈ X, (20)

where x = [x1, . . . , xn]T and x = [x1, . . . , xn]T , and
function φ : Rn × Rn → Rm is defined to be:

∀i ∈ 1 . . . ,m :

φi(x, y) = fi(z) + (αi − βi)T (x− y). (21)

In Eq. (21), z = [z1, . . . , zn]T , αi = [αi1, . . . , αin]T , βi =
[βi1, . . . , βin]T are n vectors defined as follows

zj =

{
xj if bij ≥ |aij |
yj otherwise

(22)

αij =

{
|aij |+ ε if aij ≤ 0, bij ≥ |aij |
0 otherwise

(23)

βij =

{
−|bij | − ε if bij ≥ 0, aij ≤ −|bij |
0 otherwise

(24)

where ε is a small positive number.
Remark 1: Theorem 1 is related to mixed monotonicity

of function f , and the function φ is called a decomposition
function of f . The decomposition function constructed above
is a natural extension of the one given in [2], which only
handles f with sign-stable partial derivatives. The idea here
is to use linear terms to create additional offset to overcome
the sign-unstable partial derivatives. In the case where all



Fig. 8: Simulations results: states, powers and selected controls. Temperature states start from 285K and battery SOC starts from 0.58.

the partial derivatives ∂fi
∂xj

are sign-stable, the decomposition
function constructed by Theorem 1 gives a tight approxima-
tion in Eq. (20), that is, the inequality in Eq. (20) reduces to
equality at some x ∈ X [2]. However this is not true when
there are sign-unstable partial derivatives. Thus in general
the approximation given by (20) might be conservative.

Theorem 2: (Theorem 1 in [13]) Let f : Rn ×Rm → Rp

be a function affine in the first argument x ∈ Rn and multi-
affine [1] in the second argument d ∈ Rm, i.e., f(x, d) =
A(d)x+K(d), where A(d), K(d) are matrixes whose entries
are in form of ∑

p1,...,pm∈{0,1}

cp1,...,pm

m∏
j

(dj)
pj . (25)

Let X ⊆ Rn be a polytope, and D ⊆ Rm be a rectangle.
Define VX and VD to be the set of vertices of set X and D.
Then the maximum and minimum values of f on X×D are
obtained at vertices set VX × VD, i.e.,

max
x ∈ X
d ∈ D

f(x, d) = max
x ∈ VX
d ∈ VD

f(x, d), (26)

and similarly (26) holds for minimization of f .
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membrane fuel cells cold startup global strategy for fuel cell plug-in
hybrid electric vehicle. Journal of Power Sources, 220:31–41, 2012.

[4] K. Jiao and X. Li. Water transport in polymer electrolyte membrane
fuel cells. Progress in Energy and Combustion Science, 37(3):221–
291, 2011.

[5] S. G. Kandlikar, Z. Lu, and T. A. Trabold. Current status and
fundamental research needs in thermal management within a pemfc
stack. in ASME Journal of Fuel Cells Science and Technology, 2008.

[6] S. J. Moura, D. S. Callaway, H. K. Fathy, and J. L. Stein. Impact
of battery sizing on stochastic optimal power management in plug-
in hybrid electric vehicles. In Proc. of IEEE ICVES, pages 96–102.
IEEE, 2008.

[7] P. Nilsson and N. Ozay. Incremental synthesis of switching protocols
via abstraction refinement. In Proc. of IEEE CDC, pages 6246–6253,
2014.

[8] N. Ozay, J. Liu, P. Prabhakar, and R. Murray. Computing augmented
finite transition systems to synthesize switching protocols for polyno-
mial switched systems. In Proc. of ACC, pages 6237–6244, 2013.

[9] B. L. Pence and J. Chen. A framework for control oriented modeling
of pem fuel cells. In ASME 2015 Dynamic Systems and Control
Conference, pages V002T26A002–V002T26A002. American Society
of Mechanical Engineers, 2015.

[10] J. T. Pukrushpan, A. G. Stefanopoulou, and H. Peng. Control of
fuel cell power systems: principles, modeling, analysis and feedback
design. Springer Science & Business Media, 2004.

[11] P. Tabuada. Verification and control of hybrid systems: a symbolic
approach. Springer, 2009.

[12] L. Yang and N. Ozay. A note on some sufficient conditions for
mixed monotone systems. Technical report, University of Michigan,
Department of EECS, 2017. Available at http://hdl.handle.
net/2027.42/136122.

[13] L. Yang, N. Ozay, and A. Karnik. Synthesis of fault tolerant switching
protocols for vehicle engine thermal management. In Proc. of ACC,
pages 4213–4220, 2016.

http://hdl.handle.net/2027.42/136122
http://hdl.handle.net/2027.42/136122

	Introduction
	Fuel Cell Model
	Fuel Cell Power Generation
	Fuel Cell Temperature Dynamics
	Radiator and Heater Temperature Dynamics
	Battery SOC Dynamics
	Power Split Module

	Specifications
	Limitations of Fuel Cell Output Power
	Battery Energy & Power Limitations
	Regular Operation Requirements

	Problem Statement
	Solution Approach
	Abstraction
	Discretization
	Labeling
	Computing Transitions

	Synthesis
	Multi-action State-dependent Progress Group

	Results and Discussion
	Variables and Constants
	Preliminary Results of System Properties

	References

