
Quickly Finding Recursively Feasible Solutions for MPC with Discrete
Variables

Liren Yang, Amey Karnik, Necmiye Ozay

Abstract— In this paper, we consider designing real-time
Model Predictive Control (MPC) for embedded control ap-
plications where both continuous-valued and discrete-valued
control inputs are present. The online optimization in MPC is
formulated as a Mixed Integer Quadratic Program (MIQP), and
can be achieved using a branch and bound algorithm where
multiple relaxed Quadratic Programs (QPs) are solved. Due
to the computational constraints for embedded applications,
we impose a limit on the number of relaxed problems to be
solved. Tailored heuristics in the branch and bound algorithm
are developed taking into account the problem structure in
MPC framework to generate early feasible solutions. To provide
recursive feasibility guarantee to the MPC solved with such
limited branch and bound algorithm, we propose to supervise
the MPC with a correct-by-construction switching protocol. The
paper describes these concepts, provides chronometric estimates
for some problems, and gives a numerical example to explain
the behavior. Moreover, a fuel cell control problem from the
literature with five continuous states, three continuous inputs
and three discrete inputs is used to show that the proposed
approach reaches a feasible solution much faster than standard
branch and bound solutions.

I. INTRODUCTION

Model Predictive Control (MPC) is widely used in pro-
cess control industry because of its capability to handle
constraints and to incorporate optimality [20]. Due to the
increasing computational power of microprocessors, it is now
applicable to real-time embedded control applications as well
[25], [10]. However, MPC suffers from several potential
challenges when used in embedded applications where the
dynamics are relatively fast and the real-time computation
needs to be done with limited computational resources.
While linear and gain-scheduled MPC methods have been
developed [1], the implementation for systems with both
continuous and discrete actuators is more challenging [3].
Hence reducing the online computation effort becomes a key
concern. In what follows, we will discuss two of the issues
related to reducing the computational effort.

1) Feasibility Issue: One potential issue in real-time MPC
is not being able to guarantee feasibility of the successive
optimization problems [28]. In real-time applications, for
simplicity of the computation, it is usually preferred to
predict the system states using a nominal, linearized model.
Consequently, some hard constraints may get violated at

LY and NO are with the Dept. of Electrical Engineering and
Computer Science, Univ. of Michigan, Ann Arbor, MI 48109,
USA yliren,necmiye@umich.edu. AK is with the Ford
Research & Advanced Engineering, Dearborn, MI 48121, USA
akarnik@ford.com. This work is supported by Ford Motor
Company and by US Army CCDC Ground Vehicle Systems Center under
agreement W56HZV-14-2-0001. DISTRIBUTION A. Approved for public
release; distribution unlimited. (OPSEC # 1803).

some point due to the model mismatch. This means the
online optimization problem seeking for the optimal open-
loop strategy stops being feasible. We hence refer to this
issue as the feasibility issue. Moreover, even if an exact
model is assumed, an MPC controller may still steer the
state to a region starting from where the violation of hard
state constraints cannot be avoided. This happens because
MPC is “greedy” in its nature, i.e., it only searches for the
optimal strategy within a finite horizon. Again, in real-time
applications, we may not be able to afford a sufficiently
long prediction horizon due to the limited computational
resources. This hence aggravates the feasibility issue.

Several solutions towards the feasibility issue are pro-
posed. In [32], [27], the issue is handled by soft-constraints,
i.e., by introducing an additional penalty term into the
objective function that corresponds to a constraint violation.
This requires the constraints to be calibrated more conser-
vatively. An alternative solution is to provide a guarantee
on the recursive feasibility by adding additional “artificial”
constraints [18]. An MPC is called recursively feasible if it
always keeps the states in a region from where the online
optimization problem has a feasible solution. One way to
achieve this is to restrict the states within a pre-computed
robust controlled invariant set [15]. These robust controlled
invariant sets, however, can have a complicated geometry.
Therefore, restricting the states in these sets may introduce
too many state constraints and render the online optimization
problem computationally expensive to solve.

2) Discrete Variable Issue: Another drawback of real-
time MPC is that it is not easy to incorporate discrete (i.e.,
integer) variables in the online optimization formulation.
These integers represent the discrete decisions to be made
at each time of execution. They may be integer numbers of
some selected facilities, or they may come from actuators
that are on-off switches, or continuous actuators that are
limited to operate at several quantized levels. The application
of MPC to such systems requires the solution of a Mixed
Integer Programming (MIP) problem at each time step [6],
[26]. Again, this increases the online computational burden
for the embedded controller.

In this paper, we consider applying real-time MPC to
embedded control problems where both continuous-valued
and discrete-valued control inputs are present. A quadratic
cost function and a linear plant model are used for the MPC.
We formulate a Mixed Integer Quadratic Program (MIQP)
that can be used in the MPC framework, and solve this MIQP
by branch and bound.

Branch and bound is an algorithm design paradigm that is

developed for solving discrete optimization problems [16],
[9]. The paradigm also applies to solving MIQPs. The idea
is to break solving an MIQP down into solving a sequence of
convex Quadratic Programs (QP), called relaxed problems.
Branch and bound is pointed out in [4] to be superior to
other alternative methods when applied to MIQPs, and is
now a standard procedure used for solving MIQPs in many
commercial solvers, e.g., Gurobi [12], CPLEX [8], which
are integrated in MATLAB Hybrid Toolbox and can be
applied to embedded control problems [3]. However, the
time complexity for branch and bound algorithm to solve
an MIQP, in the worst case, still grows exponentially with
the number of discrete variables in the formulation. Since the
computational resources allocated to a real-time MPC need
to match the worst case computational complexity, we need
to reserve considerable resources for computation if global
optimality is pursued. Such high computational demand may
not always be practical in real-time applications. This hence
requires research on reducing or avoiding the high complex-
ity of the branch and bound algorithm, when it is used to
solve the MIQP formulation of a hybrid MPC. For example,
[2] solves an MIQP with the branch and bound method,
where the relaxed problems are solved with a solver tailored
for MPC problems. However, branch and bound heuristics,
one factor that dominates the branch and bound algorithm’s
performance [5], are not considered. In more recent works
like [11], [22], [30] a suboptimal solution is searched without
using a branch and bound algorithm. While the method in
[11] is very specific to piece-wise-affine systems and hence
not directly relevant to the setting in this paper, branch and
bound heuristics can still be combined with the approaches
from [2] and [22] to improve their performance.

In this work, we consider a simple and practical way
of searching for suboptimal solutions with a branch and
bound algorithm, that is, we limit the total number of relaxed
problems to solve. In the rest of the paper, we refer to
this approach as “limited branch and bound”. This approach
will provide an upper bound on the worst case complexity
that is required for each execution. However, it may lead to
termination with no feasible solution unless additional care
is taken. To tackle this problem, we make two main contri-
butions in this paper. First, we develop several branch and
bound heuristics that are tailored for MPC. These heuristics
aim at finding early feasible solutions and hence prevent the
limited branch and bound algorithm from terminating with an
infeasible solution. Secondly, in order to maintain recursive
feasibility of the MPC with limited branch and bound, we
propose to supervise the MPC controller using an invariance
enforcing switching protocol. Such a switching protocol has
the following notable features:
(1) it takes the form of a multi-dimensional lookup table

that describes the sets of recursive feasibility (invari-
ance) guaranteeing inputs;

(2) it can be synthesized using abstraction-based techniques
[29] and is correct-by-construction; the computation for
abstraction and synthesis can be demanding, but is done
offline and feasible for systems with less than 10 states

(with recent developments pushing this number up);
(3) the abstraction-based synthesis framework is able to

handle disturbances and hybrid models with nonlinear
dynamics [24], [31], [21].

Features (1) and (2) indicate that the computational com-
plexity is shifted from online to offline, from time to space.
This hence provides an additional dimension to trade off.
Feature (1) also distinguishes the proposed approach from
[15], where the recursive feasibility is imposed as extra state
constraints rather than control authority constraints as in this
paper. This avoids adding too many state constraints in the
MPC formulation or constructing a complex lookup table as
in explicit MPC literature. Finally, Feature (3) reduces the
occurrence of the feasibility issue due to model mismatch.

The rest of the paper is organized as follows. In Section
II, we introduce the hybrid plant model considered together
with the MPC notation. In Section III, we show how to
formulate the MPC optimization problem as an MIQP. In
Section IV, we solve the MIQP using a limited branch
and bound technique and present some heuristics tuned for
MPC problems. Section V discusses how the MPC can be
supervised with a switching protocol enforcing invariance.
Finally we illustrate the proposed framework with several
numerical examples in Section VI.

II. PLANT AND MPC NOTATIONS

In this work, we consider switched systems of the form:

x(t+ 1) =Aσ(t)x(t) +Bσ(t)u(t) +Kσ(t), (1)

where x ∈ [x, x] ⊆ Rn is the state, u ∈ [u, u] ⊆ Rm is
the continuous control input, and σ ∈ {1, 2, · · · ,M} is the
mode and is determined by the controller. Under a certain
switching mode σ, the dynamics is governed by an affine
system defined by matrices Aσ , Bσ and Kσ . The term Kσ

captures the fact that the system may have different zero-
input equilibria for different switching modes.

We consider designing an MPC controller for the above
system. The length of the prediction horizon is denoted by N .
At time instant t0, we are given the current state x(t0) = xt0
and are to determine a control pair u(t0) and σ(t0). For
this purpose, control sequences u(t0), . . . , u(t0 + N − 1)
and σ(t0), . . . , σ(t0 +N − 1) are determined to optimize a
quadratic cost function:

J =

N−1∑
t=t0

((
x(t+ 1)− xtarg

)T
Q
(
x(t+ 1)− xtarg

)
+
(
u(t)− utarg

)T
R
(
u(t)− utarg

))
, (2)

where Q and R are positive semidefinite matrices, xtarg is the
target state to follow, and utarg is the “cheapest” control, the
distance from which determines the cost of using a control
u. One may also add a penalty term (see Section III-C) in
the cost function to avoid overly frequent mode switching.

III. MPC WITH MIXED INTEGER PROGRAMMING
FORMULATION

In this section, we formulate the MPC problem as an
MIQP.

A. Naive Formulation

In what follows, we give a set of constraints, labeled as
(C1)-(C5), that captures the switched system dynamics in Eq.
(1). We will refer to this formulation as the naive formulation.
This is because the formulation is intuitive but cannot be
solved efficiently without any reformulation.
aσ ∈ {0, 1}, ∀σ, t. (C1)
M∑
σ=1

aσ(t) = 1, ∀t, (C2)

x(t+ 1) =

M∑
σ=1

aσ(t)
(
Aσx(t) +Bσu(t) +Kσ

)
, ∀t,

(C3)
x ≤ x(t) ≤ x, ∀t, (C4)
u ≤ u(t) ≤ u, ∀t, (C5)
x(t0) = xt0 , (C6)

where ∀σ is a short notation for ∀σ ∈ {1, 2, . . . ,M}, and ∀t
for ∀t ∈ {t0, t0 + 1, . . . , t0 +N}. The above formulation is
explained below:
• (C1): Binary variable aσ(t) represents the on-off status

of mode σ at time t, i.e., aσ(t) = 1 if the system is in
mode σ at time t, and aσ(t) = 0 otherwise.
• (C2): Exactly one mode is on at each time instant.
• (C3): At time instant t, the next state x(t+1) is updated

by the dynamics of the only active mode σ , whose
associated aσ(t) is nonzero.
• (C4), (C5): State and control upper/lower bounds.
• (C6): Initial state is equal to xt0 .

Remark 1. Notice that Constraints (C1)-(C5) are imposed
on variables x(t), u(t) and aσ(t). However, Constraint (C3)
contains bilinear terms x(t)aσ(t) and u(t)aσ(t), which break
linearity and make the optimization problem hard.

B. Reformulation

The formulation is modified in this section to obtain an
equivalent problem with only linear constraints. For this
purpose, auxiliary variables xσ(t), uσ(t) are introduced [7].
In particular, replacing bilinear term aσ(t)x(t) by xσ(t) and
aσ(t)u(t) by uσ(t), gives a linear constraint

x(t+ 1) =

M∑
σ=1

(
Aσxσ(t) +Bσuσ(t) + aσKσ

)
, ∀t

(C3
′)

where xσ(t), uσ(t) satisfy

aσ(t)x ≤xσ(t) ≤ aσ(t)x, ∀σ, ∀t, (C4
′)

aσ(t)u ≤uσ(t) ≤ aσ(t)u, ∀σ, ∀t. (C5
′)

Remark 2. When aσ(t) = 0, constraint (C4
′) implies that

xσ(t) = 0; and when aσ(t) = 1, constraint (C4
′) implies

that x ≤ xσ(t) ≤ x. A similar argument applies to constraint
(C5
′) and uσ(t).

The term x(t+1) on the left hand side of constraint (C3
′)

can be replaced by
∑M
σ=1 xσ(t + 1). Similarly, the control

sequence u(t) can be reconstructed from uσ(t), i.e., u(t) =

∑M
σ=1 uσ(t). Finally, the initial condition can be enforced

by
M∑
σ=1

xσ(t0) = xt0 . (C6
′)

C. Penalty on Switching

We add a term to cost J to penalize switching, i.e.,
changing of the modes:

Jσ =

t0+N−1∑
t=t0

M∑
σ=1

ct|aσ(t)− aσ(t− 1)|, (3)

where ct is a weighting coefficient that may vary with time t,
and aσ(t0−1) is also a parameter, whose value is determined
by the mode selected at the last execution.

D. Overall Formulation

In summary, the optimization problem to solve at each
execution of MPC is formulated as follows:

min J + Jσ
s.t. (C1), (C2), (C3

′), (C4
′), (C5

′), (C6
′). (4)

In the optimization problem defined by Eq. (4), the objective
is quadratic1, the constraints are all linear and with both
continuous-valued variables xσ(t) uσ(t) and binary variables
aσ(t). The formulation is hence an MIQP.

IV. SOLVING MIQP USING BRANCH AND BOUND

In this section, we develop several branch and bound
heuristics to solve the MIQP corresponding to the MPC
problem.

A. Pseudo Code

The formal description of branch and bound algorithm is
given by the following pseudo code named BRANCHAND-
BOUND. This pseudo code is adopted from the one given
by [14], with three minor modifications. First, we prune the
“useless” branches (line 20) and mark the fully explored
branches (line 12). Secondly, we explicitly update the candi-
date optimal solution w∗ (line 18). Thirdly, each branch can
generate more than two sub-problems (line 25). The proce-
dure calls several sub-procedures, including LOWERBOUND,
UPPERBOUND, BRANCH and PRUNE. These procedures are
defined later in this part. Finally, the boxes mark the lines
that involve the heuristics.

1: procedure [J∗, w∗] = BRANCHANDBOUND(MIQP0)
2: L = {MIQP0}
3: MIQP0.status = {unknown, unexplored}
4: LB = 0

5: UB = +∞
6: while UB − LB ≥ ε do
7: Pick MIQPi ∈ L that is unexplored
8: [lbi, vi] = LOWERBOUND(MIQPi)
9: [ubi, wi] = UPPERBOUND(MIQPi, vi)

10: (Rounding Heuristic)

1The absolute values in Eq. (3) can be transformed into linear terms with
standard techniques by introducing additional variables.

11: if ubi − lbi < ε then
12: MIQPi.status = {known, explored}
13: else
14: MIQPi.status = {unknown, explored}
15: end if
16: if ubi < UB then
17: UB = ubi
18: w∗ = wi
19: end if
20: L = PRUNE(L, UB)
21: LB = minMIQP`∈L lb`
22: if All problems in L are explored then
23: Pick MIQPj ∈ L that is unknown
24: (Diving Heuristic)
25: [MIQPj1, . . . ,MIQPjK] = BRANCH(MIQPj)
26: (Branching Heuristic)
27: L = L ∪ {MIQPj1, . . . ,MIQPjK}
28: MIQPjk.status = {unknown, unexplored}
29: for k = 1, . . . ,K

30: end if
31: end while
32: J∗ = UB

33: return J∗, w∗

34: end procedure
Procedure LOWERBOUND(MIQPi) approximates the

lower bound of the minimum cost of the program MIQPi
by solving its relaxed problem QPi. Quadratic program QPi
is obtained by replacing each binary variable in MIQPi with
a real variable in the interval [0,1]. This step returns the
relaxed solution vi and the cost lbi of QPi which is a lower
bound of the minimum cost of MIQPi.
Remark 3. It is worth emphasizing that the subproblems QPi
have a fixed structure, therefore, amenable to specialized fast
embedded solvers [19].

Procedure UPPERBOUND(MIQPi, vi) approximates the
upper bound of the minimum cost of MIQPi. The relaxed
solution vi is rounded to give a feasible solution wi to
MIQPi. We will refer to the rounding approach as the
rounding heuristic. The approximated upper bound is then
given by plugging wi into the cost function in Eq. (2). If
no feasible solution wi is found, +∞ is returned as a trivial
upper bound.

Procedure BRANCH(MIQPj) breaks MIQPj down into
K sub-problems, MIQPj1, . . . ,MIQPjK . The feasible set of
MIQPj is equal to the union of those of MIQPj1 through
MIQPiK . We will refer to the procedure splitting the feasible
set as the branching heuristic.

Procedure PRUNE(L, UB) removes from list L the sub-
problems that do not contribute to finding the tightest global
lower bound LB. Particularly, a sub-problem MIQP` can be
removed in the following two situations. First, all the children
of MIQP` have already been explored, i.e., upper and lower
bounded. In this case, the lower bound lb` is conservative
(i.e., smaller) compared to the smallest lower bound given
by its children. Hence it can be removed from list L, i.e.,
replaced by its children. The second possible situation is that
lb` > UB. This indicates that the current candidate solution

w∗ associated with the current bound UB gives a cost that is
lower than any of MIQP`’s relaxed solutions. Hence MIQP`
will not contribute to the global minimum cost, and can be
removed from the list L even if it is not branched yet.

B. Heursitics

This section describes the proposed heuristics, suitable
for embedded MPC applications. Three types of heuristics,
marked using boxes in the pseudo code, are necessary. We
will present several options (denoted in italic) for these
heuristics and indicate the heuristics implemented in bold.

1) Diving Heursitics: Whenever all the problems in list L
are explored yet global convergence is not reached, we need
to pick a sub-problem from the list L and split it into smaller
sub-problems. This heuristic determines which sub-problem
to pick. In [14], the heuristic is designed in such a way that
the sub-problem with the smallest lower bound is picked.
This heuristic is known as “greedy-best-first” heuristic, and
it aims to dive faster by picking the most “promising” leaf
to branch.

2) Rounding Heursitics: In procedure UPPERBOUND, we
need to round the solution of a relaxed problem to get a
solution that is feasible for MIQPi. This heuristic determines
how to do the rounding.

An infeasible rounded solution gives +∞ as upper bound
(see procedure UPPERBOUND). Improperly rounded solution
hence delays the termination of procedure BRANCHAND-
BOUND. The rounding heuristics related to finding an early
feasible solution is referred to as start heuristics [13]. Sec-
ondly, the solution should be rounded towards the optimal
solution to rapidly reduce the global upper bound UB, and
hence the termination of procedure BRANCHANDBOUND.

The most naive rounding is to round aσ(t) to 1 iff aσ(t) ≥
0.5 in the relaxed solution [5]. However, such naive rounding
completely omits the constraint

∑M
σ=1 aσ = 1. With this

constraint, it is more natural to leverage the solution of the
relaxed problem and round its largest aσ(t) to one and the
rest to zero.

𝑎𝑎𝜎𝜎1 𝑡𝑡 : 0.4 0.36 0.32 0.27 0.25 0.1

𝑎𝑎𝜎𝜎2 𝑡𝑡 : 0.3 0.34 0.37 0.4 0.55 0.7

𝑎𝑎𝜎𝜎3 𝑡𝑡 : 0.3 0.3 0.31 0.33 0.2 0.2

1 1 0 0 0 0

0 0 1 1 1 1

0 0 0 0 0 0

round

𝑡𝑡 = 0, 1, 2 … , 5

Fig. 1: Illustration: max-aσ rounding heuristic without cooperating
with the feasibility.

The idea is illustrated with an example in Figure 1.
To maintain feasibility after the rounding, we have two
alternatives:

i) We extract a sequence of switching modes by rounding
the part of the solution that is supposed to be integer-
valued before relaxation, and retain the continuous-
valued variables that represent the continuous con-
trol input. While this solution may violate the state
or output constraints, the computational impact for
this method is just generating the trajectory given the
rounded solution wi using dynamics.

ii) An alternative is to re-optimize the continuous-valued
control inputs under the new switching sequence defined
by the rounded solution. The drawback is that this
requires to solve another QP, which lives at the bottom
level of the decision tree.

A drawback of the max-aσ rounding method is that if
the states are close to their bounds, the switching sequence
determined by the rounded solution may steer the trajectory
outside the bounds. This leads to an infeasible rounded
solution and hence delays the termination of procedure
BRANCHANDBOUND. The issue is particularly significant
when the number of modes is greater than 2, and when the
relaxed solution does not show any particular preference to a
certain mode. In this situation, the fractional values of aσ in
the relaxed solution are evenly distributed over σ. A relaxed
solution like this suggests that a “fractional combination” of
several different modes is required for the state to stay within
its bounds. If we pick the mode σ with largest aσ(t), we are
then ignoring the effect of other modes in the combination
and this might be too aggressive.

If we have considerable continuous control authority,
e.g., u, u are loose, the issue can be solved by re-optimizing
the continuous control to achieve feasibility. To protect for
the conditions where we do not have enough continuous
control authority, we propose a new rounding heuristic,
called “feasible-max-aσ” rounding, with the following
pseudo code:

1: procedure wi = ROUND(vi, MIQPi)
2: Extract aσ(t), u(t) for t = 1, . . . , N − 1 from relaxed

solution vi
3: Get x(0), x, x, Aσ , Bσ , Kσ from formulation MIQPi
4: for t = 0 to N − 1 do
5: σ∗ = argmaxσaσ(t)
6: s.t. Aσx(t) +Bσu(t) +Kσ ∈ [x, x]

7: x(t+ 1) = Aσx(t) +Bσu(t) +Kσ

8: ãσ∗ = 1 and ãσ = 0 for all σ 6= σ∗

9: end for
10: QP′i = quadratic programming obtained by setting aσ(t) =
ãσ(t) in MIQPi

11: Solve QP′i
12: wi = optimal solution to QP′i
13: end procedure

The idea is to combine approach i) and ii) and the max-
aσ rounding criteria. At each time t, we start with rounding
aσ(t) by setting the largest aσ(t) to one and the rest to zero.
We then regenerate the next state x(t+ 1) under the modes
determined by the rounded aσ(t) and check if the x(t + 1)
stays inside the state bounds [x, x] (line 5). If not, then we
switch to the mode with the second largest aσ(t), etc. We
proceed until a sequence of binary variables ãσ is obtained
under which the trajectory stays in bounds within the entire
horizon. The intuition behind this heuristic is that, when
several modes are combined to generate a next state staying
within the bounds, selecting the “strongest” mode might be
too aggressive. In these cases, the other modes, e.g., the one
with the second or third largest aσ(t), are “balancing” this

aggressive mode. Picking these other modes is more likely
to lead to a feasible trajectory.

3) Branching Heuristic: In procedure BRANCH, we di-
vide the feasible region of a problem MIQPj to obtain mul-
tiple sub-problems MIQPj1, . . . ,MIQPjK , whose feasible
regions form a partition of that of MIQPj . This heuristic
determines how to form the new feasible regions and gener-
ates these new sub-problem MIQPjk’s.

For an MPC problem where M modes are at choice at
each time, we generate M sub-problems at once. This can
be done by setting one of the aσ(t)’s to be one and the
rest to be zero. We refer to this heuristic as M -branching
heuristic. This heuristic is different from the 2-branching
heuristic commonly used in branch and bound for solving
general mixed binary programs, which only creates two new
sub-problems by setting one binary variable to be either zero
or one. To determine mode σ(t) at time t in the prediction
horizon, the 2-branching heuristic may create 2M − 2 sub-
problems to solve in the worst case, while the former one
always creates M sub-problems.

V. MPC SUPERVISED BY CORRECT-BY-CONSTRUCTION
SWITCHING PROTOCOL

The methodology presented so far is henceforth called
“unsupervised MPC”. The heuristics developed in the pre-
vious section cannot guarantee recursive feasibility due to
model mismatch or due to their greedy nature. Moreover,
with the online optimization solved by a limited branch and
bound algorithm, the chances of losing feasibility increase.
Later in Section VI we will show a scenario where the
unsupervised MPC violates a state constraint. To avoid this
scenario, we propose to supervise an MPC controller by an
invariance enforcing switching protocol that is correct-by-
construction. The supervisor can guarantee recursive feasi-
bility and account for the effect of model mismatch to some
extent2.

A switching protocol enforcing invariance can be syn-
thesized offline, using abstraction-based techniques [29].
Moreover, such techniques can be used to extract the set of
all allowable switching actions for a given state that will
guarantee invariance [24], [23]. We propose to save this
action set as a lookup table in the microprocessor. The lookup
table is based on a partition of the state space and is used to
generate constraints for MPC to ensure recursive feasibility.
In particular, within each region R of the partition, there is
(1) a set Σ(R) of modes,
(2) a collection of sets U(R, σ) of continuous controls, one

for each σ ∈ Σ(R).
We call these actions invariance actions of region R. This is
because the set S =

⋃
R:Σ(R)6=∅R is controlled invariant as

long as one applies mode σ ∈ Σ(R) and control u ∈ U(R, σ)
in region R. During execution, when the current state x(t0)
is in a certain region R

(
x(t0)

)
, the corresponding invariance

actions are imposed as control constraints on u(t0) and

2If the model used for supervisor synthesis is exact, then the effect of
model mismatch is eliminated by the provable correctness of the supervisor.
However, there could always be unmodeled dynamics.

σ(t0) in the MPC formulation. That is, we restrict σ(t0) ∈
Σ
(
R(x

(
t0)
))

and u(t0) ∈ U
(
R
(
x(t0)

)
, σ(t0)

)
Notice that

it is sufficient to impose the constraints only for the first
control actions, which will be carried out by MPC in practice.

The main technical challenge is to find proper continuous
control action sets U(R, σ). In abstraction-based synthesis,
the continuous controls are quantized and the system is
treated as a pure switched system. This means the obtained
invariance action sets U(R, σ) consists of only finitely many
isolated points. Such sets are not favored in the MPC
formulation where u(t0) ∈ U

(
R
(
x(t0)

)
, σ(t0)

)
is imposed

as a constraint, as described in the previous paragraph.
This constraint wastes continuous control authority while
introducing more discrete variables in the MPC formulation.
To tackle this problem, we introduce a quantization error ε
during switching protocol synthesis so that the solution is
robust to quantization errors:

(σ, u) is an invariance pair ⇒
(σ, ũ) is an invariance pair, ∀||ũ− u|| ≤ ε. (5)

This allows us to merge the sets of ũ’s into a connected
region. Then the largest rectangular subset of that connected
region is selected to simplify the induced control authority
constraint.

Remark 1: The lookup tables discussed in this section
should not be confused with the lookup tables used in explicit
MPC literature. First, our lookup tables store switching
actions guaranteeing recursive feasibility, which are used to
define constraints for the QPs solved online. The construction
of these lookup tables is totally independent of the objective
functions in QPs. Secondly, our lookup tables usually only
consist of rectangular partitions as opposed to complex
polytopic partitions in explicit MPC, therefore they are easier
to use at run-time. For example, in the five dimensional fuel
cell thermal control system in Example 1 in Table I (see also
[31]), the size of the lookup table (partition) constructed is
approximately 3000, and it is relatively simple to access each
piece in the partition as they are rectangular.

VI. NUMERICAL EXAMPLE

In this section, we provide several examples to illustrate
the usefulness of the proposed approach. In part VI-A,
we benchmark the feasible-max-aσ rounding heuristic with
several examples, and illustrate that it eases the feasibility
issue when the MPC is solved with limited branch and
bound, by finding a feasible solution as early as possible.
In part VI-B, we give an example where the unsupervised
MPC violates a state constraint, and this violation can be
avoided by the proposed supervision approach.

A. Branch and Bound Heuristic

We benchmark the feasible-max-aσ rounding heuristics
with three examples. Example 1 is a fuel cell thermal
management problem adopted from [31]. Examples 2, 3
are numerical examples. The relaxed problems are solved
using a custom solver generated by CVXGEN [19]. Table I

compares the naive, max-aσ and feasible-max-aσ rounding
heuristics respectively, by presenting the average number
and worst case number of QPs solved (i) to achieve global
optimality and (ii) to find the first feasible solution. We also
compare with a simple branch and bound solver implemented
in YALMIP [17]. Notice that the number of QPs (i.e., relaxed
problems) to solve is directly related to the computation
time. Here we do not compare the time directly as the QPs
are solved with general purpose solvers in YALMIP, hence
comparison of time is not meaningful.

It can be seen from TABLE I that our branch and bound
implementation has better average performance than and
comparable worst case performance with respect to the
YALMIP branch and bound solver. Meanwhile, our branch
and bound with feasible-max-aσ rounding outperforms other
heuristics and solvers in terms of finding early feasible
solutions. This suggests that the feasible-max-aσ rounding
can be useful when we limit the total number of QPs to solve
in branch and bound, which is important in real-time applica-
tions because it upper bounds the worst case computational
complexity. With restrictions on computational budget, the
feasible-max-aσ(t) rounding can prevent termination with
no feasible solution. Fig. 2 shows the plot of sub-optimal
cost versus the max allowable number of QPs to solve in
branch and bound, under the max-aσ and the feasible-max-
aσ rounding heuristics. The curve is Pareto-like because the
cost of the sub-optimal solution at the termination will drop
if more relaxed problems are allowed to be solved. In case no
feasible solution is found at termination, the cost is infinity.
In this example, both rounding heuristics give exactly the
same average and max number of QPs to solve for global
optimality. However, the feasible-max-aσ rounding heuristic
gives a feasible solution after solving only 2 QPs, while max-
aσ rounding finds the first feasible solution after solving over
20 QPs.

0 5010 20 30 40
Limited number of QPs to solve

1.1369

15

30

45

60

75

90

105

120

A
ve

ra
ge

 c
os

t J

+

pareto curve (feasible max-a)

pareto curve (max-a)

average minimum cost

Fig. 2: Pareto-like curve: the average cost versus the limited number
of QP’s to solve.

B. Supervised MPC

The following example shows the necessity of the MPC
supervision. Consider a switched linear system with three
modes: ẋ = Aσx+Bσu+Kσ, σ ∈ {1, 2, 3}, where x ∈ R2,

TABLE I: Average and maximum number of relaxed problems solved to achieve global optimality under different rounding heuristics for
problems with different n (dimension of state x), m (dimension of continuous control u), M (number of modes σ), and N (length of
prediction horizon).

Problem Size Rounding Heuristics
YALMIP
B&Bn m M N naive max-aσ

feasible-
max-aσ

Example 1
(fuel cell [31]) 5 3 3 9

180.06 179.98 179.98 ≥ 2000 average #QPs solved global optimal sol1760 1760 1760 ≥ 2000 max #QPs solved
25.1579 8.6842 3.0175 15.13 average #QPs solved

1st feasible sol1454 26 14 44 max #QPs solved

Example 2 2 1 4 8

44. 94 44. 94 44. 94 58.42 average #QPs solved global optimal sol66 66 66 64 max #QPs solved
38.13 14.39 2 18.74 average #QPs solved

1st feasible sol58 50 2 21 max #QPs solved

Example 3 2 1 3 8

1244.90 1244.90 1244.90 ≥ 5000 average #QPs solved global optimal sol3440 3440 3440 ≥ 5000 max #QPs solved
323.50 41.58 2 17.29 average #QPs solved

1st feasible sol1526 278 2 56 max #QPs solved

u ∈ R and

A1 =

[
0 1
−1 −1

]
, B1 =

[
0
1

]
,K1 =

[
0
0

]
,

A2 =

[
0 1
0 −1

]
, B2 =

[
0
0

]
,K2 =

[
0
2

]
,

A3 =

[
0 1
−1 0

]
, B3 =

[
0
1

]
.K3 =

[
0
−1

]
. (6)

The control objective is to steer state x1 to 0 from the
positive side, i.e., x1 ≥ 0 holds. The continuous control u
satisfies −1 ≤ u ≤ 1.

The model captures the dynamics of a spring-mass-damper
system. For σ = 1, we have a damped oscillator with
equilibrium at the origin. Since the sate should not be in
the left half plane due to the state constraint x1 ≥ 0, mode 1
itself is insufficient to reach the equilibrium unless u required
is small. When in mode σ = 2, only a constant force is
applied to the damper for acceleration. Under mode σ = 3,
the damper is disconnected while the spring is connected and
the equilibrium is shifted.

The supervised and unsupervised MPC are designed for
this system with sampling period 0.1s. The prediction hori-
zon is 8 samples, which is selected to be short to reduce
computation burden. Fig. 3 (left) shows the obtained switch-
ing protocol used for MPC supervision. The colored region
is the obtained controlled invariant set. In each region, the
allowable modes are plotted with a different color, and the
continuous controls are upper and lower bounded to guar-
antee invariance. If (i) the state is initiated in the controlled
invariant set, (ii) only the allowable discrete actions at that
state are selected, and (iii) the continuous control obeys the
upper and lower bounds, then the next state is guaranteed to
stay in the controlled invariant set. The other two plots in
Fig. 3 show the phase portrait of the closed-loop trajectories
under the supervised (middle) and the unsupervised MPC
(right). The zero-input (i.e., u = 0) vector fields of the three
modes are plotted using different colors, and the closed-
loop trajectories are plotted with a similar color whenever
the dynamics is governed by the corresponding mode. The
red dashed line marks the target x1 = 0. The trajectory
of the supervised MPC stays within the colored region

and converges to x1 = 0 from positive side, while the
unsupervised trajectory violates the constraint x1 ≥ 0 on
its way to the target. The simulation results are shown in
Fig. 4 and these plots illustrate why the unsupervised MPC
violates the state constraint. It can be seen that state x1

converges to 0 faster (hence the cost J drops faster) under
the unsupervised MPC. This suggests that the unsupervised
MPC is “short sighted”, in the sense that it tries to reach the
target faster speed without considering recursive feasibility.
Consequently, it leads to a state starting from where it is
inevitable for state x1 to drop below 0, which violates the
state constraint x1 ≥ 0.

VII. CONCLUSIONS

In this paper, we considered MPC problems for systems
with discrete actuators. For embedded applications, solving
MPC problems fast is crucial. In order to limit the computa-
tion time, we proposed several branch and bound heuristics
by taking into account the special structure of the MIQP
problems resulting from the MPC framework. However fast
solutions with limited branch and bound are often greedier
and more susceptible to infeasibility. In order to eliminate
potential infeasibility problems, we used the input constraints
from an invariance enforcing switching protocol to supervise
the MPC controller. Our framework provides a means to
combine numerical objectives in MPC with infinite horizon
safety guarantees from a correct-by-construction controller.

REFERENCES

[1] Honeywell OnRAMP website: http://www.honeywellonramp.com.
[2] D. Axehill and A. Hansson. A mixed integer dual quadratic program-

ming algorithm tailored for mpc. In Decision and Control, 2006 45th
IEEE Conference on, pages 5693–5698. IEEE, 2006.

[3] A. Bemporad. Hybrid toolbox–user’s guide. 2003.
[4] A. Bemporad and M. Morari. Control of systems integrating logic,

dynamics, and constraints. Automatica, 35(3):407–427, 1999.
[5] T. Berthold. Primal heuristics for mixed integer programs. 2006.
[6] E. F. Camacho, D. R. Ramı́rez, D. Limón, D. M. De La Peña, and

T. Alamo. Model predictive control techniques for hybrid systems.
Annual reviews in control, 34(1):21–31, 2010.

[7] Y. Cheng, Y. Wang, M. Sznaier, N. Ozay, and C. Lagoa. A convex
optimization approach to model (in) validation of switched arx systems
with unknown switches. In Decision and Control (CDC), 2012 IEEE
51st Annual Conference on, pages 6284–6290. IEEE, 2012.

-1 1 3 5 7 9

x
1

-9

-7

-5

-3

-1

1

3

5

7

9

x 2

-1 1111 3

x
1

-9

-7

-5

-3

-1

1

3

5

7

9

x 2

9

7

5

3

1

-1

-3

-5

-7

-9

-1 1 3 5 7 9

x
1

x 2

 = {1}

 = {2}

 = {3}

 = {1,2}

 = {1,3}

 = {2,3}

 = {1,2,3}

Fig. 3: Switching protocol for MPC supervision (left), phase portrait of closed-loop system: supervised (middle) and unsupervised (right).

Fig. 4: Simulation: supervised MPC versus unsupervised MPC.

[8] I. I. CPLEX. V12. 1: Users manual for cplex. International Business
Machines Corporation, 46(53):157, 2009.

[9] R. J. Dakin. A tree-search algorithm for mixed integer programming
problems. The computer journal, 8(3):250–255, 1965.

[10] H. J. Ferreau, S. Almér, H. Peyrl, J. L. Jerez, and A. Domahidi. Survey
of industrial applications of embedded model predictive control. In
Control Conference (ECC), 2016 European, pages 601–601. IEEE,
2016.

[11] D. Frick, A. Georghiou, J. L. Jerez, A. Domahidi, and M. Morari.
Low-complexity method for hybrid mpc with local guarantees. arXiv
preprint arXiv:1609.02819, 2016.

[12] I. Gurobi Optimization. Gurobi optimizer reference manual. URL
http://www. gurobi. com, 2015.

[13] G. Hendel. New rounding and propagation heuristics for mixed integer
programming. 2011.

[14] T. Kashima and S. P. Boyd. Cost optimal operation of thermal energy
storage system with real-time prices. In Control, Automation and
Information Sciences (ICCAIS), 2013 International Conference on,
pages 233–237. IEEE, 2013.

[15] E. C. Kerrigan. Robust constraint satisfaction: Invariant sets and
predictive control. PhD thesis, Citeseer, 2001.

[16] A. H. Land and A. G. Doig. An automatic method of solving discrete
programming problems. Econometrica: Journal of the Econometric
Society, pages 497–520, 1960.

[17] J. Lofberg. Yalmip: A toolbox for modeling and optimization in
matlab. In Computer Aided Control Systems Design, 2004 IEEE
International Symposium on, pages 284–289. IEEE, 2004.

[18] J. Löfberg. Oops! I cannot do it again: Testing for recursive feasibility
in mpc. Automatica, 48(3):550–555, 2012.

[19] J. Mattingley and S. Boyd. CVXGEN: A code generator for embedded
convex optimization. Optimization and Engineering, 13(1):1–27, 2012.

[20] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert. Con-
strained model predictive control: Stability and optimality. Automatica,
36(6):789–814, 2000.

[21] T. Moor and J. Raisch. Abstraction based supervisory controller
synthesis for high order monotone continuous systems. In Modelling,
Analysis, and Design of Hybrid Systems, pages 247–265. Springer,
2002.

[22] V. V. Naik and A. Bemporad. Embedded mixed-integer quadratic
optimization using accelerated dual gradient projection. IFAC-
PapersOnLine, 50(1):10723–10728, 2017.

[23] P. Nilsson and N. Ozay. Incremental synthesis of switching protocols
via abstraction refinement. In Proc. of IEEE CDC, pages 6246–6253,
2014.

[24] N. Ozay, J. Liu, P. Prabhakar, and R. Murray. Computing augmented
finite transition systems to synthesize switching protocols for polyno-
mial switched systems. In Proc. of ACC, pages 6237–6244, 2013.

[25] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive
control technology. Control engineering practice, 11(7):733–764,
2003.

[26] A. Richards and J. How. Mixed-integer programming for control. In
American Control Conference, 2005. Proceedings of the 2005, pages
2676–2683. IEEE, 2005.

[27] N. Ricker, T. Subrahmanian, and T. Sim. Case studies of model-
predictive control in pulp and paper production. In Proceedings of the
1988 IFAC Workshop on Model Based Process Control, pages 13–22,
1989.

[28] P. O. Scokaert and J. B. Rawlings. Feasibility issues in linear model
predictive control. AIChE Journal, 45(8):1649–1659, 1999.

[29] P. Tabuada. Verification and control of hybrid systems: a symbolic
approach. Springer, 2009.

[30] R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad. A simple ef-
fective heuristic for embedded mixed-integer quadratic programming.
International Journal of Control, pages 1–11, 2017.

[31] L. Yang, A. Karnik, B. Pence, M. T. B. Waez, and N. Ozay.
Fuel cell thermal management: Modeling, specifications and correct-
byconstruction control synthesis. In Proceedings of American Control
Conference, 2017.

[32] A. Zheng and M. Morari. Stability of model predictive control
with mixed constraints. IEEE Transactions on Automatic Control,
40(10):1818–1823, 1995.

	Introduction
	Feasibility Issue
	Discrete Variable Issue

	Plant and MPC Notations
	MPC with Mixed Integer Programming Formulation
	Naive Formulation
	Reformulation
	Penalty on Switching
	Overall Formulation

	Solving MIQP Using Branch and Bound
	Pseudo Code
	Heursitics
	Diving Heursitics
	Rounding Heursitics
	Branching Heuristic

	MPC supervised by Correct-by-construction Switching Protocol
	Numerical Example
	Branch and Bound Heuristic
	Supervised MPC

	Conclusions
	References

