
Fuel Cell Thermal Management: Modeling, Specifications and
Correct-by-Construction Control Synthesis

Liren Yang, Amey Karnik, Benjamin Pence, Md Tawhid Bin Waez, Necmiye Ozay

Abstract— The safe and efficient operation of fuel cells
requires thermal management. The goal of this paper is to
algorithmically synthesize a provably correct controller for a
fuel cell thermal management system. We begin by developing
a control-oriented model for the thermal management system
of a fuel cell stack. Then, we list the requirements associated
with thermal management and formalize them using linear
temporal logic. The model and the requirements are then used
for controller synthesis with an abstraction-based technique. To
make the abstraction-based synthesis algorithm computation-
ally efficient, some structural properties of the fuel cell system
dynamics are identified and leveraged. Finally, the closed-loop
system behavior with the synthesized controller is demonstrated
via simulations.

I. INTRODUCTION

Fuel cells are electrochemical devices that convert chem-
ical energy of gaseous fuel (i.e., hydrogen) into electricity
[15]. In a fuel cell stack, the electrochemical reaction of
oxygen and hydrogen generates electrical power, while heat
and water are produced as by-products. In this work, we
focus on developing the thermal management portion of the
controller, which guarantees that the fuel cell operates in a
proper temperature range (340K to 350K), for safety and
efficiency considerations [7].

A simplified schematic of the fuel cell thermal manage-
ment system is shown in Fig. 1. The two main factors
that affect the heat supplied or removed from the fuel cell
stack, and hence the stack temperature, are the stack coolant
inlet temperature and the coolant flow-rate. The coolant flow
rate is controlled by an electric pump, while the coolant
inlet temperature is regulated by appropriately flowing the
coolant through a radiator or a heater, where the flow path is
selected by a 2-position 3-way valve, thus making the system
dynamics hybrid in nature.

The electrical power requirements have a direct influ-
ence on thermal management, some aspects of which are
studied in [5], [9]. First, the power requirements by the
motor and the fuel cell temperature constraint need to be
met simultaneously through system hybridization, that is,
through appropriate power management between the fuel
cell stack and an energy storage device. Since the heat
generated in the stack increases with increasing fuel cell

LY and NO are with the Dept. of Electrical Engineering and
Computer Science, Univ. of Michigan, Ann Arbor, MI 48109, USA
yliren,necmiye@umich.edu. BP is with the Dept. of Me-
chanical and Civil Engineering, Brigham Young University, Rexburg,
ID 83460, USA penceb@byui.edu. AK and MTBW are with
Ford Research & Advanced Engineering, Dearborn, MI 48121, USA
akarnik,mwaez@ford.com. This work is supported by Ford Motor
Co.

Fig. 1: Layout of the fuel cell thermal management system. The
arrows in the circuit represent the direction of coolant flows.

output power, the stack temperature may exceed the desired
range while the fuel cell tries to match its output power with
the instantaneous power request from the motor. Hence, a
battery is introduced to “moderate” the power generated by
the fuel cell. In addition, power requirements from the heater
when used for warm-up under cold conditions also affect
power management. In this paper, we provide some of the
key requirements for fuel cell thermal management in the
presence of battery state of charge energy constraints. These
requirements are evaluated in the situation where the ambient
temperature is near 283K, where the fuel cell stack loses
significant heat to the ambient due to the large temperature
gradient.

In works such as [5], [9], requirements due to both power
management and thermal management are considered in the
controller design. The design approaches in these works
are based on optimal control, where the requirements are
combined into one objective function and the controller is
developed by solving an optimal control problem with the
combined objective function. The correctness of the designed
controllers need to be verified by running a large number of
tests.

In this paper we propose to synthesize a controller for
the fuel cell thermal management system using abstraction-
based formal synthesis techniques. Such techniques allow
us to algorithmically generate a controller that is correct-
by-construction, meaning the closed-loop system can be
proved to satisfy a given specification, typically expressed in
temporal logic. The idea is to create a discrete graph structure
(abstraction) that captures some key properties of the given
continuous state space dynamics (concrete system) and to
solve the control problem on this abstraction by leveraging

fixed-point algorithms on graphs [17]. The main advantage
of such approaches is that they avoid validating the obtained
controller with exhaustive Monte-Carlo simulations, as the
constructed solution is provably correct by construction
(i.e., the closed-loop system is guaranteed to satisfy the
specification) and the domain of validity of the controller is
clearly marked. Additionally, these techniques are especially
good at handling discrete actuators and hybrid dynamics:
while providing correctness guarantees directly is known to
be difficult for hybrid systems in general, the problem on the
abstraction already has a more standard solution [17].

However, there are two main challenges in applying the
existing abstraction-based synthesis techniques to the fuel
cell thermal management problem. The first challenge is
that computing abstractions for general nonlinear systems is
expensive. In the fuel cell thermal system considered in this
work, the system states and inputs are coupled in a highly
nonlinear way due to the complex electrochemical reactions
in the fuel cell. Hence, we need to exploit the structural
properties, if any, of the system dynamics to mitigate the
computational burden in computing the abstraction. The
second challenge is that an abstraction may contain more
behaviors than the underlying concrete system. These extra
behaviors are spurious and render the synthesized controller
conservative. It has been shown in [12], [16], [11] that some
spurious behaviors can be removed by introducing a notion
called progress groups, which capture extra transience prop-
erties of the underlying concrete system and enforce those
transience properties onto the abstraction during synthesis.
The scalability of the progress group computation, however,
is not satisfactory when the abstraction contains a large
number of control actions that come from discretizing the
continuous control inputs of the concrete system. This scal-
ability issue hence prevents us from applying the available
abstraction-based synthesis techniques to fuel cell thermal
management problem.

To overcome these two challenges, we extend the existing
techniques in two directions. First, we prove that the fuel
cell thermal management system is mixed monotone, and
leverage this system property to ease the abstraction process.
Second, we introduce the key notion of multi-action state-
dependent progress groups, which capture a richer set of tran-
sience properties of the system under different controls, and
can be used to eliminate some of the spurious behaviors from
the abstraction. This new notion of multi-action progress
groups improves the scalability of the synthesis procedure
whenever the abstraction contains a large number of control
actions.

The conference version of this paper has previously ap-
peared as [21]. In this paper, in addition to providing a more
comprehensive exposition of the problem and the solution
approach, the conference version is extended in two ways.
First, we consider a more complete set of requirements by
considering the battery state of charge (SOC) recurrence
specification, which was omitted in the early paper. Secondly,
we present the pseudo code for the synthesis algorithm and
give more details for computing multi-action state-dependent

progress groups.
Fig. 2 summarizes the methodology used in this paper. For

modeling, we adopt the fuel cell stack thermal model devel-
oped in [13] and enhance it using radiator and heater model
components. For specifications, we include requirements
regarding temperature targets, energy management as well
as requirements for battery SOC, and formally express them
in linear temporal logic (LTL). The model and specifications
are further analyzed to develop a formally correct switching
controller using abstraction-based synthesis.

Computing Transition
(Section V−A−3)

Discretization
(Section V−A−1)

Specifications (Section III)

Switching Controller

Process: Synthesis
(Section V−B)

Process:
Abstraction
(Section V−A)

Output: (Section VII)

Abstraction
without labeling

Abstraction
with labeling

Labeling
(Section V−A−2)

Input: Control problem (Section IV)
Plant model (Section II)

Fig. 2: Methodology and paper organization.

II. FUEL CELL MODEL

A block diagram of the fuel cell thermal management
system is shown in Fig. 3. The solid lines (red) are temper-
ature signals, the dotted lines (purple) are power signals, the
dashed lines (blue) are battery SOC signals, and the thinner
solid lines (black) are control/reference input signals. The
physical meanings of the variables in Fig. 3 can be found in
Appendix A. Other operating conditions (such as hydrogen
and oxygen partial pressure, ambient temperature, vehicle
speed) that affect system dynamics are not included in the
block diagram for simplicity.

In what follows, we give the formulas describing each
block in Fig. 3.

A. Fuel Cell Power Generation

The fuel cell stack output power and generated heat are
computed using the formulas developed in [13],

PFC,output = iAGEFC,stack, (1)

PFC,self−heat = iAG
∆hrxn

2F
nFC,cell − PFC,output, (2)

Fuel cell power
generation

Fuel cell block
temperature

dynamics

Radiator
dynamics

Battery
dynamics

Heater

𝑖

𝑤cool
𝑇1, 𝑇2

𝑇avg 𝑃FC,self-heat-up

𝑇FC,in,cool

𝑇R,in,cool

Power split
module

𝑃H

𝑃M

𝑃FC,output

𝑃M

𝑃B,output

𝑇H,in,cool

u
𝑇FC,out,cool

Fuel cell
dynamics

dynamics

𝑃H 𝑆𝑂𝐶B

HR

(reference)

(reference)

Fig. 3: Block diagram of the fuel cell thermal management system.

and

EFC,stack = nFC,cell

(
∆hrxn

2F
− Tavg

∆srxn

2F

+
RTavg

2F
ln

(
pH2

Pref

(pO2

Pref

) 1
2

)
− RTavg

αF
ln
(i+ ix

i0

)
−iRΩ − aMT(

i

iMT
)bMT

)
, (3)

where ∆hrxn

2F and Tavg
∆srxn

2F correspond to the effect of
enthalpies and entropies, iRΩ describes Ohmic loss due to
cell resistivity, and aMT(i

iMT
)bMT describes potential loss

caused by mass transport limitations. The variables hrxn,
srxn, i0, RΩ depend on fuel cell average temperature Tavg

and operating conditions [13].

B. Fuel Cell Temperature Dynamics

The fuel cell stack is divided into two control volumes to
capture its temperature gradient. One control volume is at the
coolant inlet side and the other is at the coolant outlet side.
The fuel cell temperature dynamics is described in terms
of the temperature of the two control volumes, i.e., T1, T2.
The temperature dynamics are governed by the following
differential equation [13]:

dT1

dt
=

1

cFCρFC

(
ccoolwcool(TFC,in,cool − T1)

nFC,cellAFCδFC/2

+
κT(T2 − T1)

(δFC/2)2
+ kamb→FC(Tamb − T1)

+
PFC,self−heat

VFCnFC,cell
− rv∆hv

)
, (4)

dT2

dt
=

1

cFCρFC

(
ccoolwcool(T1 − T2)

nFC,cellAFCδFC/2

+
κT(T1 − T2)

(δFC/2)2
+ kamb→FC(Tamb − T2)

+
PFC,self−heat

VFCnFC,cell
− rv∆hv

)
, (5)

where the inlet coolant temperature TFC,in,cool in Eq. (4) is
defined as

TFC,in,cool = uHRTH + (1− uHR)TR, (6)

where uHR is the binary variable controlling the 2-position
3-way valve. The average fuel cell temperature used in Eq.
(3) is defined as Tavg = (T1 +T2)/2, while TFC,out,cool, the
outlet coolant temperature from fuel cell stack, is assumed
to be equal to T2.

C. Radiator and Heater Temperature Dynamics
The radiator and heater dynamics are given by

dTR

dt
=

1

CR

(
(1 − uHR)ccoolwcool(TFC,out,cool − TR)

+ cairε(v)v(Tamb − TR)
)
, (7)

dTH

dt
=

1

CH

(
uHRccoolwcool(TFC,out,cool − TH) + PH

)
. (8)

Note that when binary control uHR = 1 (or 0), the coolant is
fed to the heater (or the radiator). The term ε(v) in radiator
dynamics is the vehicle-speed-dependent effectiveness of the
radiator, which is modeled as an affine function of vehicle
speed v. The outlet coolant temperature from the radiator (the
heater, respectively) is assumed to be TR (TH, respectively).

D. Battery SOC Dynamics
The battery SOC dynamics is adopted from that given in

[8],

dSOCB

dt
= −nsnpEB,cell

EB,cell −
√
E2

B,cell −
4PB,outputrB,cell

nsnp

2rB,cellGB,stack,total
.

(9)

Note that in Eq. (9), PB,output can be negative, meaning
charging the battery.

E. Power Split Module
The power split module combines the output power from

the fuel cell and the battery, and passes part of the combined
power to the heater, and the remaining portion to the motor.
To deliver the required power to the motor, we assume
the battery always provides the right amount of power to
compensate for what is generated by the fuel cell, that is,

PB,output = PM + PH − PFC,output. (10)

III. SPECIFICATIONS

In this section, we give the specifications (or requirements)
of fuel cell thermal management. The listed specifications are
classified into the following three types:

(i) “reach-stay” type specifications require that the system
variables (e.g., state or control input) reach a target
region in finite time and stay in that region once they
arrive;

(ii) “avoid” type specifications require that the variables
avoid some undesired regions forever (or equivalently,
the variables always stay in the complement of the
undesired region);

(iii) “recurrence” type specifications require that the vari-
ables visit a region repetitively.

More formally, these specifications are expressible with a
fragment of LTL. The fragment used is defined by the
following grammar:

ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | �ϕ, (11)

where π is from a given set of atomic propositions, and
¬, ∨, � are logical operators. An atomic proposition is a
statement on system and environment variable whose truth
value can be determined by checking whether the associated
variables are within given sets. Operator ¬ and ∨ correspond
to negation and conjunction in boolean logic. We write ϕ∧ψ
(conjunction) and ϕ → ψ (implication) as abbreviations for
the formulas ¬(¬ϕ∨¬ψ) and ¬ϕ∨ψ, respectively. Operator
� is a temporal operator, and �ϕ means that an LTL formula
ϕ holds true for all time. We also use the short-hand notation
♦ϕ for ¬�¬ϕ, which states that there exists a time instant
when ϕ eventually holds. With the LTL fragment defined
above, the three types of requirements involved in fuel cell
thermal management are expressed in the following forms:

(i) ϕreach−stay = ♦�πtarget, where πtarget is a proposition
saying that the variable belongs to a designated target
set. The formula ♦�πtarget says that a time instant
exists starting from which πtarget is always true.

(ii) ϕavoid = �πsafe, where proposition πsafe says that the
variable is not in the undesired set, or the variable is in
the desired set.

(iii) ϕrecurrence = �♦πrecurrence, where πrecurrence says the
variable belongs to a recurrence target set. The formula
�♦πrecurrence is interpreted as: for all time instants,
a time exists in the future at which πrecurrence holds,
therefore guaranteeing repetition.

For the remainder of this section, we give the fuel cell
thermal management specifications in plain English and
express them in LTL. The resulting LTL formulas are listed
in TABLE I.

A. Limitations of Fuel Cell Output Power

Some requirements regarding fuel cell output power are
imposed in this part.

Spec1: (avoid) The fuel cell output power PFC,output

should not drop below zero.
Fig. 4 gives the fuel cell output power predicted by the

model in Section II-A. As show in Fig. 4, the model-
predicted fuel cell output power becomes negative when the
current density is too high, which makes the model invalid
at that value of current density. This requirement is essential
to avoid operating in the region where the model is invalid.

Spec2: (avoid) Let i∗ be the fuel cell current density
that gives the maximum fuel cell output power, graphically
illustrated by Fig. 4. The current density should not exceed
the one that gives the maximum output power PFC,max

because operating above PFC,max is inefficient and could
lead to irreversible degradation [6]. Note that i∗ is a function
of state and operating conditions.

Based on Fig. 4, it is obvious that Spec2 actually implies
Spec1. In this work, we exclude Spec2 from the correct-by-
construction synthesis because of the difficulty in computing

0 0.5 1 1.5 2

Current density i (A/cm2)

-4

-3

-2

-1

0

1

2

3

4

5

S
ta

ck
 o

ut
pu

t p
ow

er
 P

F
C

,o
ut

pu
t (

W
)

×104

i* when fuel cell
temperature is
273K

Model
predicted
fuel cell
output
power
becomes
negative

(related to
Spec1)

(related to Spec2)

fuel cell
temperature
increases

*** * *

Fig. 4: Fuel cell power versus current density, fuel cell average
temperature varies in [273, 360]K, membrane water content λ = 6.

i∗. Instead, we handle Spec2 by restricting the current density
i to be smaller than a fixed upper bound ĩ∗, which is found
experimentally. In addition, some control action selecting
heuristics are developed to incorporate Spec2 (see section
VI). However, since no formal guarantee can be made for
achieving Spec2, we still consider Spec1 in the correct-by-
construction synthesis as a hard constraint.

B. Battery Energy & Power Limitations

In this part, we give some requirements regarding the
battery SOC and power. These requirements are important for
guaranteeing the health of the battery and its incorporation
with energy management.

Spec3: (avoid) The battery stack energy should not drop
below 10% or exceed 90%.

Spec4: (recurrence) Battery energy should always recover
to SOCB,target (with at most an error δ) in finite time, where
SOCB,target is a set point given by the energy management
module.

This specification can be viewed as a relaxation of the
charge sustaining requirement of the battery. Since we do
not assume any knowledge of the driving cycle in advance,
it is impossible for the battery SOC to recover to the starting
level exactly at the end of the driving period (unless one
restricts the battery SOC to always stay close to the target
level, which is a conservative strategy). Hence, we require
only that the battery SOC have the capability of recovering
to the target level.

Spec5: (avoid) The battery power should not exceed peak
power requirements.

Spec6: (avoid) Power for the battery charge should
not exceed maximum allowable charging power. Note that
by our convention, charging powers (both PB,output and
PB,charge,max) are negative.

C. Regular Operation Requirements

The following requirements are related to fuel cell tem-
perature regulation.

Spec7: (reach-stay) Fuel cell block temperatures should
reach and then stay in the target temperature range
[340, 350]K.

By this requirement, when the fuel cell is temporarily shut
down and motor power is completely delivered by the battery,
we still want the fuel cell temperature to stay in the range.

Spec8: (avoid) Fuel cell block temperatures should never
exceed the maximum allowable temperature of 353K.

TABLE I: Specifications in LTL

Specification LTL formula type
Spec1 ϕ1 = �(PFC,output ≥ 0) avoid X
Spec2 ϕ2 = �(i ≤ i∗) avoid ∼
Spec3 ϕ3 = �(0.1 ≤ SOCB ≤ 0.9) avoid X
Spec4 ϕ4 = �♦

(
SOCB,target − δ ≤ SOCB

≤ SOCB,target + δ
)

recurrence X
Spec5 ϕ5 = �(PB,output ≤ PB,output,max) avoid X
Spec6 ϕ6 = �(PB,output ≥ PB,charge,max) avoid X
Spec7 ϕ7 = ♦�

(
∧j=1,2 (Tj ∈ [340, 350])

)
reach-stay1 X

Spec8 ϕ8 = �
(
∧j=1,2 (Tj ≤ 353)

)
avoid X

“X”: the specification is considered in the synthesis.
“∼”: the specification is handled by heuristics.

IV. PROBLEM STATEMENT

In this section we formally state the control problem,
by summarizing the plant model given in section II, and
selecting a set of requirements defined in section III.

As a short notation, denote the system dynamics described
in section II by

dx

dt
= f(x, u, d) (12)

where x = [T1, T2, TR, TH, SOCB]T denotes the state,
u = [i, wcool, uHR, PH]T denotes the control, d =
[PM, pO2

, pH2
, Tamb, v, λ, rv]T denotes the operating condi-

tion that is beyond our control. In particular, vector field f is
defined by Eqs. (4) to (9). Let X , U , D denote the domains
for x, u, d. Sets X , U , D are rectangular sets defined in
Appendix A. From now on, we will refer to the model in
Eq. (12) as fuel cell system for short.

In this work we consider all requirements listed in Section
III except Spec2. In addition to the selected requirements,
define LTL formula

ϕ9 = �(x ∈ X),

to constrain the system states to never leave the considered
domain X , and define assumptions on the environment

ϕenv = �(d ∈ D),

to assure that the operating conditions always stay in the
allowable range. Then the overall specification for consider-
ation in LTL is given by

Φ := ϕenv →
9∧

i = 1
i 6= 2

ϕi, (13)

1We refer to this LTL specification as “reach-stay” type with a slight
abuse of terminology. In fact, ♦�(x ∈ target set) does not require that x
stays in the target set after its first arrival.

so that if the environment variables (operating conditions)
always remain in their allowable ranges, all the selected
specifications are satisfied.

Problem 1: Given the fuel cell model defined in (12),
and desired closed-loop behavior specified by LTL formula
Φ, defined by (13), synthesize a feedback controller with
finite memory K : X → U , under which all closed-loop
trajectories governed by ẋ = f(x,K(x), d), satisfy the LTL
specification Φ.

V. SOLUTION APPROACH

We formulate the control problem as a temporal logic
game [14] on a hybrid system and solve the game using
abstraction-based synthesis technique. This section is divided
into three parts. First, we describe the basic steps involved
in computing an abstraction, and show how to leverage the
system’s properties at each step to simplify computation.
The system properties and related results can be found
in Appendix B. Second, we briefly describe the synthesis
process on the abstraction. Finally, we motivate and propose
multi-action state-dependent progress groups, and show how
they remove spurious behavior from the abstraction.

A. Abstraction

The abstraction process returns a finite transition system
for a given plant model and specifications. The transitions
capture the flow of the continuous plant dynamics, and the
(discrete) states of the finite transition system are properly
labeled according to the given specifications. In this work, the
finite transition systems serving as abstractions are nondeter-
ministic. That is, given the current state and the control action
applied at that state, there might be multiple succeeding
states. Specifically, we also reinforce such transition systems
with so called progress groups, which encode additional
transience properties of the underlying concrete system.
Such transition systems are already well-established in the
literature. We refer the reader to [11] for a formal definition
of such abstractions and detailed algorithms generating them.

As shown in Fig. 2, the abstraction process is decomposed
into three steps, that is, discretization, labeling and transition
computation. We now describe each step, incorporated with
the fuel cell system properties for computational efficiency.

1) Discretization: We first partition the state space of
a given concrete system into finitely many regions. Each
region is mapped to a discrete state in the finite transition
system. In the rest of this paper we will call a “discrete
state” as “state” for short, when the context is unambiguous.
We use a manually constructed non-uniform rectangular grid
partition in the state space. A rectangular partition reduces
the abstraction computation effort significantly when the
system flow/vector field are (mixed) monotone [4] or multi-
affine [23].

Notice that both continuous-valued control inputs
(i, wcool, PH) and boolean control input (uHR) are present
in the system. We discretize control space U by creating a
grid on the continuous-valued control space, which leads to
a finite set of control actions. It should be noted that the

discretization of the continuous control variables leads to
more than 70 control actions in total in this application.

2) Labeling: After the state space partition, each region
in the partition needs to be labeled as “target”, “recurrence
target”, “safe” and “unsafe” according to the specifications.

Consider “reach-stay” specification Spec7. The regions
contained by set {x ∈ X | T1 and T2 ∈ [340, 350]} are
labeled as “target”. For “recurrence” specification Spec4, the
regions contained by set {x ∈ X | SOCB ∈ [SOCB,target−
δ, SOCB,target + δ]} are labeled as “recurrence target”. The
remainder of the specifications are of the “avoid” type. A
region is labeled “safe” if the “avoid” specification is satisfied
everywhere in that region for all operating conditions; it is
labeled “unsafe” if the specification is violated somewhere
in the region for some operating conditions.

The challenge is that some “avoid” specifications are
implicitly related to states and operating conditions. For
example, requirement Spec1 requires fuel cell output power
PFC,output ≥ 0 (or equivalently EFC,stack ≥ 0 by Eq.
(1)), PFC,output is a function of both system state (fuel
cell temperature Tavg) and operating condition (membrane
water content λ, hydrogen-oxygen partial pressure pH2

, pO2
).

Therefore, to label a region safe or unsafe in terms of Spec1,
we need to check the worst case in that region. That is, if the
minimum fuel cell output power PFC,output (or equivalently
EFC,stack) in the region is negative under some operating
conditions (which violate specification Spec1), the region is
labeled unsafe.

As described in Section II-A, EFC,stack is a nonlin-
ear function in state x and operating condition d. There-
fore, determining the exact minimum value of EFC,stack

requires solving a nonlinear optimization problem over
x and d, which might be intractable. However, function
EFC,stack(x, d) allows an efficient and reasonable approx-
imation by Theorem 1 in Appendix B if the consid-
ered regions are rectangles. Theorem 1 applies to function
EFC,stack(x, d) because EFC,stack(x, d) is continuously dif-
ferentiable w.r.t. x and d on compact set X × D. This
means that all the continuous partial derivatives ∂EFC,stack

∂x
∂EFC,stack

∂d are bounded on X × D; thus, EFC,stack(x, d)
satisfies the hypothesis of Theorem 1.

By Theorem 1, under-(over-)approximating the minimum
(or maximum) value of EFC,stack reduces to evaluating
EFC,stack at the two extreme points of the considered rect-
angular region. The result of the approximation is illustrated
using Fig. 5: the dashed line is the maximum and minimum
value when x1, x2, or T1, T2 varies in [273, 360]K. Fig. 5
shows a gap between the approximated minimum value of
EFC,cell and the true values. This gap indicates that the
approximation is conservative. However, when the size of
the region to be labeled is smaller, the approximation gets
tighter.

3) Computing Transitions: We compute transitions in the
abstraction by arguing about the vector field directions of the
concrete system, over a region in state space, and also over
all operating conditions. In this part we provide an efficient
way to compute these transitions using Theorems 1 and 2 in

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Current density i (A/cm)

-50

0

50

100

150

200

250

300

350

400

S
ta

ck
 v

ol
ta

ge
 E

F
C

,s
ta

ck
 (

V
)

upper bound given
by approximation

lower bound given
by approximation

temperature
increases

2

Fig. 5: Approximation of polarization, fuel cell average temperature
varies in [273, 360]K.

Appendix B.

X 1 X 2

Vector field 𝑓(𝑥, 𝑢, 𝑑)

𝐹 = X 1 ∩ X 2

Concrete system Abstraction

𝑢

𝑛𝐹
𝑞1 𝑞2

Fig. 6: Computing transitions by arguing direction of vector field.

As shown in the left half of Fig. 6, X1 and X2 are two
adjacent regions in the state space of concrete system, F =
X1 ∩X2 is the adjacent facet between two regions, dashed
arrow nF is the normal vector of facet F (pointing from
X1 to X2), and the solid arrows on F are the vector field
f(x, u, d) under some given u and operating conditions d.
The right half of the figure shows the discrete states in the
abstraction, in particular, discrete state q1 (q2) corresponds
to region X1 (X2), and the transitions between q1 and q2 are
defined as follows

q1
u−→ q2 if max

x ∈ F,
d ∈ D

nTF f(x, u, d) > 0. (14)

Finally, since any trajectory starting from region Xi will stay
in that region after a small amount of time, we need to add
a self-transition on the corresponding discrete state qi.

Assume a rectangular partition of the state space, the
adjacent facets are all rectangular facets, i.e., F = {x ∈
X | xj ∈ [xj , xj]}, and their normal vectors are natural
basis vectors ei (a vector whose ith entry is one, and the
other entries are zeros). Also note that allowable operating
condition set D is a rectangular set by definition, i.e., D =
{d | dk ∈ [dk, dk]}. Eq. (14) is thus equivalent to

q1
u−→ q2 if max

xj ∈ [xj, xj]

d ∈ [dk, dk]

fi(x, u, d) > 0. (15)

The optimum values in (15) can be over approximated
using Theorem 1. Fixing control u, and letting φu be the
decomposition function of f(·, u, ·) defined by Eq. (22), we

have

max
xj ∈ [xj, xj]

d ∈ [dk, dk]

fi(x, u, d) ≤ φui ([x, d], [x, d]), (16)

where x = [x1, . . . , xn]T and x = [x1, . . . , xn]T (similar for
d, d). We hence replace Eq. (16) by the following to compute
the transitions:

q1
u−→ q2 if φui ([x, d], [x, d]) > 0. (17)

By Remark 1 in Appendix B, if the partial derivative ∂fi
∂xj

is not sign-stable, the approximations in Eq. (16) are not
tight. In other words we may have φui ([x, d], [x, d]) > 0 but
max fi(x, u, d) ≤ 0. In that case, Eq. (16) and Eq. 17 are
not equivalent. In fact, we create more transitions when using
Eq. (17), and hence introduce more spurious behavior in the
abstraction, thus leading to a more conservative solution but
conserving the correctness.

Note that the partial derivative ∂f3
∂v is not sign-stable,

where f3 = dTR

dt is defined by Eq. (7). The sign of ∂f3
∂v

depends on which one of TR and Tamb is larger. In this
case, the conservatism can be reduced by using Theorem 2 in
Appendix B. We show f3 is affine in state x and multi-affine
in [Tamb, w] where w := ε(v)v. By Theorem 2, to maximize
(minimize, respectively) vector field component f3, one need
only evaluate f3 at both upper and lower bounds of w, and
pick the maximum (minimum, respectively) f3 value. This
practice is equivalent to evaluating f3 at the upper and lower
bounds of vehicle speed v, because w = ε(v)v is monotone
increasing in v. With this modification, Eq. (16) becomes

max
xj ∈ [xj, xj]

d ∈ [dk, dk]

fi(x, u, d) ≤

max
{
φui ([x, d], [x, d]), φui ([x, d], [x, d])

}
, (18)

where d is the same as d except that its fifth entry (repre-
senting vehicle speed v) takes upper bound value; and d is
the same as d except that its fifth entry takes lower bound
value.

Note that to compute the transition from q2 to q1, the
only change is to choose the normal vector in Eq. (14) to be
nF = −ei, and the above approximation process still applies
to this case.

B. Synthesis

To synthesize a controller, we solve a temporal logic game
on the obtained abstraction using graph search algorithms. As
mentioned at the beginning of Section V-A, the abstraction
used in this work is nondeterministic. The actual evolution
of such an abstraction can be viewed as the outcome of a
two player game between the controller and the environment
[18]. In each round of the game, the controller selects an
action first, and then the environment selects a transition
that is available under the current state and action. The goal
of the controller is to win the game, that is, to satisfy the
specification regardless of the moves of the environment.
The algorithms for solving such games are fairly standard
[18], [3], [10], [20], [11], [2], and refer the readers to these

references for details. Fig. 7 shows an illustration of the
synthesis process, and we only briefly describe the process
with the following three steps:

1. We first solve the “stay” part of the game, by searching
for the maximal controlled invariant set C1 within the
discrete states labeled as both “target” and “safe”. Each
discrete state in C1 will be assigned a set of control
actions. Under the assigned actions, the closed-loop path
starting from C1 will stay in C1 forever. Such a maximal
controlled invariant set can be found by a fixed-point
algorithm given in [10].

2. Next we solve the “recurrence” part of the game,
restricted within set C1. In particular, at each state in
C1, we can use only the actions assigned to that state
in step 1 that render C1 to be invariant. The recurrence
game can be solved with the algorithm given in [20].
This gives a set of states contained by C1, starting from
where the “recurrence target” states (again, in C1) can
be reached infinitely often. This set of states is denoted
as C2. As shown in Fig. 7, C2 ⊆ C1. It should be
noted that C2 is also a controlled invariant set when the
recurrence specification is achieved.

3. Then we solve the “reach-avoid” part of the game, using
the algorithm given in [10]. The solution contains a set
of states B, called the backwards reachable set of C2,
together with a set of actions assigned to each state in B.
If these actions are applied accordingly, a path starting
from B will reach C2 in finite time, while avoiding
“unsafe” states2. The obtained backwards reachable set
B together with set C2 form a winning set of the overall
game.

Finally, once the winning set and the associated control
actions are determined on the abstraction, we can extract
a switching controller for the concrete system, that is, we
map the actions assigned to each “winning” state to its
corresponding region in the concrete system’s state space.
This leads to a look-up table controller defined in the
concrete system state space.

Domain Target

Recurrence
target

Unsafe

Backwards
reachable set
of 𝐶𝐶2

𝐶𝐶1: controlled invariant
set contained by
Target \ Unsafe
𝐶𝐶2: winning set of the
recurrence game
contained by 𝐶𝐶1

𝐶𝐶1
𝐶𝐶2

Backwards
reachable set of 𝐶𝐶2

Winning set of
the overall game

Fig. 7: Illustration of synthesis procedure.

To solve the reachability part, both in the reach-avoid-stay
game and the recurrence game, the existence of spurious

2As noted in Footnote 1, there is a difference between specification
♦�(x ∈ target set) and “reaching the target set in finite time and staying
there once arrived”. Here we are achieving the latter one, which implies the
satisfaction of the former one.

loops in abstraction may prevent the target from being
reached, therefore reducing the winning set. Hence, it is
crucial to eliminate the spurious behavior in the abstraction
as much as possible. To this end we encode in abstraction
some transient properties of the underlining continuous sys-
tem by progress groups. A set of states (each state assigned
a set of control actions) forms a progress group if these
discrete states correspond to a transient region in the original
concrete system, under the assigned actions. A region is
transient under some control actions if all trajectories starting
from that region eventually leave the region in finite time
under assigned control actions. Fig. 8 illustrates different
notions of progress groups. In all three illustrations, the
vector field in region X1∪X2 is pointing upwards under the
assigned actions. Thus, all trajectories starting from region
X1∪X2 will eventually leave the region. We hence group the
corresponding states {q1, q2} as a progress group, and forbid
any infinite path from staying within states {q1, q2}. Notice
that infinite paths within {q1, q2} exist otherwise due to the
self-loops and cycling between two states. The novel concept
introduced here of multi-action state-dependent progress
group will be motivated and explained in more details in
the following section.

𝑋𝑋1 𝑋𝑋2

𝑞𝑞1 𝑞𝑞2 Single action
progress group

under 𝑢𝑢1

𝑋𝑋1 𝑋𝑋2

𝑞𝑞1 𝑞𝑞2 Multi-action
progress group

under 𝑢𝑢1,𝑢𝑢2

𝑋𝑋1 𝑋𝑋2

𝑞𝑞1 𝑞𝑞2
Multi-action

state-dependent
progress group
𝑢𝑢1at 𝑞𝑞1, 𝑢𝑢2at 𝑞𝑞2,

𝑢𝑢1,𝑢𝑢2 𝑢𝑢1,𝑢𝑢2

𝑢𝑢1 𝑢𝑢2

𝑢𝑢1 𝑢𝑢1

Fig. 8: Different notions of progress groups.

C. Multi-action State-dependent Progress Group

In previous works [12], [16], progress groups were defined
only for a single action. In a more recent paper [11],
the notion of multi-action progress groups was introduced
to encode richer transience properties of the underlying
concrete system. In all of these works, progress groups were
pre-computed before synthesis and are stored as part of
the abstraction. These notions of progress groups, however,
are not sufficient for the specific application considered in
this paper. First, we find that single-action progress groups
cannot accommodate the battery SOC requirement and some
reachability requirements at the same time. Moreover, pre-
computing and storing multi-action progress groups requires
an unacceptable computation load because the number of
actions in our application is relatively large. Hence, we
develop a procedure here to construct multi-action progress
groups on-the-fly during synthesis. This procedure leads to
a more general notion called multi-action state-dependent
progress groups.

Fuel cell temperature 𝑇1 (K)

B
at

te
ry

 s
ta

te
 o

f
ch

ar
ge

 𝑆
𝑂
𝐶
B

(-
)

340 350

0.9

0.1

Target

Unsafe

Vector field 𝑓(𝑥, 𝑢1, 𝑑) and 𝑓(𝑥, 𝑢2, 𝑑)
Single-action
progress group
for 𝑢1

Single-action
progress group
for 𝑢2

𝑢2

𝑢2

𝑢2

𝑢1

𝑢1

𝑢1

Multi-action
state-dependent
progress group
for 𝑢1 − 𝑢2

𝑢2

𝑢2

𝑢1

X 1

X 2

X 3

(a)

(b)

(c)

Fig. 9: Illustration of system flow projected onto SOCB-T1 sub-
space (left), abstraction with single-action progress group (right
(a), (b)) and abstraction with multi-action state-dependent progress
group (right (c)). The self-loops on the discrete states are removed
because they are part of some progress groups and hence correspond
to transient regions.

We use Fig. 9 to illustrate why single-action progress
groups are not sufficient for this application, that is, why the
battery SOC requirement Spec3 and the reachability part of
requirement Spec7 cannot be satisfied at the same time with
single-action progress groups. On the left side of the figure,
we plot the rectangular partition and the system’s vector field
projected onto SOCB-T1 space. By requirement Spec3, the
regions where battery SOC falls below 0.1 or exceeding 0.9
are labeled as unsafe (gray). By requirement Spec7, the fuel
cell temperature should reach and stay between 340K to
350K, and the corresponding regions are labeled as target
(green). To reach the target region, we can either (i) let the
fuel cell do self-heat-up, meanwhile using the excess power
generated to charge the battery (corresponding to action u1),
or (ii) use the heater to warm up the fuel cell, by drawing
power from the battery (corresponding to action u2)3. Note
that no action can keep battery SOC constant while steering
the fuel cell temperature towards the target. This is true due
to the variation in motor requested power PM, which is an
operating condition (uncontrolled variable).

The right section of the Fig. 9 shows the abstraction,
where the colored ellipses mark some progress groups and
the arrows show the paths when the corresponding actions
are applied. By choosing a single action (i.e., case (a) or
(b)), the paths either go all the way up (case (a)) or down
(case(b)) and lead to unsafe discrete states. Therefore battery
SOC requirement Spec3 is violated on the abstraction. Note
that such paths are spurious because they do not represent
any real trajectories of the concrete system (e.g., choosing u1

at low battery SOC actually leads the trajectory into the target

3 In practice there are more than 70 actions in total, but we only plot
the system’s flow under two typical actions u1 and u2 to simplify the
illustration.

region before saturating the battery). Such spurious behaviors
exist in abstraction due to the conservatism introduced by
partitioning. On the other hand, the battery SOC requirement
can be satisfied by applying multiple actions. As shown in
Fig. 9 (c), all the paths stay safe when u1 is applied at
the bottom discrete state and u2 is applied at the upper
two discrete states. However, the reachability requirement is
violated by an infinite loop caused by alternatively choosing
u1 and u2. Again, this loop is spurious, as there is a
constant flow towards the left no matter what action is
chosen. We thus need multi-action (not necessarily state-
dependent) progress groups to eliminate such loops when
they are spurious.

Since the total number of multi-action progress groups
grows exponentially in the number of available control
actions (70 for this application), it easily exhausts time
and memory to pre-compute these progress groups and
encode them in the abstraction before synthesis. Therefore,
instead of doing computation and storage before synthesis,
we compute progress groups with multiple actions during the
synthesis process, and we restrict the control actions on-the-
fly based on the synthesis. As will be shown later, under such
restrictions, the control actions assigned to different discrete
states in the progress group may vary from one to the other,
that is, the action is state-dependent. Algorithm 1 shows how
to construct such progress groups and how to use them to
compute a backwards reachable set of the target set.

Algorithm 1 [B] = BackwardsReach(C, S, α)
Compute the safe backwards reachable set of C, with multi-
action state dependent progress groups constructed on-the-fly
during the computation.

Input: the set C of discrete states to reach, the set S of all
discrete states labeled as safe, abstraction α that maps
a region in concrete system’s state space to a discrete
state.

Output: Set B, a backwards reachable set of set C.
1: B = C
2: P = Pre1(B)
3: i = 0
4: while B is not satisfactory and i ≤max iter do
5: (B′,K) = CInv

(
B ∪ (P ∩ S)

)
6: if ∃v : ∀b ∈ B′ \ B : ∃ub ∈ K(b) : ∀x ∈ α−1(b), d ∈

D : vT f(x, u, d) > 0 then
7: B′ \ B is a multi-action state-dependent progress

group whenever ub is applied at b ∈ B′ \B
8: B = B′

9: P = Pre1(B)
10: else
11: Replace P by a proper subset of P that has not

been used before
12: end if
13: i = i+ 1
14: end while
15: return B

Algorithm 1 is summarized with the following steps:
1. We start from an initial set B and compute its one-step-

predecessors P = Pre1(B). A discrete state p is called
a one-step-predecessor of a set B, if there is a transition
(under some actions assigned to p) leading p to some
discrete state b ∈ B. Here, since we want to remain in
the target set after arriving at it, set B is initialized as
a controlled invariant set contained by the target.

2. Next, sub-procedure (B′,K) = CInv
(
B ∪ (P ∩ S)

)
computes the largest controlled invariant set B′ that is
contained by set B∪(P∩S), together with an invariance
controller K : B′ → 2U that maps every discrete state
in B′ to a set of control actions that renders B′ invariant.

3. If the discrete states in B′ \B correspond to a transient
region under some actions restricted by invariance con-
troller K (this is checked by a sufficient condition in
line 6), set B′ \B form a multi-action state-dependent
progress group, and is added to the backwards reachable
set.

4. We repeat steps 1, 2, 3 until the winning set reaches
a satisfactory size or a maximum number of iterations
has been reached.

We explain the intuition behind Algorithm 1 as follows.
For simplicity, we will temporarily omit the “avoid” require-
ments. Suppose that B is indeed a backward reachable set
of some controlled invariant set C, the following facts must
hold:
• Set B is computed in a backwards expanding manner

starting from and containing set C; hence, the paths
satisfying the reach-stay requirement will always stay
within set B. Thus, set B is controlled invariant under
the actions that achieve the reach-stay requirement.

• For C to be reachable in finite time, no path stays in
B \ C forever. That is, set B \ C will form a progress
group under the actions that achieve the reach-stay
requirement.

Therefore, in order to find a progress group that helps
expanding the backwards reachable set of C, one need only
explore the controlled invariant sets B′ that contain C, and
restrict to the action assignments that render B′ invariant.
These restrictions avoid exploring all subsets of discrete
states with all possible action combination when computing
multi-action state-dependent progress groups.

The remainder of this part explains the condition in line
6, Algorithm 1 and shows how to check this condition. Take
Fig. 9 as an example. Shaded discrete states form a multi-
action state-dependent progress group when u2 is assigned
to the two discrete states on the top and u1 is assigned to the
bottom discrete state. This is because the region represented
by these discrete states is transient under corresponding
actions. The transience can be checked efficiently by arguing
the direction of the vector field of the underlying concrete
system. As shown on left side of Fig. 9, the union of three
regions X1 ∪ X2 ∪ X3 is transient because the horizontal
component of the vector field is always positive (i.e., pointing
rightwards) when control u2 is applied in X1 X2, and u1

is applied in X3. More generally, given a set of regions

{Xk}mk=1 in n dimensional state space, each region equipped
with one control action uk, X =

⋃m
k=1Xk is transient under

assigned actions if there exists v ∈ Rn,

∀k = 1 . . .m : min
x∈Xk,d∈D

vT f(x, uk, d) > 0. (19)

If vector v = ±ei (the vector with the ith entry being
1 and the rest being 0), and if Xk’s are rectangles, the
optimization problem in (19) can be approximated efficiently
by the approach developed in section V-A.3.

VI. RESULTS AND DISCUSSION

Using the solution approach described in Section V, a
switching controller is synthesized. The controller is in the
form of a look-up table (see Step 3 in Section V-B). At
each time instant, the current state locates in one of the
regions of the look-up table and the control action in that
region is applied accordingly. Although multiple actions
might be available in the region, selecting an arbitrary one
is sufficient to guarantee the correctness. We implement a
“lazy switching” heuristic for action selection to reduce the
change in the control inputs, allowing us to always maintain
the previously used control action, where possible. Whenever
we enter a new region in the look-up table and the previous
action is no longer available there, we change the action but
try to maintain the position of as many actuators as possible.
In particular, we can assign different priority to different
actuators in terms of maintaining their current positions. If
there is no such priority, we always tend to fix the actuator
whose position has changed most recently. This practice
helps to balance the position change of different actuators,
avoiding frequent switches. The action selecting heuristics
can be also designed to incorporate with specification Spec2,
which is excluded from the correct-by-construction synthesis.
Since Spec2 requires that the fuel cell current density i is
smaller than i∗, we can always select the control actions
with the smallest current density i to avoid violating Spec2.

The controller is shown to be able to achieve the specifi-
cations on the entire state domain X . That is, the computed
winning set is equal to the domain X . We illustrate the
closed-loop behaviors by simulating the system at 285K.
We modify FTP-72 vehicle speed data [19] to obtain motor
power PM and vehicle speed v profile in a driving cycle.
First, since the controller allows the vehicle speed v to vary
only in [5,25]m/s, we saturate the v whenever its value falls
below 5m/s. Second, PM, the power requested by the motor,
is assumed to be proportional to acceleration dv

dt whenever
the acceleration is positive, and is assumed to be 0 whenever
the acceleration is negative. PM is also scaled so that the
value lies in the allowable range, that is, [0, 17]kW.

The simulation results are plotted in Figure 11, from which
we make the following observations:

1. By plots (1-1) (1-2) (5-2), all states stay in the domain,
and the battery SOC never exceeds upper or lower
bounds.

2. By plot (1-1) fuel cell temperature reaches and stays in
the target range (marked by a dashed green line).

0 350 700 1050 1369

t (s)

0

10

20

30

v
(m

/s
)

Fig. 10: FTP-72 vehicle speed data, saturated to fit the operating
condition constraints of the synthesized controller.

3. By plot (5-2), the battery SOC recurrently visits the
reference interval marked by the dashed blue lines.
Here we assume the reference can vary over time, and
is determined by a higher level power management
module. Note that the battery SOC need not stay in the
interval after arriving, even if the reference has not yet
changed: it simply maintains the capability to recover to
the desired level. This can be seen from the simulation
before 300s. Such behavior is desired because it gives
more freedom to the controller, while guaranteeing that
the battery SOC is able to recover. For example, while
the fuel cell stack does self-heat-up at the warm-up
stage, it generates more power than requested with the
extra power stored in the battery. This explains why the
battery SOC increases and exceeds the reference interval
at the beginning of the simulation. However, once the
target temperature is reached, the battery SOC begins
to drop towards the reference interval.

4. By plot (2-2), it can be seen that the heater is not turned
on at the warm-up stage. The fuel cell does self-heat-
up instead, indicating that while the controller is not
optimal in terms of warm-up speed, it does not harm
the correctness of the controller.

VII. CONCLUSIONS

In this paper, we developed a control-oriented model for
a fuel cell thermal management system, collected a set of
requirements and compiled them in linear temporal logic
formulas. We then formulated the control problem as a tem-
poral logic game and synthesized a correct-by-construction
switching controller using abstraction-based techniques. The
major difference between the approach in this work and
that in existing work is that we provide a provably correct
controller and the set of all initial conditions from which this
controller guarantees requirement satisfaction. This set turns
out to be the entire domain X . On the other hand, we do not
consider optimality. Some properties of the system model
under consideration were identified to make the synthesis
computationally efficient. Existing synthesis algorithms with
progress groups were also extended to tackle the problem of
a large number of actions in this specific application. Finally,
the correctness of the closed-loop system with synthesized
controller, as suggested by the theory, was illustrated by
simulations.

0 1369
285

340
350

(1-1) Fuel cell temperature353

260

310

360

410
(1-2) Heater & radiator temperature

0 350 700 1050 1369

100

800

350 700 1050

(2-1) Control: coolant mass flow

0 350 700 1050 1369

0

1

0 350 700 1050 1369

(2-2) Control: HR = 1: coolant->heater; HR = 0: coolant->radiator

0 350 700 1050 1369
-2.5

0
2.5

5
7.5

104 (3-1) Fuel cell output power

0 350 700 1050 1369
-5

-2.5
0

2.5
5

104 (3-2) Battery output power

0 350 700 1050 1369
0

2.5
5

7.5
10

104 (4-1) Fuel cell self-heat-up power

0 350 1050 1369

0

5000

(4-2) Power from battery to heater

0 350 700 1050 1369
-0.5

0.5

1.5

2.5
104 (5-1) Power delivered to motor

0 1050 1369
0

0.16670.1

0.83330.9

700

(5-2) Battery SOC

t (s) t (s)
350 700

Fig. 11: Simulations results: states, powers and selected controls. Temperature states start from 285K and battery SOC starts from 0.105.

APPENDIX

A. Variables and Constants

Control u
uHR uHR = 1 indicating that the coolant flow goes through

the heater
uHR = 0 indicating that the coolant flow goes through

the radiator
i [0,1.5] (A cm−2) Cell current density
PH [0, 35000] (W) Power requested by heater
wcool [0,800] (g s−1) Coolant mass flow rate

State x
SOCB [0,1] (-) Battery energy
T1 [273, 360] (K) Temperature of first control volumes
T2 [273, 360] (K) Temperature of second control volumes
TH [250, 400] (K) Heater temperature
TR [250, 340] (K) Radiator temperature

Operating Condition d
PM [2, 17] (kW) Power requested by motor
pO2

5× 104 (Pa) Oxygen partial pressure
pH2

1.5× 105 (Pa) Hydrogen partial pressure
rv [0, 10−7] (mol cm−3 s−1) Volumetric evaporating rate
v [10,20] (ms−1) Vehicle speed
Tamb [273,290] (K) Ambient temperature
λ [4,22] (-) Membrane water content

Other Variables
EFC,stack (V) Fuel cell stack electrical potential
i0 (A cm−2) Exchange current density
PB,output (W) Battery output power
PFC,output (W) Fuel cell output power
PFC,self−heat (W) Power for fuel cell self-heat-up
RΩ (Ω cm2) Cell resistivity
Tavg (J mol−1 K−1) Average fuel cell temperature
TFC,in,cool (K) Inlet coolant temperature (into fuel cell)
TFC,out,cool (K) Outlet coolant temperature (from fuel cell)
∆hrxn (J mol−1) Reaction enthalpy
∆hv (J mol−1) Evaporation enthalpy
∆srxn (J mol−1 K−1) Reaction entropy

Constants
cair (1.0 J g−1K−1) Air specific heat capacity
F (96485 C mol−1) Faraday constant
Pref (101325 Pa) Reference pressure
R (8.314 J mol−1 K−1) Universal gas constant

Parameters
aMT (V) Mass transfer potential loss coefficient
AFC (cm2) Fuel cell cross section area
AG (cm2) Fuel cell geometric area
bMT (-) Mass transfer potential loss exponent
ccool (J g−1K−1) Coolant specific heat capacity
cFC (J g−1K−1) Fuel cell specific heat capacity
CH (J K−1) Heater heat capacity
CR (J K−1) Radiator heat capacity
EB,cell (V) Battery cell open-circuit potential
GB,stack,total (Ws) Battery stack energy capacity
i0,ref (A cm−2) Reference exchange current density
iMT (A cm−2) Mass transfer current density
ix (A cm−1) Crossover current density
kamb→FC (W cm−3 K−1) Heat transfer coefficient: ambient to stack
kamb→H (W cm−3 K−1) Heat transfer coefficient: ambient to heater
np (-) Number of battery cells in parallel
ns (-) Number of battery cells in series
nFC,cell (-) Number of fuel cells in stack
rB,cell (Ω) Battery cell internal resistance
VFC (cm3) Fuel cell volume
α (-) Charge transfer coefficient
δFC (cm) Channel or cell length
κT (W cm−1 K−1) thermal conductivity
ρFC (g cm−3) Fuel cell density

B. Preliminary Results of System Properties

This part provides some useful results for making abstrac-
tion computation efficient. The proofs can be found in [22].

Theorem 1: Assume f : Rn → Rm is differentiable, and

∂fi
∂xj

(x) ∈ [aij , bij],∀x ∈ X ⊆ Rn, (20)

where aij and bij are finite real numbers, set X = {x ∈ Rn |
xj ∈ [xj , xj]} is a rectangle, then the following inequality
holds in element-wise sense:

φ(x, x) ≤ f(x) ≤ φ(x, x),∀x ∈ X, (21)

where x = [x1, . . . , xn]T and x = [x1, . . . , xn]T , and
function φ : Rn × Rn → Rm is defined to be:

∀i ∈ 1 . . . ,m :

φi(x, y) = fi(z) + (αi − βi)T (x− y). (22)

In Eq. (22), z = [z1, . . . , zn]T , αi = [αi1, . . . , αin]T , βi =
[βi1, . . . , βin]T are n vectors defined as follows

zj =

{
xj if bij ≥ |aij |
yj otherwise

(23)

αij =

{
|aij |+ ε if aij ≤ 0, bij ≥ |aij |
0 otherwise

(24)

βij =

{
−|bij | − ε if bij ≥ 0, aij ≤ −|bij |
0 otherwise

(25)

where ε is a small positive number.
Remark 1: Theorem 1 is related to mixed monotonicity

of function f , and function φ is called a decomposition
function of f . The decomposition function constructed above
is a natural extension of the one given in [4], which only
handles f with sign-stable partial derivatives. The idea here
is to use linear terms to create an additional offset to
overcome the sign-unstable partial derivatives. In the case

where all the partial derivatives ∂fi
∂xj

are sign-stable, the
decomposition function constructed by Theorem 1 gives a
tight approximation in Eq. (21); that is, the inequality in Eq.
(21) reduces to equality at some x ∈ X [4]. However, this
is not true when there are sign-unstable partial derivatives.
Thus, in general, the approximation given by (21) might be
conservative.

Theorem 2: (Theorem 1 in [23]) Let f : Rn ×Rm → Rp

be a function affine in the first argument x ∈ Rn and multi-
affine [1] in the second argument d ∈ Rm, i.e., f(x, d) =
A(d)x+K(d), where A(d), K(d) are matrixes whose entries
are in form of ∑

p1,...,pm∈{0,1}

cp1,...,pm

m∏
j

(dj)
pj . (26)

Let X ⊆ Rn be a polytope, and D ⊆ Rm be a rectangle.
Define VX and VD to be the set of vertices of set X and D.
Then the maximum and minimum values of f on X×D are
obtained at vertices set VX × VD, i.e.,

max
x ∈ X
d ∈ D

f(x, d) = max
x ∈ VX
d ∈ VD

f(x, d), (27)

and similarly (27) holds for minimization of f .

REFERENCES

[1] C. Belta and L. Habets. Controlling a class of nonlinear systems on
rectangles. IEEE Trans. Autom. Control, 51(11):1749–1759, 2006.

[2] C. Belta, B. Yordanov, and E. A. Gol. Formal Methods for Discrete-
Time Dynamical Systems, volume 89. Springer, 2017.

[3] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar.
Synthesis of reactive (1) designs. J. Comput. System Sci., 78:911–
938, 2012.

[4] S. Coogan and M. Arcak. Efficient finite abstraction of mixed
monotone systems. In Proceedings of International Conference on
Hybrid Systems: Computation and Control, pages 58–67. ACM, 2015.

[5] N. Henao, S. Kelouwani, K. Agbossou, and Y. Dubé. Proton exchange
membrane fuel cells cold startup global strategy for fuel cell plug-in
hybrid electric vehicle. Journal of Power Sources, 220:31–41, 2012.

[6] K. Jiao and X. Li. Water transport in polymer electrolyte membrane
fuel cells. Progress in Energy and Combustion Science, 37(3):221–
291, 2011.

[7] S. G. Kandlikar, Z. Lu, and T. A. Trabold. Current status and
fundamental research needs in thermal management within a pemfc
stack. in ASME Journal of Fuel Cells Science and Technology, 2008.

[8] S. J. Moura, D. S. Callaway, H. K. Fathy, and J. L. Stein. Impact
of battery sizing on stochastic optimal power management in plug-in
hybrid electric vehicles. In Vehicular Electronics and Safety (ICVES),
2008 IEEE International Conference on, pages 96–102. IEEE, 2008.

[9] E. A. Muller, A. G. Stefanopoulou, and L. Guzzella. Optimal power
control of hybrid fuel cell systems for an accelerated system warm-
up. IEEE transactions on control systems technology, 15(2):290–305,
2007.

[10] P. Nilsson and N. Ozay. Incremental synthesis of switching protocols
via abstraction refinement. In Decision and Control (CDC), 2016 IEEE
Conference on, pages 6246–6253. IEEE, 2014.

[11] P. Nilsson, N. Ozay, and J. Liu. Augmented finite transition systems
as abstractions for control synthesis. Discrete Event Dynamic Systems,
27(2):301–340, 2017.

[12] N. Ozay, J. Liu, P. Prabhakar, and R. Murray. Computing aug-
mented finite transition systems to synthesize switching protocols for
polynomial switched systems. In Proceedings of American Control
Conference, pages 6237–6244, 2013.

[13] B. L. Pence and J. Chen. A framework for control oriented modeling
of pem fuel cells. In ASME 2015 Dynamic Systems and Control
Conference, pages V002T26A002–V002T26A002. American Society
of Mechanical Engineers, 2015.

[14] N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive (1) designs.
In Proceedings of the International Conference on Verification, Model
Checking, and Abstract Interpretation, pages 364–380, 2006.

[15] J. T. Pukrushpan, A. G. Stefanopoulou, and H. Peng. Control of
fuel cell power systems: principles, modeling, analysis and feedback
design. Springer Science & Business Media, 2004.

[16] F. Sun, N. Ozay, E. M. Wolff, J. Liu, and R. M. Murray. Efficient
control synthesis for augmented finite transition systems with an
application to switching protocols. In Proceedings of American
Control Conference, pages 3273–3280, 2014.

[17] P. Tabuada. Verification and control of hybrid systems: a symbolic
approach. Springer, 2009.

[18] W. Thomas et al. Automata, logics, and infinite games: a guide to
current research, volume 2500. Springer Science & Business Media,
2002.

[19] United States Environmental Protection Agency. Dynamometer
drive schedules. Available at https://www.epa.
gov/vehicle-and-fuel-emissions-testing/
dynamometer-drive-schedules.

[20] E. M. Wolff, U. Topcu, and R. M. Murray. Efficient reactive controller
synthesis for a fragment of linear temporal logic. In Robotics and
Automation (ICRA), 2013 IEEE International Conference on, pages
5033–5040. IEEE, 2013.

[21] L. Yang, A. Karnik, B. Pence, M. T. B. Waez, and N. Ozay. Fuel
cell thermal management: Modeling, specications and correct-by-
construction control synthesis. In Proceedings of American Control
Conference, pages 1839–1846, 2017.

[22] L. Yang and N. Ozay. A note on some sufficient conditions for
mixed monotone systems. Technical report, University of Michigan,
Department of EECS, 2017. Available at http://hdl.handle.
net/2027.42/136122.

[23] L. Yang, N. Ozay, and A. Karnik. Synthesis of fault tolerant switching
protocols for vehicle engine thermal management. In Proceedings of
American Control Conference, pages 4213–4220, 2016.

https://www.epa.gov/vehicle-and-fuel-emissions-testing/ dynamometer-drive-schedules
https://www.epa.gov/vehicle-and-fuel-emissions-testing/ dynamometer-drive-schedules
https://www.epa.gov/vehicle-and-fuel-emissions-testing/ dynamometer-drive-schedules
http://hdl.handle.net/2027.42/136122
http://hdl.handle.net/2027.42/136122

	Introduction
	Fuel Cell Model
	Fuel Cell Power Generation
	Fuel Cell Temperature Dynamics
	Radiator and Heater Temperature Dynamics
	Battery SOC Dynamics
	Power Split Module

	Specifications
	Limitations of Fuel Cell Output Power
	Battery Energy & Power Limitations
	Regular Operation Requirements

	Problem Statement
	Solution Approach
	Abstraction
	Discretization
	Labeling
	Computing Transitions

	Synthesis
	Multi-action State-dependent Progress Group

	Results and Discussion
	Conclusions
	Variables and Constants
	Preliminary Results of System Properties

	References

