
A Bisimulation-like Algorithm for Abstracting Control Systems

Andrew J. Wagenmaker and Necmiye Ozay

Abstract— Motivated by the recent interest in abstraction-
based correct-by-construction control synthesis, in this paper
we propose a new algorithm to construct finite abstractions
for “large”, possibly infinite, transition systems. As opposed to
the standard bisimulation algorithms that create a partition of
the state space, the new algorithm uses overlapping subsets of
the state space as the states of the abstraction. We show that
the output of the new bisimulation-like algorithm preserves
realizability of linear-time properties. Several interesting prop-
erties of the algorithm are analyzed. In particular, when a finite
bisimulation of the original system exists, the new algorithm
is shown to always terminate in a finite number of steps.
Moreover, we show with an example that even when the original
system does not have a finite bisimulation, the new algorithm
can result in a finite transition system whose infinite traces
are equivalent to those of the original system. In the second
part of the paper, we focus on the application of this algorithm
to construct finite abstractions for discrete-time linear control
systems and discuss several of its advantages over the standard
bisimulation algorithm. Finally, the new algorithm is compared
to the existing algorithms with some numerical examples.

I. INTRODUCTION

Abstraction-based control synthesis has attracted consid-
erable attention in the past decade as a principled means to
design controllers that enforce complex specifications [1].
Roughly speaking an abstraction for a control system is a
system with a fewer number of states that preserves certain
properties of the concrete control system so that a controller
synthesized for the abstraction can be implemented on the
concrete system. For systems with continuous state spaces,
this is generally accomplished by discretizing the continuous
state space of the system and replacing the continuous
dynamics with a finite transition system [2], [3], [4], [5].
Discrete control protocol synthesis can then be performed
on these abstracted systems, producing a controller that
is guaranteed to meet the specification on the continuous
system. Ideally, one also wants to be able to determine the
non-existence of controllers to satisfy a given specification
for a concrete system just by examining the abstract system.
One such relation between abstract and concrete systems
that is useful to reason about existence and non-existence
of controllers is the so-called bisimulation relation [1].

While algorithms already exist to compute bisimulations
of arbitrary systems [6], [7], [8], finite bisimulations are only
guaranteed to exist for specific classes of continuous systems
[4], [7], [9], [10], [11] and, as such, these algorithms do

This work was supported in part by NSF grants CNS-1446298 and ECCS-
1553873 and the University of Michigan Summer Undergraduate Research
in Engineering (SURE) program.

The authors are with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, ajwagen,
necmiye@umich.edu.

not in general terminate in a finite number of steps. The
bisimulation relation is a strong relation in the sense that
it preserves both linear-time and branching-time properties.
Moreover, it provides a means to reason about both existence
and non-existence of controllers. When the goal is to decide
whether a system can be controlled to satisfy a given linear-
time property, it is possible to derive weaker relations such
as simulation relations (see, for instance [12], for the use of
simulation relations in verification) which can be obtained
by prematurely terminating the bisimulation algorithm and
redefining the transitions [13], [14].

In this paper, we propose a bisimulation-like algorithm
that can generate gradually better abstractions of the concrete
system. As opposed to quotienting based algorithms that
use partitions of the state-space, the proposed algorithm
uses overlapping subsets of the state-space as abstract states.
In the case that a finite bisimulation exists, the proposed
algorithm is guaranteed to terminate in a finite number of
steps. The system for which the algorithm converges to
holds a dual-simulation relation with the original system—it
simulates and is simulated by the original system—retaining
all relevant dynamic information and providing necessary
and sufficient conditions for the existence of controllers
upon termination. We provide examples where no finite
bisimulation exists but the proposed algorithm terminates in
a finite number of steps. When specialized to state-spaces
that have a geometric structure such as discrete-time linear
systems where propositions are defined by convex polytopes,
the algorithm is also able to preserve convexity through the
iterations by avoiding the set difference operation. Finally,
we provide experimental evidence that, in general, when
neither algorithm terminates in a finite number of steps, our
algorithm is able to produce a better representation of the
original system in a sense to be made clear later in the paper.

II. PRELIMINARIES

The idea of a transition system will be used extensively
in this paper.

Definition 1: (Transition System) A transition system is a
tuple T = (S,→,Π, |=) where:
• S is a set of states.
• →⊆ S × S is a transition relation.
• Π is a set of atomic propositions.
• |=⊆ S ×Π is a satisfaction relation.

We say a transition system is finite if |S|, | → |, and |Π| are
finite and infinite otherwise. For the purposes of this paper,
we restrict ourselves to |Π| finite. Typically, an additional
term, I ⊆ S which denotes initial states, is included in the
definition of a transition system. In this paper, we consider

every state in S a possible initial state and so eliminate I
from the definition.

Associated with every transition system is a proposition
preserving partition, P , where

⋃
P∈P P = S and for all

s1, s2 ∈ P , s1 |= a ∈ Π implies s2 |= a. If a region P
preserves propositions, we overload the satisfaction relation
“|=” and say P |= a. Such a proposition preserving partition
is the coarsest possible proposition preserving partition if, for
any P ∈ P , P is the unique state satisfying some π ⊆ Π. In
other words, P |= a if and only if a ∈ π and there does not
exist P ′ ∈ P, P 6= P ′ such that P ′ |= a for all a ∈ π. This
implies, for some s ∈ S, s |= a for all a ∈ π if and only if
s ∈ P .

Definition 2: (Trace) Given some system T = (S,→
,Π, |=), a trace is a sequence π1π2 . . . πn, πi ⊆ Π, such
that for i = 1, 2, . . . , n − 1, there exists si, si+1 ∈ S where
si → si+1 and si |= a ∈ Π if and only if a ∈ πi.
We denote the set of traces of length N associated with
our system as TracesN (T), the set of infinite traces on
our system as Traces∞(T), and the set of all traces as
Traces(T) =

⋃∞
i=1 Tracesi(T).

Two important relations exist between transition systems.
Definition 3: (Simulation Relation [8]) Given transitions

systems Ti = (Si,→i,Π, |=i), i = 1, 2 defined over the same
set of propositions Π, a binary relation R ⊆ S1×S2 is called
a simulation relation if it satisfies the following:

a) For all s1 ∈ S1, there exists s2 ∈ S2 such that
(s1, s2) ∈ R.

b) For all (s1, s2) ∈ R where s1 ∈ S1, s2 ∈ S2, s1 |=1

a ∈ Π if and only if s2 |=2 a.
c) If (s1, s2) ∈ R where s1 ∈ S1, s2 ∈ S2 and there is

some s′1 ∈ S1 such that s1 →1 s
′
1, then there exists

s′2 ∈ S2 such that s2 →2 s
′
2 and (s′1, s

′
2) ∈ R.

If these conditions hold, we say that T2 simulates T1.
Definition 4: (Bisimulation Relation [8]) Given transitions

systems Ti = (Si,→i,Π, |=i), i = 1, 2 defined over the same
set of propositions Π, a binary relation R ⊆ S1×S2 is called
a bisimulation relation if R is a simulation relation from T2

to T1 and R−1 is a simulation relation from T1 to T2.
Note that the standard simulation and bisimulation defi-

nitions weaken condition 1 in Definitions 3 and 4 to only
require that initial states must be related to other states.
Since we consider every state a possible initial state, we
have altered this condition accordingly.

In this paper we seek to abstract transition systems into
simpler representations primarily for the purposes of con-
troller synthesis. Generally this involves grouping together
similar states from the system we wish to abstract and
correctly defining a transition relation on this new partition.
Such abstractions must satisfy certain properties in order to
be useful for control purposes.

Definition 5: (Abstraction) Given two transition systems,
T1 = (S,→1,Π, |=1) and T2 = (Q,→2,Π, |=2), we say
that T1 is an abstraction of T2 if it satisfies the following
properties:

a) For all s ∈ S, s ⊆ Q. Further,
⋃
s∈S s = Q.

b) If q1, q2 ∈ s for some s ∈ S and q1, q2 ∈ Q, then
q1 |=2 a ∈ Π implies q2 |=2 a. In other words, the
elements of S are proposition preserving.

c) For some s, s′ ∈ S, s→1 s
′ if and only if for all q ∈ s

there exists q′ ∈ s′, where q, q′ ∈ Q, and q →2 q
′.

Note that we do not require that for some s, s′ ∈ S, s 6= s′,
that s ∩ s′ = ∅.

Since the main motivation of this paper is finding abstrac-
tions to be used in controller synthesis, a few words on the
controller synthesis setup and the type of specifications that
are of interest are in order. First, we assume that all the
transitions of the concrete system are controllable, that is, if
the system is in state s and a transition exists from state s
to s′, then the controller can choose to take this transition.
In other words, for each transition, there exists a control
action to implement that transition. For the purposes of
abstraction, we choose to abstract the action labels out of our
representation. Second, we are primarily interested in linear-
time specifications such as those given in linear temporal
logic (LTL) [8]. LTL provides a rich language in which
many relevant properties can be specified [13], [15], [16]. In
addition, tools already exist to compute a controller to meet a
LTL formula on a discrete system [3], [17]. For the purposes
of this paper, it is important to note that LTL formulas are
only evaluated on infinite traces [8]. This implies that two
systems with the same set of infinite traces will meet the
same LTL specifications. As such, when controller synthesis
is being performed, we are only concerned with infinite
traces and we require a valid controller to lead to only
infinite traces. Deadlocking states—states with no outgoing
transitions—can simply be ignored as they produce finite
traces and valid controllers will avoid such states.

If a system meets the properties outlined in Definition 5
with respect to some other system, any controller synthesized
to meet an LTL specification on the abstraction will also meet
the same LTL specification on the original system [14]. Note
that bisimulation is a much stronger relation. It preserves
traces of atomic propositions and therefore also preserves
LTL specifications [8]. Further, it is important to note that,
given two systems T1 and T2, it is possible T1 simulates T2

and T2 simulates T1 but T1 and T2 are not bisimilar [8].
For the subsequent discussion, we introduce the following

operator.
Definition 6: (Pre Operator) Given transition system T =

(S,→,Π, |=) and some state s ∈ S, define Pre(s) = {s′ ∈
S : s′ → s}. We overload this to handle sets A ⊆ S as
Pre(A) = {s′ ∈ S : ∃s ∈ A s.t. s′ → s}.

III. EXISTING BISIMULATION ALGORITHM

A well known algorithm already exists to compute a
transition system with the least possible number of states
that is bisimilar to a given transition system [6], [7], [8].
The algorithm operates on both finite and infinite transition
systems and is guaranteed to find a finite bisimulation if one
exists.

Given a transition system, the algorithm initializes with
the coarsest possible proposition preserving partition of the

system. It then proceeds to iterate over this partition, deter-
mining which transitions are valid and successively refining
the partition at each iteration. This procedure is given in
Algorithm 1.

The satisfaction relation |=N returned by Algorithm 1
can be trivially defined since the partition is proposition
preserving. For some s ∈ SN , a ∈ Π, we have s |=N a if
and only if, for all q ∈ s, q |= a. Note that this is equivalent
to stating s |=N a if and only if there exists q ∈ s for
which q |= a. We define the transition relation returned by
Algorithm 1, →N , in accordance with Definition 5c. For
some s1, s2 ∈ SN , we have s1 →N s2 if and only if, for all
q1 ∈ s1, there exists some q2 ∈ s2 such that q1 → q2.

It can be easily shown that Algorithm 1 produces a
transition system that is an abstraction of the original system
as defined in Definition 5. In addition, if Algorithm 1 is
prematurely terminated and a transition relation is computed
using the procedure outlined above, this transition system
will also be an abstraction of the original system.

As was previously mentioned, while Algorithm 1 will
terminate in a finite number of steps for a finite transition
system [8], it is only guaranteed to do so for special classes
of infinite transition systems. For the purposes of controller
synthesis, we are usually concerned with infinite transition
systems. As such, when using Algorithm 1 to abstract infinite
systems, Wongpiromsarn et al. [13] proposes immaturely
terminating the algorithm before termination and performing
controller synthesis on this intermediate system. The defini-
tion of the transition relation given in Definition 5c, when
applied to a prematurely terminated system, is consistent
with [13] and guarantees that the transitions of the abstract
system remain controllable. Therefore, controller synthesis
can be performed by model-checking as opposed to using
two-player games [3], [13], [14], [18]. 1

Ideally, if intermediate systems are to be used for con-
troller synthesis, we would like every iteration of Algorithm
1 to produce a system that “better” approximates the original
system than what was produced at the previous iteration.
However, in general this is not true for Algorithm 1. It is
possible to show that the system produced at the ith iteration
of Algorithm 1 may contain transitions that are not realizable
on the system produced at the i + 1th iteration. Dynamic
information may be lost from iteration to iteration.

A secondary issue with Algorithm 1 is that it produces
a system with a stronger relation to the original system
than is necessary for control and verification purposes with
linear-time properties [12]. Since our primary concern is
with satisfying LTL specifications and LTL specifications are

1Note that for the purposes of verification, we must redefine our transition
relation so that, for some s1, s2 ∈ Si, where Si is our partition possibly
terminated prematurely, s1 →i s2 if and only if there exists some q1 ∈ s1
and q2 ∈ s2 such that q1 → q2. This transition relation allows us to
verify the non-existence of unwanted traces. Most of the results in this
paper are valid when we modify the transition relation in this way and one
is concerned with the verification problem. In this paper we focus on the
control synthesis problem, which amounts to verifying the existence of a
desired infinite trace. Hence, we use the definition of transitions from [13].
Also note that when Algorithm 1 terminates in a finite number of steps, the
two versions coincide on the partition produced by Algorithm 1.

by definition only evaluated on infinite traces, in order to
synthesize controllers or perform verification on a system
the strongest relation we need between the abstraction and
original system is for the sets of infinite traces associated
with each system to be identical. As we will show, it
is possible to alter Algorithm 1 such that it guarantees
equivalence of infinite traces but does not require bisimilarity.

Algorithm 1 Original Bisimulation Algorithm

1: function BISIMULATION(transition system T = (Q,→
,Π, |=))

2: S0 ← Coarsest possible proposition preserving par-
tition of T

3: while ∃s1, s2 ∈ Si s.t. s1 ∩ Pre(s2) 6= ∅ and s1 ∩
Pre(s2) 6= s1 do

4: Si+1 = (Si\s1)∪(s1∩Pre(s2))∪(s1\Pre(s2))
5: end while
6: Construct →N , |=N

7: return TN = (SN ,→N ,Π, |=N)
8: end function

IV. DUAL-SIMULATION ALGORITHM

With these issues in mind, we propose a modified
bisimulation-like algorithm, Algorithm 2.

Algorithm 2 Dual-Simulation Algorithm

1: function DUAL-SIMULATION(transition system T =
(Q,→,Π, |=))

2: S0 ← Coarsest possible proposition preserving par-
tition of T

3: while ∃s1, s2 ∈ Si s.t. s1 ∩ Pre(s2) 6= ∅, s1 ∩
Pre(s2) 6= s1, and s1 ∩ Pre(s2) /∈ Si do

4: Si+1 = Si ∪ (s1 ∩ Pre(s2))
5: end while
6: Construct →N , |=N

7: return TN = (SN ,→N ,Π, |=N)
8: end function

Similar to Algorithm 1, Algorithm 2 begins by partitioning
the state space into the coarsest possible proposition pre-
serving partition. It then iterates over the states, determining
which transitions are valid and refining states accordingly.
This algorithm differs from Algorithm 1 primarily in that it
eliminates the use of the set-wise difference operator. Rather
than taking the difference and intersection of sets, it simply
takes the intersection and adds this to the partition. In order
to maintain a partition encompassing the entire state space, it
never removes regions from the partition and allows regions
to overlap. This is in direct contrast to the Algorithm 1 for
which all regions are disjoint.

Overlapping regions result in a hierarchical partition where
regions may be contained entirely inside other regions. In
fact, every region not in the original proposition preserving
partition will be contained in a region from the original

proposition preserving partition. From this it clearly follows
that all regions will preserve propositions.

We utilize the same definitions for the returned satisfaction
relation and transition relation, |=N and →N , as we used in
Algorithm 1. As such, Algorithm 2 produces an abstraction
of a system as defined in Definition 5. In addition, if
Algorithm 2 is prematurely terminated and we define our
transition relation using the same definition as was used
when Algorithm 1 was prematurely terminated, the resulting
transition system will also be an abstraction of the original
system.

A. Formal Guarantees on Algorithm 2

We now present several formal guarantees on Algorithm
2.

In the remainder of this section, we denote the possibly
infinite concrete system by Ta = (Q,→a,Π, |=a) and we let
T ib = (Si,→i

b,Π, |=i
b) be the result of running Algorithm 2

on Ta and prematurely terminating at the ith iteration. The
transition relation →i

b of T ib is created to satisfy Definition
5c. We say Algorithm 2 converges if there exists some finite
N such that SN = limi→∞ Si. In the case of convergence,
we simply denote our converged system as Tb = (S,→b

,Π, |=b).
Proposition 1: If Algorithm 1 converges for system Ta,

then Algorithm 2 converges for system Ta assuming the same
initial proposition preserving partition is used.

Proof: Let Tc = (Sc,→c,Π, |=c) denote the system
produced by running Algorithm 1 on Ta to convergence.
Consider the system T ib = (Si,→i

b,Π, |=i
b) produced by

Algorithm 2 after i iterations where i is arbitrary and we
simply require that Algorithm 2 has not converged. Let
s1, s2 ∈ Si where s1 ∩ Pre(s2) = s3, s3 6= s1, s3 6= ∅,
and s3 /∈ Si. Let α1, α2, . . . , αn, β1, β2, . . . , βm ∈ Sc and
assume s1 = α1∪α2∪ . . .∪αn and s2 = β1∪β2∪ . . .∪βm.
By the definition of the Pre operator, we can see that
Pre(s2) = Pre(β1) ∪ Pre(β2) ∪ . . . ∪ Pre(βm). Note
also, given that Algorithm 1 has converged, for any states
α, β ∈ Sc, either α ∩ Pre(β) = ∅ or α ∩ Pre(β) = α.

By the distributive law of set algebra, we have:

s1 ∩ Pre(s2) =

(
n⋃
i=1

αi

)
∩

(
m⋃
i=1

Pre(βi)

)

=

n⋃
i=1

m⋃
j=1

αi ∩ Pre(βj)

= αi1 ∪ αi2 ∪ . . . ∪ αik

(1)

for some i1, i2, ik ∈ {1, . . . , n}. Thus, taking the intersection
of s1 and Pre(s2) will not split any sets from Sc. Since we
assume the original proposition preserving partitions, S0, are
the same for each algorithm, we know that for all α ∈ Sc
there exists a unique s ∈ S0 such that α ⊆ s and, for all
s′ ∈ S0, s′ 6= s, we have s′ ∩ α = ∅. Thus, for all s ∈ S0,
we can write s = α1∪α2∪ . . .∪αn for some αi ∈ Sc. This,
combined with (1), implies that for all s ∈ S, where S is the
partition produced by Algorithm 2 on convergence, we can

write s = β1 ∪ β2 ∪ . . . ∪ βm for some βi ∈ Sc. Since Sc is
finite, there is a finite number of combinations of elements
from Sc. Further, since every state in S is a combination of
states in Sc and we do not allow duplicate states in S, there
must then be a finite number of states in S. Thus, Algorithm
2 converges.

Proposition 1 allows us to put an upper bound on the
number of states that may be present in S. Let g : 2Π → N
be a function assigning to each subset of propositions in Π
the number of states in Sc uniquely satisfying satisfying that
subset. In other words, if g(π ⊆ 2Π) = 1, this implies there
exists a single unique s ∈ Sc where s |=c a ∈ Π if and only
if a ∈ π. The maximum number of states in S is then given
by
∑
π∈Π(2g(π) − 1). In practice, however, the number of

states in S is generally much less than this.
For the purposes of proving that all LTL formulas are

preserved by the abstraction generated by Algorithm 2, the
following proposition is useful.

Proposition 2: A trace fragment of length n can occur on
Tb if and only if that trace fragment can also occur on Ta.

Proof: Take some trace fragment π1π2 . . . πn that
occurs on Ta where πi ⊆ Π. This implies there exists some
q1, q2, . . . , qn ∈ Q such that qi |=a c ∈ Π if and only if
c ∈ πi and qi →a qi+1 for i = 1, 2, . . . , n − 1. Let sn be
some state in Tb such that qn ∈ sn. Let sMn−1 be the unique
state in T 0

b such that qn−1 ∈ sMn−1. Note that sMn−1 ∈ Tb. If
sMn−1 →b sn, we already have that πn−1πn is a realizable
trace fragment on Tb. Assume this is not the case. Since
qn−1 ∈ sMn−1 and qn ∈ sn, then sMn−1∩Pre(sn) = sn−1 and
sn−1 6= ∅. By definition sn−1 →b sn. Further, sn−1 ∈ Sb
to meet the termination condition of Algorithm 2. Thus, the
trace fragment πn−1πn is realizable on Tb. We can proceed
in this way, now taking sn−1 as our starting point, all the
way back to some s1 proving that the entire trace fragment
is realizable on Tb.

Now take some trace fragment π1π2 . . . πn that occurs
on Tb where πi ⊆ Π. This implies there exists some
s1, s2, . . . , sn ∈ S such that si |=b c ∈ Π if and only if
c ∈ πi and si →b si+1 for i = 1, 2, . . . , n − 1. By the
definition of what entails a transition on Tb, we have that
for all qi ∈ si, there exists some qi+1 ∈ si+1 such that
qi →a qi+1. Thus, all transitions are replicated in Ta so the
trace fragment is realizable on Ta.

Proposition 2 allows us to state the following corollary:
Corollary 1: Given an LTL specification ϕ, a controller

that enforces ϕ on Tb exists if and only if a controller that
enforces ϕ on Ta exists.

Proof: By assumption all the transitions of Ta are
controllable and by construction all the transitions of Tb are
controllable. Since Proposition 2 is true for arbitrary n, it
implies that Traces∞(Tb) = Traces∞(Ta). By definition,
LTL formulas are only satisfiable on infinite traces. There-
fore, any LTL specification that is satisfied on Tb will also
be satisfied on Ta and any LTL specification satisfied on Ta
will also be satisfied on Tb. This along with the fact that
Tb is an abstraction of Ta implies that any controller that

enforce a specification on Tb enforces the same specification
on Ta and any controller that enforces a specification on
Ta enforces the same specification on Tb (after the trivial
mapping of transitions taken on one system to the other).

In addition to preserving trace fragments, we can also
introduce a simulation relation between Ta and Tb.

Proposition 3: Tb simulates Ta as defined in Definition 3.
Proof: Let h : Q→ S be a function sending q ∈ Q to

the smallest set s ∈ S such that q ∈ s. Here we say some set
s ∈ S where q ∈ s is the “smallest” if there does not exist
s′ ∈ S such that s′ ⊆ s and q ∈ s′. Due to the hierarchical
structure of the partition, it can be shown that such a set will
exist. We propose the simulation relation R = {(q, h(q)) :
∀q ∈ Q}. It can be easily shown that R satisfies all the
conditions of a simulation relation given in Definition 3.

As we have already discussed, an issue with the standard
bisimulation algorithm, Algorithm 1, is that it does not
guarantee that at every iteration we will produce a system
better than the system produced at the previous iteration. The
following results show that our proposed algorithm is able
to accomplish this:

Proposition 4: Every iteration of Algorithm 1 produces
a system that contains all dynamics present on the system
produced at the previous iteration. In other words, T i+1

b

simulates T ib .
Proof: Consider some s1, s2, s3 ∈ Sib where s1 →i

b s2

implying s1 ∩ Pre(s2) = s1. Let s2 ∩ Pre(s3) = s′2 where
s′2 6= ∅, s′2 6= s2, and s′2 /∈ Si. If we perform this refinement
at the i+1th iteration, we obtain the partition Si∪s′2. We can
now add the transition s′2 →i+1

b s3 and we clearly maintain
the transition s1 →i+1

b s2 since neither s1 nor s2 has been
altered.

Now consider instead refining s1 with s3. Let s1 ∩
Pre(s3) = s′1 where s′1 6= s1, s′1 6= ∅, and s′1 /∈ Si. If we
perform this operation at the i+ 1th iteration, we obtain the
partition Si∪ s′1. We can now add the transition s′1 →i+1

b s3

and the transition s′1 →i+1
b s2 since s1 ∩ Pre(s2) = s1

and s1 ⊆ S which implies s′1 ∩ Pre(s2) = s′1. Finally, we
maintain the transition s1 →i+1

b s2 since neither s1 nor s2

has been altered.
From this it is clear that, at every iteration, no transitions

are lost and some may be added. Thus, every iteration
produces a system that contains all dynamics present on
the previous system. If we introduce a relation R where R
associates every state in Si with its identical state in Si+1,
it is trivial to show that R is a simulation relation and T i+1

b

simulates T ib .
In addition to evolving in a way that successively produces

a system better than the last, we would also like to have some
guarantees on the intermediate system, T ib , that allow it to
be used for controller synthesis.

Proposition 5: Any trace fragment found on T ib is also
realizable on Ta

Proof: Take some trace fragment π1π2 . . . πn on
T ib where πj ⊆ Π This implies there exists some
s1, s2, . . . , sn ∈ Sib such that sj |=i

b a ∈ Π if and only
if a ∈ πj and sj →i

b sj+1 for j = 1, 2, . . . , n − 1. By the

definition of a transition, we know that there exists some
qj ∈ sj , qj+1 ∈ sj+1 such that qj →a qj+1. This implies
π1π2 . . . πn can be realized on Ta.

Since n is arbitrary, Proposition 5 implies that the set of
infinite traces realizable on T ib is a subset of the set of infinite
traces realizable on Ta. That is to say, Traces∞(T ib) ⊆
Traces∞(Ta). Due to this, while T ib may not exhibit the
entire range of behaviors present on Ta, we can still per-
form controller synthesis on it since any LTL specification
satisfiable on T ib will also be satisfiable on Ta.

Proposition 6: Ta simulates T ib as defined in Definition 3.
Proof: We propose the simulation relationR = {(s, q) :

∀s ∈ Si,∀q ∈ s}. By construction of R and the definition
of the transition relation, →a, on Ta, it can be easily shown
that this relation satisfies Definition 3.

Corollary 2: Ta simulates Tb.
Proof: Follows directly from Proposition 6 since Tb =

TNb .
From Corollary 2 and Proposition 3, we have that Tb

simulates Ta and Ta simulates Tb. Thus, the system produced
by Algorithm 2 bears a dual-simulation relation with the
original system. This implies that any transition in Tb has
a corresponding transition in Ta and any transition in Ta
has a corresponding transition in Tb. Note that Ta and Tb
are not necessarily bisimilar as defined by Definition 4. This
primarily results from the fact that a deadlocking state may
exist in Tb while no such state exists in Ta. Since we do
not ever eliminate states from our partition, it is possible
there exists some state s1 ∈ S such that for all s2 ∈ S,
s1 ∩ Pre(s2) 6= s1. This implies there are no outgoing
transitions from s1. If no such deadlocking state exists in
Ta, s1 will not be bisimilar to any states in Ta and no
bisimulation relation between Ta and Tb will exist.

B. Discrete-Time Linear Systems

We now specialize our results to discrete-time linear
systems of the form:

x(t+ 1) = Ax(t) +Bu(t) (2)

where x(t) ∈ X ⊆ Rn is the system state, u(t) ∈ U ⊆ Rm
is the control signal, and A ∈ Rn×n and B ∈ Rn×m are the
system matrices.

We assume regions of interest {Xi} in X are marked with
atomic propositions from a set Π. Then, with every system
of the form (2) we can associate an infinite transition system,
T = (X,→,Π, |=), where x′ → x if there exists u ∈ U such
that x′ = Ax+Bu.

Given T = (X,→,Π, |=), one can apply Algorithm 2
to obtain an abstraction. In order to compute the Pre of
a region where the system dynamics are given by (2), a
projection operation from the state-input space to the state
space needs to be performed. This computation is fairly
standard when the region for which the Pre is computed
and the input set U are convex polyhedra [19] (but not so
for non-convex regions). Further, a convex partition allows
controller synthesis to be performed much more efficiently
since, in this case, only convex optimization problems must

be solved when synthesizing a controller. This motivates the
following result.

Proposition 7: If the original proposition preserving par-
tition consists of only convex regions, every state in the
partition produced by Algorithm 2 will be convex.

Proof: This follows from the fact that, given a system
of the form (2), the Pre of a convex set will be convex and
the intersection of two convex sets will also be convex [19],
[20]. If we assume our initial partition is convex, this implies
every region added to our partition will also be convex.

Note that Algorithm 1 does not preserve convexity. When
the set-wise difference is taken between two regions, the
region produced may be non-convex even if the original
regions are convex [20]. This can lead to non-convex regions
in the partition produced by Algorithm 1 even when the
initial proposition preserving partition is convex, making
each iteration of Algorithm 1 non-trivial.

It is also worth mentioning that, as a direct consequence
of Proposition 1, Algorithm 2 converges in a finite number
of steps for classes of discrete-time system that admit finite
bisimulations [9]. Moreover, as shown in Section V-B.1,
there are discrete-time linear systems that do not admit finite
bisimulations but the proposed algorithm converges. Charac-
terizing the finite step convergence properties of Algorithm
2 beyond the known convergence results for Algorithm 1 is
the subject of ongoing research.

V. EXAMPLES

We next present several examples comparing Algorithm 2
with Algorithm 1. All computations were carried out in the
Temporal Logic Planning Toolbox (TuLiP) [17].

A. Discrete System

We first contrast the systems produced by Algorithms 1
and 2 through a simple discrete example. Figure 1 illustrates
the original transition system where the propositions asso-
ciated with each state are given in {}. Figure 2a displays
the transition system obtained from running Algorithm 1
on the original transition system and Figure 2b displays the
transition system obtained from running Algorithm 2 on the
original transition system.

q1 {a} q2 {a}

q3 {b} q4 {b} q5 {b}

q6 {c} q7 {d}

Fig. 1: Original Transition System

From Figure 2b, we can see that Algorithm 2 produces
a deadlocking state when no deadlocking state exists in
the original system. Due to this deadlocking state, the set
of all possible traces on the original transition system and

q1 {a} q2 {a}

q3, q4 {b} q5 {b}

q6 {c} q7 {d}

(a) Algorithm 1

q1, q2 {a} q2 {a}

q3, q4 {b} q3, q4,
q5

{b}
q5 {b}

q6 {c} q7 {d}

(b) Algorithm 2

Fig. 2: Systems produced by each algorithm

the system produced by Algorithm 1 differ from the set of
traces on the system produced by Algorithm 2. Recall that,
due to Definition 1, every state in each transition system
is considered an initial state. On the original system and
system produced by Algorithm 1, the set of traces is then
{cω, dω, bcω, bdω, abcω, abdω} where cω and dω indicate that
the propositions c and d are repeated infinitely often. In con-
trast, the set of all possible traces on the system produce by
Algorithm 2 is {b, cω, dω, ab, bcω, bdω, abcω, abdω}. Ignoring
deadlocking states, it can be seen that the sets of infinite
traces on each system are identical, guaranteeing that LTL
specifications are preserved across abstractions.

B. Comparison of Convergence Properties

We have observed that, while Algorithm 2 is guaranteed to
converge if Algorithm 1 converges, in many cases Algorithm
2 converges even if Algorithm 1 does not. In these cases
then, Algorithm 2 is able to find a finite representation of an
infinite system that preserves LTL formulas even when no
finite bisimulation of such a system exists. We next present
two examples illustrating this.

1) One-Dimensional System: Consider the following sys-
tem:

x(t+ 1) = 2x(t) + u(t) (3)

with state space X = [−1.5, 1.5], input set U = [−2, 2],
and initial proposition preserving partition: s1 = [−1.5,−1),
s2 = [−1, 1), s3 = [1, 1.5]. We let Π = {a, b, c} and assign
to each region a unique proposition: s1 |= a, s2 |= b, s3 |= c.

On this system and initial partition, Algorithm 2 converges
to the following partition: s1 = [−1.5,−1), s2 = [−1, 1),
s3 = [1, 1.5], s4 = [−1, 0.5), s5 = [−0.5, 1), s6 =
[−0.5, 0.5), s7 = [−1.25,−1), s8 = [1, 1.25).

We now show that no finite bisimulation exists for this
system—Algorithm 1 does not converge. Given a set [a, b] ⊆
[−1.5, 1.5], to compute the Pre, we must find what x ∈
[−1.5, 1.5] satisfy 2x + u ∈ [a, b]. Equivalently, a ≤ 2x +
u ≤ b which implies 1

2 (a − u) ≤ x ≤ 1
2 (b − u). Since

−2 ≤ u ≤ 2, we have 1
2 (a − 2) ≤ x ≤ 1

2 (b + 2). Define
functions h(x) = 1

2 (x − 2) and g(x) = 1
2 (x + 2), then

Pre([a, b]) = [h(a), g(b)] ∩ [−1.5, 1.5]2. If we are running
Algorithm 1, the operation of taking the Pre of a region
and intersecting it with the existing regions can be thought
of as adding points to a set containing all the boundaries.
Our initial set will simply be {−1.5,−1, 1, 1.5} and at every

2Half open intervals can be handled in a similar way.

iteration we will add points h(x) or g(x) to this set where
x existed in the previous iteration of the set. Consider now
the sequence:

a0 = 1, ai =

{
g(ai−1), if i even
h(ai−1), if i odd

This can be rewritten as ai =
(

1
2

)i
+
(

2
3

)
(−1)

i
(

1−
(−1

2

)i)
.

Clearly, this sequence asymptotically approaches
(

2
3

)
(−1)

i

as i approaches infinity. From this we can see that our set
of boundaries will never be closed under the Pre operator
and therefore no finite bisimulation exists.

The fundamental difference between Algorithm 1 and
Algorithm 2 is that, due to taking intersections as well as
differences, Algorithm 1 allows you to apply both h and g
to any boundary while Algorithm 2 does not. Consider the
region [1, 1.5]. The Pre of this region is [−0.5, 1.5] which,
when intersected with the region [−1, 1], produces the region
[−0.5, 1]. Since −0.5 is only the lower boundary of a region
and not the upper in the partition produced by Algorithm
2, we can only add h(−0.5) to our set of boundaries and
not g(−0.5). In contrast, if we performed the same split
using Algorithm 1, we get the two regions [−0.5, 1] and
[−1,−0.5], allowing us to add both h(−0.5) and g(−0.5)
to our set of boundaries. This restriction prevents us from
introducing the infinite sequence we obtain by applying
Algorithm 1.

2) Two-Dimensional System: Consider now the following
two-dimensional system:

[
x1(t+ 1)
x2(t+ 1)

]
=

[
0.5 1
0.75 −1

] [
x1(t)
x2(t)

]
+

[
u1(t)
u2(t)

]
, (4)

where X = [−1, 1]× [−1, 1] and U = [−1, 1]× [−1, 1]. We
introduce the following initial partition s1 = [−0.5, 0.5) ×
[−0.5, 0.5), s2 = [−1,−0.5) × [−1, 1], s3 = [−0.5, 1] ×
[0.5, 1], s4 = [0.5, 1] × [−1, 0.5), s5 = [−0.5, 0.5) ×
[−1,−0.5). To each region we assign a unique proposition
from the set Π = {a, b, c, d, e}. Namely: s1 |= a, s2 |=
b, s3 |= c, s4 |= d, s5 |= e.

When run on this system, Algorithm 2 converges to a
partition containing 66 regions. Though the complexity of the
dynamics prevents us from easily proving that Algorithm 1
will not converge on, when running Algorithm 1, a partition
containing 700 regions was reached and the convergence
criteria had still not been met. For computational and nu-
merical reasons, the execution was terminated at this point.
Regardless of whether (4) has a finite bisimulation, the in-
termediate partition produced by Algorithm 1 is significantly
more complex than the full partition produced by 2.

The partition produced by Algorithm 2 is illustrated in
Figure 3b with overlapping cells simply plotted on top of
each other. The partition obtained by prematurely terminating
Algorithm 1 after reaching a partition containing 700 regions
is displayed in Figure 3a. From this it is clear that Algorithm
2 is able to obtain a much simpler representation of (4) than
Algorithm 1 while preserving all LTL formulas.

(a) Algorithm 2 (b) Algorithm 1

Fig. 3: Partitions produced by prematuraly terminating each
algorithm

C. Comparison of Intermediate Systems

Finally, we compare the performance of Algorithm 2 and
Algorithm 1 when each algorithm is prematurely terminated
before convergence is reached. In order to obtain an even
comparison of the systems, we only allow states that have
a volume greater than 0.1. This constraint forces both algo-
rithms to ignore smaller states and artificially converge.

We consider the system:[
x1(t+ 1)
x2(t+ 1)

]
=

[
0.3 0.9
−1.1 0.4

] [
x1(t)
x2(t)

]
+

[
u1(t)
u2(t)

]
+

[
d1(t)
d2(t)

]
(5)

where X = [−1, 1] × [−1, 1] and U = [−0.75, 0.75] ×
[−0.75, 0.75]. d1 and d2 represent random disturbances. We
restrict the strength of the disturbances such that |d1| ≤
d, |d2| ≤ d for some d.

Our initial partition is: s1 = [−1, 1] × [−1,−0.1), s2 =
[−1,−0.3)×[−0.1, 0.2), s3 = [−0.3, 0.3)×[−0.1, 0.2), s4 =
[0.3, 1] × [−0.1, 0.2), s5 = [−1, 1] × [0.2, 1]. We let Π =
{a, b, c, d, e} and assign a unique proposition to each cell:
s1 |= a, s2 |= b, s3 |= c, s4 |= d, s5 |= e.

We wish to somehow compare the abstractions produced
by each algorithm. In the absence of a simulation relation
between systems, there is no direct way to determine which
transition system better represents the original system. To
produce some metric of comparison between the abstrac-
tions, we propose determining the number of unique trace
fragments of a given length, N , that are realizable on
each system as compared to the number realizable on the
original system. While this does not guarantee that more LTL
formulas are satisfiable on an abstraction—since LTL only
considers infinite traces—it does give some indication as to
which abstraction is able to more fully capture the behaviors
present on the original system. Table I illustrates these results
for various values of d.

Algorithm 2 Algorithm 1

d N
Possible Realizable % Realizable %Traces Traces Traces

0
5 3125 2185 69.92 773 24.74

10 9765625 4315343 44.19 442961 4.54

0.1
5 2395 2185 91.23 316 13.19

10 4730125 4315343 91.23 54556 1.15

0.15
5 80 63 78.75 9 11.25

10 2560 2048 80.00 9 0.35

TABLE I: Possible Traces on Volume Constrained Abstrac-
tion

From Table I we can see that, regardless of the distur-
bance level, the system produced by Algorithm 2 exhibits
many more possible behaviors than the system produced by
Algorithm 1. In addition, Algorithm 2 is much more robust to
disturbances than Algorithm 1. For Algorithm 2 the number
of realizable trace fragments is unaffected when moving
from no disturbance to a disturbance with strength 0.1. In
contrast the number of realizable trace fragments on the
abstraction produced by Algorithm 1 decreases significantly
when disturbances are added. Disturbances tend to affect
smaller regions more strongly. Since Algorithm 1 splits
regions, it produces a partition containing smaller regions
more quickly than does Algorithm 2 and is therefore more
sensitive to disturbances. When d = 0.15, we see that the
number of realizable trace fragments on each abstraction
decreases yet the abstraction produced by Algorithm 2 still
produces a much fuller representation of all possible trace
fragments than does Algorithm 1.

Note that the number of possible traces on the concrete
system decreases in the presence of disturbances since we
only consider controllable transitions. For a transition to be
controllable under disturbances, it must be controllable for
all disturbance values in the allowable range. This restriction
eliminates some transitions in the case of large disturbances
that are possible to enforce when no disturbances are present.

Note also that TuLiP uses several randomized algorithms
to handle the complexity of non-convex regions. As such,
the results obtained for Algorithm 1 listed in Table I differ
somewhat from trial to trial and the median values across
100 trials are given.

VI. CONCLUSION

In this paper we have proposed a novel bisimulation-
like algorithm able to produce abstractions of transition
systems bearing a dual-simulation relation with the original
system. This algorithm utilizes an idea similar to the well
known bisimulation algorithm—differing primarily in that it
allows regions to overlap—but is able to improve on several
of its shortcomings. Specifically, it provides guarantees on
the intermediate systems produce and how these systems
evolve. In addition, it is able to preserve convexity of
partitions when applied to discrete-time linear systems. We
have contrasted our algorithm and the standard bisimulation
algorithm through several examples and have demonstrated
that our algorithm may converge in situations where the
standard bisimulation algorithm will not and will produce
better intermediate systems when prematurely terminated.

Motivated by our experimental observations, in future
work we hope to provide stronger guarantees on when our
algorithm will converge for discrete-time linear systems,
specifically in cases where no finite bisimulations exist. It
is also of interest to investigate for what additional classes
of systems this algorithm can be shown to find finite ab-
stractions. In addition, we hope to develop a more rigorous
metric that will allow us to formally compare the abstraction
produced by our algorithm and other similar abstraction
algorithms, especially when the corresponding abstractions

are not related by a simulation relation. Finally further
optimizations of the algorithm similar to those in [21] will
be considered.

ACKNOWLEGMENTS

The authors would like to thank Oscar Mickelin for
insightful discussions at the early stages of this work.

REFERENCES

[1] P. Tabuada, Verification and control of hybrid systems: a symbolic
approach. Springer Science & Business Media, 2009.

[2] P. Nilsson, N. Ozay, U. Topcu, and R. M. Murray, “Temporal logic
control of switched affine systems with an application in fuel balanc-
ing,” in Proceedings of the 2012 American Control Conference (ACC),
June 2012, pp. 5302–5309.

[3] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” Automatic Control,
IEEE Transactions on, vol. 53, no. 1, pp. 287–297, 2008.

[4] P. Tabuada and G. J. Pappas, “Linear time logic control of discrete-time
linear systems,” Automatic Control, IEEE Transactions on, vol. 51,
no. 12, pp. 1862–1877, 2006.

[5] B. Yordanov, J. T̊umová, I. Černá, J. Barnat, and C. Belta, “Temporal
logic control of discrete-time piecewise affine systems,” Automatic
Control, IEEE Transactions on, vol. 57, no. 6, pp. 1491–1504, 2012.

[6] A. Bouajjani, J.-C. Fernandez, and N. Halbwachs, “Minimal model
generation,” in International Conference on Computer Aided Verifica-
tion. Springer, 1990, pp. 197–203.

[7] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88,
no. 7, pp. 971–984, 2000.

[8] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, 2008.

[9] P. Tabuada and G. J. Pappas, Model checking LTL over controllable
linear systems is decidable, 2003, pp. 498–513.

[10] P. Prabhakar, V. Vladimerou, M. Viswanathan, and G. E. Dullerud,
“A decidable class of planar linear hybrid systems,” in International
Workshop on Hybrid Systems: Computation and Control. Springer,
2008, pp. 401–414.

[11] M. Rungger, M. Mazo Jr, and P. Tabuada, “Specification-guided
controller synthesis for linear systems and safe linear-time temporal
logic,” in Proceedings of the 16th international conference on Hybrid
systems: computation and control. ACM, 2013, pp. 333–342.

[12] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, “Computing
simulations on finite and infinite graphs,” in Foundations of Computer
Science, 1995. Proceedings., 36th Annual Symposium on, Oct 1995,
pp. 453–462.

[13] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[14] J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Switching protocol
synthesis for temporal logic specifications,” in 2012 American Control
Conference (ACC), June 2012, pp. 727–734.

[15] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343 – 352, 2009.

[16] S. Jiang and R. Kumar, “Failure diagnosis of discrete-event systems
with linear-time temporal logic specifications,” IEEE Transactions on
Automatic Control, vol. 49, no. 6, pp. 934–945, June 2004.

[17] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M.
Murray, “Control design for hybrid systems with tulip: The temporal
logic planning toolbox,” in Proc. Multi-conference on Systems
and Control (MSC), 2016, pp. 1030–1041. [Online]. Available:
tulip-control.org

[18] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Synthesis of control
protocols for autonomous systems,” Unmanned Systems, vol. 1, no. 01,
pp. 21–39, 2013.

[19] F. Borrelli, A. Bemporad, and M. Morari, Model Predictive Control,
2015.

[20] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004.

[21] D. Bustan and O. Grumberg, “Simulation-based minimization,” ACM
Transactions on Computational Logic (TOCL), vol. 4, no. 2, pp. 181–
206, 2003.

