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Abstract— Constrained Markov Decision Processes (CMDPs)
are notably more complex to solve than standard MDPs
due to the absence of universally optimal policies across all
initial state distributions. This necessitates re-solving the CMDP
whenever the initial distribution changes. In this work, we
analyze how the optimal value of CMDPs varies with different
initial distributions, deriving bounds on these variations using
duality analysis of CMDPs and perturbation analysis in linear
programming. Moreover, we show how such bounds can be
used to analyze the regret of a given policy due to unknown
variations of the initial distribution.

I. INTRODUCTION

Constrained Markov Decision Processes (CMDPs) are a
fundamental framework for modeling sequential decision-
making problems where an agent seeks to maximize
cumulative rewards while satisfying certain constraints.
These processes extend the classical Markov Decision Pro-
cesses (MDPs) [11] by incorporating constraints on expected
costs or resources, making them highly relevant in fields
such as operations research, robotics, telecommunications,
and finance [1]. In many real-world applications, agents must
not only optimize performance but also adhere to limitations
like energy consumption, risk levels, or time budgets [8].

A significant challenge in CMDPs is the lack of uniformly
optimal policies across all possible initial state distributions.
Unlike standard MDPs, where a stationary policy is optimal
regardless of the starting state due to the Markov prop-
erty and the structure of the optimization problem [5], the
presence of constraints means that a policy optimal for one
initial distribution may not be optimal for another. This issue
becomes particularly problematic in environments where the
initial state distribution is uncertain or varies over time,
leading to potential suboptimal performance if the policy is
not adapted accordingly [7].

Traditional approaches often involve solving the CMDP
for a specific nominal initial distribution, yielding a policy
tailored to that scenario [1]. However, when the actual
initial distribution deviates from the nominal one, the per-
formance of this policy can degrade, and re-solving the
CMDP at deployment time for the new distribution can be
computationally intensive [9]. This is especially impractical
in dynamic environments where quick decision-making is
crucial. While the continuity and stability of CMDPs under
these deviations have been studied [3], [2], there is currently
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a lack of numerical methods for quantifying or analyzing the
resulting performance impact.

One could instead consider searching for robust policies
for uncertain CMDPs, where the uncertainty can be in
the initial condition or transition probabilities. However, as
opposed to MDPs, robust CMDPs are non-trivial to solve,
leading to bilinear optimization problems [13] or heuristic
algorithms with local convergence guarantees [15], [12],
[14]. We note that when uncertainty is limited to the initial
distribution, an optimal policy robust for all possible initial
distributions can be found within the class of non-Markovian
policies—specifically, by conditioning the policy on the ini-
tial state. However, this requires solving a separate problem
for each initial state, which becomes intractable in large state
spaces.

In this paper, we address this problem by presenting three
different methods to derive upper bounds on the expected
value function under any arbitrary initial distribution, us-
ing the solution obtained from a nominal distribution. Our
approach can enable practitioners to estimate the potential
performance loss without the need to recompute the optimal
policy for each new initial distribution. These upper bounds
act as a diagnostic tool to determine whether the existing
policy remains sufficiently effective or if re-optimization is
warranted under the new conditions. We further show how
these bounds can be used to compute sets of initial conditions
for which the nominal policy provides a robust solution.

II. PRELIMINARIES

In this section, we introduce the necessary background for
our analysis.

A. Constrained Markov Decision Process (CMDP)

A CMDP is defined by the tuple M, =
(S, A,P,r,c,7,7v,8). Here, S denotes a finite set of
states, and .A represents a finite set of actions. The transition
probability function P : S x A — Ag! gives the probability
P(s'|s,a) of reaching state s’ from state s after action a.
The reward function 7 : § x A — R defines the immediate
reward 7(s,a) received upon taking action a in state s.
The vector-valued constraint function ¢ : S x A — RE
defines utilities associated with state-action pairs for each
of constraints i = 1,...,K. Similarly, 7 € R¥ is the
constraint thresholds. The discount factor v € [0,1) adjusts
the weight of future rewards, while 5 :€ Ag is the initial
distribution over states, with [(s) as the probability of
starting in state s.

'As is the probability simplex over S.



For a given policy 7 and an initial distribution j3, the
expected discounted cumulative sum for any function f :
S x A — R is defined as:

Vi(B) = APE&W lz Y F( Sk, Ar)
So~p Lt=0

This function is linear in (3, since it can be written as ﬂTVf”
where i entry of V' € RIS| defined as:

(Vfﬂ)i = AEW

ZWtf(SmAt) | So = Sz] . 1
=0

The goal in a CMDP is to find a policy 7 : S — A that
maximizes the expected discounted cumulative reward while
satisfying constraints on the cumulative utility. Formally, the
optimization problem is:

max V;"(5)

. 2
subject to V' (8) > 7,

i€ K],

where [K] denotes the set {1,..., K}. The optimal value of
this problem, as a function of the initial distribution /3, and
constraint threshold vector 7, is denoted by V*(3, 7). When
T is clear from the context, we simply write V*(53).

For a given policy , it is useful to have a measure of
how much worse it is compared to the optimal policy. Regret
has been used as the difference between the value of a
policy and the optimal policy. In a CMDP setting, we define
a generalized notion of regret that also allows quantifying
regret for infeasible policies.

Definition 1: A policy T for  the CMDP
(S, A, P,r,c,7,7,8) is said to incur (J,¢)-regret if it
satisfies the following conditions:

Tl—ng(B)g& Vi € [K],
V(8,7 —=98)=VT(B) <e.

(8-Violation)
(e-Regret)

We define the minimal regret of a policy 7 as the pair
(6%, €*) satisfying (6%, €*) < (6, €) for every (4, €) such that 7
incurs (9, €)-regret. Here, (J,€) < (&', €¢') means that 6; < ¢,
for all 7 and € < €. Although this partial order is not total,
a minimum always exists: each component of § can be min-
imized independently under (§-Violation), and the minimal
e satisfying (e-Regret) is non-decreasing in each component
of 4. This follows from the fact that V*(38,7 — §) depends
on ¢ in a non-decreasing manner—relaxing any constraint
does not reduce the optimal value. Moreover, (6*,€*) is the
unique solution to the conditions in Definition 1 when the
inequalities are replaced with equalities.

This definition allows 7 to violate the constraints up
to J, but effectively “penalizes” such violations by using
V*(B,7 — ) instead of V*(/3,7) in Equation (e-Regret) as
higher § values increase the overall regret. In this paper, we
focus on the set of initial distributions that are feasible under
m; hence, we consider only (0, €)-regret policies for ease of
exposition. However, we will remark on the extensions for
the non-zero & case whenever appropriate.

B. Linear Program (LP) formulation of CMDPs

In addition to the policy-space formulation in Equation (2),
a CMDP can be expressed as an LP in terms of occupation-
measures p € RISIMI as follows:

ol
st. Cp>r, P)
Wp = p;
where:
e || e ],
U= [1-AT" | I—~T% | - | I —~T"4 ],

with (¢**); ; = ¢;(sj, ax) and T;7F = P(sq|s;, ax).

Once an optimal occupation measure p* for Problem (P)
is computed, a policy 7 inducing p* can be obtained by
setting 7(als) = p*(s,a)/ >, ca P (s,a"). For states with
Y areart(s,a’) = 0, m can be chosen arbitrarily as such
states would be unreachable.

We can also write the dual LP corresponding to Prob-
lem (P) as:

min B'W—-\'r
W,A>0 (D)
st. UTW>r+ 210,

where W € RISl and A\ € RX. We denote an optimal solution
corresponding to the problem instance with 5 as W*(3) and

A*(B).
ITI. OBTAINING BOUNDS FOR V*(f31)

In this section, we describe three approaches for obtaining
bounds on V*(;) without explicitly solving an optimization
problem for the initial distribution ;.

A. LP Dual Feasibility Bound

Our first bound uses the fact that the solution of Prob-
lem (D) at a given nominal initial distribution can be used
to bound the optimal performance at different distributions.

Theorem 1: Let 3y be the nominal initial distribution the
CMDP is solved for; with an optimal dual solution A*(5y)
and W* (). For any initial distribution (1, the value V*(531)
satisfies:

V*(B1) < B W*(Bo) — 7" N (Bo)- 3)

Proof: As the pair A*(8p) and W*(8y) is an optimal
solution of Problem (D) for (3, it is still feasible when the
Problem (D) is solved for 3. This is because 3 only appears
in the cost function of Problem (D) but does not impact
its feasible set. Hence, \*(5p) and W*(5,) are feasible for
any initial distribution 3;. As Problem (D) is a minimization
problem, the value of its objective function at any feasible
solution would yield an upper bound on its optimal value,
V*(51). Then, by plugging in A*(8y) and W*(f5y) into the
objective function of Problem (D), we obtain the desired
result. [ ]



Remark 1: To analyze (0, ¢)-regret policies, it is necessary
to bound V*(B;,7 — 4). The bound derived in this section
extends naturally to bound V*(5;,7 — §). Let A*(8p) and
W*(8p) be the optimal solution of dual problem of M, =
(S, A, P,r,c,7,7, Bo). Then, for any initial distribution (3;
and violation 9, the value V*(831,7 — J) satisfies:

V*(B1,7 = 0) < B W (Bo) — (1= 8) A" (Bo). ()
B. Bound from Perturbation of LP

An alternative bound can be obtained by treating different
initial distributions as perturbations from the nominal initial
distribution. Since this perturbation corresponds to a pertur-
bation of the right-hand side vector of equality constraint in
Problem (P), we can obtain a bound based on perturbation
analysis of LPs. In particular, we adapt the method in [10],
summarized with the following theorem.

Theorem 2: (from [10]) Consider Problem (P). Let p*
and [W*;\*] € RISIHE to be the optimal solutions of
Problem (P) and (D), respectively. Then, the change in
optimal solutions, Ap* = pk.., — p* and [AW™*; AN*] =
Wy — W™ A, — A*], under the new initial distribution
Ap + [ satisfies the following for any Ag:

VAP R+ I[AW= AN[2 < [RTHIAB]L, )

where || - || is the 2-norm for vectors and the spectral norm
for matrices. R is defined as:
Ri 0 O
R=|0 R/ 0,
0 Ry I

where R, Ry constitute a partition of columns of the matrix

g _o such that i column is in R, if i < |S||.A| and
p; >0, 0ri>|S||A| and ¢] p > 7; for j =i — S| Al
Using Theorem 2, we can prove the following value
bound:
Theorem 3: Let 5y and V*(fy) be a nominal initial dis-
tribution and its optimal value. Then, any initial distribution
(31 satisfies:

V*(B1) < V*(Bo) +

180 = Boll min([|[Br; =] IIR™H + WG I, IIR’IIIIIQQ

Proof: We start by noting that Equation (5) gives us
the upper bound on the change in the solution but not value.
To obtain the bound on value change, we start by setting
B1 = Bo+ AP and pj = pf + Ap. Then, we have

V*(B1) = V*(Bo)l =IrTpi =T pi

(@)

<lrlilAnl

®) »
<llrlr= AL

<[l IR — Boll,

where inequalities (a) and (b) follow from Cauchy-Schwarz
and Equation (5), respectively. Writing the value of the LP

using its dual gives us another bound:
[V (B1) =V (bo)l
=[(8; Wi = 7M7) = (Bg W5 =77\
=[8] (Wg + AW™) — By Wy — 7T AX|
=|(B] AW* — 7 TANY) + ABTW|

(a)
<1B1; =7 IINIAW AN + AW

(b) _ *

<N[Bu; =7IIIRTHIABI + [ ABIHWE |

=(1Bv; =R + W D11 B = Boll-
Here inequalities (a) and (b) again follow from Cauchy-
Schwarz and Equation (5), respectively. To get a tighter
upper bound, we compute both of these bounds and take the
minimum. This gives us the upper bound in Equation (6). B

Since the bounds we proved are on [V*(51) — V*(50)|, a
lower bound can also be trivially obtained:

V*(B1) =2 V*(Bo) —
180 = Boll min([|[Br; =] IR + WG, IIR_1||||7"(%-

Remark 2: Theorem 2 can be generalized to obtain fol-
lowing upper bound to V*(8;,7 — ) for any (3; initial
distribution and ¢ violation:

V*(ﬁla’r - 5) S V*(B(%T) +

¢min([|[Be; ~7] IR + W5, IR [I7])

where ¢ = +/||9]|2 4+ ||AB]|? and other quantities are as

defined in Theorem 2.

®)

C. Bound from Concavity of LP Values

Finally, we propose an alternative bound based on a well-
known concavity result for linear program (LP) values over
the set of consistent right-hand side vectors. Specifically,
focusing on Problem (P), we define the feasible set of p
as a function of f:

Feas,(8) ={p>0|Cp >, Up=p3}.
We then define the set of consistent S values as

Feasg = {f | p s.t. Feas,(8) # 0}.

Equivalently, this set can be expressed as
Feasg = {¥p | Cp >, p> 0},

which is convex, since it is the image of a convex set under a
linear transformation. For any 8 € Feasg, define the function

-
FB) pelgeljs}:(ﬁ)r &
which represents the optimal value of Problem (P) as a
function of . A direct corollary of Theorem 5.1 in [6] is:
Theorem 4: The function F' () is concave on the domain
Feasg.
Utilizing this result, we obtain an upper bound for the
value of the CMDP under an arbitrary initial distribution ;.
Theorem 5: Let (31 be an initial distribution over states,
yielding CMDP value V*(3;). Moreover, let the cardinality



of state space |S| = n and o = max; 1(j) to be largest
element of [3;. Then,

V*(61) < anV*(v) — Z(a — BNV (), (9

?

where v is the uniform distribution over state space and d;(j)
is non-zero only at j = 4.

Proof: Using Theorem 4 and definition of concavity,
for all A such that \; > 0 for all 7 and ZZ No=1:

=0 =0

Pick \p = L and \; = %;(Z) for 4 > 0. Then, choose

no

xo = P71 and x; = §; for i > 0. Observe that:

(10)

n

o= gy el

i=0 =1

1 1 -
= ot %("0‘—;/51(1))
= @(I—Fna—l) =1

Moreover, for all ¢, « > $1(i) > 0, which implies A\; >
0. Hence, they yield a convex combination of z;s. Finally,
observe that:

- 1 1 1 ;
; Aix; = %51 + Z; 551‘ e zi:ﬁl(l)@

1 1
=v+—pB1 — —p1=0.
na na

Thus, substituting in Equation (11):

* 1 * . o — /81 (Z) *
Vi) > —V*(B1) + ;) V@) A
Multiplying both sides with na and reorganizing terms yields
Equation (9). |

Note that, choosing x; = d;, \; = 31 (i) forn > ¢ > 1, and
Ao = 0 in Equation (11), we can also obtain the following
lower bound on the value under [31:

V*(B1) > Z/Bl(z‘)vm). (12)

D. Comparison of Bounds

In this section, we discuss advantages and drawbacks of
each bound, as summarized in Table I.

Computing the duality-based and perturbation bounds re-
lies on solving the CMDP under the nominal initial dis-
tribution. Specifically, the duality-based bound depends on
the solution to Problem (D), while the perturbation bound
requires identifying the zero and strictly positive compo-
nents of the optimal solution to Problem (P). In contrast,
calculating the concavity bound involves solving the CMDP
for |S| 4+ 1 distinct initial distributions. This effectively
requires determining the optimal policy for every initial state,
rendering the computation both intractable and impractical.

Empirical

Method Complexity Tightness Linear Lower Bound
Duality 1 CMDP v Yes No
Perturbation 1 CMDP - No Yes
Concavity (|S| + 1) CMDPs X No Yes

TABLE I: Comparison of the three bounding methods. The
second column indicates how many CMDP instances must
be solved to compute each bound. The third column shows
each method’s overall empirical tightness, i.e., how close the
bound is to the actual least upper bound (v': tightest, x: least
tight, and — moderately tight). The fourth column specifies
if the bound is linear in the initial distribution 3. Finally, the
last column indicates if the method also provides a lower
bound.

While it may be possible to use over-approximations of the
optimal values to simplify the process, such an approach
often leads to trivial bounds, as the concavity bound is
already the loosest among the three.

The obtained bounds are not easy to compare analytically.
Hence, in Section V, we compare them numerically by
computing the relative gap between the computed upper
bound and true value of V*(51). We found that the duality-
based bounds are the smallest upper bounds and concavity
yields the largest bounds. Perturbation bounds are within two
order of magnitude from duality-based bounds.

Another important difference between the proposed ap-
proaches is whether they provide also a lower bound to
V*(53). Both perturbation and concavity-based approaches
provide lower bounds as explained in their respective sec-
tions. However, duality-based approach does not yield a
lower bound. When used in Equation (e-Regret), a lower
bound provides an outer-approximation of the true e-regret
set, in contrast to inner-approximation obtained by the upper
bounds.

Moreover, we compare the geometry of the obtained
bounds. Ideally, we would want the bound to be linear in
(1, reducing Equation (e-Regret) to a halfspace. From the
three bounds, only the duality-based bound satisfies this.
Perturbation bound involves two-norm of f;. Similarly, the
concavity bound depends on ||51||0c-

Based on this comparison, we conclude that unless a
lower bound is needed, duality-based provides the best trade-
off. When a lower bound is needed, perturbation bound
provides computational efficiency. The concavity approach
is the worst one, both computationally intractable for large
state spaces and also cannot provide tight bounds.

Finally, we note an alternative use of these bounds. As
discussed in Remark 1 and Remark 2, these bounds can
be generalized to provide bounds on V*(81,7 — 4). If we
are interested in sensitivity to constraint threshold instead
of initial distribution, choosing (3; to be the nominal initial
distribution gives an upper bound on the optimal value under
relaxed or tightened constraints.

IV. APPLICATIONS TO ROBUST REGRET PROBLEM

An important question in the study of the initial distri-
bution sensitivity of CMDPs is determining how robust the



optimal policy under the nominal initial distribution is to
changes in the initial distribution. In this section, we show
how the bounds obtained in Section III-A can be used to
solve some problems related to this question.

Problem 1: Given policy 7 and regret ¢, find the set of
initial distributions B C A|g| s.t. 7 has (0, €) regret.

Note that for a fixed policy 7, V.7 () can be expressed as
BTVC:“ where V[ is defined as in Equation (1). Hence, each
of the feasibility constraints is linear in 8 and form a halfs-
pace in RIS, However, V*(B) term in Equation (e-Regret) is
a hard-to-compute, nonlinear function of § as finding the op-
timal value requires solving CMDP under initial distribution
(; rendering Problem 1 intractable.

To deal with this issue, we propose computing inner
approximations of the true (0,¢)-regret set by replacing
V*(B) with an upper bound. If this bound is linear in £,
this approximation becomes a halfspace constraint as well.

Proposition 1: The following polytope is an inner-
approximation to the set defined in Problem 1:
(VT = W*(Bo) —TT A\ (Bo) —
(VCT)T 1
X B> ;13
Vi) i

where W*(8p) and A*(Bp) are the optimal solution of
Problem (D) for a nominal distribution [.

While Problem 1 helps finding the set of initial distribu-
tions that satisfy some predetermined robustness conditions,
it cannot directly tell how robust a predetermined set of initial
distributions is. We formulate this problem as below.

Problem 2: Given policy m and a set B C A of initial
distributions feasible under 7, find minimum € such that
has (0, €) regret for all 5 € B. More formally, we solve

min €

st VH(8) = VE(B) < e 4

V3 € B.

As formulated in Equation (14), Problem 2 involves an
infinite number of constraints and V*(3) is highly nonlinear
and makes the problem hard to solve. Using the upper bound
in Equation (3), we can approximate the constraints with a
linear constraint. Substituting V*(8) with its upper bound in
the constraints yields:

BTW*(Bo) — 7 A (Bo) —

where [y is the nominal distribution used in the upper bound.
Reorganizing the terms, we obtain:

VT(B) <e VBEB,

BT (W*(Bo) = V™) <7 X (Bo) +¢ VBeB. (15

Note that Equation (15) implies the original constraint in
Problem 2, representing a stricter condition. Therefore, the
problems presented below will yield an upper bound on the
true solution.

Next, we propose reformulations that eliminate the infinite
constraints under two common uncertainty scenarios.

One such scenario arises when 3 is known to lie within
the convex hull of a finite set of candidate distributions
{61, ,627 - ,ﬁL}; that is, B = COHV{ﬁl,ﬁg, e ,ﬂL}.

Proposition 2: If B = conv{p1, Ba,...,0L}, then the
following optimization problem provides an upper bound to
true solution of Problem 2:

min €

st. B (W*(Bo) — V) < 77N (Bo) +e€ i€l (16)

Proof:  This result follows from the fact that the
constraint is linear in 3. Therefore, if it holds for all extreme
points of the convex hull (i.e., the f3;), it holds for any convex
combination of them. [ ]
One might argue that when L is sufficiently small, Problem 2
could be solved directly by evaluating the constraint at each
(i, without resorting to an upper bound. However, due to
Theorem 4, the original constraint is concave in 3, and thus
verifying it only at the vertices is insufficient to guarantee
feasibility over the entire set.

Next, we consider the case where representing B via its
vertices is not preferable. For example, Wasserstein-1 balls
and box constraints often have too many vertices, making
enumeration impractical. In such cases, a reformulation that
avoids vertex enumeration is preferred. To achieve this, we
leverage the results from [4], which provide equivalent,
tractable reformulations for the robust counterparts of many
common nonlinear constraints.

Proposition 3: The problem below finds an upper bound
to true solution of Problem 2 when B = {f | HB < h} C
Agl

min €
Z,€

st. h'z—7T X (By) <e,
H'z=W*(f) ~ V[,
z > 0.

a7

Proof: Since Equation (15) is a linear constraint with
polytopic uncertainty, the result follows directly from [4]. B
Note that while we focus on polytopic B sets here, results
from [4] allow generalizing Proposition 3 to many common
uncertainty sets. Moreover, the analysis above focuses on
(0, €)-regret, but it naturally extends to the more general
notion of (4, €)-regret, where the initial distribution = may vi-
olate the constraints by at most . In this setting, our bounds
continue to hold with appropriate adjustments, as indicated
in Remark 1. For example, Proposition 1 generalizes to the
following polytope, which provides an inner approximation
to the set B C Ag of initial distributions for which 7 incurs
(6, €)-regret:

(V= W*(6o)"
v

—(r =) "A*(Bo) — €
T1 — )
_ 8> : . (18)
(VCT;()T TK — (5
V. EXPERIMENTS

In this section, we validate our analysis through illustrative
examples.



Fig. 1: Water pendulum. The objective is to stabilize the pen-
dulum in the upright position, perpendicular to the surface,
with both angular position # and angular velocity 0 equal to
zero. The blue region represents water.

A. Numerical Comparison of Bounds on Random CMDPs

Our first set of experiments evaluates the numerical tight-
ness of the proposed bounds. To this end, we randomly
generate 100 CMDPs, each with § = 100 states, A = 3
actions, and K = 2 constraints. For each CMDP, the transi-
tion probabilities, reward functions, and constraint functions
are uniformly sampled, with half of the transitions pruned to
avoid fully connected CMDPs.

Moreover, we randomly sample 150 initial distributions
(1 divided into 3 bins according to their total variation (TV)
distance from the uniform nominal initial distribution 3y. For
each ;-CMDP pair, we compute the true value and the upper
bounds based on . The tightness of the bounds is quantified
using relative looseness, defined as the gap between the true
value and the upper bound as percentage of the true value.

To summarize the results, we compute relative looseness
percentage across all CMDPs and /3; distributions for each
distance bin. Then, we report the median of each bin for
each method. This provides a comprehensive measure of
how the bounds perform across diverse scenarios. The results
are summarized in Table II. As expected, the larger distance
between [y and S, leads to larger errors. However, notice
that these are percentage errors; hence, it can be said that
duality-based bound is very reliable even for furthest (3
points.

TV Distance | >5.0.5 | 0.5:0.75 | 0.75.1

Bounds
Duality 0.014 0.048 0.297
Perturbation 1.988 3.692 9.108
Concavity 9.006 18.703 61.241

TABLE II: Median relative looseness of the bounds within
TV distance interval for randomly generated CMDPs. For
each interval, we sort the relative looseness values of the
bounds corresponding to all initial distributions and CMDPs;
and report the median where a value of 0 corresponds to the
upper bound being equal to the true value.

B. Simple Water Pendulum

While the experiments in the previous section useful
for comparing our bounds across diverse set of CMDPs,

the random CMDPs are difficult to conceptualize. For this
purpose, we use the constrained version of the inverted
pendulum task, illustrated in Figure 1.

The inverted pendulum task involves balancing a pendu-
lum upright by applying a torque input at its pivot point.
The state consists of the pendulum angle 6 € (—m, ), with
upright position assigned # = 0, and 0, which takes positive
values clockwise. The reward function is negative quadratic
in deviation from upright position and angular velocity for
all a € A:

. o 1
r([&,&],a) - 7(0 + 0 )’
10
which is between 0 and —16.27.

In our version, shown in Figure 1, we assume the pen-
dulum is placed on the surface of a water body such that
it is immersed in water for § > 7/2 or < —7/2. When
in water, a buoyant force equal to half of gravity affects the
pendulum. We assume two constraint utilities: (1) a -1 utility
is incurred every step where pendulum is submerged, (2)
an energy budget constraint negatively quadratic of applied
torque, —i|a|2 where a is the input to system, i.e applied
torque. These constraints make the task more challenging
and align it with the CMDP framework. For the given mass
m and length [ of the pendulum, the dynamics of this system
is:

3(4sin(f)) + -2zu, otherwise, .
where g denotes the acceleration due to gravity.

We discretize the state space by dividing the range of each
state dimension into 50 bins. Similarly, the action range is
divided into seven. Transition probabilities are obtained by
uniformly sampling 100 points from each bin, simulating
them forward under the deterministic continuous dynamics,
assigning the end points to bins, and defining probabilities
as the fraction of points landing in each target bin. This
results in a two constraint CMDP with |S| = 2500 and |A| =
7. We run the experiments described in Section V-A. The
results are summarized in Table III. We do not use Concavity
bound in this setup as large |S| makes it computationally too
expensive.

j— {3 (9sin(0)) + S5u, if 0] > T,

TV Distance | 5545 | 05075 | 0.75-1

Bounds
Duality 0.000 0.001 | 0.004
Perturbation 0.123 0.254 0.342

TABLE III: Median relative looseness of the bounds within
each TV distance interval for Water Pendulum. For each
interval, we sort the relative looseness values of the bounds
corresponding to all initial distributions and report the me-
dian.

C. Measuring Policy Robusmess by (0, €)-Regret Sets
Next, we compare the robustness of optimal policies for

three initial distributions: S, 8g, and By. The distribution
Br assigns high probability mass when § = 0, Sp when 0 =



4, and Sy is the uniform distribution. We propose the size
of the (0, €)-regret sets of the optimal policies corresponding
to these distributions as a measure of robustness of such
policies to changes in the initial distribution.

Using Proposition 1, we compute, for each initial distri-
bution, an inner approximation of the set of 3 distributions
for which the corresponding optimal policy 7 incurs at
most (0,0.01) regret. As a proxy for the size of these sets,
we sample 100 random distributions from the probability
simplex using a Dirichlet distribution and compute the ratio
of samples that fall within each polytope. This ratio, or hit
rate, serves as a surrogate for the size.

We find the hit rates to be 0.26, 0.01, and 0.51 for S,
BB, and By, respectively. For comparison, if we evaluate
the hit rates for the true (0,0.01)-regret sets instead of the
inner approximations given by Proposition 1, the values are
0.33, 0.01, and 0.51. This close agreement suggests that
our inner approximation is tight. Note that hit rates for the
true regret sets are computed by re-solving the CMDP for
each sample point and computing true regret, which might
in general be prohibitive. For instance, for this example, hit
rate computation for the true regret sets takes ~ 16 minutes
while our method takes only 0.03 seconds.

Upon inspection, we observe that, in general, the optimal
policy for B becomes infeasible under most other distri-
butions, as it tends to apply excessive torque and thereby
violates the second constraint. This behavior arises because,
when the pole starts near the top, only minimal torque is
required to maintain balance. Since the constraint is enforced
in expectation, the policy optimized for S can afford to use
large amounts of torque in other states without violating the
constraint under S itself.

In contrast, the optimal policies for S and Sy are more
broadly feasible across different distributions, though they
tend to exhibit slightly higher regret. This is because they are
more conservative in their torque usage—sometimes overly
so—in order to robustly satisfy the constraint across a wider
range of scenarios.

D. Finding Minimal Regret over a Set of Distributions

Based on our earlier observation that the policy induced
by SBr is not (0,0.01)-regret in a large part of the simplex,
we evaluate its transferability to a broader set of initial dis-
tributions. Specifically, we consider the convex hull of three
vertex distributions sampled from the initial distributions that
did not fall into true (0,0.01)-regret set in the previous
section. We then compute the minimal regret of the policy
optimal for 57 over this set, as described in Problem 2.

By using Proposition 2, we find 0.29 to be an upper
bound to true minimal regret. Next, we evaluate the tightness
of this upper bound by comparing it with the solution of
Equation (14) by sampling the set B. Note that this approach
requires exponential number of samples; hence, we keep the
number of vertex distributions low. This approach yields a
lower bound to the true regret as we are effectively sampling
some constraints from infinite number of constraints. This
approach gives 0.24, so the true minimal regret is within the
range [0.24,0.29)].

VI. CONCLUSION

In this work, we studied how the performance of a
CMDP changes under different initial state distributions and
proposed three bounding methods—based on dual feasi-
bility, LP perturbation theory, and concavity—to estimate
this variation without solving the CMDP repeatedly. Among
these, the duality-based bound was consistently the tightest,
while the LP perturbation approach offered both upper and
lower bounds with moderate accuracy. The concavity-based
method was looser and more computationally demanding.
We further demonstrated how these bounds enable practical
analyses of policy robustness to changing initial distributions.
Specifically, we introduced the notion of (0, €)-regret to
assess robustness, and showed how our bounds efficiently
approximate (i) the set of initial distributions where a policy
remains near-optimal, and (ii) the policy’s suboptimality over
a given set.

Looking ahead, we are interested in extending our anal-
ysis to account for uncertainty or changes in the transition
dynamics. In this setting, a promising direction is to develop
robust and adaptive policies that can accommodate such
uncertainties, leveraging the bounds and sensitivity analysis
introduced in this work.
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