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Abstract— Arguably, one of the biggest challenges facing
the systems and control community stems from the expo-
nential growth in data collection capabilities, made possible
by the development of low cost, ultra low power sensors.
These developments have rendered feasible a spectrum
of new control applications, ranging from zero emission
buildings to reconfigurable, self aware environments, that
can profoundly impact society. However, realizing this
potential, requires endowing controllers with the ability
to timely extract actionable information from the very
large data streams generated by the sensors, a goal that
challenges the capabilities of existing techniques. The goal
of this paper is to show the key role that dynamics can
play in accomplishing this task. This is accomplished by
establishing a connection, largely unexplored until recently,
between the problems of information extraction, manifold
embedding and identification of switched systems, and
showing that this connection allows for recasting the
problem of decision making in “data deluged” scenarios
into a tractable convex optimization form.

I. INTRODUCTION

Recent advances in the past few years, such as the
development of inexpensive, energy harvesting sensors,
combined with a similar growth in actuation capabilities,
rendered feasible a spectrum of new control applications,
ranging from zero-emissions buildings to smart grids
and managed aquifers to achieve long term sustainable
use of scarce resources. Arguably, a major road-block in
achieving this vision stems from the curse of dimension-
ality. Successful operation in these scenarios, requires
controllers endowed with the ability to timely extract
actionable information from the very large data streams
generated by the ubiquitous sensors. However, existing
techniques are ill-equipped to deal with this data deluge.
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Non-linear dimensionality reduction, e.g. finding low
dimensional parsimonious representations of high di-
mensional correlated data, is a well studied problem in
machine learning, where a large number of methods has
been proposed. These include, among others, Locally
Linear Embeddings (LLE) [31], semi-definite embed-
ding (SDE) [35], Global coordination of local linear
models (GCM) [29] and Dynamic Global Coordinate
Model (DGCM) [18]. While these methods have proved
very efficient in handling static data, most do not exploit
dynamical information, encapsulated in the temporal
ordering of the data, and thus may fail to capture
the underlying temporal dynamics. This issue becomes
particularly relevant when these dynamics are the key
factor that allows for early detection and classification
of anomalies.

The goal of this tutorial paper is to illustrate the key
role that dynamics can play in timely extracting and
exploiting actionable information that is very sparsely
encoded in high dimensional data streams, and to seek
a rapprochement between techniques used in the systems
and control community and those used in machine
learning. The main idea is to treat time series as the
output of an underlying switched dynamical system,
typically represented by a difference inclusion character-
ized by a relatively small set of parameters, with jumps
indicating the occurrence of events. The key observation,
illustrated in Figure 1, is the fact that higher degrees of
spatio-temporal correlations in the data lead to lower
complexity models, allowing for recasting the problem
of information extraction into a sparsification form,
which in turn can be reduced to a convex semidefinite
optimization problem by exploiting recent results in
semi-algebraic optimization. As illustrated in the sequel,
embedding the problem of actionable information ex-
traction in the conceptual world of dynamical systems
leads to scalable, computationally tractable algorithms,
compatible with real time operation in fast changing
scenarios, where critical decisions must be made based
on information that is very sparsely encoded in very
large data streams. As an example, in this framework
anomaly detection reduces to simply computing the null
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plexity switched dynamical system
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subject to f(t) = y(t).
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where V(y) depends polynomially in the data
Relax to Linear Programming Relax to Semidefinite Programming through the use

of sparse polynomial optimization methods
Fig. 1. Sparse dynamical information recovery versus sparse signal recovery.

space of suitably constructed matrices.
The paper is organized as follows. Section II intro-

duces the notation used throughout the paper and some
key background results. Section III establishes a connec-
tion between dimensionality reduction and Wiener sys-
tems identification, and illustrates its application to the
problem of activity classification. Section IV shows that
several problems arising in the context of information
extraction (e.g. segmentation, change detection, identi-
fication of contextually abnormal time series) can be
recast as identification/model (in)validation of switched
affine models and discusses computationally tractable
algorithms to solve these problems. The effectiveness
of these approaches is illustrated with several practical
examples. Section V briefly discusses the use of efficient
first order algorithms to address computational complex-
ity and scaling issues. Finally, in Section VI we provide
some concluding remarks and point out to open research
directions.

II. PRELIMINARIES

For ease of reference, in this section we summarize
the notation used in this paper and recall some results
on sparse polynomial optimization that play a key role
in establishing the main results of this paper.

A. Notation
R, N set of real number and non-negative

integers
x,M a vector in R (matrix in Rm×n)
‖x‖w,1 weighted `1 norm: ‖x‖w,1

.
=
∑
|wixi|

‖x‖0 `0 quasi-norm, number of non-zero el-
ements in x

I Identity matrix
M � N the matrix M−N is positive semidef-

inite
‖A‖∗ Nuclear norm: ‖A‖∗

.
=
∑

svd(A)

Hm,n
y Hankel matrix associated with a vector

sequence y(.):

Hm,n
y

.
=


y0 y1 · · · ym
y1 y2 · · · ym
...

...
. . .

...
yn yn+1 · · · ym+n−1


In the sequel the indexes m,n may be omitted when
clear from the context.

B. Moments Based Polynomial Optimization
In this paper, we will reduce the information ex-

traction problem to a polynomial optimization over a
semialgebraic set, that is, a problem of the form:

p∗K := min
x∈K

p(x)
.
=
∑
α

pαx
α (P1)

where xα = xα1
1 xα2

2 · · ·xαn
n and K ⊂ Rn is a compact

semi-algebraic set defined by a collection of polynomial
inequalities of the form gk(x)

.
=
∑
β gk,βx

β ≥ 0,
k = 1, · · · , d. In general, problem (P1) is non-convex,
and hence hard to solve. Instead, we consider a related
problem:

p̃∗K := min
µ∈P(K)

∫
p(x)µ(dx) := min

µ∈P(K)
Eµ [p(x)]

(P2)
where P(K) is the space of positive Borel measures on
K with

∫
K
dµ = 1 and Eµ denotes expectation with

respect to µ. Although (P2) is an infinite dimensional
problem, it is, in contrast to (P1), convex. As shown in
[14], Problems (P1) and (P2) are equivalent, in the sense
that
• p̃∗K = p∗K .
• For every optimal solution µ∗ of (P2), p(x) = p∗K ,
µ∗–almost everywhere.

As briefly summarized next, a finite dimensional se-
quence of approximations to problem (P2) can be ob-
tained exploiting results from the theory of moments.
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Given a sequence of scalars {mα}, indexed by a multi-
index α ∈ Nn, the K-moment problem is to determine
whether there exists a probability measure µ supported
on K that has {mα} as its αth moments. That is:

mα = Eµ(xα)
.
=

∫
K

xαµ(dx) (1)

As shown in [14], existence of such a measure is equiva-
lent to positive semidefiniteness of the (infinite) moment
M(m) and localization L(gkm) matrices. Truncated
versions of these matrices are given by:

MN (m)(i, j) = mα(i)+α(j) , ∀i, j = 1, · · · , SN
LN (gkm)(i, j) =

∑
β

gk,βlmβ(l)+α(i)+α(j) ,

∀i, j = 1, · · · , S
N−b degree(gk)

2 c

(2)

where SN =

(
N + n
n

)
(e.g. the number of moments

in Rn up to order N ) and the moments have been
arranged according to grevlex ordering of the corre-
sponding monomials so that 0 = α(1) < . . . < α(SN ).

It follows (see [14], [15] for more details) that
problem (P1) can be reduced to a sequence of Linear
Matrix Inequalities (LMI) optimization problems in the
moments of the unknown Borel measure of the form

p∗N = minm

∑
α pαmα

s.t. MN (m) � 0,
LN (gkm) � 0, k = 1, . . . , d

(3)

C. Exploiting the Sparse Structure

The problems considered in this paper exhibit a spe-
cial sparse structure that can be exploited to reduce the
computational complexity entailed in solving (P1).

Definition 1. Consider problem (P1) and let Ik ⊂
{1, . . . , n} be the set of indices of variables such
that each gk(x) contains variables only from some
Ik. Assume that the objective function p(x) can be
partitioned as p(x) = p1(x)+. . .+pl(x) where each pk
contains only variables from Ik. Problem (P1) is said to
satisfy the running intersection property if there exists a
reordering Ik′ of Ik such that for every k′ = 1, . . . , l−1:

Ik′+1 ∩
k′⋃
j=1

Ij ⊆ Is for some s ≤ k′ (4)

It can be shown [15] that when this property holds,
it is possible to construct a convergent hierarchy of
semidefinite programs of smaller size:

p∗N = minm

∑l
j=1

∑
α(j) pj,α(j)mα(j)

s.t. MN (mIk) � 0, k = 1, . . . , d,
LN (gkmIk) � 0, k = 1, . . . , d,

(5)

where pj,α(j) is the coefficient of the α(j)
th monomial

in the polynomial pj , MN (mIk) denotes the moment
matrix and LN (gkmIk) is the localizing matrix for the
subset of variables in Ik. Thus, for a given N , this
approach requires considering moments and localization
matrices containing O(κ2N ) variables, where κ is the
maximum cardinality of Ik, rather than O(n2N ). Since
in the problems considered in this paper κ � n this
leads to substantial computational complexity reduction.

D. Rank Minimization and Relaxations

Many of the problems discussed in this paper can be
reduced to a constrained rank minimization of the form:

min
x
{rank[V(x)]} subject to L(x) � 0

where the matrices V and L depend affinely on x.
Although this problem is generically NP–hard, it can
be relaxed to a convex optimization by using the fact
that ‖.‖∗ is the convex envelope (e.g the tightest convex
relaxation) of rank [8], leading to a problem of the form:

min
x
‖V(x)‖∗ subject to L(x) � 0 (6)

It has been shown [28] that under certain conditions on
the constraint set, the problem above indeed recovers
the minimum rank solution. Unfortunately, in most of
the problems of interest in this paper, these conditions
do not hold, due to structural constraints. Nevertheless,
good solutions can be obtained by using the following
iterative re-weighted heuristic [19]:

Algorithm 1 Reweighted ‖.‖∗ based rank minimization
Initialize: k = 0,Wy(0) = I,Wz(0) = I, δo small
repeat

Solve

minX(k),Y(k),Z(k) Trace

[
W

(k)
y Y(k) 0

0 W
(k)
z Z(k)

]
subject to:

[
Y(k) X(k)

X(k) Z(k)

]
� 0

X(k) ∈ S

where S is the feasible set in (6).
Decompose X(k) = UDVT .
Set δ ← min[diag(D)] + δ0.
Set W(k+1)

y ←
(
Y(k) + δI

)−1
Set W(k+1)

z ←
(
Z(k) + δI

)−1
Set k ← k + 1.

until a convergence criterion is reached.
return X(k)
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Fig. 2. Wiener System Model

III. MANIFOLD EMBEDDING OF DYNAMIC DATA AS
A WIENER IDENTIFICATION PROBLEM

Conventional dimensionality reduction methods ex-
ploit spatial correlations in the data to substantially
reduce its dimensionality by embedding it in low dimen-
sional manifold, via non-linear projections. However,
while these techniques preserve local spatial neighbor-
hoods, they typically fail to exploit temporal infor-
mation and thus are not well suited for dealing with
dynamic data. The starting point to obtain embeddings
that respect dynamical constraints is the realization that,
since the projections to/from the embedding manifolds
can be modeled as memoryless (possibly, time varying)
nonlinearities, the observed (high-dimensional) data can
be considered to be trajectories of a Wiener system of
the form illustrated in Fig. 2, where the signals y ∈ Rny

and x ∈ Rnx , with ny � nx, represent the raw data and
its projection. In this context, the embedding manifold
is implicitly described by the output space of G and the
data is associated to the pair {G,Π}. Note that while
robust identification of Wiener systems is known to
be generically NP–hard [33], computationally tractable
relaxations can be obtained by recasting the problem
into a rank minimization form, proceeding as in [39].

The approach above assumes that nx, the dimension
of the embedding manifold, is known, as is the case
in several popular machine learning methods such as
Locally Linear Embeddings [31]. However, in many
cases of practical interest, this information is not a-
priori available. Examples of this situation are computer
vision applications such as target tracking or activity
recognition [17], [36], where the output y consists of
the vectorized frames of a video sequence, and x is a
small set of independent parameters that encapsulate the
correlations between the different pixels. In these cases
the dimension of x must also be identified from the
experimental data, a situation that cannot be handled by
conventional Wiener systems identification techniques.
Motivated by this difficulty, [37] recently introduced a
new approach, briefly outlined below, that allows for
both, finding an embedding manifold such that the data
can indeed be explained as a trajectory of a Wiener sys-
tem, and identifying its linear and non-linear portions.

A salient feature of this approach (common in machine
learning, but until recently not used in the identification
community), is the ability to use both positive and
negative samples, that is, experimental data generated
both by the system to be identified and by other systems.
This is a situation commonly encountered in applications
such as activity classification, where sample clips of
different activities are available, or in tracking, where
often a segmentation separating the target of interest
from other targets and the background is known.

Briefly (see [37] for details), the goal is to use a
nonlinear projection xt = Π(yt) to embed a given
ordered temporal sequence {yt}, in a manifold where
its evolution {xt} can be (locally) explained by a linear
model of the form:

xt =

na∑
i=1

aixt−i +

nb∑
i=1

biut−i + ηt, |ηt| ≤ εt

where ηt accounts for approximation error1. In the
sequel, for simplicity we will assume that ut = 0,
that is, the data has been generated by an ARX model
driven by noise and initial condition. This assumption
captures the case, common in many applications such
as computer vision, that lack controlled exogenous in-
puts. Further, the framework can be easily extended to
encompass control inputs by considering the associated
matrix Hu (see [37] for details). In this context, to each
embedded time series xt, we can associate its Hankel
matrix Hx. Since the vector w

.
= {a1, . . . , ana

,−1}
satisfies Hxw = 0, it follows that the dynamic data
is completely characterized by the null space of Hx.
Keeping in mind that the goal is to find representations
that are optimally suited for classifying time series and
detecting anomalies, [37] proposed to use the extra
degrees of freedom available to optimize the margin
between classes2. Specifically, given two sets of training
sequences, {y+

t } and {y−t } corresponding to nominal
and anomalous scenarios, this approach jointly seeks for
embeddings x+

t ,x
−
t and a vector w such that minimizes

γ subject to ‖Hx+w‖22 ≤ γ and ‖Hx−w‖22 > 1 + γ.
Intuitively, it seeks a vector w such that (i) it approxi-
mately lies in the null space of the Hankel matrices of
all the positive examples dynamic sequences, and (ii) it
maximizes the margin between the residue ‖Hx+w‖22

1Such a representation always exists (locally) since hinging hyper-
planes are universal approximators [32], [5].

2Recall that due to the fact that the experimental data record is finite
and corrupted by noise, there exist multiple models that interpolate the
data within the noise margin. The set of all such models constitutes
the consistency set (see for instance [7] or Chapter 10 in [30]). The
algorithm described here selects a model from this set and thus is
interpolatory.
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for the nominal and anomalous sequences. The problem
outlined above can be formalized as:

minGi�0,w,γ≥0
1
2 ||w||

2
2 + Cγ

subject to: wTGiw ≤ γ ,∀Gi ∈ G+

wTGiw + γ ≥ 1 ,∀Gi ∈ G−

(7)

where Gi
.
= HT

i Hi, G+ and G− denote the positive
(or in-class) and negative (out of class) sequences,
respectively, and where the regularization term 1

2 ||w||
2
2

is added to the objective to prevent trivial solutions with
unbounded w.

Note that the formulation above tries to maximize
the separation between classes, without taking into con-
sideration the dimension of the resulting embedding
manifold. Indeed, proceeding as in [35], it can be shown
that this dimension is given by rank(K), the Kernel (or
Gram) matrix defined by its submatrices

Ki,j =


xjxj xjxj+1 · · · xjxj+c

xj+1xj xj+1xj+1 · · · xj+1xj+c
...

...
. . .

...
xj+cxj xj+cxj+1 · · · xj+cxj+c


It follows that the dimension of the embedding manifold
can be minimized by minimizing the rank of K. Further,
as argued in [35], this can be accomplished by maxi-
mizing its trace. Finally, noting that Gi = HT

i Hi =∑T−c+1
j=1 Ki,j , leads to the following formulation that

balances separation margin against the dimension of the
embedding manifold through the tuning parameter λ:

minK,w,γ
1
2 ||w||

2
2 + Cγ − λTrace(K)

subject to: wTGiw ≤ γ ,∀Gi ∈ G+

wTGiw + γ ≥ 1 ,∀Gi ∈ G−
Gi =

∑T−c+1
j=1 Ki,j

K � 0, γ ≥ 0
(1− ε)||yi − yj ||2 ≤ kii + kjj − 2kij
≤ (1 + ε)||yi − yj ||2

(8)

where the last constraint approximately enforces preser-
vation of the local spatial geometry. Since the problem
above is semi-algebraic, it can be solved proceeding
as in [15]. Finally, once the manifold projections x
have been found, if needed, the non-linearity can be
found for instance by approximating it by a semi-
algebraic function and solving an interpolation problem.
It is worth emphasizing that the algorithm outlined
above, rather than working with the potentially high
dimensional data y, uses the inner products 〈yi,yj〉,
resulting in substantial dimensionality reduction in the
matrices involved. Thus, it can comfortably handle large-
sized problems. The effectiveness of this approach is
illustrated in Fig. 3 and Table I showing the results of

Running Skipping
Fig. 3. Sample frames from Weizmann data set. Top: training data.
Bottom: testing data.

an experiment where it was used to classify human activ-
ities using video data from the Weizmann dataset [12].
The data consisted of 13 frames with 2400 pixels/frame
from 18 videos with an equal number of “running”
and “skipping” activities, performed by different actors.
10 of these sequences were used for training and the
remaining 8 sequences for testing. As shown in Table
I, the algorithm achieved perfect classification, even
though there are substantial differences between the
appearance of the subjects. For comparison, a similar
approach but using only positive (e.g. in-class) training
data had a substantial misclassification rate, due to the
similarity between the two activities considered.

TABLE I
CLASSIFICATION RESULTS FOR THE WEIZMANN DATASET, WITH

λ = 0.1 AND C = 1× 102 : 100% ACCURACY.

Train ‖Giw‖22 Test ‖Giw‖22
+ − + −

0.0116 1.9365
0.0104 17.9540
0.0169 1.0007
0.0063 1.8692
0.0239 1.0279

µ = 0.0138 µ = 4.7577
σ = 0.0061 σ = 6.6102

0.1912 2.6805
0.1025 0.6422
0.0521 0.5266
0.0985 0.7232

µ = 0.1111 µ = 1.1431
σ = 0.0503 σ = 0.8903

IV. INFORMATION EXTRACTION AS A
HYBRID SYSTEMS

IDENTIFICATION/(IN)VALIDATION PROBLEM

As outlined in the introduction, the main idea driving
this paper is to treat the observed data as the output of
an underlying switched dynamical system, with events
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Fig. 4. Activity segmentation as a piecewise affine identification
problem. Here each node in the graph corresponds to a single activity.
The goal is to identify both the switching instants and the model
corresponding to each activity, as a first step towards detecting
contextually abnormal sequence of activities.

indicated by changes in invariants associated with each
subsystem. In the sequel, we will assume, by using the
embedding procedure outlined in the previous section,
if necessary, that the data record has been generated by
a piecewise affine model of the form3

f
(
pσ(t),

{
x(k),ηf (k)

}t+j
k=t−i

)
= 0 (9)

where f is an affine function, the parameter vector p(t)
takes values from a finite set indexed by piecewise con-
stant function σ(t) and where ηf (t) represents bounded
noise. In this context, the information is encapsulated
in the parameter vector p. For instance, events are
indicated by changes in p(t) (an identification problem).
Similarly, two time series can be considered to have been
generated by the same process if they can be explained
by the same p (e.g. a model (in)validation problem).
While both, identification and model (in)validation of
switched affine systems are known to be NP-hard
problems, in the past few years several computational
tractable relaxations have been developed (see for in-
stance [10], [25], [3], [22], [23], [24], [9], [16], [2]
and references therein). In particular, in the sequel we
will cover a class of algorithms based on recasting the
problem into a sparsification form. These approaches are
attractive since they allow for exploiting the inherently
sparse structure of the problem and provide a sequence
of increasingly tighter relaxations, along with means

3Note that this can be assumed without loss of generality, since piece
wise affine models are universal approximators [32], [5]. Nevertheless,
modeling the data as the output of a switched Wiener system allows
leveraging the nonlinearity to obtain more compact descriptions.

of certifying both when an optimal solution has been
obtained or the underlying optimization problem is in-
feasible.

Before proceeding, note that the problem of identify-
ing a model of the form (9) that explains a given data
record is ill-posed, in the sense that it admits infinitely
many solutions. For instance, it is always possible to
satisfy (9) by fitting an hyperplane to each data point,
or, alternatively, a single model, of sufficiently high
order that perfectly interpolates the given data. In order
to avoid this ambiguity, additional criteria should be
imposed. In particular, in the sequel we consider two dif-
ferent scenarios (a) identification with minimum number
of switches, and (b) identification with a given number
of subsystems. The first scenario arises for instance
in fault detection, where the goal is to minimize the
number of false alarms, and in segmentation problems
in image processing and computer vision, where it is
often desirable to maximize the size of regions (roughly
equivalent to minimizing the number of boundaries). The
second situation arises for instance in cases where it is
known a-priori that the system switches a finite number
of states and the goal is to characterize and recognize
these. Examples of this scenario include recognizing
human activities in video sequences (Fig. 4) or metabolic
stages from gfp activated genomic data.

A. Identification with minimum number of switches

Formally, this problem can be stated as: Given in-
put/output data {ut, yt}Tt0 over the interval [t0;T ], and a
priori information consisting of a convex set membership
noise description N and bounds nu ≥ nc and ny ≥ na
on the order of the regressors, find a switched affine
model of the form:

yt =

na∑
i=1

ai(σt)y(t−i) +

nc∑
i=1

ci(σt)u(t−i) + ηt (10)

where u, y and η denote the input, output and noise,
respectively, that explains the experimental data with the
minimum number of switches.

In order to solve this problem, start by defining the
sequence of first order differences δt

.
= pt − p(t+1).

Since δt = 0 ⇐⇒ pt = p(t+1), it follows that the
number of switches can be minimized by maximizing
the sparsity of the sequence {δt}, or, equivalently, by
solving the following sparsification problem:

minpt
‖pt − p(t+1)‖0

subject to yt − rTt pt ∈ N ∀t
(11)

While the problem above is non-convex, convex relax-
ations can be obtained by relaxing ‖.‖o to ‖.‖∞,1 [6].
Notably, the main result in [24] shows that when the
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noise is characterized in terms of its `∞ norm, that is
N = {η : ‖η‖∞ ≤ ε}, then an exact solution can be
found by solving a sequence of Linear Programming
problems, proceeding as outlined in Algorithm 2.

Algortihm 2: Identification with
minimum number of switches
k = 0
t0 = max(ny, nu)
τk = t0
FOR i = t0 : T

Solve the following feasibility problem in p:
F :

{ ∣∣yt − rTt p
∣∣ ≤ ε ∀t ∈ [τk, i]

}
IF F is infeasible

Set Ik = [τk, i− 1], k = k + 1, and τk = i
END IF

END FOR
Set Ik = [τk, T ] and τ = {Ij}kj=0

RETURN τ and k

Application: Segmentation of Video Sequences. In this
example we illustrate the application of Algorithm 2 to
a non-trivial computer vision problem: segmentation of
video-sequences. The data consisted of 250 frames of
the sequence family.avi, available from http://www.open-
video.org. A low order representation yt ∈ R35 of
this sequence was obtained by first converting each
frame to gray scale, vectorizing, subtracting the sample
mean and projecting onto a d = 35 manifold. Fig. 5
compares the performance of Algorithm 2, using 3rd

order models, to that of three standard methods: GPCA
[34], a histogram based algorithm (bin to bin difference
(B2B) with 256 bin histograms and window average
thresholding [11], and MPEG [38]. As shown there and
in Table II, recasting video segmentation as a switched
systems identification yields the best performance. It is
also worth emphasizing that the second best performer
(MPEG) requires manual tuning, by trial and error, of
up to seven parameters and its performance is highly
sensitive to these values. Additional comparisons are
given in [24].

TABLE II
RAND INDICES [27] FOR THE FAMILY SEQUENCE SEGMENTATION

EXAMPLE. A RAND INDEX OF 1 INDICATES PERFECT

SEGMENTATION.

Sequence Sparsification MPEG GPCA B2B
family 0.9946 0.9480 0.8220 0.9078

B. Identification with bounded number of subsystems.

In this case, the problem can be formally stated as:
Given input/output data over the interval [t0;T ], a bound
on the `∞ norm of the noise (i.e. ‖η‖∞ ≤ ε) find a
switched ARX model of the form (10), with no more
than s subsystems, that interpolates the experimental
data. Although in principle this problem is NP-hard, in
the noise free case (i.e. ηt = 0 ∀t), it can be reduced to
finding the null space of a suitable constructed matrix,
followed by polynomial differentiation [34]. The starting
point to accomplish this is to rewrite (10) as

b(σt)
T rt = 0 (12)

where rt =
[
−yt, yt−1, . . . , yt−na

, ut−1, . . . , ut−nc

]T
and b(σt) =

[
1, a1(σt), . . . , ana

(σt), c1(σt), . . .
]T

, de-
note the regressor and (unknown) coefficients vectors
at time t, respectively. The idea behind the Generalized
Principal Component Analysis (GPCA) method [34] is
to decouple the identification of model parameters from
the identification of the switching sequence by noting
that (12) holds for some σt if and only if

ps(r) = Πs
i=1(bTi rt) = cTs νs(rt) = 0 (13)

holds for all t independent of which of the s submodels
is active at time t, where bi ∈ Rna+nc+1 and νs(.),
denote the parameter vector corresponding to the ith sub-
model and the Veronese map of degree s, respectively.
Collecting all data into a matrix form leads to:

Vscs
.
=

νs(rto)T

...
νs(rT )T

 (14)

Hence, one can solve for a vector cs in the null space of
Vs to find the coefficients of the multivariate polynomial
ps(r). Unfortunately, this approach breaks down in the
presence of noise, since (13) no longer holds. Rather,
we have the following (noisy) equivalent

ps(r̃t)
.
=

s∏
i=1

(bTi r̃t) = cTs νs(r̃t) = 0 (15)

where r̃t = [−yt+ηt, yt−1, . . . , ut−1, . . . , ut−nc
]T , and

its associated “noisy” data matrix Vs(r,η)
.
= Vs(r̃).

The main difficulty here is that finding the coefficients
of the polynomial ps(r̃t) requires now finding both an
admissible noise sequence ηo and a vector co such that

Vs(r̃
o)co = 0 (16)

Since Vs(r̃) is now a matrix polynomial function of the
unknown noise sequence ηt, this is a computationally
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Fig. 5. Video Segmentation Results. Left Column: Ground truth segmentation (jumps correspond to cuts and slanted lines correspond to gradual
transitions). Right Column: Changes detected with different methods. Value 0 corresponds to frames within a segment and value 1 corresponds
to the frames in transitions.

very challenging problem. Nevertheless, as briefly out-
lined below, the use of the polynomial optimization tools
described in section II-B, allows for transforming (16)
to the minimization of the rank of a matrix that is affine
in the optimization variables. This can be accomplished
by using the key fact, established in Ozay et al. [23],
that there exists an admissible noise sequence ηo such
that (16) is satisfied for some vector co if and only if
there exists an admissible moments sequence m such
that

Ṽs(rt,m
(t))co = 0

subject to M(m) � 0 and L(m) � 0
(17)

where Ṽs(rt,m
(t)) is the matrix obtained by replacing

each kth degree monomial ηkt in Vs(rt, ηt) with the
corresponding kth order moment m(t)

k , and where M(m)
and L(m) denote the (truncated) moment and localiza-
tion matrices corresponding to the constraint ‖ηt‖∞ ≤ ε.
Since Ṽs(rt,m

(t)) is affine in m, it follows that a
suitable pair {m, co} can be found by (approximately)
minimizing rank Ṽs(rt,m

(t)), using for instance the
algorithm outlined in section II-D. Once a rank deficient
Ṽs(rt,m

(t)) is found, the parameters of each subsystem
can be obtained by simply finding a vector co in its null
space and then proceeding as in the noise free case.

Example: Human activity segmentation. Next, we
illustrate an application of the ideas outlined above to
the problem of human activity analysis from video data.
In this case, the goal is to segment the video sequence
shown in Fig. 6 into its constituent activities: walking

Fig. 6. Sample frames of a video sequence with a human performing
two activities: walking and bending.

Fig. 7. Activity segmentation via a moments based method.

and bending. In this case, the data was pre-processed to
estimate the location of the center of mass of the person
in each frame. The horizontal4 position of the center of
mass was then modeled as the output of a first order
switched affine system:

xt = a(σt)xt−1 + b(σt) + ηt

where a(σt) and b(σt) are unknown. Finally, the noise
level was estimated to be ‖ηt‖∞ = 3, ( e.g 3 pixels).
Running the identification algorithm outlined above with
these priors lead to the segmentation shown in Figure

4It may seem more natural to use the vertical position. However, this
led to 3 segments, corresponding to no vertical motion, downward and
upward motion, while there are only two different activities involved.
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7, illustrating the ability of this approach to correctly
classify the frames according to the underlying activity5.
Finally, it is worth emphasizing that this technique can
be easily extended to handle outliers and corrupted data,
proceeding as shown in [20].

C. Model (In)Validation

Classically, model (in)validation has been used as an
intermediate step following identification and prior to
use the identified models for control synthesis. Interest-
ingly, as illustrated in the sequel, the same ideas can be
used in the context of information extraction to identify
contextually abnormal sequences. Formally, the problem
of interest can be stated as establishing whether a noisy
input/ouput sequence could have been generated by a
given model of the form6:

yt =
∑na

i=1 ai(σt)yt−i +
∑nc

i=1 ci(σt)ut−i
ỹt = yt + ηt, σt ∈ {1, . . . , s}, ‖ηt‖∞ ≤ ε

(18)

where ỹt denotes the measured output corrupted by the
noise ηt. As in the identification case, this problem is
known to be generically NP-hard, due to the presence
of noise and the fact that the mode variable σt is
not directly measurable. Cases where σt takes only a
small number of discrete values (for instance a system
switching between two known modes), can be handled
by simply considering all possible switching sequences.
Clearly, due to its combinatorial nature, this approach
becomes infeasible for cases involving relatively small
number of subsystems. On the other hand, this com-
binatorial complexity can be avoided by appealing to
semi-algebraic geometry tools. To this effect, begin by
noting that, as in section IV-B, (18) holds if and only if:

pr(ηt:t−nc)
.
=

s∏
i=1

[gt,i(ηt:t−nc)]
2

= 0 (19)

where:

gt,i(ηt:t−nc
)
.
= a1(i)(ỹt−1 − ηt−1) + . . .+

ana
(i)(ỹt−na

− ηt−na
)− (ỹt − ηt) + c1(i)ut−1

+ . . .+ cnc(i)ut−nc

(20)
Similarly, the norm constraint on the noise sequence
ηt is equivalent to the polynomial constraint ht(ηt)

.
=

ε2 − η2t ≥ 0. Hence, there exists noise and switching

5The single misclassification in the last frame of the sequence is due
to an inaccurate estimate of the centroid of the person as she starts to
leave the field of view of the camera.

6For simplicity, we consider here SISO models. A treatment of the
MIMO case can be found in [21].

sequences such that (19) holds if and only if the semi-
algebraic set

T (η)
.
= {η | ft(ηt) ≥ 0 ∀t ∈ [to, T ]and

pt(ηt:t−na) = 0 ∀t ∈ [na, T ]} . (21)

is not empty. Thus, an (in)validation certificate can be
obtained by using semi-algebraic geometry techniques
to establish whether T = ∅. In particular, the use of the
Positivstellensatz [26] allows to obtain a hierarchy of
convex relaxations. Alternatively, proceeding as in [21],
leads to the following optimization problem:

o∗ = minη
∑T
t=na

pt(ηt:t−na)
s.t. ft(ηt) ≥ 0 ∀t ∈ [0, T ]

(22)

Note that o∗ > 0 ⇐⇒ T ′(η) = ∅. While computing
o∗ requires solving a computationally challenging poly-
nomial optimization problem, a convergent sequence of
lower bounds can be obtained using the tools described
in Section II-B as follows: Let d∗N denote the solution
to the following convex optimization:

d∗N = minm

∑T
t=na

lt(mt−na:t)
s.t.
MN (mt−na:t) � 0 ∀t ∈ [na, T ]
LN (ftmt−na:t) � 0 ∀t ∈ [na + 1, T ]

(23)

where each lt is the linear functional of moments defined
as lt(mt−na:t)

.
= E

{
pt(ηt:t−na

)
}

, and where MN

and LN are the corresponding (truncated) moments and
localization matrices. Then, from the results in Section
II-B, it follows that d∗ ↑ o∗. Moreover, if for some No,
d∗No

> 0, then T = ∅. It is worth emphasizing that
this reformulation allows for exploiting the inherently
sparse structure of the problem. It can be shown (see [21]
for details) that (22) satisfies the running intersection
property, and hence it can be solved considering smaller
subproblems as outlined in Section II-C.
Application: detecting contextually abnormal activ-
ities: The goal here is to detect activities that do not
belong to a database of known, safe activities. Exam-
ples of application include monitoring assisted living
facilities and public spaces. A difficulty here is that
typically a video clip contains several activities, e.g.
walking for two minutes, standing for one, and then
resuming walking, and thus, in principle, parsing of the
sequence is required, a hard task if each segment is
only a few frames long. On the other hand, the need
for explicit parsing can be eliminated by recasting the
problem into a model (in)validation form. In this context,
a model is associated to each of the activities in the
database, and abnormal sequences are those that cannot
be explained as the trajectory of a system that switches
amongst these, precisely the situation addressed by the

9



switched (in)validation framework described above. An
example of application of these ideas is shown in Fig.
8.

Fig. 8. Anomalous behavior detection as a switched (in)validation
problem. The activity database consists of models of two activities,
walk and wait. The top sequence (walkwaitwalk) is not (in)validated
since both activities are in the database. The bottom sequence (walk-
jump) is flagged as abnormal since it cannot be generated by switching
amongst models in the database.

V. COMPUTATIONAL COMPLEXITY
CONSIDERATIONS

In the previous sections we have shown that recast-
ing information extraction problems into an identifi-
cation/model (in)validation form leads to semi-definite
optimization problems. Since these problems are convex,
they can be solved in polynomial time, using for instance
interior point methods implemented in the freely avail-
able software package CVX [13]. Nevertheless, while
these methods work well for moderately sized problems,
they have poor scaling properties (computational com-
plexity scales at least as O(n3) and memory require-
ments as O(n4), where n is the number of decision
variables). Thus, even when using the methods described
in Section III to reduce the dimensionality of the data,
using interior point methods is feasible for relatively
short sequences (typically a few hundred data points).
Motivated by this difficulty, during the past few years
considerable interest has been devoted to Augmented
Lagrangian Type first order methods [4]. These methods
are both computationally (since they can exploit closed
form solutions to partial problems) and memory efficient
(since they do not require computing Hessians). Note
that the type of problems of interest in this paper
are special cases of a more general class, structurally
constrained nuclear norm minimization, of the form:

min
m
‖WA(m)‖∗ + λ1‖E1(m)‖1 + λ2‖E2(m)‖2

subject to semidefinite constraints
(24)

where W, λ1 and λ2 are fixed weights, and A(.),E1(.)
and E2(.). are structured matrices that depend affinely
on the optimization variable m. The main result in [1],

shows that these problems can be solved using an Alter-
nating Directions Methods of Multipliers (ADMM) type
algorithm that requires performing only thresholding and
eigenvalue decomposition steps. Notably, this algorithm
typically requires computing only a few singular values,
hence avoiding the O(n3) scaling of full blown SVDs,
resulting in up to two orders of magnitude improve-
ment in computational time, vis-a-vis conventional SDP
solvers, with far lower memory requirements [1].

VI. CONCLUSIONS

The development of low cost, ultra low power sen-
sors and the parallel development in actuation capabil-
ities have rendered feasible a spectrum of new control
applications, ranging from zero emission buildings to
reconfigurable, self aware environments. that can pro-
foundly impact society. However, realizing this potential,
requires endowing controllers with the ability to timely
extract actionable information from the very large data
streams generated by the sensors, a goal that challenges
the capabilities of existing techniques. As shown in this
paper, embedding the problem of actionable informa-
tion extraction into a dynamical systems identification
form opens up a large knowledge base developed in
the systems and control community, leading to com-
putationally attractive algorithms. In this context, data
is associated with a few dynamic invariants that de-
scribe the underlying dynamical model, allowing for
leveraging the inherent sparsity of these representations
to robustly solve challenging problems such as data
segmentation and interpretation, even in the presence of
corrupted data. An issue only partially addressed in this
paper is the computational complexity of the resulting
methods. While, as briefly indicated in Section V, the
use of ADMM based methods can partially alleviate
this issue, these methods are still limited to medium
sized sequences (few thousands of elements), due to the
need to perform SVDs, and, in some cases, relatively
slow convergence. A promising approach for identifying
systems subject to sparsity constraints, based on the
concept of atomic norm minimization using a modified
Frank-Wolfe type algorithm has been recently proposed
in [40], where it was shown to outperform ADMM based
methods. Further, this approach only entails computing
inner products and thus its complexity grows linearly
with the data. However, at this point it is not clear how
to extend this approach to deal with switching systems,
with the main difficulty here being the development of
Frank-Wolfe type algorithms for systems that can switch
arbitrarily fast.
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