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Abstract: This paper considers the design of separating input signals in order to discriminate
among a finite number of uncertain nonlinear models. Each nonlinear model corresponds to a
system operating mode, unobserved intents of other drivers or robots, or to fault types or attack
strategies, etc., and the separating inputs are designed such that the output trajectories of all
the nonlinear models are guaranteed to be distinguishable from each other under any realization
of uncertainties in the initial condition, model discrepancies or noise. We propose a two-step
approach. First, using an optimization-based approach, we over-approximate nonlinear dynamics
by uncertain affine models, as abstractions that preserve all its system behaviors such that any
discrimination guarantees for the affine abstraction also hold for the original nonlinear system.
Then, we propose a novel solution in the form of a mixed-integer linear program (MILP) to
the active model discrimination problem for uncertain affine models, which includes the affine
abstraction and thus, the nonlinear models. Finally, we demonstrate the effectiveness of our
approach for identifying the intention of other vehicles in a highway lane changing scenario.
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1. INTRODUCTION

Recently, there is much public interest in the integration of
smart systems into everyday lives. These systems that in-
clude smart homes, smart grids, intelligent transportation
and smart cities, are essentially complex, integrated and
interconnected engineered systems with multiple operating
modes that are often not directly observed or measured;
thus, they can be modeled as hidden mode hybrid systems.
For example, autonomous vehicles/robots have no access
to the intentions or decisions of other vehicles/humans
[Sadigh et al. (2016); Yong et al. (2014); Ding et al. (2018)],
while smart infrastructures are prone to different fault
types [Harirchi and Ozay (2015); Cheong and Manchester
(2015)] or attack modes [Pasqualetti et al. (2013); Yong
et al. (2015); Harirchi et al. (2017b)]. In these scenar-
ios, approaches for discriminating among these operating
modes (or more generally, models of system behaviors)
based on noisy observed measurements can have a signifi-
cant impact on a broad range of applications in robotics,
process control, medical devices, fault detection, etc.

Literature Review: The problem of discriminating among
a set of models appears in a plethora of research areas such
as fault detection, input-distinguishability and mode dis-
cernibility of hybrid systems, where the approaches in the
literature can be grouped into passive and active methods.
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Passive discrimination techniques seek the separation of
the models regardless of the input [Lou and Si (2009); Rosa
and Silvestre (2011); Yong et al. (2014); Harirchi et al.
(2017a)], while active methods design a separating input
such that the behaviors of different models are distinct.
Specifically in the area of input design for active model
discrimination, many approaches have been proposed with
the goal of finding a small excitation that has a minimal
effect on the desired behavior of the system, while guar-
anteeing the isolation of different fault models [Cheong
and Manchester (2015); Šimandl and Punčochář (2009);
Nikoukhah and Campbell (2006); Scott et al. (2014);
Harirchi et al. (2017b); Ding et al. (2018)]. However, these
methods are only applicable for known linear or affine
models, and not for nonlinear or uncertain affine models
that we consider in this work.

Another set of relevant literature pertains to abstractions
of nonlinear systems as linear or affine models that over-
approximates all possible original system behaviors, which
is a common systematic approximation approach in the
literature on hybridization [Asarin et al. (2007); Althoff
et al. (2008); Dang et al. (2010)]. This is typically achieved
by linear interpolation and over-approximating the inter-
polation errors as an additive bounded noise term, which
may at times be a crude approximation.

Contributions: We propose a novel two-step approach to
active model discrimination among a set of uncertain non-
linear models, consisting of the affine abstraction/over-



approximation and the corresponding input design prob-
lem. To the best of our knowledge, this problem is rela-
tively unexplored in the literature.

First, to address the potential conservativeness of conven-
tional abstraction/over-approximation methods, we pro-
pose an optimization-based approach to over-approximate
nonlinear dynamics by uncertain affine models that
are compactly described using interval-valued matri-
ces/vectors, in contrast to only having a interval-valued
affine vector. In particular, this uncertain affine model
must preserve all the system behaviors of the original
nonlinear dynamics such that any model discrimination
guarantees for uncertain affine abstraction also hold for
the original nonlinear models.

Next, using the resulting set of uncertain affine models, we
propose a novel solution to the active model discrimina-
tion problem for uncertain affine models, which includes
the affine abstraction. We show that this problem can
be casted as a mixed-integer linear program (MILP), for
which off-the-shelf optimization tools are readily available.
To our knowledge, this input design problem for uncertain
affine models (an important problem on its own) has not
been considered in the literature. Finally, we demonstrate
the effectiveness of our approach for identifying the inten-
tion of other vehicles in a lane changing scenario.

2. PRELIMINARIES

2.1 Notation and Definitions

Let x ∈ Rn denote a vector and M ∈ Rn×m a matrix,
with transpose Mᵀ and M ≥ 0 denotes element-wise non-
negativity. The vector norm of x is denoted by ‖x‖i with
i ∈ {1, 2,∞}, while 0, 1 and I represent the vector of zeros,
the vector of ones and the identity matrix of appropriate
dimensions. The diag and vec operators are defined for a
collection of matrices Mi, i = 1, . . . , n and matrix M as:

diagni=1{Mi} =

M1

. . .

Mn

 , vecni=1{Mi} =

M1

...
Mn

 ,
diagi,j{Mk} =

[
Mi 0
0 Mj

]
, veci,j{Mk} =

[
Mi

Mj

]
,

diagN{M} = IN ⊗M, vecN{M} = 1N ⊗M,

where ⊗ is the Kronecker product. The set of positive
integers up to n is denoted by Z+

n , and the set of non-
negative integers up to n is denoted by Z0

n. Note also
the definition of Special Ordered Set of degree 1 (SOS-1)
constraints in [Gurobi Optimization (2015)].

2.2 Nonlinear Modeling Framework

Consider N discrete-time affine time-invariant models Gni ,
each with states #”x i ∈ Rn, outputs zi ∈ Rp, inputs
#”ui ∈ Rm, process noise wi ∈ Rmw and measurement noise
vi ∈ Rmv . The models evolve according to the following
autonomous nonlinear state equation:

#”x+
i = fi(

#”xi,
#”ui, wi), (1)

where fi is differentiable. For discrete-time systems, #”x+

denotes the state at the next time instant while for
continuous-time systems, #”x+ = #̇”x is the time derivative
of the state. Moreover, the output equation is:

zi = Ci
#”xi +Di

#”ui +Dv,ivi + gi. (2)

The initial condition for model i, denoted by #”x i,0 = xi(0),
is constrained to a polyhedral set with c0 inequalities:

#”xi,0 ∈ X0 = { #”x ∈ Rn : P0
#”x ≤ p0}, ∀i ∈ Z+

N . (3)

The first mu components of #”ui are controlled inputs,
denoted as u ∈ Rmu , which are equal for all #”ui, while
the other md = m − mu components of #”ui, denoted
as di ∈ Rmd , are uncontrolled inputs that are model-
dependent. Further, the states #”x i are partitioned into
xi ∈ Rnx and yi ∈ Rny , where ny = n− nx, as follows:

#”ui =

[
u
di

]
, #”xi =

[
xi
yi

]
. (4)

The states xi and yi represent subsets of the states #”x i that
are the ‘responsibilities’ of the controlled and uncontrolled
inputs, u and di, respectively. The term ‘responsibility’ in
this paper is to be interpreted as u and di, respectively,
having to independently satisfy the following polyhedral
state constraints with cx and cy inequalities:

xi ∈ Xx,i = {x ∈ Rnx : Px,ix ≤ px,i}, (5)

yi ∈ Xy,i = {y ∈ Rny : Py,iy ≤ py,i}, (6)

subject to constrained inputs described by polyhedral sets
with cu and cd inequalities, respectively:

u ∈ U = {u ∈ Rmu : Quu ≤ qu}, (7)

di ∈ Di = {d ∈ Rmdi : Qd,id ≤ qd,i}. (8)

Further, X i , Xx,i ×Xy,i and U i , U ×Di. On the other
hand, the process noise wi and measurement noise vi are
also polyhedrally constrained with cw and cy inequalities:

wi ∈ Wi = {w ∈ Rmw : Qw,iw ≤ qw,i}, (9)

vi ∈ Vi = {v ∈ Rmv : Qv,iv ≤ qv,i}, (10)

and have no responsibility to satisfy any state constraints.
The readers are referred to [Remark 1, Ding et al. (2018)]
for a description of the well-posedness of the formulation.

2.3 Uncertain Affine Modeling Framework

We also consider the uncertain affine modeling framework,
that we will show in Section 4 to be a good represen-
tation for abstracting/over-approximating nonlinear mod-
els. Specifically, consider N discrete-time uncertain affine
models Gai = (Ai,Bi,Bw,i, Ci, Di, Dv,i,Fi, gi), each with
states #”x i ∈ Rn, outputs zi ∈ Rp, inputs #”ui ∈ Rm, process
noise wi ∈ Rmw and measurement noise vi ∈ Rmv . The
models evolve according to the state and output equations:

#”xi(k + 1) ∈ Ci(k), (11)

zi(k) = Ci
#”xi(k) +Di

#”ui(k) +Dv,ivi(k) + gi, (12)

where Ci(k) is the cover of xi(k + 1) in given domains
#”x i ∈ X , #”ui ∈ U , wi ∈ Wi, defined by

Ci(k) , { #”xi(k + 1) ∈ X |
Ai

#”xi(k)+Bu,i
#”ui(k)+Bd,idi(k)+Bw,iwi(k)+f

i
≤ #”xi(k+1)

≤ Ai #”xi(k) +Bu,i
#”ui(k) +Bd,idi(k) +Bw,iwi(k) + f i,

∀ #”xi ∈ X ,ui ∈ U , wi ∈ Wi}.

(13)

For compactness, we will represent the above model with
interval matrices Ai = [Ai, Ai], Bi = [Bi, Bi], Bw,i =

[Bw,i, Bw,i] and an interval vector Fi = [f
i
, f i]. This

uncertain model can be obtained by construction, as
described in Section 4, and we will use (13) directly for
active model discrimination in Section 5.

Based on the partitions of inputs in (4), the corresponding
partitioning of the matrices Bi, Bi and Di are:

Bi =
[
Bu,i Bd,i

]
, Bi =

[
Bu,i Bd,i

]
, Di =

[
Du,i Dd,i

]
.

The states xi and yi represent the subset of the states
#”x i that are the ‘responsibilities’ of the controlled and
uncontrolled inputs, u and di, respectively. The term
‘responsibility’ in this paper is to be interpreted as u
and di, respectively, having to independently satisfy the
following polyhedral state constraints (for k ∈ Z+

T ) with



cx and cy inequalities, as is given in (5) and (6), subject
to constrained inputs described by polyhedral sets (for
k ∈ Z0

T−1) with cu and cd inequalities, respectively,
given by (7) and (8). Similarly, the process noise wi and
measurement noise vi are also polyhedrally constrained
with cw and cy inequalities, as given in (9) and (10).

In addition, we will consider a time horizon of length T and
introduce some time-concatenated notations. The time-
concatenated states and outputs are defined as

#”xi,T = vecTk=0{
#”xi(k)}, zi,T = vecTk=0{zi(k)},

while the time-concatenated inputs and noises are
#”ui,T=vecT−1

k=0
{ #”ui(k)}, uT=vecT−1

k=0
{u(k)}, di,T=vecT−1

k=0
{di(k)},

wi,T=vecT−1
k=0
{wi(k)}, vi,T=vecTk=0{vi(k)}.

Using the above time-concatenated inputs, noise, states
and outputs, the corresponding time-concatenated state
and output equations can be written as:

Mi
#”xi,T + Γu,iuT + Γd,idi,T + Γw,iwi,T + Fi ≤ 0, (14)

zi,T =Ei
#”xi,T + Fu,iuT + Fd,idi,T + Fv,ivi,T +Gi,

where the matrices and vectors Mi, Γu,i, Γd,i, Γw,i, Fi,T ,
Ei, Fu,i, Fd,i, Fd,i and Gi are defined in the appendix.

Given N discrete-time affine models, there are I =
(
N
2

)
model pairs and let the mode ι ∈ {1, · · · , I} denote the
pair of models (i, j). Then, concatenating #”x i,T , xi,T , yi,T ,
di,T , zi,T , wi,T and vi,T for each model pair, we define

#”xιT = veci,j{ #”xi,T }, zιT = veci,j{zi,T }, dιT = veci,j{di,T },
wιT = veci,j{wi,T }, vιT = veci,j{vi,T }.

The states and outputs over the entire time horizon for
each mode ι can be written as simple functions of the state
#”xι, input vectors uT , dιT , and noise wιT , vιT :

M ι #”xιT + ΓιuuT + Γιdd
ι
T + Γιww

ι
T + F ιT ≤ 0, (15)

zιT =Eι #”xιT + F ιuu
ι
T + F ιdd

ι
T + F ιvv

ι
T +Gι.

The matrices and vectors M ι, Γιu, Γιd, Γιw, F ιT , Eι, F ιu,
F ιd, F ιv and Gι are defined in the appendix. Moreover,
the uncertain variables for each mode ι are concatenated
as xι = [ #”xιT

T dιT
T wιT

T vιT
T]T. We then concatenate the

polyhedral state constraints in (5) and (6). First, let

P
ι
x = diagi,j diagT {Px,i}, pιx = veci,j vecT {px,i},

where Px,i =

[
Px,i 0

0 Py,i

]
and px,i =

[
px,i
py,i

]
. Further, we

concatenate the initial state constraint in (3):

P
ι
0 = diag2{[P0 0]}, pι0 = vec2{p0}.

Similarly, let

Qu = diagT {Qu}, Q
ι
† = diagi,j diagT {Q†,i},

qu = vecT {qu}, qι† = veci,j vecT {q†,i}, † ∈ {d,w, v}.

Then, the input constraints in (7) and (9) for all k are:

QuuT ≤ qu and Q
ι

††
ι
T ≤ qι†. Hence, in terms of xι, we have

a polyhedral constraint of the form Hι
x̄x̄

ι ≤ hιx̄, with

Hι
x̄ =

[ [
P̄ ι0 0

]
diag{P̄ ιx, Q̄ιd, Q̄

ι
w, Q̄

ι
v}

]
, hιx̄=

[
p̄ι,>0 p̄ι,>x q̄ι,>

d
q̄ι,>w q̄ι,>v

]>
.

Note that the above definitions of matrices and vectors for
the uncertain affine model are different from the ones in
Ding et al. (2018) that were defined for affine models.

3. PROBLEM FORMULATION

We consider the active model discrimination problem
among a finite number of uncertain nonlinear models, i.e.,
to design a separating admissible input for the system

such that when the system is excited with this input,
any observed trajectory is consistent with only one model,
regardless of any realization of uncertain parameters. In
addition, we minimize a cost function J(u), as follows:

Problem 1. (Active Model Discrimination). GivenN well-
posed nonlinear models Gi, and state, input and noise con-
straints, (3),(6),(8)-(10), find an optimal input sequence
u∗T to minimize a given cost function J(uT ) such that
for all possible initial states #”x0, uncontrolled input dT ,
process noise wT and measurement noise vT , only one
model is valid, i.e., the output trajectories of any pair of
models have to differ in at least one time instance.

The above problem is in general computationally in-
tractable with no optimality guarantees, as it would result
in a mixed-integer nonlinear program (MINLP). Thus, we
propose a two-step approach to tackle this problem. The
first subproblem (Problem 1.1) is to over-approximate the
nonlinear dynamics in (1) by uncertain affine models (for
each i ∈ Z+

N; subscript i omitted below for brevity), as
abstractions that preserve (or “contain”) all its system
behaviors. This is a common systematic approximation
approach in the literature on hybridization [Asarin et al.
(2007); Althoff et al. (2008); Dang et al. (2010)].

Problem 1.1. (Affine Abstraction). Given a nonlinear n-
dimensional vector field f( #”x , #”u, w) with (polytopic) do-
main #”x ∈ X , #”u ∈ U , w ∈ W, find two n dimensional affine
planes (i.e., upper and lower planes defined by matrices
A,A,B,B,Bw, Bw and vectors f , f) such that they “con-
tain” (i.e., upper- and lower bound) the given vector field
with minimum separation, as expressed by the following:

min
A,A,B,B,Bw,Bw,f,fÃ,B̃,B̃w,f̃

Ã+ λ1B̃ + λ2B̃w + λ3f̃

subject to

A #”x+B #”u+Bww+f≤ f( #”x , #”u, w),

f( #”x , #”u, w)≤A #”x+B #”u+Bww+f,
∀( #”x∈X , #”u∈U , w∈W), (16a)

‖A−A‖ ≤ Ã, ‖B −B‖ ≤ B̃, ‖Bw −Bw‖ ≤ B̃w,
‖f − f‖ ≤ f̃ , A ≥ A,B ≥ B,Bw ≥ Bw, f ≥ f,

(16b)

where λ1, λ2 and λ3 are tuning weights and suitable norms
are also chosen based on the application at hand.

Then, using the resulting set of uncertain affine models
that conform to the modeling framework in Section 2.3, we
consider the following second subproblem (Problem 1.2):

Problem 1.2. (Active Affine Model Discrimination). Given
N well-posed affine models Gai , and state, input and
noise constraints, (3),(6),(8)-(10), find an optimal input
sequence u∗T to minimize a given cost function J(uT ) such
that for all possible initial states #”x0, uncontrolled input
dT , process noise wT and measurement noise vT , only one
model is valid, i.e., the output trajectories of any pair of
models have to differ in at least one time instance. The
optimization problem can be formally stated as follows:

min
uT ,xT

J(uT ) s.t. ∀k ∈ Z0
T−1 : (7) hold, (17a)

∀i, j ∈ Z+
N , i < j, ∀k ∈ Z0

T ,
∀ #”xT , yT , dT , wT , vT :

(3),(5),(6),(8)-(10),(15) hold

}
:
∃k ∈ Z0

T ,
zi(k) 6= zj(k).

(17b)

Using the two-step design, the discrimination guarantees
in Problem 1.2 also hold for the original nonlinear models
because the affine abstraction in Problem 1.1 is designed
such that any properties that hold for the abstraction also
hold for the original nonlinear models. Our approach has



the advantage of “divorcing” the difficulty associated with
optimization problems with nonlinear constraints from the
active model discrimination problem, providing insight
into whether the nonlinearity is the bottleneck or if the
active discrimination problem itself is ill-posed. However,
the solution is, by construction, suboptimal. Nonetheless,
the designed separating input guarantees that all output
trajectories of all the nonlinear models are distinguishable
from each other under any realization of uncertainties in
the initial condition, model discrepancies or noise.

4. AFFINE ABSTRACTION

In this section, we address Problem 1.1. Since the robust
formulation given in Problem 1.1 cannot be directly imple-
mented using standard optimization packages, we will con-
vert the problem into a more amenable form such that off-
the-shelf optimization tools can be applied. For simplicity,
we first describe our approach for a 1-dimensional vector
field with interval domains, before describing how this can
be extended to higher dimensional systems. Moreover, we
will assume in the following discussion that there is at most
one local optimum in the domain X ,U ,W. This can also
be extended to the case with multiple local optima.

Theorem 1. (Affine Abstraction). Given a nonlinear 1-
dimensional differentiable vector field f( #”x , #”u, w) with in-
terval domains #”x ∈ X , #”u ∈ U , w ∈ W, two affine planes
(i.e., upper and lower planes defined by A,A,B,B,Bw, Bw
and vectors f , f) that contain the given vector field with
minimum separation are solutions to:

min
A,A,B,B,Bw, Bw, f, fÃ, B̃, B̃w, f̃ ,

#”xu,
#”uu, wu,

#”xb,
#”ub, wb

Ã+ λ1B̃ + λ2B̃w + λ3f̃

subject to

A #”x+B #”u+Bww+f≤ f( #”x , #”u, w),

f( #”x , #”u, w)≤A #”x+B #”u+Bww+f,
∀( #”x∈X̃ , #”u∈ Ũ , w∈W̃), (18a)

A−∇ #”x f( #”xb,
#”ub, wb) = 0, B −∇ #”u f( #”xb,

#”ub, wb) = 0,
Bw −∇w f( #”xb,

#”ub, wb) = 0,
(( #”xb ∈ X ∧ #”ub∈U ∧ wb∈W ∧ (A #”xb +B #”ub

+Bwwb + f ≤ f( #”xb,
#”ub, wb))) ∨ #”xb /∈ X ∨ #”ub /∈U ∨ wb /∈W),

(18b)

A−∇ #”x f( #”xu,
#”uu, wu) = 0, B −∇ #”u f( #”xu,

#”uu, wu) = 0,

Bw −∇w f( #”xu,
#”uu, wu) = 0,

(( #”xu ∈ X ∧ #”uu∈U ∧ wu∈W ∧ (A #”xu +B #”uu
+Bwwu + f ≥ f( #”xu,

#”uu, wu))) ∨ #”xu /∈ X ∨ #”uu /∈U ∨ wu /∈W),

(18c)

‖A−A‖ ≤ Ã, ‖B −B‖ ≤ B̃, ‖Bw −Bw‖ ≤ B̃w,
‖f − f‖ ≤ f̃ , A ≥ A,B ≥ B,Bw ≥ Bw, f ≥ f,

(18d)

where λ1, λ2, λ3 are tuning weights (chosen based on the

application), X̃ , Ũ , W̃ are the sets of endpoints of the
interval domains X , U , W, respectively, #”xu, #”uu and wu
are the local optimum for the difference between the upper
plane and function f, and similarly, #”xb,

#”ub and wb for
the bottom plane, while ∧ and ∨ are logical AND and OR
operators 1 and ∇∗ denotes the derivative operator with
respect to variable i ∈ { #”x , #”u, w}.
Proof. The optimization formulation above is as in Prob-
lem 1.1 except that the semi-infinite constraints (16a)
are replaced by readily implementable constraints (18a),
(18c), (18b). This is possible because the maximum of
a differentiable (thus, continuous) function over a closed
domain is the maximum of its local optima (i.e., minima,
maxima or saddle points) in its interior (i.e., (18b)) and the
maximum over its boundaries (i.e., its endpoints; (18a)).

1 Logical operators are implementable by off-the-shelf softwares, e.g., YALMIP

[Löfberg (2004)], and if needed, converted to mixed-integer constraints.

The same holds for minimization over a closed domain,
resulting in (18a) and (18c) for the lower plane.

Eq. (18a) is required such that the upper and lower planes
upper- and lower-bound each boundary/endpoint of the
domains. On the other hand, Eqs. (18b) and (18c) are
such that the local optima, which are given by their first
order necessary condition (i.e., their first order derivative
is set to zero), are also upper- and lower-bounded by
the two planes, respectively. The constraints with logical
operators are to be understood to be in conjunction with
the other constraints, and has the interpretation that only
the local optima in the given domain needs to be upper- or
lower-bounded by the two planes. Finally, Eq. (18d) along
with the objective function ensures that the upper plane
remains above the lower plane and that the separation
between the two planes is as small as possible. 2

To extend the above formulation to higher dimensions,
the key difference from the 1-dimensional case is that the
boundaries of the domain are higher dimensional facets
as opposed to line segments. To deal with this, the above
procedure of replacing the maximization or minimization
over a domain with the maximizing or minimizing over
the local optima (using first order optimality condition for
constrained optimization) and its boundaries as in (18a),
(18c), (18b) can be repeated to recursively reduce the
dimension of the boundaries by one until we obtain line
segments. This procedure may be tedious to implement
for systems with high dimensions and domains with many
facets, hence, in practice, we may start with only con-
straints on the vertices and iteratively add facets of the
domain of interest when the resulting planes are found to
intersect them. Further effort to reduce the complexity of
this procedure is the subject of ongoing research.

5. ACTIVE MODEL DISCRIMINATION APPROACH

We now extend and modify the approach in Ding et al.
(2018) to solve Problem 1.2 with given uncertain affine
models from Section 4. This approach relies on formulating
the problem as a bi-level optimization problem which
is then converted to a single level MILP using KKT
conditions, for which off-the-shelf softwares are readily
available, e.g., [Gurobi Optimization (2015)]. For the sake
of clarity, we will defer the definitions of certain matrices
in the following results to the appendix. Moreover, for
brevity, the proofs of this approach are omitted, as they
follow similar steps to the proofs in [Ding et al. (2018)].

Theorem 2. ( Discriminating Input Design as an MILP ).
Given a separability index ε, the active model discrimina-
tion problem (Problem 1.2) is equivalent (up to ε) to:

min
uT ,δ

ι,,x̄ι,µι
1
,,µι

2
,µι

3

J(uT ) (PDID)

s.t. Q̄uuT ≤ q̄u,
∀ι ∈ Z+

I : δι(uT ) ≥ ε, 0 = 1− µι3
T
1,

0 =
∑i=κ

i=1
µι1,iH

ι
x̄(i,m) +

∑j=ξ

j=1
µι2,jR

ι
1(j,m)

+
∑k=ρ

k=1
µι3,kR

ι
2(k,m), ∀m = 1, · · · , η,

H̃ι
x̄,ix̄

ι − hιx̄,i ≤ 0, µι1,i ≥ 0, ∀i = 1, . . . κ,

R̃ι1,j x̄
ι − rι1,j − S

ι
1,juT ≤ 0, µι2,j ≥ 0,∀j = 1, . . . ξ,

R̃ι2,kx̄
ι − δι − rι2,k − S

ι
2,kuT ≤ 0, µι3,k ≥ 0, ∀k = 1, . . . ρ,

∀ι ∈ Z+
I , ∀i ∈ Z+

κ : SOS-1 : {µι1,i, H̃
ι
x̄,ix̄

ι − hιx̄,i},
∀ι ∈ Z+

I ,∀j ∈ Z+
ξ

: SOS-1 : {µι2,j , R̃
ι
1,j x̄

ι − rι1,j − S̃
ι
1,juT },

∀ι ∈ Z+
I , ∀j ∈ Zρρ : SOS-1 : {µι3,k, R̃

ι
2,kx̄

ι − δι − rι2,k − S̃
ι
2,kuT },



where µι1,i, µ
ι
2,j and µι3,j are dual variables, while H̃ι

x̄,i is

the i-th row of Hι
x̄, R̃ι1,j and S̃ι1,j are the j-th row of Rι1

and Sι1, respectively, R̃ι1,k and S̃ι2,k are the k-th row of Rι2
and Sι2, respectively, η = IT (n + md + mw + mv) is the
number of columns of Hι

x, κ = 2IT (c0 + cd + cw + cv) is
the number of rows of Hι

x, ξ = 2IT (cx+ cy) is the number
of rows of Rι1 and ρ = 2ITp is the number of rows of Rι2.

Note that the result above is an extension of Ding et al.
(2018). Although the notations of matrices and vectors
look similar, their definitions are rather different.

6. APPLICATION EXAMPLE: ACTIVE INTENTION
IDENTIFICATION IN LANE CHANGE SCENARIO

In this section, we apply the active model discrimination
approach proposed in the previous sections to design
a separating control input that, in conjunction with a
modified model invalidation algorithm (e.g., [Harirchi and
Ozay (2015); Harirchi et al. (2017a, 2018)]), can be used
for active intention identification in a highway lane change
scenario (cf. [Figure 1, Ding et al. (2018)]).

6.1 Vehicle and Intention Models

The dynamics of the ego vehicle is of the Dubins car
[Dubins (1957)] with acceleration input:

ẋe = ve cosφe, ẏe = ve sinφe, v̇e = u1 + w1, φ̇e = u2 + w2,

while the other car dynamics is described by:

ẋo = vo, v̇o = di + w3,

where xe and ye are the longitudinal and lateral co-
ordinates of the ego car, ve is its speed and φe is its
heading angle, while xo is the longitudinal coordinate
of the other car with its speed given by vo (no lateral
movement), with process noise signals wj , j ∈ {1, 2, 3}.
u1 ∈ Ua , [−7.848, 3.968] and u2 ∈ Us , [−0.44, 0.44]
are the acceleration and steering inputs of the ego car,
whereas di is the (uncontrolled) acceleration input of the
other car for each intention i ∈ {I, C,M}, corresponding
to an Inattentive, Cautious or Malicious driver.

The Inattentive driver is unaware of the ego car and
maintains his speed using an acceleration input which lies
in a small range dI ∈ DI , [−0.392, 0.198]. The Cautious
driver tends to yield the lane to the ego car with the input
equal to dC , −Kd,C(ve − vo) + Lp,Cφe + Ld,C φ̇e + d̃C ,

where φ̇e = u2 + w2, Kd,C = 1, Lp,C = 12 and Ld,C = 14
are PD controller parameters and the input uncertainty is
d̃C ∈ DC = DI . Finally, the Malicious driver does not
want to yield the lane and attempts to cause a collision
with input equal to dM , Kd,M (ve − vo) − Lp,Mφe −
Ld,M φ̇e+d̃M , if provoked, where φ̇e = u2+w2, Kd,C = 0.9,
Lp,C = 12 and Ld,C = 14 are PD controller parameters

and the input uncertainty satisfies d̃M ∈ DM = DI .
Without loss of generality, we assume that the initial
position and heading angle of the ego car are 0, while the
initial velocities match typical speed limits of the highway.
Moreover, both cars are close to the center of their lanes
that are 3.2 m wide. Thus, the initial conditions are:

ve(0) ∈ [23, 27]m
s
, ye(0) ∈ [1.5, 1.7]m,

vo(0) ∈ [23, 27]m
s
, xo(0) ∈ [10, 12]m.

Further, the velocity of the ego vehicle is constrained to
be between [20, 30]ms at all times (in order to obey the

Fig. 1. Affine abstraction/over-approximation of Dubins vehicle
dynamics such that the true nonlinear system behavior is
contained/enveloped by the abstraction.

Fig. 2. Effect of different choices of objective functions on the
resulting separating inputs. (Note that the control inputs with
1- and 2-norms as objective functions are near identical.)

speed limit of a highway), its heading angle is between
[−0.44, 0.44]rad and its lateral position is constrained be-
tween [0.3, 2.5]m. Process and measurement noise signals
are bounded with a range of [−0.01, 0.01] and the separa-
bility threshold is set to ε = 0.5ms . Moreover, we assume
the extreme scenario where only noisy observation of other
car’s velocity is observed z = vo + v.

6.2 Affine Abstraction

The Dubins vehicle and intention models above are nonlin-
ear. Hence, we resort to the approach in Section 4 to obtain
affine abstractions of the models. Since the nonlinearity
only affects the speed ve and the heading angle φe, we
first define a suitable domain that is appropriate for the
lane changing scenario. Specifically, we consider the speed
of the ego car to be between 20 m/s to 30 m/s (72 to
108 km/h) and a heading angle range of −25◦ to 25◦

([−0.44, 0.44]rad). Using this domain, we can obtain an
affine abstraction for the reduced 2-dimensional system
with λ1 = 1000, λ2 = λ3 = 0 and ∞-norms, as illustrated
by Figure 1, and using the compact interval matrix repre-
sentation, the abstracted open-loop model is given by:

A = [A,A] = [(1, 3) : [0.9947, 0.9956]; (1, 4) : 2.3821;
(2, 3) : [−0.1028,−0.0928];
(2, 4) : [23.0325, 25.2673]; (5, 6) : 1]6×6,

B=Bw=B = [(3, 1) : 1; (4, 2) : 1; (6, 3) : 1]6×3,

F=[f, f ] = [(1, 1) : [−3.7471, 0.2859];

(1, 2) : [0.4413, 4.4754]]6×1,

where we used a sparse matrix notation with the size
indicted in the subscript.

Combining the abstraction with the intention models and
using Euler method for time-discretization with sampling
time δt = 0.4 s, we have the following intention models:

Inattentive Driver (i = I):

AI = I + δtA, AI = I + δtA,

BI = BI = Bw,I = Bw,I = δtB,

CI = [(1, 6) : 1]1×6, DI = 0, Dv,I = 1, f
I

=δtf, fI =δtf.

Cautious Driver (i = C):

ÃC = [(6, 3) : −Kd,C ; (6, 4) : Ld,C ; (6, 6) : Kd,C ]6×6,

B̃C = [(6, 2) : Lp,C ]6×3,

AC = I + δt(A+ ÃC), AC = I + δt(A+ ÃC),

BC = BC = Bw,C = Bw,C = δt(B + B̃C),

CC = CI , DC = 0, Dv,C = 1, f
C

= δtf, fC = δtf.



Malicious Driver (i = M):

ÃM = [(6, 3) : −Kd,M ; (6, 4) : Ld,M ; (6, 6) : Kd,M ]6×6,

B̃M = [(6, 2) : Lp,M ]6×3,

AM = I + δt(A− ÃM ), AM = I + δt(A− ÃM ),

BM = BM = Bw,M = Bw,M = δt(B − B̃M ),

CM = CI , DM = 0, Dv,M = 1, f
M

= δtf, fM = δtf.

6.3 Active Nonlinear Model Discrimination

Next, we apply the active model discrimination approach
in Section 5 to the uncertain affine models for the three
intentions of the other driver in a highway lane changing
scenario. Figure 2 shows the active inputs of the ego car
to discern the other car’s intention based on its response
when using various objective functions. When comparing
the solutions with different norms as the objective func-
tions, we observe that ‖u‖1 reduces the sum of absolute
values, thus keeping all the data points as close to zero
as possible, ‖u‖2 minimizes energy and may be desirable
to reduce fuel consumption, and ‖u‖∞ ensures comfort
by minimizing the maximum absolute input values. In
all solutions, the ego car accelerates and turns towards
the other car’s lane, and then either maintains its speed
or decelerates while re-aligning to its lane, although now
laterally shifted toward the other car’s lane. Throughout
the maneuver, the inattentive car coasts with small accel-
erations, the cautious car slows down when it observes the
ego car turning to its lane and the malicious car tries to
match the ego car’s position, causing a collision.

The obtained optimal separating input is then applied
to the ego vehicle in real-time. After measurements are
recorded for T = 3, the passive model discrimination
approach based on model invalidation of each intention
model (e.g., [Harirchi and Ozay (2015); Harirchi et al.
(2018)]) can be applied to identify the intention of the
other vehicle. This is guaranteed to find the true intention
by design (see above definition of separating input).

7. CONCLUSION

This work considered the novel design of separating in-
put signals in order to discriminate among a finite num-
ber of uncertain nonlinear models, using a two-step ap-
proach. First, we developed an optimization-based ap-
proach that is less conservative than existing methods to
over-approximate nonlinear dynamics by uncertain affine
models that contain all the system behaviors of the orig-
inal nonlinear system. Then, we proposed one of the first
active model discrimination algorithms for uncertain affine
models, which includes the affine abstraction, hence, the
nonlinear models. Finally, we demonstrated our approach
on an example of intent estimation/identification in a
lane changing scenario on a highway. For future work, we
are interested to overcome the complexity of our affine
abstraction approach and to reduce its optimality gap.
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APPENDIX

M ι = diag
i,j

{Mi},Γιu = vec
i,j
{Γu,i},Γιd = diag

i,j

{Γd,i},

Γιw = diag
i,j

{Γw,i}, F ιT = vec
i,j
{Fi}, Eι = diag

i,j

{Ei},

F ιu = vec
i,j
{Fu,i}, F ιd = diag

i,j

{Fd,i}, F ιv = diag
i,j

{Fv,i}, Gι = vec
i,j
{Gi},

Rι1 =

[
Mi 0 Γd,i 0 Γw,i 0 0 0
0 Mj 0 Γd,j 0 Γw,j 0 0

]
,

Rι2 =

[
Ei −Ej Fd,i −Fd,j 0 0 Fv,i −Fv,i
−Ei Ej −Fd,i Fd,j 0 0 −Fv,i Fv,i

]
,

rι1 =

[
−Fi
−Fj

]
, Sι1 =

[
−Γu,i
−Γu,j

]
, rι2 =

[
Gj −Gi
Gi −Gj

]
, Sι2 =

[
Fu,j − Fu,i
Fu,i − Fu,j

]
.

Mi =



Ai −I 0 0 · · · 0

−Ai I 0 0 · · · 0
0 Ai −I 0 · · · 0

0 −Ai I 0 · · · 0
...

...
...

...
. . .

...
0 0 · · · · · · Ai −I
0 0 · · · · · · −Ai I


, Fi =



fi
−fi
fi
−fi

...
fi
−fi


,

Ei = diag
T

{Ci}, Gi = vec
T
{gi}.

For ? = {d,w, u} : Γ?,i = diag
T

{
[
B?,i
−B?,i

]
}, F?,i = diag

T

{D?,i}.


