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Abstract— Tracking controllers are often integrated into
control systems to ensure robustness against uncertainties and
disturbances during trajectory following maneuvers, where the
design methods in the literature lack formal guarantees, can be
applied only to limited classes of systems, and/or suffer from
conservatism. In this paper, we propose a new tracking control
approach for discrete-time nonlinear uncertain systems using
set-based computations. In particular, we compute zonotopic
backward reachable sets along prescribed nominal trajectories,
and utilize such sets to synthesize tracking controllers that
ensure safety and reachability in the presence of input/state con-
straints and disturbances. We illustrate our approach through
two numerical examples (Dubin’s car and planar quadrotor).

I. INTRODUCTION

Control design for safety-critical systems with reachability
requirements (e.g., path planning for unmanned ground and
aerial vehicles) must ensure desired specifications satisfac-
tion, even in the presence of model nonlinearity, uncertain-
ties, and disturbances. This is critical for system safety, yet
difficult to accomplish in general. To provide some level
of robustness, it is a common practice to embed tracking
controllers into control systems to keep systems’ states
close to prescribed nominal trajectories [1], [2]. However,
state/input constraints may not be fulfilled after embedding
such controllers. Satisfying input/sate constraints while tra-
jectory following may be achieved by incorporating control
barrier functions to correct nominal inputs [3], though com-
puting such functions for general nonlinear systems remains
a challenging task. State-of-the-art formal methods construct
tracking controllers in advance and nominal trajectories are
then synthesized accordingly, where the behavior of the
control system with the embedded tracking controller is
taken into consideration during the trajectory synthesis. For
example, in the frameworks of control contraction metrics
and model predictive control [4], [5], [6], time-independent
robust invariant sets with associated tracking controllers are
designed, and in the subsequent trajectory planning, the safe,
target, and input sets are deflated, while the unsafe sets are
inflated using conservative bounds of the tracking control

M. Serry and J. Liu are with the Department of Applied Mathemat-
ics, University of Waterloo, Waterloo, Ontario, Canada. (email: {mserry,
j.liu}@uwaterloo.ca).

L. Yang is with the School of Artificial Intelligence and Automation,
Huazhong University of Science and Technology, Wuhan 430074, China.
(email: lirenyang@hust.edu.cn).

N. Ozay is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48105, USA (e-mail:
necmiye@umich.edu).

This work was funded in part by NSERC DG, CRC, and Ontario ERA
programs. Ozay is funded by NSF grants CNS-1931982 and CCF-1918123.
Yang is funded by NSFC, grant No: 62320106005.

effort and the invariant set. Conservatism of such bounds
may result in unsuccessful or low-quality trajectory genera-
tion. To mitigate the conservatism and improve the quality
of the obtained trajectories, time-varying robust invariant
sets are utilized [7], [8], where the designed invariant sets
typically have fixed templates (e.g., ellipsoids) with time-
varying scaling factors. It is worth noting that computations
of such robust invariant sets are typically costly. However,
these computations are done offline. In addition, the use
of fixed templates for invariant sets still possesses some
conservatism even in the case of time-varying invariant sets,
and that cannot be avoided especially when invariant-set
computations and trajectory planning are to be separated. In a
recent approach, linear feedback controllers are designed and
time-dependent ellipsoidal bounds of reachable sets, which
are independent of the nominal trajectory, are estimated and
utilized in a novel trajectory planning approach with high
computational efficiency [9]. However, this recent approach
is restricted to linear systems.

In this paper, we explore a new framework for tracking
control that combines the practical and formal approaches,
where we design tracking controllers for nonlinear sys-
tems with specified nominal trajectories, ensuring safety
and input/state constraints. In fact, our method complements
existing control synthesis approaches as it can be applied
to arbitrary nominal trajectories, regardless of how they are
generated, adding another layer of safety and robustness to
existing state-of-the-art methods. In particular, we utilize and
adapt the recent developments in set-based computations in
order to compute zonotopic backward reachable sets along
prescribed nominal trajectories of discrete-time nonlinear
uncertain systems. The computed backward reachable sets
can then be utilized to synthesize tracking controllers whose
values are estimated online via linear feasibility problems.

Our approach can be summarized as follows: 1) We start
with a prescribed nominal trajectory of a given discrete-time
nonlinear system and we compute safe state and input tubes
centered at the nominal states and inputs, respectively. These
tubes serve two roles: first, they are utilized in estimating lin-
earization errors (see the following point); second, the tubes
serve as domains through which backward computations are
conducted, while satisfying input/state constraints. 2) We
linearize the dynamics of the nonlinear system along the
nominal trajectory while constructing conservative estimates
of the linearization error over the computed state/input tubes.
3) We proceed with under-approximate zonotopic backward
reachable set computations for the conservatively linearized
dynamics through the state and input tubes, starting from



the final point of the nominal trajectory and ending at the
initial point. 4) If backward computations are completed
successfully, the resulting sets can be easily used to synthe-
size a tracking controller through solving linear feasibility
problems.

The organization of this paper is as follows: the necessary
preliminaries and notations are introduced in Section II, the
nonlinear system under study and the associated tracking
problem, with the accompanying assumptions, are presented
in Section III, the proposed method is discussed thoroughly
in Section IV, the method performance is illustrated through
two numerical examples in Section V, and the study is
concluded in Section VI.

II. PRELIMINARIES AND NOTATIONS

Let R, R+, Z, and Z+ denote the sets of real numbers,
non-negative real numbers, integers, and non-negative in-
tegers, respectively, and N = Z+ \ {0}. Let [a, b], ]a, b[,
[a, b[, and ]a, b] denote closed, open and half-open intervals,
respectively, with end points a and b, and [a; b], ]a; b[, [a; b[,
and ]a; b] stand for their discrete counterparts, e.g., [a; b] =
[a, b] ∩ Z, and [1; 4[ = {1, 2, 3}. In Rn, the relations <,
≤, ≥, and > are defined component-wise, e.g., a < b,
where a, b ∈ Rn, iff ai < bi for all i ∈ [1;n]. For
a, b ∈ (R∪{−∞,∞})n , a ≤ b, the closed hyper-interval (or
hyper-rectangle) Ja, bK denotes the set {x ∈ Rn | a ≤ x ≤ b},
where, assuming a and b are finite, center(Ja, bK) := (a +
b)/2 and radius(Ja, bK) := (b−a)/2. Given f : X → Y and
C ⊆ X , f(C) := {f(c) | c ∈ C}. The n-dimensional vectors
with entries of zero and one are denoted by 0n and 1n,
respectively. For x ∈ Rn, we define |x| = (|x1|, . . . , |xn|),
where an analogous notation is also used for matrices. Let
d = (d1, · · · , dn)⊤ ∈ Rn, then the diagonal matrix with
diagonal entries d1, · · · , dn, is denoted by diag(d). Given
A ∈ Rn×m, rank(A) and A† ∈ Rm×n denote the rank
and the Moore–Penrose inverse of A, respectively. The space
of n-dimensional real vectors is equipped with the maximal
norm ∥ · ∥∞ (∥x∥∞ = maxi∈[1;n] |xi|, x ∈ Rn), and Bn

denotes the n-dimensional closed unit ball w.r.t. ∥ · ∥∞
(i.e., Bn = J−1n, 1nK). Given M ⊆ Rn, int(M) :=
{m ∈M |m+ rBn ⊆M for some r > 0}. For n×m ma-
trices, ∥ · ∥∞ corresponds to the matrix norm induced by
the maximal norm (∥A∥∞ = maxi∈[1;n]

∑m
j=1 |Ai,j |, A ∈

Rn×m). Given M,N ⊆ X , M \N (set difference of M and
N ) denotes the set {x ∈M |x ̸∈ N}, M + N (Minkowski
sum of M and N ) denotes the set {y + z | y ∈M, z ∈ N},
and M − N (Minkowski or Pontryagin difference of M
and N ) denotes the set {z ∈ X | z +N ⊆M}. An important
result that follows directly from the definitions of Minkowski
sum and difference is the following.

Lemma 1: Let X,Y, Z ⊆ Rn and A ∈ Rn×n be in-
vertible. Define S = A−1((X − Y ) + (−Z)), then for all
s ∈ S, there exists z ∈ Z (that depends on s) such that
As+ z + Y ⊆ X.

Given c ∈ Rn (center), and G ∈ Rn×m (generators
matrix), the zonotope associated with c and G is the set
c + GBm (see, e.g., [10]). Note that zonotopes are closed

under linear transformation and Minkowski sum as, given
arbitrary zonotopes c1 + G1Bp, c2 + G2Bq ⊆ Rn and
A ∈ Rm×n, A(c1 + G1Bp) = Ac1 + (AG1)Bp, and
(c1 +G1Bp) + (c2 +G2Bq) = (c1 + c2) + [G1, G2]Bp+q .

III. SYSTEM DESCRIPTION, ASSUMPTIONS, AND
PROBLEM FORMULATION

Consider the discrete-time nonlinear system

xk+1 ∈ f(xk, uk) +W, k ∈ Z+, (1)

where xk ∈ Rn is the state, uk ∈ Rm is the input, W ⊆
Rn is a disturbance set, and f : Rn × Rm → Rn is the
function governing the unperturbed dynamics of system (1).
We assume the following.

Assumption 1: The function f is twice continuously dif-
ferentiable, and the matrix Dxf(z, u) ∈ Rn×n is invertible
for all (z, u) ∈ Rn × Rm, where Dxf denotes the partial
derivative of f with respect to x. Note that the invert-
ibility assumption holds if f corresponds to the flow of a
continuous-time system.

Assumption 2: The disturbance set is known and given
by W = J−w,wK, w ∈ Rn

+, uk ∈ U , k ∈ Z+, where U
is known and given by U = Ju, uK, and the initial value x0

belongs to a known set Xi given by Xi = Jxi, xiK.
Let Xo = Jxo, xoK ⊆ Rn be a hyper-rectangular operating
domain and Xu =

⋃Nu

i=1Jx
(i)
u , x

(i)
u K ⊆ Rn be an unsafe set

defined as a union of Nu hyper-rectangles. It is required
that the states of the system are always inside the operating
domain, while avoiding the unsafe set. Let Xt = Jxt, xtK ⊆
Rn be a hyper-rectangular target set that we aim to drive the
system’s state into from the initial set Xi. We additionally
assume:

Assumption 3: Xi ⊆ Xo \ Xu and Xt ⊆ Xo \ Xu.
Let N ∈ N and [0;N ] be a finite-time horizon on which
the reach-avoid specifications above are satisfied for the un-
perturbed dynamics of system (1). Specifically, let {x̃k}Nk=0

and {ũk}N−1
k=0 be given nominal state and input sequences

satisfying:

x̃k+1 = f(x̃k, ũk), k ∈ [0;N − 1],

ũk∈ U , k ∈ [0;N − 1],

x̃k ∈ int(Xo) \ Xu, k ∈ [0;N ],

x̃0 ∈ Xi, x̃N ∈ int(Xt).

(2)

Problem 1: Using the nominal sequences {x̃k}Nk=0 and
{ũk}N−1

k=0 , find a control law µ : Rn × [0;N − 1]→ U and
a set intersecting with Xi, denoted by Λ0, such that for any
initial value z0 ∈ Λ0 and any disturbance sequence {wk}N−1

0

with, wk ∈ W, k ∈ [0;N−1], the sequence {zk}Nk=0 defined
by zk+1 = f(zk, µ(zk, k)) + wk, k ∈ [0;N − 1], satisfies
zk ∈ Xo \ Xu, for all k ∈ [0;N ], and zN ∈ Xt.
The definitions of the sets Xi, Xo, Xu, Xt, U , and W ,
the nominal sequences {x̃k}Nk=0 and {ũk}N−1

k=0 , and all the
associated assumptions are fixed throughout the subsequent
discussion.

Remark 1: According to (2), we require the nominal states
to be in the interior of the operating domain, while being



outside the unsafe set, and the final nominal state value to be
in the interior of the target set. These conditions will ensure
the existence of positive margins surrounding the nominal
states that allow backward reachability computations using
full-dimensional sets.

IV. PROPOSED METHOD

In this section, we discuss thoroughly the machinery of
our proposed approach, which addresses Problem 1.

A. Constructing state and input tubes

The first element in our proposed approach relies on
constructing state and input tubes that surround the given
nominal states and inputs. As mentioned before, the tubes
will serve two roles: first they will be used to estimate lin-
earization errors, and second, the tubes will serve as safe re-
gions through which backward computations are executed. In
particular, we aim to compute sequences of hyper-rectangles
{Tx,k}Nk=0 and {Tu,k}N−1

k=0 , where Tx,k ⊆ Rn, k ∈ [0;N ],
Tu,k ⊆ Rm, k ∈ [0;N − 1], satisfying:

center(Tx,k) = x̃k, radius(Tx,k) > 0n, k ∈ [0;N ],

center(Tu,k) = ũk, radius(Tu,k) ≥ 0m, k ∈ [0;N − 1],

Tx,k ⊆ Xo \ Xu, k ∈ [0;N ], Tx,N ⊆ Xt,

Tu,k ⊆ U , k ∈ [0;N − 1].
(3)

First, we state and prove some technical results that will be
useful in the construction of the state and input tubes.

Lemma 2: Let v ∈ Ja, bK ⊆ Rp, where a, b ∈ Rp, a ≤ b,
then H(v, Ja, bK) ⊆ Ja, bK, where

H(v, Ja, bK) := v + J−r, rK, (4)

and r = radius(Ja, bK)− |center(Ja, bK)− v|.
Proof: For any z ∈ Rp, with |z − v| ≤ r,

|z − center(Ja, bK)| ≤ |z − v| + |v − center(Ja, bK)| ≤
radius(Ja, bK)− |center(Ja, bK)− v|+ |center(Ja, bK)− v| =
radius(Ja, bK).

Lemma 3: Let x ∈ Rp and Ja, bK ⊆ Rp, where a, b ∈ Rp,
a ≤ b, and x ̸∈ Ja, bK. Moreover, let r = radius(Ja, bK) and
c = center(Ja, bK). Then, miny∈Ja,bK ∥x−y∥∞ = ∥x−y∗∥∞,
where

y∗i :=

{
xi, xi ∈ [ai, bi],

ci + risgn(xi − ci), otherwise,

and sgn(·) is the signum function. Moreover, let ĩ ∈ [1; p]
such that |xĩ − y∗

ĩ
| = ∥x− y∗∥∞ := M , and define

S(x, Ja, bK, α) := {z ∈ Rp | |zĩ − xĩ| ≤ αM} , (5)

where α ∈ [0, 1[. Then, S(x, Ja, bK, α) ∩ Ja, bK = ∅1.
Proof: The first claim follows by noting that, for all y ∈

Ja, bK, |xi− y∗i | ≤ |xi− yi|, i ∈ [1; p]. For the second claim,
note that M > 0 as x ̸∈ Ja, bK. Let z ∈ S(x, Ja, bK, α), then
|zĩ − xĩ| ≤ αM < M . Assume, without loss of generality,

1The set S(x, Ja, bK, α) is a hyper-rectangle of the form x + J−r, rK,
where rĩ = αM and ri = ∞, i ̸= ĩ.

that xĩ ≥ cĩ, then it holds, using the definition and minimal
property of y∗, that xĩ−cĩ ≥M+rĩ. Consequently, zĩ−cĩ =
zĩ−xĩ+xĩ−cĩ ≥ −|zĩ−xĩ|+M+rĩ > −M+M+rĩ = rĩ.
Hence, |zĩ − cĩ| > rĩ, implying z ̸∈ Ja, bK.

Remark 2: When Ja, bK is a subset of the unsafe set Xu,
S(x, Ja, bK, α), which satisfies S(x, Ja, bK, α) ∩ Ja, bK = ∅,
can be thought of as a partially safe region of operation, en-
suring not reaching the set Ja, bK, and that will be important
for safety guarantees of our backward computations.

From Lemmas 2 and 3, we deduce:
Corollary 1: Let y ∈ Xo \ Xu, fix α ∈ [0, 1[, and define

R(y,Xo,Xu, α) := H(y,Xo)
⋂(
∩Nu
i=1S(y, Jx

(i)
u , x(i)

u K, α)
)
.

(6)
Then, R(y,Xo,Xu, α) ⊆ Xo \ Xu.
Using the above results, we illustrate in the below theorem,
whose proof is omitted for brevity, how state and input tubes
are computed.

Theorem 4: Consider the nominal state and input se-
quences satisfying (2). Fix α ∈ [0, 1[ and define Tx,N =
H(x̃N ,Xt), Tx,k = R(x̃k,Xo,Xu, α), i ∈ [0;N−1], Tu,k =
H(ũk,U), i ∈ [0;N−1], then {Tx,k}Nk=0, {Tu,k}

N−1
k=0 satisfy

(3).

B. Linearization

The second element of our approach relies on conservative
linearization of the dynamics of system (1) along the nominal
state and input sequences. To this end, define the following
linearization parameters for all k ∈ [0;N − 1]:

Ak := Dxf(x̃k, ũk), Bk := Duf(x̃k, ũk),

ck := f(x̃k, ũk)−Akx̃k −Bkũk,
(7)

where Duf denotes the partial derivative of f with respect
to u. Note that based on the assumption on Dxf , Ak is
invertible for all k ∈ [0;N − 1].

Quantifying linearization error: As we aim to compute
backward reachable sets through the tubes discussed above,
it is important to quantify linearization errors in subsets of
the aforementioned tubes. In the lemma below, which is
similar in spirit to results in the framework of hybridization
for nonlinear systems [11], [12], we quantify the errors
in linearizing the dynamics of system (1) at x̃k and ũk,
k ∈ [0;N − 1], for state and input values neighboring these
nominal values.

Lemma 5: Fix k ∈ [0;N − 1] and let Tx,k = x̃k +
J−rx, rxK ⊆ Rn, where rx ∈ Rn

+, and Tu,k = ũk +
J−ru, ruK ⊆ Rm, where ru ∈ Rm

+ . For any (x, u) ∈ Tx,k ×
Tu,k, f(x, u) + W ⊆ Akx + Bku + ck + W(Tx,k,Tx,k),
where

W(Tx,k,Tu,k) :=W + J−e(Tx,k,Tu,k), e(Tx,k,Tu,k)K,
(8)

{e(Tx,k,Tu,k)}i :=
1

2
[r⊤x , r

⊤
u ]H̄fi(Tx,k,Tu,k)[r

⊤
x , r

⊤
u ]

⊤,

i ∈ [1;n]. Herein, H̄fi(Tx,k,Tu,k) ∈ R(n+m)×(n+m)

is any matrix that satisfies {H̄fi(Tx,k,Tu,k)}p,q ≥
supTx,k×Tu,k

|{Hess[Fi](·)}p,q|, p, q ∈ [1;n + m], where



F : Rn+m → Rn is defined as F([x⊤, u⊤]⊤) = f(x, u),
x ∈ Rn, u ∈ Rm, and Hess[Fi](z) denotes the Hessian of
Fi evaluated at z.
A naive approach to obtain H̄fi , which we adopt in our
backward computations in Section V, relies on first com-
puting Hess[Fi] through symbolic differentiation, and then
evaluating Hess[Fi] using interval arithmetic computations
over the hyper-rectangular domains of interest.

C. Backward computations

The next, and the most important, element in our proposed
approach consists of zonotopic backward reachability com-
putations using the state and input tubes and the linearized
dynamics derived above. Below, we elaborate on how such
computations are executed.

1) Motivation to use backward computations: Fix k ∈
[0;N−1] and consider hyper-rectangular subsets Tx,k ⊆ Tx,k
and Tu,k ⊆ Tu,k, centered at x̃k and ũk, respectively, where
Tx,k and Tu,k are computed according to Theorem 4, and
we illustrate in Section IV-C.4 how the subsets Tx,k and
Tu,k are obtained. Let Sk+1 = x̃k+1 +GxBp ⊆ Rn, where
Gx ∈ Rn×p has full row rank, be a zonotopic set that is
required to be reached in one step from a neighborhood of
the point x̃k. In view of Lemmas 1 and 5, any element of
the set

Xbrs,k = (A−1
k (Π + Θ)) ∩ Tx,k, (9)

where Π = (Sk+1 − W(Tx,k,Tu,k)) and Θ = −(ck +
BkTu,k), can be driven to Sk+1 under the dynamics of
system (1). Such computation can be applied in a recursive
fashion, starting from k = N − 1 with Sk+1 = Tx,N
until reaching k = 0 and the resulting sets can be used
to synthesize a tracking controller, with values estimated
using linear programming (see equation (15)), that drives
the system states to the target set safely.

Backward reachable sets, computed according to (9), can
be evaluated exactly using polytopes, as they are closed
under intersection and Minkowski addition and difference.
However, the complexity of the resulting polytopes and the
associated computational cost increase drastically with each
iteration of the backward computations. Besides polytopes,
there are various classes of set representations that can be
utilized in backward reachability computations, including
ellipsoids, zonotopes, constrained zonotopes, and polynomial
zonotopes (see, e.g., [13] and the references therein), where
choosing a proper set class should weigh the computational
efficiency and accuracy associated with using that class.
Zonotopes (i.e., affine transformations of closed unit balls)
have been shown to be effective in reachability computations,
possessing reasonable accuracy and computational costs [14],
[15], [16], [10], [17], [18]. Motivated by the successes of
zonotopic implementations in reachability computations, we
aim at computing backward reachable sets using zonotopes.
However, exact backward reachability computations can not
be attained with zonotopes, which create several computa-
tional challenges that we aim to address below. It would be
interesting to explore, in future works, the possibilities of

implementing different classes of sets in backward compu-
tations and comparing their performances. In Section V, we
compare through a numerical example the performance of
the zonotopic backward computations proposed herein with
a variant that utilizes constrained zonotopes [19].

2) Under-approximating Minkowski difference: The first
challenge associated with the zonotopic backward reacha-
bility computations is the Minkowski difference. In gen-
eral, zonotopes are not closed under Minkowski differ-
ence, which motivated developing several approximating
approaches in the literature (see [20], [18], [21]). Herein,
we present a simple and efficiently computable zonotopic
under-approximation of Minkowski difference under certain
assumptions on the generators of the considered zonotopes.
More accurate approaches may be adopted, with the price of
increased computational cost.

Lemma 6: Let Z1 = c1 +G1Bp, Z2 = c2 +G2Bq ⊆ Rr,
where c1, c2 ∈ Rr, G1 ∈ Rr×p, and G2 ∈ Rr×q . Assume
rank(G1) = r and |G†

1G2|1q ≤ 1p
2. Then, Z1 ⊖ua Z2 ⊆

Z1 − Z2, where

Z1 ⊖ua Z2 := c1 − c2 +G1diag(1p − |G†
1G2|1q)Bp. (10)

Proof: Let Z̃ := Z1 ⊖ua Z2 and D := diag(1p −
|G†

1G2|1q). Then, Z2+Z̃ = c2+G2Bq+c1−c2+G1DBp =

c1 + G1G
†
1G2Bq + G1DBp = c1 + G1[G

†
1G2, D]Bp+q.

With the imposed assumption and definition of D, we have
∥[G†

1G2, D]∥∞ = 1. Hence, Z2 + Z̃ ⊆ Z1.
3) Zonotopic under-approximation of intersection: An-

other challenge associated with the zonotopic backward
reachability computations is the intersection operation. Gen-
erally, zonotopes are not closed under intersection. Herein,
we propose a computationally efficient and reasonably accu-
rate zonotopic under-approximating approach for intersection
of zonotopes and hyper-rectangles that share the same center
(this is the case in our backward reachability computations).

Lemma 7: Let Z1 = x + GBp ⊆ Rr, where x ∈ Rr and
G ∈ Rr×p has full row rank, and Z2 = x + J−r, rK ⊆ Rr,
where r ∈ Rr

+. Let η ∈ Rp
+ and ξ ∈ Rr

+ satisfy:

η + |G†|ξ ≤ 1p, |G|η + ξ ≤ r. (11)

Then, x+Gdiag(η)Bp + J−ξ, ξK ⊆ Z1 ∩ Z2.
Proof: The first inequality of (11) implies that

diag(η)Bp + G†diag(ξ)Br ⊆ Bp; hence, Gdiag(η)Bp +
J−ξ, ξK ⊆ GBp. Moreover, the second inequality of (11)
indicates that Gdiag(η)Bp + J−ξ, ξK ⊆ J−r, rK.
Based on the previous result, we embed the linear con-
straints (11) in a linear program to obtain a zonotopic
under-approximation of the intersection, where the associated
objective function was chosen, based on numerical trials,
to maximize the size of the under-approximation. Given
Z1 = x + GBp, Z2 = x + J−r, rK ⊆ Rr, where x ∈ Rr

2This assumption requires the generators matrix of Z2 to be suffi-
ciently small norm-wise. For example, the assumption holds if ∥G2∥∞ ≤
1/∥G†

1∥∞. In our backward computations (see equation (9)), Z2 accounts
for disturbances and linearization errors. Hence, this assumption holds for
sufficiently small linearization errors and disturbances.



and G ∈ Rr×p has full row rank, we define

Z1 ∩ua Z2 := x+Gdiag(η∗)Bp + J−ξ∗, ξ∗K, (12)

where (η∗, ξ∗) ∈ argmax(η,ξ)∈Rp
+×Rr

+

∑p
j=1 ηj +

∑r
j=1 ξj

s.t. (11) and the condition η ≥ αmin1p hold. Herein, αmin :=
min{εmin(r)/∥G∥∞, 1}, and ε ∈ ]0, 1]3. Based on the
zonotopic under-approximations of the Minkowski difference
and intersection, we define the one-step under-approximate
backward reachability operator Rk at time k as

Rk(Tx, Tu, S) := (A−1
k (Φ + Ψ)) ∩ua Tx, (13)

where Φ = S ⊖ua W(Tx, Tu), Ψ = −(ck +BkTu), Tx and
Tu are state and input hyper-rectangles, respectively, and S
is a full-dimensional zonotope, where it is guaranteed by
construction that Tx and (A−1

k (Φ+Ψ)) share the same center.
Remark 3: In the zonotopic under-approximations of

Minkowski difference and intersection presented above, we
have utilized Moore-Penrose inverses due to the compu-
tational efficiency associated with their evaluations. These
inverses may be replaced with other generalized inverses to
increase accuracy, with the price of increased computational
costs.

4) Scaling the state and input tubes: Let us recall again
the definition of the backward reachable set Xbrs,k in
equation (9). Note that the sizes of the hyper-rectangles
Tx,k and Tx,k have complex effects on the size of the set
Xbrs,k. This is due to the fact that the size of W(Tx,k,Tx,k)
correlates with the sizes of the hyper-rectangles Tx,k,Tx,k,
where the set W(Tx,k,Tx,k) has a deteriorating effect on
the size of the resulting backward reachable set. On the
other hand, increasing the sizes of the boxes Tx,k,Tx,k

will lead to increasing the sizes of the intermediate set
resulting from the Minkowski sum expression, and the set
to be intersected with. To address this issue, we propose a
heuristic procedure, wherein we obtain hyper-rectangular sets
Tx,k and Tx,k using a routine denoted OptimizedBoxesk, i.e.,
(Tx,k,Tu,k) = OptimizedBoxesk(Tx,k, Tu,k, Sk+1), where
(Tx,k,Tx,k) results from gradually scaling down (Tx,k, Tu,k)
and optimizing an estimate of the backward reachable set
size. Let p

(0)
x = radius(Tx,k), p

(0)
u = radius(Tu,k), and

let the scaling matrix ∆sc = diag(δsc) be given, where
δsc ∈ J0n+m, 1n+mK (δsc can be either determined manually
or obtained by solving an auxiliary optimization problem)
and Nsc,max be the user-defined maximum number of scaling

iterations. Moreover, define
(

p
(i)
x

p
(i)
u

)
= ∆sc

(
p
(i−1)
x

p
(i−1)
u

)
,

T
(i)
x = x̃k + J−p(i)x , p

(i)
x K, T

(i)
u = ũk + J−p(i)u , p

(i)
u K, i ∈

[0;Nsc,max]. Let the function ˜size be user-defined, where it
provides an estimate of the zonotopic size (e.g., ˜size(Z) is an
estimate of the volume of Z). The routine OptimizedBoxesk
looks for a local maximum of the function ˜size over the
interval [0;Nsc,max], and returns the state and input boxes

3The additional condition ensures the full-dimensionality of the resulting
under-approximation. Note that, assuming G has full row rank and r > 0r ,
x+Gdiag(αmin1p)Bp is a full-dimensional subset of Z1∩Z2. This is due
to the facts that 0 < αmin ≤ 1 and αmin

∑p
j=1 |Gi,j | ≤ ri, i ∈ [1; p].

corresponding to this maximum value, where it runs as
follows:

Algorithm 1: OptimizedBoxesk routine.

i← 1, m← ˜size(Rk(T
(0)
x ,T

(0)
u , Sk+1)),

Tx,k ← T
(0)
x , Tu,k ← T

(0)
u .

while i ≤ Nsc,max do
s← ˜size(Rk(T

(i)
x ,T

(i)
u , Sk+1)).

if s ≥ m then
Tx,k ← T

(i)
x , Tu,k ← T

(i)
u .

else
break.

end
i← i+ 1.

end
Result: (Tx,k,Tu,k).

5) Zonotopic order reduction: The final challenge in the
iterative backward computations is the presence of repeated
Minkowski additions, which increases the complexity of
resulting zonotopes (Minkowski addition corresponds to con-
catenation of the generators matrices). This issue can be
overcome by using order-reduction techniques, replacing the
resulting zonotopes with zonotopic subsets of reduced orders
(see, e.g., [20], [18]). In this work, we simply adopt order-
reduction techniques from the literature, where we utilize
a routine denoted OrderReduction. Given a zonotope Z =
c+GB ⊆ Rn, with order p/n, OrderReduction(Z, o) yields
a zonotope c+G′Bp′ ⊆ Z, where p′/n ≤ min{o, p/n}.

Now, we have all the ingredients that allow us to conduct
zonotopic backward reachability computations, which are
summarized in Theorem 8, whose proof follows from the
definitions of the backward reachable sets and is omitted for
brevity.

Theorem 8: Fix α ∈ [0, 1[ and let Tx,k, k ∈ [0;N ] and
Tx,k, k ∈ [0;N − 1] be computed according to Theorem 4.
Moreover, fix o ∈ R+ and let Λi, i = N,N − 1, · · · , 0 be
computed as follows: ΛN = Tx,N , and

(Tx,k,Tu,k) = OptimizedBoxesk(Tx,k, Tu,k,Λk+1),

Λk = OrderReduction(Rk(Tx,k,Tu,k,Λk+1), o),
(14)

k ∈ [0;N − 1]. Assume Λ0 ̸= ∅. Then, Xi ∩ Λ0 ̸= ∅.
Moreover, there exists a controller µ : Rn× [0;N − 1]→ U
such that for any realization of the disturbance given by the
sequence {wk}N−1

k=0 , where wk ∈ W, k ∈ [0;N − 1], and
any z0 ∈ Λ0, the sequence {zk}Nk=0 defined by zk+1 =
f(zk, µ(zk, k)) +wk, k ∈ [0;N − 1], satisfies zk ∈ Xo \Xu

for all k ∈ [0;N ], and zN ∈ Xt.

D. Tracking controller computations

The final element in our approach is deducing a tracking
controller from the computed backward reachable sets. The
tracking control policy µ is obtained by solving the following



linear program online at each time step:

x ∈ Λk ⇒ µ(x) ∈ argminu∈Tu,k
∥u∥∞ s.t.

Akx+Bku+ ck ⊆ Λk+1 ⊖ua W(Tx,k,Tu,k),
(15)

where the feasibility of the linear program follows from the
definition of the sets Λk, k ∈ [0;N ], in Theorem 8.

Some possible modifications can be introduced to (15)
in order to enlarge the set of feasible control inputs. For
example, the term W(Tx,k,Tu,k), can be replaced with its
subset W(IH(Λk),Tu,k), where IH denotes the interval hull
operator. Moreover, if system (1) is affine in control (i.e.,
f(x, u) = f0(x)+f1(x)u), then the condition Akx+Bku+
ck ⊆ Λk+1 ⊖ua W(Tx,k,Tu,k) can be replaced by the less
conservative one f0(x) + f1(x)u ⊆ Λk+1 ⊖uaW .

V. NUMERICAL EXAMPLES

In this section, we illustrate our proposed approach
through two numerical examples. The proposed method was
implemented in MATLAB (2019a)4 and run on an AMD
Ryzen 5 2500U/2GHz processor. Plots of and order-reduction
operations on zonotopes were produced with the help of
the software CORA (2022 version) [22]. For order-reduction
computations, we used the method sum in CORA, which
is based on replacing the generators of a zonotope by their
sums (see [20], [18]). The bounds of the Hessian, given by
H̄fi , used in estimating the linearization errors, were obtained
using interval arithmetic. The linear programs associated
with the intersection and tracking control computations were
solved using the linprog function and the dual simplex
method.

A. Dubin’s car

Consider the discrete-time Dubin’s car system given by: x1,k+1

x2,k+1

x3,k+1

 ∈
 x1,k + τsu1,k cos(x3,k)

x2,k + τsu1,k sin(x3,k)
x3,k + τsu2,k

+W, (16)

where (x1,k, x2,k) denotes the car position, x3,k denotes the
heading angle, τs is the sampling time (τs = 0.01), u1,k and
u2,k are control inputs corresponding to the car speed and
turning rate, respectively, and the disturbance set is given by
W = τs([−0.02, 0.02]2 × [−0.1, 0.1]). Herein, we illustrate
how our approach can be used to synthesize a tracking con-
troller that keeps the states of the car’s model in the operating
domain Xo = [0, 5] × [0, 2] × [−π/2, π/2], while avoiding
the unsafe set (([1.5, 3] × [0, 0.5]) ∪ ([1.5, 2.5] × [1, 2]) ∪
([3.5, 4.5] × [0, 1])) × [−π/2, π/2], and steers the system’s
states to the target set Xt = [3.5, 5]× [1.5, 2]× [−π/5, π/5],
starting from the initial set Xi = {(0.5, 1.5,−π/4)⊤}, using
control values in the set U = [−8, 8]× [−5, 5].

The nominal states and inputs were generated using a
sampling-based planning approach with steering (see, e.g.,
[23]), where the nominal trajectory is depicted in Figure 1.
We note that in the planning procedure, deflated versions of

4The implementation can be found in the following link:
https://github.com/mserry91/Tracking_Control_
Backward_Reachable_Sets.

the safe and target sets and an inflated version of the unsafe
set were considered in order to obtain a trajectory satisfying
(2). The computational time required to obtain that particular
nominal trajectory is approximately 28 seconds, where the
value of N obtained from the planning is 260 seconds.

Next, we computed the input and state tubes according to
Theorem 4, where we set α = 0.99. We obtained the tubes
(see Figure 1) in approx. 0.03 seconds, which indicates the
minute computational requirements for computing the input
and state tubes.

We then proceeded with the backward computations
according to Theorem 8. For the intersection under-
approximations, we used (12) with ε = 0.2. For the order
reduction step, we set o = 30 (resulting zonotopes from
backward computations are of order 30 at most). For the
OptimizedBoxes routine, we set Nsc,max = 1000, and δsc =
(1, 1, 0.7, 0.7, 1)⊤, where this value was chosen as the
remainder error from the linearization (see the definition
of W) depends on the heading angle and the input car
velocity only. We defined ˜size(Z), with Z = c + GBp

being a full-dimensional zonotope, as 1/∥G†∥∞ (the radius
of a particular closed ball contained in Z5). The backward
reachable sets are depicted in Figure 1, where the associated
computational time is approximately 36 seconds, which is
reasonable given the time horizon [0;N ].

Starting from the set Λ0 (which contains the singleton
initial set), we computed a trajectory of the perturbed
dynamics of the Dubin’s model, where a tracking controller
obtained according to a less conservative version of (15)
(see the discussion below equation (15)), was embedded.
The average computational time per controller evaluation is
approximately 0.015 seconds, which illustrates the low com-
putational requirement for the tracking controller once back-
ward reachable sets are obtained. The resulting trajectory
(see Figure 1) satisfies the desired reach-avoid specifications
in the presence of disturbance, highlighting the effectiveness
of the proposed method.

As we mentioned previously, it is possible to conduct
backward reachable set computations using different set
representations such as constrained zonotopes [19], [24],
which are more general than zonotopes and are closed
under intersection. It can be particularly advantageous to use
constrained zonotopes when dealing with safety constraints
because the intersection between a constrained zonotopic
set and the state tube can be computed exactly, and this
may result in larger backward reachable sets when com-
pared to the zonotope-based implementation. However, the
complexity of constrained zonotopes increases drastically
with intersection operations. Moreover, order reduction for
constrained zonotopes is not as efficient as the one for
zonotopes.

Herein, we developed a preliminary implementation for
backward reachability computations using constrained zono-
topes, without incorporating order reduction, and compared
it with the zonotope-based computations for the Dubin’s car

51/∥G†∥∞Bn = GG†/∥G†∥∞Bn ⊆ GBp.

https://github.com/mserry91/Tracking_Control_Backward_Reachable_Sets
https://github.com/mserry91/Tracking_Control_Backward_Reachable_Sets


Fig. 1. x1 − x2 projections of the nominal trajectory for the Dubin’s
car model (black), state tube (light blue), zonotopic backward reachable
sets (gray), and a perturbed trajectory starting from the set Λ0, where
the proposed tracking controller is incorporated (orange). The red boxes
correspond to the unsafe set, and the blue box corresponds to the target set.

model. In general, computing the volume of a constrained
zonotope is difficult, and the sizes of constrained-zonotopic
backward reachable sets depend strongly on the heuristic
definition of the function ˜size used in the scaling step. For
the Dubin’s car example, we defined, given a constrained
zonotope CZ, ˜size(CZ) = (x1 − x1) × (x2 − x2) × (x3 −
x3+3), where Jx, xK is a tight hyper-interval containing CZ.
Since the x3-component is responsible for the dynamics’
nonlinearity (i.e., the dynamics would be linear if x3 was
constant), we used “+3” in the last term to encourage
picking sets with larger x1-x2 projections and are thinner
in x3-dimension. This is helpful to avoid large linearization
errors that can be induced by large x3-components. Fig.
2 shows the obtained backward reachable sets represented
by constrained zonotopes. In our experiment on an Intel
Core i7-10510U/1.8GHz processor, it took 2142 seconds to
compute the constrained zonotopic sets, which highlights
the large computational demands associated with constrained
zonotopes. However, the sizes of the constrained zonotopic
sets appear to be larger than the corresponding zonotopic
sets, especially after several iterations of the backward
computations, which underlines the superior accuracy of
constrained zonotopes.

B. Planar quadrotor

Herein, we consider a discrete-time version of the six-
dimensional planar quadrotor model studied in [5], [6], [8]
obtained using Euler scheme, where

x1,k+1

x2,k+1

x3,k+1

x4,k+1

x5,k+1

x6,k+1

 ∈


x1,k + τsR1,k

x2,k + τsR2,k

x3,k + τsR3,k

x4,k + τsR4,k

x5,k + τsR5,k

x5,k + τsR6,k

+W, (17)

Fig. 2. x1−x2 projections of the constrained zonotopic backward reachable
sets (gray) associated with Dubin’s car example. The red boxes correspond
to the unsafe set and the blue box corresponds to the target set.

R1,k = x4,k cos(x3,k) − x5,k sin(x3,k), R2,k =
x4,k sin(x3,k) + x5,k cos(x3,k), R3,k = x6,k, R4,k =
x5,kx6,k − g sin(x3,k), R5,k = −x4,kx6,k − g cos(x3,k) +
(u1,k + u2,k)/m, R6,k = l(u1,k − u2,k)/J , τs = 0.01,
g = 9.81, m = 0.486, l = 0.25, J = 0.00383, W = {06}6.
The pair (x1,k, x2,k) represents the position, x3,k is the
pitch angle, x4,k and x5,k are the quadrotor velocities with
respect to the body frame, x6,k is the angular rate, and
u1,k and u2,k are the thrust forces from the propellers.
Similar to the Dubin’s car example, we illustrate the ability
of our approach to producing a tracking controller for the
quadrotor model satisfying reach-avoid specifications with
the accompanying sets: Xo = [0, 3]× [0, 3]× [−π/3, π/3]×
[−3, 3] × [−2, 2] × [−π, π], Xi = {(0.5, 0.5, 0, 0, 0, 0)⊤},
Xt = [2, 3] × [2, 3] × [−π/4, π/4] × [−1, 1] × [−1, 1] ×
[−π/4, π/4], Xu = (([0.25, 1.25] × [1.5, 2]) ∪ ([2, 2.5] ×
[0.5, 1.5])) × ([−π/3, π/3] × [−3, 3] × [−2, 2] × [−π, π]),
U = [0, 2mg]2.

We generated a nominal state and input sequences using
sampling-based planning (see Figure 3), where the associated
computational time is approximately 7 seconds, and the value
of N obtained from the planning is 1190.

We then computed the input and state tubes according to
theorem 4, with α = 0.99, and obtained the tubes (see Figure
3) in approximately 0.05 seconds, which again highlights the
minimal computational demands for computing such tubes.

Backward reachable sets were then computed according
to Theorem 8. For the intersection under-approximations,
we used (12) with ε = 0.1. For the order reduction step,
we set o = 20 and for the OptimizedBoxes routine, we set
Nsc,max = 3000, and δsc = (1, 1, 0.9, 0.85, 0.85, 0.9, 1, 1)⊤.

6For this example, our zonotopic computations were not able to handle
nonzero disturbances due to the nonlinearity of the quadrotor model, the
large number of steps needed to reach the target set, and the accumulating
inaccuracies of zonotopic under-approximations. Still, the zonotopic back-
ward computations with zero disturbance were beneficial as they resulted
in a larger ‘winning’ region, containing the initial point of interest, where
all the points in the wining region could be driven to the target set safely.



Fig. 3. x1−x2 projections of the nominal trajectory for the planar quadro-
tor model (black), state tube (light blue), zonotopic backward reachable sets
(gray), and a trajectory starting from the set Λ0, where the proposed tracking
controller is incorporated (orange). The red boxes correspond to the unsafe
set and the blue box corresponds to the target set.

Moreover, ˜size(Z), with Z being a zonotope had the same
definition as in the Dubin’s car example. The backward
reachable sets are depicted in Figure 3, where the associated
computational time is approximately 144 seconds, and that
is attributed to the relatively large number of time steps.

A tracking controller (the relaxed version of (15) for
affine-in-control systems) was then implemented, and a tra-
jectory starting from the set Λ0 was computed (see Figure 3).
The average computational time per controller evaluation is
less than 0.02 seconds, indicating again the efficiency of the
online computations associated with the tracking controller.
The controller in this example was capable of driving the
quadrotor’s states to the target set, avoiding the unsafe values
and fulfilling the input constraints, which highlights the
promising applications of the proposed method.

VI. CONCLUSION

In this paper, we proposed a new tracking control ap-
proach for discrete-time nonlinear uncertain systems un-
der reach-avoid specifications and input/state constraints
using zonotope-based backward reachability computations.
Through two numerical examples, we illustrated the ef-
fectiveness of our approach, where the resulting tracking
controllers were safe and robust, and the associated com-
putational requirements were reasonable.

It is of our interest in future work to introduce fur-
ther refinements to the different aspects of our set-based
approach. For example, we seek to develop accurate and
computationally efficient zonotopic under-approximations of
intersections. Moreover, we aim to derive better heuristics
for enlarging the sizes of the backward reachable sets. Fur-
thermore, it would be interesting to extensively explore the
effectiveness of different classes of sets, besides zonotopes
and constrained zonotopes, in similar set-based backward
computations. Finally, we aim to compare our proposed
approach with the tracking approaches in the literature to

better elucidate its advantages and limitations in control
applications.
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control contraction metrics,” Automatica, vol. 155, p. 111169, 2023.

[9] C. Fan, Z. Qin, U. Mathur, Q. Ning, S. Mitra, and M. Viswanathan,
“Controller synthesis for linear system with reach-avoid specifica-
tions,” IEEE Trans. Automatic Control, vol. 67, no. 4, pp. 1713–1727,
2021.

[10] A. Girard, “Reachability of uncertain linear systems using zonotopes,”
in Proc. of HSCC, vol. 3414. Springer, 2005, pp. 291–305.

[11] E. Asarin, T. Dang, and A. Girard, “Reachability analysis of non-
linear systems using conservative approximation,” in Proc. of HSCC.
Springer, 2003, pp. 20–35.

[12] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis of
nonlinear systems with uncertain parameters using conservative lin-
earization,” in Proc. of CDC. IEEE, 2008, pp. 4042–4048.

[13] M. Althoff, G. Frehse, and A. Girard, “Set propagation techniques
for reachability analysis,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, pp. 369–395, 2021.

[14] A. Girard, C. L. Guernic, and O. Maler, “Efficient computation of
reachable sets of linear time-invariant systems with inputs,” in Proc.
of HSCC. Springer, 2006, pp. 257–271.

[15] M. Serry and G. Reissig, “Over-approximating reachable tubes of
linear time-varying systems,” IEEE Trans. Automatic Control, vol. 67,
no. 1, pp. 443–450, 2021.

[16] M. Serry and J. Liu, “Underapproximate reachability analysis for a
class of linear systems with inputs,” IEEE Trans. Automatic Control,
vol. 69, no. 2, pp. 1125–1132, 2024.

[17] M. Althoff, “Reachability analysis and its application to the safety
assessment of autonomous cars,” Ph.D. dissertation, Technische Uni-
versität München, 7 Jul. 2010.

[18] L. Yang and N. Ozay, “Scalable zonotopic under-approximation of
backward reachable sets for uncertain linear systems,” IEEE Control
Systems Letters, vol. 6, pp. 1555–1560, 2021.

[19] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz,
“Constrained zonotopes: A new tool for set-based estimation and fault
detection,” Automatica, vol. 69, pp. 126–136, 2016.

[20] V. Raghuraman and J. P. Koeln, “Set operations and order reductions
for constrained zonotopes,” Automatica, vol. 139, p. 110204, 2022.

[21] M. Althoff, “On computing the minkowski difference of zonotopes,”
arXiv preprint arXiv:1512.02794, 2015.

[22] ——, “An introduction to CORA 2015,” in Proc. of ARCH, 2015.
[23] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-

ning,” The international journal of robotics research, vol. 20, no. 5,
pp. 378–400, 2001.

[24] L. Yang, H. Zhang, J.-B. Jeannin, and N. Ozay, “Efficient backward
reachability using the minkowski difference of constrained zono-
topes,” IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 11, pp. 3969–3980, 2022.


	Introduction
	Preliminaries and Notations
	System Description, Assumptions, and Problem Formulation
	Proposed method
	Constructing state and input tubes
	Linearization
	Backward computations
	Motivation to use backward computations
	Under-approximating Minkowski difference
	Zonotopic under-approximation of intersection
	Scaling the state and input tubes
	Zonotopic order reduction

	Tracking controller computations

	Numerical Examples
	Dubin's car
	Planar quadrotor

	Conclusion
	References

