
Multi-Agent Coordination Subject to Counting
Constraints: A Hierarchical Approach

Yunus Emre Sahin1, Necmiye Ozay1, and Stavros Tripakis2

1 Electrical and Computer Engineering, University of Michigan,
Ann Arbor, MI 48109, USA

ysahin@umich.edu, necmiye@umich.edu
2 Department of Computer Science, Aalto University

02150 Espoo, Finland
stavros.tripakis@gmail.com

Abstract. This paper considers the problem of generating multi-agent
trajectories to satisfy properties given in counting temporal logic. A hier-
archical solution approach is proposed where a coarse plan that satisfies
the logic constraints is computed first at the higher level, followed by a
lower-level task of solving a sequence of multi-agent reachability prob-
lems. Collision avoidance and potential asynchronous executions are also
dealt with at the lower-level. When lower-level planning problems are
found to be infeasible, these infeasibility certificates are incorporated into
the higher-level problem to re-generate plans. The results are demon-
strated with several examples that shows how the proposed approach
scales with respect to different parameters.

Keywords: counting constraints, multi-agent path planning, formal meth-
ods, hierarchical planning

1 Introduction

Autonomous multi-agent systems can potentially serve the society in many ap-
plications, such as safety-critical search and rescue missions, warehouse robotics,
autonomous vehicles. These tasks require coordination of large number of agents
to be effective. Therefore, we need scalable tools that can handle large number
of agents working in complex environments.

Traditionally, multi-agent coordination problems are formulated as simple
tasks such as reaching a goal state while avoiding unsafe regions and collisions
[1–4] or reaching a consensus [5, 6]. Temporal logics, such as linear temporal logic
(LTL), provide a more powerful framework where more complex tasks can be
specified [7–14]. However, the curse of dimensionality prevents these methods to
be applied to a large number of agents. To alleviate this concern, hierarchical
methods for LTL constraints are proposed in [7, 12, 15]. In our early work [16],
we introduced counting linear temporal logic (cLTL), a formal language designed
specifically to define multi-agent tasks, and showed that the solution method
can scale to hundreds of agents. However, one of the limiting factors in multi-
agent setting is the synchronization of agents. In real-life applications, perfect

2 Sahin et al.

synchronization is difficult to achieve and synchronization errors might lead to
collisions or violation of the specifications. In this respect, a method that is based
on assigning priorities to the agents to handle synchronization errors is proposed
in [13], which could lead to conservatism. We provided an extension of cLTL in
[17], called counting linear temporal logic plus (cLTL+), and showed how to
generate solutions that are robust to synchronization errors without needing to
prioritize the agents. However, generating robust solutions is either conservative
and/or computationally expensive and limits the scalability of these methods.

This paper proposes a hierarchical method to generate multi-agent trajec-
tories to satisfy properties given in counting temporal logic plus without ‘next’
operator (cLTL+\©). Similar to [17], agent dynamics are given by a transition
system. At the higher level, an abstraction of this transition system is computed
and used to generate coarse plans that satisfy the specifications. These plans are
then refined at the lower level by solving a sequence of multi-agent reachability
problems. With this hierarchy, we shift the computational burden of avoiding
collisions to the lower level where it can be handled much more efficiently. The
method proposed in this paper scales better with the size of the transition system
as the size of the abstraction is guaranteed to be smaller than or equal to the
original transition system. This paper also shows that, under mild conditions,
solutions robust to synchronization errors can be generated. As opposed to [17],
which requires a bound on the maximum synchronization error to achieve such
robustness, this paper shows how to generate robust solutions that satisfy the
specifications even if this bound is not known, by using a lower-level execution
policy to ‘correct’ synchronization errors at run-time. Moreover, the complexity
of our algorithm does not depend on the synchronization error bound.

The rest of the paper is structured as follows: Section 2 introduces the no-
tation and provides definitions that are used in the rest of the paper. Section 3
provides a hierarchical method to solve the problem of interest and shows how
to handle with synchronization errors. Section 4 demonstrates the efficacy of our
method with several examples and Section 5 concludes the paper.

2 Preliminaries

The set of non-negative integers is denoted by N and the set of integers from 1 to
N is denoted by [N]. An atomic proposition is a statement that is either false or
true. The set B = {⊥,>} denotes the logical values false and true, respectively.
Cardinality of a set A is denoted by |A|.

2.1 Transition Systems

Definition 1 A transition system is a tuple T = (V,E,AP,L) where V is a
finite set of states, E ⊆ V × V is a transition relation, AP is a finite set of
atomic propositions and L : V → 2AP is a labeling function.

Transition system T = (V,E,AP,L) represents the workspace agents operate
in. Transitions systems that capture the behaviors of complex robotic systems

Multi-Agent Coordination Counting Subject to Counting Constraints 3

can be obtained by using motion primitives [18, 19] or abstraction-based meth-
ods [20, 21]. Set of states V is a partition of the workspace and E corresponds
to transitions between these states. Labeling function L marks the states with
atomic propositions AP . These markings are used to define regions of interest.
For instance some states can be marked as ‘charging station’, or ‘obstacle’, etc.

A path of T , also called a T -path, is a sequence of states π : v0v1 . . . such
that (vt, vt+1) ∈ E for all t. A path can have a finite length, or it can be
infinite. We denote by π(t) the tth element of π. A pair of T -paths π1 and
π2 are said to be in collision if there exists a t such that π1(t) = π2(t) or,
π1(t + 1) = π2(t) and π2(t + 1) = π1(t). Each path has a trace associated with
it, σπ : N → 2AP where σπ(t) = L(π(t)). A pair of traces σ1 and σ2 are said
to be stutter trace equivalent, if removing repetitions makes them identical. For
example, σ1 = {a}{a}{a, b}{b}{b}{c} and σ2 = {a}{a, b}{b}{c}{c} are stutter
trace equivalent but σ1 and σ3 = {a}{a, b}{b}{c}{b}{c} are not. With a slight
abuse of notation, we also say a pair of T -paths π1 and π2 are stutter trace
equivalent, if corresponding traces σπ1

and σπ2
are stutter trace equivalent.

2.2 Counting Linear Temporal Logic

We now move on to temporal constraints. We assume that specifications are given
in counting temporal logic plus without ‘next’ operator (cLTL+\©), a counting
logic that enables us to specify multi-agent tasks in a concise manner [17]. This
logic is an extension of commonly used linear temporal logic (LTL) [22]. In
cLTL+\©, the inner logic defines tasks that can be satisfied by a single agent.
For example “repeatedly visit the charging station”, “do not enter region A before
visiting region B”, etc., are tasks that can be expressed in the inner logic. Each
inner logic formula is then paired with a non-negative integer in the outer logic
to specify the minimum number of agents that are required to satisfy the inner
logic formula. For example, “Every agent should repeatedly visit the charging
station and the number of agents in region A should be less than 5 until region
B is populated by at least 2 agents”.

For the sake of completeness, we provide the syntax and the semantics of
cLTL+\©. The inner logic over atomic proposition set AP is identical to LTL
without ‘next’ operator over AP and the grammar is given by the following:

φ :: > | ap | ¬φ | φ1 ∧ φ2 | φ1 U φ2 (1)

where ap ∈ AP and φ, φ1, φ2 are LTL formulas. Individual tasks such as “Do
not enter region A before visiting region B”, can be expressed as ¬a U b using
inner logic. We denote by Φ the set of all inner logic formulas. If an infinite trace
σ satisfies LTL formula φ at time t, it is denoted by σ, t |=LTL φ, where the
subscript LTL emphasizes that LTL semantics is used [22].

The outer logic is slightly different from LTL, as it is based on a new type of
proposition, which is called temporal counting proposition (tcp). A tcp is obtained
by pairing an LTL formula φ with a non-negative integer m. The syntax and
semantics of the outer logic are given as follows:

µ :: > | tcp | ¬µ | µ1 ∧ µ2 | µ1 U µ2 (2)

4 Sahin et al.

where tcp = [φ,m] ∈ Φ × N and µ, µ1, µ2 are cLTL+\© formulas. A tcp =
[φ,m] ∈ Φ × N is said to be satisfied at time t if and only if φ is satisfied by
at least m agents at time t. Note that, besides the new type of propositions,
the syntax of the outer logic is similar to that of LTL without next. We now
provide the semantics with the assumption that agents move synchronously. We
later relax this assumption in §2.3. Given a collection Σ = {σπ1

, . . . , σπN
} of N

infinite traces, the satisfaction of a cLTL+\© formula µ at time t is denoted by
Σ, t |= µ and inductively defined as follows:

Σ, t |= [φ,m] if and only if |{n | σπn , t |=LTL φ}| ≥ m,
Σ, t |= ¬µ if and only if Σ, t 6|= µ,

Σ, t |= µ1 ∧ µ2 if and only if Σ, t |= µ1 and Σ, t |= µ2,

Σ, t |= µ1 U µ2 iff there exists l ≥ 0 such that Σ, t+ l |= µ2

and Σ, t+ k |= µ1 for all k < l.

(3)

The semantics of the outer logic, with the exception of satisfaction of a tcp, is
similar to regular LTL. The intuition is that Σ represents the behaviors of N
agents, where σπn corresponds to the behavior of agent an. Agent an is said
to satisfy the inner logic formula φ at time t if σπn , t |=LTL φ. Then [φ,m] is
satisfied at time t if the number of agents satisfying φ at time t are greater than
or equal to m, i.e., |{n | σπn

, t |=LTL φ}| ≥ m. When Σ, 0 |= µ, we say that
µ is satisfied by Σ and write Σ |= µ. Other commonly used operators such as
♦(eventually) and �(always) are defined in the usual way: ♦a

.
= true U a and

�a
.
= ¬(♦¬a).

Example 1. Assume the following specification for N agents is given in plain En-
glish: “Every agent should repeatedly visit the charging station and the number
of agents in region A should be less than 5 until region B is populated by at least
2 agents”. Mark region A, region B and the charging station, with atomic propo-
sitions a, b and c, respectively. Then the specification is expressed in cLTL+\©
as µ = [�♦c,N] ∧ (¬[a, 5] U [b, 2]).

The inner logic �♦c is satisfied by any agent if that agent repeatedly (in-
finitely many times) visits the charging station, marked by c. Then [�♦c,N] is
satisfied if at least N agents (all agents) repeatedly visit the charging station.
Similarly, ¬[a, 5] (or [b, 2]) is satisfied at time t, if less than 5 (or at least 2)
agents satisfy proposition a (or proposition b) at that time. Combining all, µ
specifies the same task that is given in plain English.

2.3 Time Robustness

Our definitions so far assume perfect synchronization of agents. However, perfect
synchronization of agents is a challenging task and synchronization errors, if not
handled with care, might result in violation of the specifications. For instance,
assume there are 2 agents and the specification requires a certain property p to
be satisfied by at least one agent at all times, i.e., µ = �[p, 1]. Let πi denote a
path for agent ai and

Multi-Agent Coordination Counting Subject to Counting Constraints 5

σπ1 = {p} {¬p} {¬p} {¬p} . . . ,

σπ2 = {¬p} {p} {p} {p} . . .

be corresponding traces. Property p is satisfied by agent a1 only at time t = 0
and by a2 at all times except t = 0. If agents are perfectly synchronized, the
specification µ would be satisfied. However, if a2 moves slower than intended
and causes a synchronization error, µ would be violated.

When agents are allowed to move asynchronously, there are infinitely many
ways a collection of infinite paths {π1, . . . , πN} could be executed. We identify a
particular execution by a collection of mappings {k1, . . . , kN} where kn : N→ N,
called the local time mapping of an, maps the global time t to the position of the
agent an on the map πn at time t. In other words, the state of agent an at time
t is given by πn(kn(t)). Since agents need to progress eventually and respect the
order of states on a path, each kn needs to satisfy the following assumptions:

kn(0) = 0, kn(t− 1) ≤ kn(t) ≤ kn(t− 1) + 1, lim
t→∞

kn(t) =∞ (4)

Given a collection of N infinite traces Σ = {σπ1 , . . . , σπN
} and an execution

K = {k1, ..., kN}, the pair (Σ,K) is called a collective trace. Semantics in (3)
are stated with the assumption that agents move synchronously. To generalize
to asynchronous executions, we replace every Σ of (3) with (Σ,K) and modify
the first line as follows:

(Σ,K), t |= [φ,m] if and only if |{n | σπn , kn(t) |=LTL φ}| ≥ m. (5)

We say that (Σ,K) and (Σ′,K ′) are identical collective traces if σπn(kn(t)) =
σπ′

n
(k′n(t)) for all t and for all n. In practice, it is reasonable to assume that

there is an upper bound on the asynchrony between agents. The collection
K = {k1, . . . , kN} is called a τ -bounded asynchronous execution if the difference
between local times never exceeds τ , i.e., maxt(maxm,n(|km(t)− kn(t)|)) ≤ τ .

Definition 2 A cLTL+\© formula µ is said to be τ -robustly satisfied by a col-
lection Σ = {σπ1

, . . . , σπN
} at time t, denoted Σ, t |=τ µ, if following holds for

all τ -bounded executions K:

(Σ,K), α |= µ, for all α such that min
n
kn(α) = t (6)

We write Σ |=τ µ for Σ, 0 |=τ µ. Also, we extend the satisfaction relation from
traces to paths of a transition system. If Π = {π1, ..., πN} is a collection of paths,
then Π |= µ means {σπ1

, . . . , σπN
} |= µ.

Note that |=τ implies |=τ ′ for all τ ′ < τ . For more details about robust satisfac-
tion of a cLTL+ formula, we refer the reader to Definition 7 of [17].

2.4 Problem Definition

We now formally state the problem we are interested in:

6 Sahin et al.

Problem 1 Let a transition system T = (V,E,AP,L), a set of agents A =
{a1, . . . , aN} with initial conditions S0 : A → V , a cLTL+ formula µ over AP
and non-negative integer τ ∈ N be given. Synthesize a collection Π = {π1, ..., πN}
of collision-free T -paths such that Π |=τ µ and πn(0) = S0(an) for all an ∈ A.

An instance to Problem 1 is characterized by a tuple (T,A, S0, µ, τ) and
a solution to an instance would be a collection Π = {π1, ..., πN} of T -paths.
We first solve for the special case τ = 0. Solutions generated for this case are
not robust to synchronization errors, so we discuss how the algorithm can be
modified to deal with the case τ = 1. Furthermore, under mild assumptions, we
show that robust solutions can be generated such that µ is satisfied for any τ .

Note that the problem definition only imposes that generated paths are
collision-free, which is defined for synchronous executions, i.e., when τ = 0.
This suffices to establish our main theoretical result, which is synchronous sat-
isfaction of µ (Proposition 2). Under certain assumptions, such paths are indeed
sufficient (as shown in §3.5) for the existence of execution policies that guarantee
that agents do not collide even when they navigate these paths asynchronously.

3 Solution Method

The previous method presented in [17] to solve Problem 1 and, in general, other
existing algorithms to solve similar multi-agent problems are computationally
expensive. The problem becomes intractable if the size of the transition system
T is large. We propose a hierarchical approach that scales better with the size of
the transition system. Our method is illustrated in Algorithm 1. In the following,
we give an overview of the algorithm and then explain its parts in detail.

Given (T,A, S0, µ, 0), we first compute a new transition system T abs, called
abstraction of T . How to compute T abs is described in §3.1. The motivation
behind computing an abstraction is that it has a smaller size compared to
the original transition system; hence, it would decrease the computational re-
sources required to solve Problem 1. After adjusting the initial conditions of
T abs as Sabs0 and we solve a slightly modified version of Problem 1 instance
(T abs,A, Sabs0 , µ, 1), relaxing the collision avoidance constraint. A solution to
this instance is called an abstract plan, which is a collection of T abs-paths. These
abstract paths satisfy the logic constraints and can be seen as guidelines. Rather
than explicitly assigning each agent a path, they indicate what propositions it
needs to satisfy and in which order. We then replace each abstract path with a
stutter trace equivalent T -path to generate a solution to (T,A, S0, µ, 0).

Construction of the abstraction ensures the existence of stutter trace equiv-
alent T -paths. However, a collection of such paths is not guaranteed to be colli-
sion free. To prevent collisions, we solve a sequence of path planning problems
at the lower level. If all the path planning problems are feasible, a solution to
(T,A, S0, µ, 0) can be extracted. On the other hand, if the abstract plan is not
feasible, we generate a counter example to be used in the higher level and obtain
a different abstract plan. These steps are repeated until a solution is found or

Multi-Agent Coordination Counting Subject to Counting Constraints 7

the algorithm terminates with no solution. In the following, we explain the steps
of the main algorithm in greater detail.

3.1 Abstraction

Given a transition system T = (V,E,AP,L), we define an equivalence relation
∼ on V as follows:

u ∼ v if and only if u = v, or L(u) = L(v) and there exist T -paths πuv and πvu

from u to v and from v to u such that σπuv
(t) = σπvu

(t) = L(u) for all t.

(7)

Relation ∼ partitions V into equivalence classes V1, ..., VC , for some C ∈ N,
such that all Vi are pairwise disjoint and all states in each Vi are equivalent,
with V = ∪Ci=1Vi. In words, each class induces a strongly-connected subgraph
within which all nodes satisfy the same property. We create a state vabsi for each
equivalence class Vi and denote the set of all such states by V abs. To map the
states of V to states of V abs, we define R : V → V abs:

R(v)
.
= vabsi if v ∈ Vi. (8)

By definition, inverse of R maps the states of V abs to equivalence classes,
i.e., R−1(vabsi) = Vi. Next we define abstraction of T , denoted by Tabs

.
=

(V abs, Eabs, AP, Labs), such that:

Eabs
.
={(vabsi , vabsj) | ∃(u, v) ∈ E, u ∈ R−1(vabsi) and v ∈ R−1(vabsj)},

Labs(vabsi)
.
=L(v) for any v ∈ R−1(vabsi).

(9)

The mapping Labs is well-defined because L(v) is guaranteed to be the same
no matter which v ∈ R−1(vabsi) is chosen, by definition of equivalence (7). Fur-
thermore, the existence of T abs is guaranteed because the equivalence classes
form a partition of V and in the worst case, each state v ∈ V would belong to
a different equivalence class. In that case, T abs would be identical to T . Com-
putation of the abstraction follows directly the definition (cf. Algorithm 37 in
[22]). Initial conditions can be adjusted simply defining Sabs0 (an)

.
= R(S0(an))

for each an ∈ A.
Equivalence relation defined in (9) is the coarsest stutter bisimulation for T

(see Lemma 7.96 in [22]) and abstraction T abs is stutter bisimulation equivalent
to T (see Theorem 7.102 in [22]) as stated by the following proposition:

Proposition 1 Let T be a transition system and T abs be its abstraction. For
any T -path π, there exists a stutter trace equivalent T abs-path πabs. Conversely,
for any T abs-path πabs, there exists a stutter trace equivalent T -path π.

3.2 Higher Level Solution of Problem 1

After obtaining an abstraction, we solve a slightly different version of Problem 1
instance (T abs,A, Sabs0 , µ, 1) to generate a collection of paths {πabs1 , . . . , πabsN }.

8 Sahin et al.

First, we do not enforce collision avoidance since each state in V abs corresponds
to a set of states in the original transition system and could hold more than
a single agent. Second, we impose additional constraints coming from counter-
examples. These constraints are explained in more detail in §3.4. We then form
an integer linear program (ILP) as it is explained in [17]. Solving the subsequent
feasibility problem generates a collection Πabs = {πabsn , . . . , πabsN } of T abs-paths
that 1-robustly satisfies µ, i.e., Πabs |=1 µ. We call such a collection an abstract
plan. We remind the reader that each abstract path πabsn has a prefix-suffix form
as cLTL+\©formulas are interpreted over infinite horizons, i.e., there exists a

non-negative integer labs < habs such that for all n

πabsn = πabsn (0) . . . πabsn (labs)(πabsn (labs + 1) . . . πabsn (habs))ω. (10)

In other words, each agent is assigned a lasso shaped path that can be tra-
versed indefinitely. As shown in [22], if (T abs,A, Sabs0 , µ, 1) has a solution, there
exists a large enough habs such that there exists a solution in the form of (10).

3.3 Lower Level Solution of Problem 1

Proposition 1 guarantees that, for each T abs-path πabsn , there exists a stutter
trace equivalent T -path πn. Each state of the abstraction T abs corresponds to a
set of states in the original transition system T . If an agent moves one from one
state to another in the abstraction, it needs to move from one region to another
in the original transition system. By construction of the T abs, the existence of a
path between such two regions is guaranteed. However, a collection of these paths
might be in collision. To generate a collection of collision-free and stutter trace
equivalent T -paths, we solve a sequence of generalized multi-agent path planning
(GMAPP) problems. Following is the formal definition of GMAPP that we use:

Problem 2 Let a transition system T = (V,E,AP,L), a set of agents A =
{a1, . . . , aN}, a time horizon h ∈ N and injective mappings xI , xG, XI , XG :
A → 2V be given. Find a collection of collision-free T -paths {π1, . . . πN} such
that for all an ∈ A, πn(0) ∈ xI(an), πn(h) ∈ xG(an) and for each agent there
exists a positive integer 0 < ln < h where πn(t) ∈ XI(an) for all 0 ≤ t ≤ ln and
πn(t) ∈ XG(an) for all ln < t ≤ h.

We characterize an instance of Problem 2 by a tuple (T,A, h, xI , xG, XI , XG).
Each agent an ∈ A needs to start from state within xI(an) ⊂ XI(an) ⊂ V and
reach a state in xG(an) ⊂ XG(an) ⊂ V . While doing so, agent an should stay
in set of states XI(an) ∪ XG(an) for all times and it should not return back
to XI(an) once in XG(an). Furthermore, collisions with other agents must be
avoided. The intuition here is that set of states XI(an) and XG(an) correspond
to two consecutive states on an abstract path. We use xI(an) (and xG(an)) in
case initial (and final) state needs to be explicitly specified. As it moves from
one abstract state to the other, to prevent jittering, an agent leaving XI should
not return back.

Multi-Agent Coordination Counting Subject to Counting Constraints 9

GMAPP is a generalization of the classical multi-agent path planning (MAPP)
problem where one assigns a single initial state and a single goal state to each
agent and assumes that the set of ‘safe’ states are same for all agents. Despite
that, many efficient MAPP algorithms, such as [1, 3, 4], can easily be modified
to accommodate for these differences. We use an ILP based method similar to
[3] to solve GMAPP problems. For all an ∈ A and for all 0 ≤ t ≤ habs, we set

x0I(an) = S0(an), Xt
I(an) = R−1(πabsn (t)),

xtG(an) = Xt
G(an) = R−1(πabsn (t+ 1))

(11)

Starting from t = 0, let {βt1, . . . , βtN} be a solution to (T,A, h, xtI , xtG, Xt
I , X

t
G).

For all t > 0 and an ∈ A, we set

xtI(an) = βt−1n (h) (12)

and solve the next GMAPP instance. For the special case t = habs, we set

xtG(an) = βl
abs

n (0) to ‘close the loop’. If all GMAPP instances can be solved, we
define for all integers 0 ≤ t < habs and 0 ≤ α < h

πn(th+ α)
.
= βtn(α), πn(habsh)

.
= πn(lh). (13)

Intuitively, πn is concatenation of βtn. Each πn, similar to πabsn , is in prefix-suffix
form, i.e., πn = πn(0), . . . , πn(lh)

(
πn(lh+ 1), . . . , πn(habsh)

)ω
. Note that πn(t)

is well-defined for all t and is a valid T -path.
If (A, T, h, xtI , xtG, Xt

I , X
t
G) has no solutions for some t, we roll back and

update
xt−1G (an)← xt−1G (an) \ {βt−1n (h)}. (14)

We call an abstract plan infeasible if instance (T,A, h, x0I , x0G, X0
I , X

0
G) has

no solutions. In that case, we generate a counter example that prevents the same
abstract plan to be generated. Details of this process are explained in §3.5.

Following proposition shows that the method proposed in this paper is sound.

Proposition 2 Given a Problem 1 instance (T,A, S0, µ, 0), assume the collec-
tion Π = {π1, . . . , πN} is generated by Algorithm 1. Then Π is a solution to
(T,A, S0, µ, 0), that is, Π are collision-free, πn(0) = S0(an) for all an ∈ A, and
Π |=0 µ.

Proof. Showing {π1, ..., πN} are collision-free is straight-forward. Each GMAPP
instance generates collision-free T -paths. Concatenation of them would also be
collision-free. Furthermore, πn(0) = S0(an) for all an ∈ A due to (11).

Next we show {π1, ..., πN} |=0 µ. Let Σ = {σπ1
, . . . , σπN

} and Σabs =
{σπabs

1
, . . . , σπabs

N
}. Define synchronous execution K = {k1, . . . , kN} such that

kn(t) = t for all t ≥ 0 and for all n ∈ [N]. We first show that there exists a
1-bounded asynchronous execution Kabs = {kabs1 , ..., kabsN } such that collective
traces (Σ,K) and (Σabs,Kabs) are identical.

Note that βtn(h) ∈ R−1(πabsn (t + 1))) due to (11). Furthermore, πn(0) =
S0(an) ∈ R−1(πabsn (0)). This implies L(βtn(h)) = L(πn(ht)) = L(πabsn (t)) for all

10 Sahin et al.

t ≥ 0 due to (9). Also note that, for all n ∈ [N], there exists a non-negative
integer ltn ≤ h such that L(βtn(t)) = L(βtn(0)) for all t ≤ ltn and L(βtn(t)) =
L(βtn(h)) for all ltn < t ≤ h due to definition of Problem 2, and equations (9)
and (11). Therefore L(πn(th+ α)) = L(βtn(α)) = L(πabsn (t)).

Now initialize kabsn (0)
.
= 0 for all n ∈ [N]. Then iteratively define local times

for all integers 0 < α ≤ h and t ≥ 0 as

kabsn (th+ α)
.
=

{
kabsn (th+ α− 1) if α ≤ ltn
kabsn (th+ α− 1) + 1 if α > ltn

(15)

Note that kabsn (t) is well-defined for all t ≥ 0 and L(πn(t)) = L(πabsn (kabsn (t))) for
all t. This implies that (Σ,K) and (Σabs,Kabs) are identical collective traces.

Moreover it is guaranteed that kabsn (t + h) = kabsn (t) + 1 and kabsn (th) =
kabsm (th) for all pairs of n,m ∈ [N] and for all t ≥ 0. This implies that, the
collection Kabs = {kabs1 , . . . , kabsN } is a 1-bounded asynchronous execution. Since
Σabs |=1 µ, we have Σabs,Kabs |= µ. Thus, Σ |=0 µ. ut

3.4 Counter Examples

Given a collection of T abs-paths {π̃abs1 , . . . , π̃absN }, assume the lower-level algo-
rithm failed. In that case, the following constraints are generated and added to
the higher level:

¬

(∧
n

(∧
t

πabsn (t) = π̃absn (t)

))
(16)

Constraint (16) imposes that the same abstract plan will not be encountered
again. However, this method removes only one abstract plan at a time, which
might be inefficient. Algorithm would converge faster if a number of infeasible ab-
stract plans can be eliminated all at once, similar to Irreducibly Inconsistent Set
idea in [12]. When lower level fails for an abstract plan {π̃abs1 , . . . , π̃absN }, we gen-
erate instances (A, T, h, xtI , xtG, Xt

I , X
t
G) for all t such that xtI(an) = Xt

I(an) =
π̃absn (t) and xtG(an) = Xt

G(an) = π̃absn (t). If (A, T, h, xtI , xtG, xtS) is infeasible,
generate the following constraint to prevent such an abstract step from being
generated in the future:

∧
i

((∧
n

πabsn (i) = π̃absn (t)

)
=⇒ ¬

(∧
n

πabsn (i+ 1) = π̃absn (t+ 1)

))
. (17)

Additionally, if more than |Vi| agents are assigned to abstract state vabsi at
any time, it is obvious that collisions cannot be avoided. We impose appropriate
constraints to prevent such trivial counter examples.

Multi-Agent Coordination Counting Subject to Counting Constraints 11

Algorithm 1 Main algorithm

1: input : (T,A, S0, µ, 0), habs, h
2: Counter Examples← {}
3: T abs ← abstract(T)
4: top:
5: if is high level feasible(T abs,A, Sabs0 , µ, 1, Counter Examples) then
6: {πabs1 , . . . , πabsN } = high level(T abs,A, Sabs0 , µ, 1, Counter Examples)
7: else
8: return Infeasible
9: t← 0

10: xtI(an)← S0(an)
11: while t < habs do
12: Xt

I(an)← πabsn (t)
13: xtG(an)← Xt

G(an)← πabsn (t+ 1)
14: rollback :
15: if is GMAPP feasible(A, G, h, xtI , xtG, Xt

I , X
t
G) then

16: {βtn} = GMAPP (A, G, h, xtI , xtG, Xt
I , X

t
G)

17: xt+1
I (an)← βtn(h)

18: t← t+ 1
19: else
20: if t > 0 then
21: xtG(an)← xt−1

G (an) \ {xtI(an)}
22: t← t− 1
23: goto rollback
24: else
25: Counter Examples← Counter Examples ∪ {πabs1 , . . . , πabsN }
26: goto top

27: πn = concatenate(β0
n, . . . , β

habs

n)
28: return {π1, . . . , πN}

3.5 Handling Asynchrony

This section shows how to deal with asynchrony. First, a small modification to
Algorithm 1 necessary to solve Problem 1 for τ = 1 is presented. Then, we show
how correct behavior for a given specification can be obtained for an arbitrary
τ by using an execution policy that restricts the possible executions.

Given (T,A, S0, µ, 0), assume an abstract plan is generated at the higher
level. For all t and all pairs of n,m ∈ [N], we enforce in each GMAPP

βn(t+ 1) 6= βm(t). (18)

With this modification, when the asynchrony between agents is 1-bounded, these
paths can be executed without collisions in an open-loop fashion, no communi-
cation or sensing needed at run-time. Furthermore, any 1-bounded asynchronous
execution of collection {π1, . . . , πN}, generated according to (13), would satisfy
the specification µ.

Under mild assumptions, these trajectories can be implemented such that
the specifications are still satisfied and collisions are avoided for arbitrary τ .

12 Sahin et al.

Assume all agents can communicate with each other and can indefinitely stay in
any state, i.e., (v, v) ∈ E for all v ∈ V . Also assume that paths generated at the
low level satisfy (18). Specification µ would be satisfied for all τ by {π1, . . . , πN}
when all agents use the following execution policy. If πn(t) = πm(t′) for some
t > t′, agent an does not enter state πn(t) until agent am reaches πm(t′ + 1).
Otherwise, an moves to the subsequent state on its path. Note that, generated
paths might not be collision-free under τ -bounded asynchrony. Nonetheless, the
policy above would prevent collisions and would not result in deadlock as shown
in [4]. We further require that agents ‘synchronize at abstract steps’, meaning
that agent an move to πn(ht+ 1) only after all agents am reach πm(ht).

Remark 1 (Termination) Algorithm 1 is guaranteed to terminate as the num-
ber of abstract plans for a given habs is finite. If a solution does not exist for a
certain habs, the higher-level problem will eventually become infeasible as more
counter examples are generated and the algorithm will terminate.

Remark 2 (Complexity) Note that the complexity of the method proposed in
this paper does not depend on τ . The higher-level problem is solved for τ = 1
and this is enough to satisfy the specification for any τ as long as agents avoid
collisions and synchronize at abstract steps. As a comparison, previous work
in [17] introduces O(N(h+ |S|)τ) additional decision variables and O(N2h|S|τ)
additional constraints where N is the number of agents, h is the solution horizon,
and |S| is the number of states. Moreover, thanks to the use of abstraction, |Sabs|
is smaller than |S| and horizon habs required to find a solution is smaller than
h required for the non-hierarchical method.

4 Results

All experiments are run on a laptop with 2.5 GHz Intel Core i7 and 16 GB
RAM. Gurobi [23] is used as the underlying ILP solver. Our code is accessible
at https://github.com/sahiny/cLTL-hierarchical.

Table 1. Run-time comparison (seconds)

SMC-based [12] Hierarchical
N (Fig 1, µ) (Fig 1, µ) (Fig 1, µ’) (Fig 2, µ) (Fig 2, µ’)
4 444.35 92.52 121.69 95.16 86.85
6 timeout 236.74 439.41 199.24 242.35
8 timeout 507.97 619.02 664.94 729.58
10 timeout 801.64 1665.95 1139.82 1275.62
12 timeout 1727.47 2109.11 1499.17 2114.63

Example 1: We borrow the multi-robot scenario from [12] where the workspace
is illustrated in Figure 1. For each trial N agents are randomly initialized from
the region marked with xI , and specifications are given as:

µ = �♦[r1, N] ∧�♦[r2, N/2] ∧�♦[r3, N/2]. (19)

Multi-Agent Coordination Counting Subject to Counting Constraints 13

Fig. 1. Workspace taken from [12] Fig. 2. A sample workspace with randomly
generated obstacles

Fig. 3. Abstraction obtained for Figure 1 (solid arrows), and Figure 2 (solid and dashed
arrows)

In words, we require all agents to repeatedly (infinitely many times) meet at r1.
Similarly, at least half of the robots should repeatedly meet both at r2 and r3.
In [12], robot dynamics are modeled as chains of integrators and a satisfiability
modulo convex (SMC) programming based method is proposed. The method
proposed in this paper does not directly handle continuous dynamics. Hence,
we grid the workspace into 30 by 30 squares of same size. Agents are allowed
to move horizontally or vertically to neighboring states or stay in their current
position. Note that this behavior is consistent with the continuous dynamics.
The abstract transition system for this example is illustrated in Figure 3. We
solve the problem for increasing N . Computation times averaged over 10 trials
are shown in Table 1. SMC-based method in [12] can solve the problem only up
to N = 5 agents under 30 minutes as it can be seen from the second column.
Hierarchical method proposed in this paper, on the other hand, can solve the
same problem up to N = 12 agents. We also remind the reader that, if agents are
allowed to communicate, solutions generated with our method would be robust
to arbitrary synchronization errors while [12] might lead to collisions and/or
violation of the specification µ. We also note that the non-hierarchical approach

14 Sahin et al.

in [17] timed out in all these instances due to the large number of states and
resulting large horizon required for feasibility.

Example 2: We then modify the specifications and add the additional constraint
that region marked with r3 should be empty until both g1 and g2 are populated
with at least one robot at the same time:

µ′ = µ ∧ (¬[r3, 1] U ([g1, 1] ∧ [g2, 1])) (20)

Note that [12] cannot handle arbitrary cLTL+\©formulas and expressing the
same specification using regular LTL is not trivial. While any cLTL+\©formula
can be transformed into regular LTL as in [17], the length of the LTL formula
specifying the same task could be exponentially longer, significantly increasing
the computation times. Computation times for varying N are shown in Table 1.

Example 3: Next, we keep xI , r1, r2, r3, g1 and g2 as they are and randomly
select 20% of the states as obstacles. The abstract transition system for this
example is illustrated again in Figure 3. Computation times for varying number
of agents, and both specifications µ and µ′ are again shown in Table 1. A video
simulating the synthesized plans with synchronized agents can be seen at https:
//www.youtube.com/watch?v=SrPDQMRmcNU. We then assume same plans
are executed asynchronously. At each step agents are delayed with p = 0.3
probability. Using the policy proposed in §3.5, agents are able to satisfy the
specifications while avoiding collisions, as it can be seen from https://www.
youtube.com/watch?v=xO8xK9pXUKI.

5 Conclusions

In this paper, we proposed a method to generate multi-agent trajectories to
satisfy properties given in counting temporal logic. This method is hierarchical
and introduces a trade-off between solving logic constraints and path planning.
Using a smaller abstraction, high-level plans can be generated faster and more
complex specifications can be handled. On the other hand, a more refined ab-
straction can be used if lower-level path generation is the bottleneck, as it results
in easier multi-agent reachability problems. In future work, we would like to ex-
amine this trade-off between using a coarser or a more refined abstraction in a
rigorous way. Additionally, we use an ILP based method to generate lower-level
paths which is not optimized. We plan to implement a more efficient lower-level
path generation algorithm to decrease solution times.

Acknowledgments: This work is supported in part by NSF grants CNS-1446298
and ECCS-1553873, and DARPA grant N66001-14-1-4045.

References

1. Surynek, P.: A novel approach to path planning for multiple robots in bi-connected
graphs. In: Proc. of ICRA. pp. 3613–3619. IEEE (2009)

Multi-Agent Coordination Counting Subject to Counting Constraints 15

2. de Wilde, B., ter Mors, A.W., Witteveen, C.: Push and rotate: cooperative multi-
agent path planning. In: Proc. of AAMAS. pp. 87–94 (2013)

3. Yu, J., LaValle, S.M.: Optimal multirobot path planning on graphs: Complete
algorithms and effective heuristics. IEEE Trans. on Robotics 32(5), 1163–1177
(2016)

4. Ma, H., Kumar, T.S., Koenig, S.: Multi-agent path finding with delay probabilities.
In: AAAI. pp. 3605–3612 (2017)

5. Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-
agent coordination. In: American Control Conference, 2005. Proceedings of the
2005. pp. 1859–1864. IEEE (2005)

6. Li, Z., Wen, G., Duan, Z., Ren, W.: Designing fully distributed consensus proto-
cols for linear multi-agent systems with directed graphs. IEEE Transactions on
Automatic Control 60(4), 1152–1157 (2015)

7. Kloetzer, M., Belta, C.: Temporal logic planning and control of robotic swarms by
hierarchical abstractions. IEEE Trans. Robotics 23(2), 320–330 (2007)

8. Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from
temporal logic motion specifications. IEEE Trans. Robotics 26(1), 48–61 (2010)

9. Karaman, S., Frazzoli, E.: Linear temporal logic vehicle routing with applications to
multi-uav mission planning. International Journal of Robust and Nonlinear Control
21(12), 1372–1395 (2011)

10. Guo, M., Dimarogonas, D.V.: Multi-agent plan reconfiguration under local ltl spec-
ifications. The International Journal of Robotics Research 34(2), 218–235 (2015)

11. Haghighi, I., Sadraddini, S., Belta, C.: Robotic swarm control from spatio-temporal
specifications. In: Proc. of CDC. pp. 5708–5713 (Dec 2016)

12. Shoukry, Y., Nuzzo, P., Balkan, A., Saha, I., Sangiovanni-Vincentelli, A.L., Seshia,
S.A., Pappas, G.J., Tabuada, P.: Linear temporal logic motion planning for teams
of underactuated robots using satisfiability modulo convex programming. In: Proc.
of CDC. pp. 1132–1137. IEEE (2017)

13. Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.A.: Drona: A framework for safe
distributed mobile robotics. In: Proc. of ICCPS. pp. 239–248. ICCPS ’17, ACM,
New York, NY, USA (2017), http://doi.acm.org/10.1145/3055004.3055022

14. Kantaros, Y., Zavlanos, M.M.: Distributed optimal control synthesis for multi-
robot systems under global temporal tasks. In: Proceedings of the 9th ACM/IEEE
International Conference on Cyber-Physical Systems. pp. 162–173. IEEE Press
(2018)

15. Bhatia, A., Kavraki, L.E., Vardi, M.Y.: Sampling-based motion planning with tem-
poral goals. In: Proc. of ICRA. pp. 2689–2696 (2010)

16. Sahin, Y.E., Nilsson, P., Ozay, N.: Provably-correct coordination of large collections
of agents with counting temporal logic constraints. In: Proc. of ICCPS. pp. 249–
258. ACM (2017)

17. Sahin, Y.E., Nilsson, P., Ozay, N.: Synchronous and asynchronous multi-agent
coordination with cltl+ constraints. In: Proc. of CDC. pp. 335–342. IEEE (2017)

18. Gray, A., Gao, Y., Lin, T., Hedrick, J.K., Tseng, H.E., Borrelli, F.: Predictive
control for agile semi-autonomous ground vehicles using motion primitives. In:
Proc. of ACC. pp. 4239–4244. IEEE (2012)

19. Paranjape, A.A., Meier, K.C., Shi, X., Chung, S.J., Hutchinson, S.: Motion prim-
itives and 3d path planning for fast flight through a forest. The International
Journal of Robotics Research 34(3), 357–377 (2015)

20. Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for
nonlinear control systems. Automatica 44(10), 2508–2516 (2008)

16 Sahin et al.

21. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: Tulip: a software
toolbox for receding horizon temporal logic planning. In: Proceedings of the 14th
international conference on Hybrid systems: computation and control. pp. 313–314.
ACM (2011)

22. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (1999)
23. Gurobi Optimization, I.: Gurobi optimizer reference manual (2016), http://www.

gurobi.com

