
Provably-Correct Coordination of Large Collections of Agents
with Counting Temporal Logic Constraints∗

Yunus Emre Sahin

University of Michigan

Department of Electrical Engineering

and Computer Science

Ann Arbor, MI 48109

ysahin@umich.edu

Pe�er Nilsson

University of Michigan

Department of Electrical Engineering

and Computer Science

Ann Arbor, MI 48109

pe�ni@umich.edu

Necmiye Ozay

University of Michigan

Department of Electrical Engineering

and Computer Science

Ann Arbor, MI 48109

necmiye@umich.edu

ABSTRACT
In this paper, we consider the problem of coordinating a large collec-

tion of homogeneous agents subject to a novel class of constraints:

counting temporal logic constraints. Counting constraints arise

naturally in many multi-agent planning problems where the iden-

tity of the agents is not important for the task to be completed.

We introduce a formal language to capture such tasks and present

an optimization-based technique to synthesize plans for large col-

lections of agents in a way to guarantee the satisfaction of tasks

speci�ed in this formalism.

CCS CONCEPTS
•�eory of computation →Modal and temporal logics; Ab-
straction; •Computing methodologies →Planning for deter-
ministic actions; Multi-agent planning; Motion path plan-
ning; •Computer systems organization→Robotic autonomy;

KEYWORDS
Correct-by-construction synthesis

ACM Reference format:
Yunus Emre Sahin, Pe�er Nilsson, and Necmiye Ozay. 2017. Provably-

Correct Coordination of Large Collections of Agents with Counting Tem-

poral Logic Constraints. In Proceedings of �e 8th ACM/IEEE International
Conference on Cyber-Physical Systems, Pi�sburgh, PA USA, April 2017 (ICCPS),
10 pages.

DOI: h�p://dx.doi.org/10.1145/3055004.3055021

1 INTRODUCTION
Many cyber-physical system technologies that will contribute to the

vision of smart and connected communities require coordination

of large collections of systems. Scalable design methodologies to

control such collections in a way to ensure safety and e�ciency are

therefore of great importance. �is paper makes a step towards this

goal by introducing a new logic, namely counting linear temporal

∗
�is work is supported in part by NSF grants CNS-1239037, CNS-1446298 and ECCS-

1553873, and DARPA grant N66001-14-1-4045.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

ICCPS, Pi�sburgh, PA USA
© 2017 ACM. 978-1-4503-4965-9/17/04. . .$15.00

DOI: h�p://dx.doi.org/10.1145/3055004.3055021

logic, and by providing algorithms to synthesize plans for a large

number of agents in a way to ensure satisfaction of speci�cations

given in this logic.

Coordination of large numbers of agents is relevant in many

applications including evacuation planning [14], formation control

[25], coverage [15], and emergency response [9, 18]. Classical tech-

niques for coordination deal with relatively simple objectives, such

as reaching a goal state while avoiding collisions or converging to

a consensus formation, with various degrees of complexity in the

dynamics [17, 24, 29]. More recently, there has been an interest

in using temporal logics to describe complex high-level speci�ca-

tions for robots and automatically synthesizing plans or controllers

that are guaranteed to satisfy the given speci�cations by construc-

tion [2, 13]. Although there are a�empts to apply similar ideas

in multi-robot se�ings [6, 12, 22], the number of robots that can

be coordinated is limited due to the high computational complex-

ity of these approaches. Related work also exists in coordinating

“swarms” of robots, in which the number of robots can be arbitrary.

In this case, however, the swarm is roughly treated as a single

agent with deformable shape [3, 11], which renders individual task

assignments impossible.

We are motivated by multi-agent planning tasks that are fairly

complex but that have a certain structure that allows scalability.

Consider an emergency response scenario like an earthquake that

requires deployment of hundreds of autonomous (ground and air)

vehicles to provide supplies to victims. In such a scenario, the

robotic team needs to provide supplies to certain areas, surveil

di�erent areas for survivors, and avoid certain regions of danger.

�e tasks may require su�ciently many robots to be in a given

region simultaneously to provide the required support. Similarly,

narrow passage ways, or potential to trigger further destruction

due to overloading damaged structures may require not too many
robots to be in certain regions at the same time. �erefore, there

are temporally varying constraints on the number of robots that

must be in di�erent regions over time. We call such constraints

counting constraints [19] and capture their temporal variation with

a novel logic called counting linear temporal logic. �e role or

identity of an individual robot is not important for satisfaction of

these constraints; that is, as long as the supplies reach their target,

it does not ma�er which subset of the robots that provide them.

Moreover, usually, there are not too many di�erent types of robots;

for instance, one class of UAVs and two classes of ground vehicles.

�at is, there is a small number of classes of robots but robots within

each class have the same dynamics and motion capabilities.

ICCPS, April 2017, Pi�sburgh, PA USA Yunus Emre Sahin, Pe�er Nilsson, and Necmiye Ozay

Counting constraints together with robots within a class hav-

ing the same motion capabilities render the overall coordination

problem permutation invariant. �is structural property was �rst

exploited in [19] for coordination of large collections of systems

in the context of scheduling thermostatically controlled loads with

time-invariant counting constraints on system modes. Possible

extensions to multi-agent systems and to complex linear temporal

logic speci�cations on counting constraints are also outlined in

[19]. We now instantiate these extensions by introducing counting

LTL and we propose an integer linear programming (ILP)-based

synthesis algorithm to solve the resulting coordination problem.

One desirable property of multi-agent plans is the ability to accept

new agents during the execution of a plan, or tolerate that agents

may become unavailable. We show that such robustness properties

of the plans are easy to enforce within the proposed framework.

�e rest of the paper is structured as follows. Some preliminar-

ies are given and the problem is formally stated in Section 2. In

Section 3, we show how dynamics of multiple robots can be aggre-

gated into a constrained linear system. We present our solution

approach in Section 4 and give multiple examples demonstrating

the scalability of the approach are in Section 6. Finally, Section 7

concludes the paper with some remarks and directions for future

work.

2 PRELIMINARIES AND PROBLEM
STATEMENT

2.1 Notation and de�nitions
�is section introduces notation and necessary background infor-

mation. We follow the exposition in [1] for the basic notions related

to transition systems and extend them to collections.

In the rest of the paper,N denotes the set of non-negative integers

and [N] = {1, . . . ,N } denotes the set of positive integers up to N .

�e indicator function of a set A is denoted 1A (x) and is equal

to 1 if x ∈ A and to 0 otherwise. �e vector 1n represents the

n-dimensional vector consisting of all 1’s.

We use transition systems to model the dynamics of a single

agent.

De�nition 2.1. A transition system is a tuple T = (S,→,AP ,L)
where S is a �nite set of states,→⊆ S ×S is a transition relation, AP
is a �nite set of atomic propositions and L : S → 2

AP
is a labeling

function.

We say that a state s ∈ S satis�es an atomic proposition a ∈ AP if

a ∈ L(s). We assume that the transition systems considered do not

have any blocking states. �at is, for all s ∈ S , there exists a state

s ′ such that (s, s ′) ∈→. �is is without loss of generality since the

transition system can always be amended with a dummy sink state

with a self-transition to obtain a non-blocking transition system

that is equivalent for synthesis purposes.

De�nition 2.2. A path of a transition system T = (S,→,AP ,L) is

an in�nite sequence π : s0s1s2 . . . of states such that (sk , sk+1
) ∈→.

A trace of T corresponding to a path π is de�ned as trace (π) =
L(s0)L(s1)L(s2) . . . ∈ (2AP)ω .

We are interested in controlling the collective behavior of N ho-

mogeneous agents, dynamics of which are represented by identical

transition systems T . We assume that all the transitions in a transi-

tion system are controllable (or, action deterministic), that is, if an

agent is in state s and a transition exists from state s to s ′, then the

controller can choose to take this transition and enforce the agent

to transition to state s ′. In the context of robotics it is common to

directly model the motion of a robot using such an action determin-

istic transition system on some grid world; this approach is based

on the assumption that the underlying dynamics allow steering

the robot arbitrarily. Another alternative is to design low-level

motion primitives (see, for instance, [16]) to enable deterministic

transitions among di�erent regions of the workspace. For more

complex and general dynamics, abstraction methods proposed in

[20, 21, 27] can be used, where each node in the transition system

corresponds to a subset of the original state-space.

De�nition 2.3. Let Π = {πn }n∈[N]
be the collection of paths

followed simultaneously by N agents, where each agent n has

the dynamics Tn = (S,→,AP ,L) and path πn : sn
0
sn
1
sn
2
. . .. �e

collective trace corresponding to Π is a sequence ctrace (Π) = σ =
σ0σ1σ2 . . . of functions σk : AP → [N] such that for all a ∈ AP ,

σk (a) =
∑
n∈[N]

1L(snk)
(a).

In words, a collective trace is a sequence of functions σk that, at

step k , maps each atomic proposition to the number of agents that

are in a state satisfying that atomic proposition.

2.2 Counting LTL
We introduce a temporal logic that is useful to specify and reason

about the collective behavior of multiple agents. We call this logic

counting linear temporal logic, or, for short, counting LTL.

�e syntax of a counting LTL formula over a set of atomic propo-

sitions AP is given by the following grammar:

φ ::= True | cp | φ1 ∧ φ2 | ¬φ | ©φ | φ1 U φ2, (1)

where cp ∈ AP × N is a counting proposition and φ, φ1 and φ2 are

counting LTL formulas. �e symbols ¬, ∧, © U are, respectively,

the logical operators negation and conjunction, and the temporal

operators next and until. �ese operators can be used to de�ne

additional operators such as disjunction (φ1 ∨φ2 � ¬(¬φ1 ∧¬φ2)),
false (False � ¬True), eventually (♦φ � True U φ), and always

(�φ � ¬♦¬φ).

Next, we present the semantics of counting LTL. Given a collec-

tive trace σ , satisfaction of a counting LTL formula φ by σ at step

k , denoted as σ ,k |= φ, is inductively de�ned as follows:

• σ ,k |= True,
• for any counting proposition cp = [a,m] ∈ AP ×N, σ ,k |=

[a,m] if and only if σk (a) ≥ m,

• σ ,k |= φ1 ∧ φ2 if and only if σ ,k |= φ1 and σ ,k |= φ2,

• σ ,k |= ¬φ if and only if σ ,k 6 |= φ,

• σ ,k |= ©φ if and only if σ ,k + 1 |= φ, and

• σ ,k |= φ1 U φ2 if and only if there exists l ≥ 0 such that

σ ,k + l |= φ2 and σ ,k + l ′ |= φ1 for all 0 ≤ l ′ < l .

We say that a collective trace σ satis�es a counting LTL formula φ,

and write σ |= φ, if σ , 0 |= φ.

To exemplify, assume that a collective trace σ is generated by N
agents. �en σ satis�es the property ♦[a, 3] if there exists a time

k ≥ 0 when the states of at least three agents satisfy a. Similarly,

Provably-Correct Coordination of Large Collections of Agents with Counting LTL Constraints ICCPS, April 2017, Pi�sburgh, PA USA

σ satis�es �¬[b, 4] if at all times k ≥ 0, the state of at most three

agents satisfy b. We also point out the tautologies [c, 0] = True,
[c,m] = False for m > N , and that the negation of a counting

proposition is ¬[c,k] = [¬c,N − k + 1].

Some remarks on the relation of counting LTL to other logics are

in order. It is possible to consider a metric version of counting LTL,

i.e. similar to metric temporal logic (MTL). Since we only deal with

systems that evolve in discrete-time steps, considering MTL would

not add to the expressivity of the logic. If we consider counting

propositions as the set of new atomic propositions, counting LTL

is essentially equivalent to standard LTL, and can be interpreted

over the product transition system of all agents. However, such a

product construction leads to an explosion both in the number of

states and in the number of atomic propositions, and is therefore

not scalable. �e key to achieve e�ciency in our algorithms is

to avoid this construction by working with collective traces and

counting propositions. Two logics related to counting LTL, a spa-

tiotemporal logic for swarms [8] and censusSTL [28], have been

proposed concurrently at the time this paper was being wri�en.

�e former [8] specializes to planar robotic swarms and regular

grid worlds, and is less expressive than counting LTL. Meanwhile,

the la�er [28] generalizes counting LTL by allowing “temporal

counting propositions” but the paper only focuses on inference of

a logic formula from data and does not consider control synthesis

for censusSTL.

2.3 Problem statement
Now, we are ready to formally state the multi-agent coordination

problem with counting LTL constraints.

Problem 1. Given a counting LTL formula φ over a set of atomic
propositionsAP , and a collection of N agents with identical dynamics
Tn = T � (S,→,AP ,L) and (non-identical) initial conditions sn

0
for

n ∈ [N], synthesize, for each agent n, a path πn starting at sn
0
such

that the collective trace corresponding to Π = {πn }n∈[N]
satis�es φ.

�at is, ctrace (Π) |= φ. We will refer to an instance of this problem
as

(
φ,T , {sn

0
}n∈[N]

)
.

3 REFORMULATION
In this section we present a problem equivalent to Problem 1 that

is—as we show in Section 4—more amenable to optimization-based

solutions. �e alternative formulation is obtained by exploiting the

homogeneity of the transition system graphs.

A transition system T = (S,→,AP ,L) can be seen as a directed

graph with nodes S and edges→. Since all the agents we consider

in this work are identical, we aim to represent the paths of all

agents simultaneously. To this end, we assign weights to each

node and each edge. Let the joint state space of the agents be

S = {ν1,ν2, . . . ,νI }. �en the weight assigned to νi ∈ S , denoted

by wi ∈ N, represents the number of agents that are in state νi .
�e weight assigned to an edge (νi ,νj) ∈→, denoted by wi, j ∈ N,

represents the number of agents that will move from νi to νj in

the next time step. �e dynamics governing the node weights then

take the following form:

(wi)
+ =

∑
j ∈[I]

w j,i , ∀i ∈ [I], (2)

subject to the input being in the (state-dependent) constraint set

ϒ =

{wi, j }i, j ∈[N]
:

wi, j = 0 if (νi ,νj) <→

wi, j ∈ N∑
j ∈[I]

wi, j = wi

. (3)

�e �rst constraint assures that no transitions take place between

nodes that are not connected by→, while the second constraint

guarantees that (wi)
+

is a non-negative integer for all i ∈ [I]. �e

third constraint preserves the total number of agents:

∑
i ∈I (wi)

+ =∑
i ∈I wi . Eq. (2) is a linear system with state-dependent input

constraints. By introducing states w � [w1, . . . ,wI]
ᵀ

and inputs

u � [w1,1, . . . ,wI,1,w1,2, . . . ,wI,2, . . .w1, I , . . . ,wI, I]
ᵀ

it can be

wri�en as

Σ :

w+ = Bu,

u ∈ ϒ(w),
(4)

where the state dependence in the input set has been made clear.

�e system matrix B is equal to B = II ⊗ 1ᵀI where II is the I × I
identity matrix and ⊗ is the Kronecker product. In the following we

will refer to the system Σ de�ned in (4) as the aggregate dynamics.
A trajectory of the aggregate dynamics is an in�nite sequence

Ω = w0w1w2 We will use the atomic propositions of the

transition system T to assign collective traces to the trajectories

of the aggregate dynamics. A collective trace corresponding to a

trajectory Ω with the invariant

∑
i ∈[I] (wk)i = N is a sequence

ctrace (Ω) = µ = µ0µ1µ2 . . . of functions µk : AP → {0, . . . ,N }
such that for all a ∈ AP , µk (a) =

∑
i ∈[I] (wk)i1L(νi) (a).

Problem 2. Given the aggregate dynamics Σ, an initial condition
w0 ∈ N

I , and a counting LTL formula φ over AP , synthesize an
in�nite sequence of control inputs u = u0u1u2 . . . within the allow-
able input set (3) such that the collective trace corresponding to the
resulting trajectory of Σ satis�es φ. We will refer to an instance of
this problem as (φ, Σ,w0).

We now relate Problem 1 to Problem 2. By construction, the

following holds.

Proposition 1. For any instance P =
(
φ,T , {sn

0
}n∈[N]

)
of Prob-

lem 1, there exists an instance P ′ = (φ, Σ,w0) of Problem 2 such that
P has a solution if and only if P ′ has a solution.

Proof. We �rst construct the instance P ′ from P . �e aggre-

gate dynamics Σ are constructed from the transition system T as

presented above and the initial condition w0 of P ′ is given in terms

of the initial condition {sn
0
}n∈[N]

as (w0)i =
∑
n∈[N]

1{νi }
(
sn
0

)
.

We show that a solution of P can be mapped to a solution of

P ′. Let the paths πn = sn
0
sn
1
sn
2
. . . for n ∈ [N] be such that σ �

ctrace
(
{πn }n∈[N]

)
|= φ. �ey can be mapped to aggregate states

wk and aggregate controls uk for k ≥ 0 by

(wk)i �
∑

n∈[N]

1{νi }
(
snk

)
, (5a)

(uk)i, j �
∑

n,m∈[N]

1{νi }
(
snk

)
1{νj }

(
snk+1

)
. (5b)

It is clear that uk ∈ ϒ(wk) and thatwk+1
= Buk , so Ω = w0w1w2 . . .

is a valid trajectory of Σ. Furthermore, the corresponding collective

ICCPS, April 2017, Pi�sburgh, PA USA Yunus Emre Sahin, Pe�er Nilsson, and Necmiye Ozay

trace µ � ctrace (Ω) will satisfy φ since the truth evaluation is

identical to that of σ for any a ∈ AP :

µk (a) =
∑
i ∈[I]

(wk)i 1L(si) (a)

=
∑
i ∈[I]

∑
n∈[N]

1{νi }
(
snk

)
1L(νi) (a)

=
∑

n∈[N]

1L(snk)
(a) = σk (a).

�erefore σ |= φ implies that µ |= φ, so P ′ has a solution if P has a

solution.

Next, given a solution u0u1u2 . . . of P ′, we construct traces πn =
sn
0
sn
1
sn
2
. . . of P such that the collective trace satis�es φ. We do so

iteratively by assuring that (5a) holds. �e invariant (5a) evidently

holds at k = 0 by construction of P ′. For induction, assume that

it holds at time k . �e control (uk)i, j dictates for each node pair

(νi ,νj) how many traces πn for which snk = νi that should transition

such that snk+1
= νj . Since uk ∈ ϒ (wk), it follows that it is possible

to assign a destination to each agent such that (5a) holds also at time

k + 1. As above, the truth evaluations of the collective traces are

identical due to (5a). �us P has a solution if P ′ has a solution. �

Remark 1. �e construction in the proof above incrementally yields
traces πn and requires central coordination. From an implementation
standpoint it may be desirable to distribute complete traces πn at
deployment to not require central communication during the mission.
�is can be achieved by executing the system Σ o�-line to extract
individual traces as described in the proof. As discussed in Section
4; due to �niteness of the state space of w any solution trajectory
Ω = w0w1w2 . . . must be on a �nite pre�x-su�x form. In particular,
our solution approach searches the solution space for such solutions
that are also relatively short. When Ω is on a pre�x-su�x form also
the generated individual traces πn will necessarily be on a �nite
pre�x-su�x form, although the su�x may be longer than that of Ω.
�erefore in�nite individual traces πn can be generated o�-line which
enables deployment without need of central coordination.

In Section 4 we propose an optimization-based approach to solve

Problem 2, from which a solution to Problem 1 can be extracted

through the construction in the proof of Proposition 1. Note that the

size of the linear system (4) is independent of the number of agents

N , which makes the approach applicable to very large collections

of agents.

3.1 Multiple classes of agents
Before moving to the solution of Problem 2, we extend the theory

to the situation when there are multiple heterogeneous classes of

agents that are homogeneous within each class. Each class of agents

is supposed to provide di�erent services, so we want the ability to

pose class-speci�c counting constraints. For instance, we might

require that a certain region in a robotic application should have at

least one �rst aid robot, and between 2 and 5 cleaning robots that

clear up debris. We �rst state a class-augmented generalization of

Problem 1 and then show that also this problem can be reformulated

to an instance of Problem 2.

Consider C di�erent classes of agents, with Nc agents of type c
for c ∈ [C]. �e dynamics of agents in class c are described by a

transition system T c = (S,→c ,AP ,L), i.e., the di�erence between

classes lies in the transitions→c
.

Problem 3. Given a counting LTL formula φ over an augmented
set of atomic propositions AP ′ � AP × [C]; and C agent classes, each
containing Nc agents with identical dynamics T c � (S,→c ,AP ,L)
and (non-identical) initial conditions snc

0
fornc ∈ [Nc], synthesize, for

each agent nc , a path πnc starting at s
nc
0

such that the collective trace
corresponding to Π = {πnc }n∈[Nc],c ∈[C]

satis�es φ, i.e., ctrace (Π) |=
φ.

Using the procedure above, we can construct C di�erent aggre-

gate systems Σc that describe the aggregate behavior of individual

classes. By concatenating the states asw[C] = [(w1)T , . . . , (wC)T]
T

and u[C] = [(u1)T , . . . , (uC)T]
T

, we can write

Σ[C]
:

(w[C])+ = B[C]u[C],

u[C] ∈ ϒ[C] (w[C]),

for B[C]
being the block-diagonal matrix formed by the Bc ’s, and

U [C] (w[C]) =
∏

c ∈[C]
ϒc (wc). We also introduce an augmented

collective trace that allows us to assign class-speci�c tasks. For a

trajectory w[C]

0
w[C]

1
w[C]

2
. . . of Σ[C]

we de�ne the collective trace

ctrace (Σ) = µ = µ0µ1µ2 . . . where the functions µk : AP × [C] →

{0, . . . ,maxc ∈[C]
Nc } are such that for all a ∈ AP and c ∈ [C],

µk (a, c) =
∑
i ∈[I]

(wc
k)i1L(νi) (a).

�e result of Proposition 1 now carries over to this augmented

construction: we can construct an instance of Problem 2 that has

a solution if and only if Problem 3 has a solution. �e additional

complexity introduced by classes does not a�ect the conceptual

di�culty of solving the instance of Problem 2, and a solution can

be transformed into a solution of Problem 3.

4 SOLUTION APPROACH
Given an instance of Problem 2, we encode the aggregate dynamics

and the counting LTL speci�cations as integer-linear-programming

(ILP) constraints and solve the corresponding feasibility or opti-

mization problem to obtain a solution. �is approach is inspired by

bounded model-checking for LTL [4, 5]. Similar ideas have recently

been used for control synthesis for continuous-state and hybrid

systems, where mixed-integer-linear programming constraints are

used [10, 23, 26]. Here, we show that counting propositions also

lead to linear constraints. In what follows, M is a su�ciently large

positive number, in particular, M > N + 1.

4.1 Dynamic constraints
Loop constraints: As is common in LTL model-checking and logic

synthesis, we restrict the solutions we seek to those on pre�x-

su�x form. �at is, for a given positive integer h, we search for

trajectories of the form Ω = w0w1 . . .wh . . . and an integer l ∈
{0, . . . ,h−1} such that for all k ≥ h, wk = wk+l−h . �is restriction

allows us to formulate optimization problems with �nitely many

variables. �e resulting collective trace has the form ctrace (Ω) =
µ0µ1 . . . µl−1

(µl . . . µh−1
)ω .

�ese “loop constraints” are captured by introducing h integer-

valued vector variables w1, . . . ,wh for states andh binary variables

Provably-Correct Coordination of Large Collections of Agents with Counting LTL Constraints ICCPS, April 2017, Pi�sburgh, PA USA

z
loop
0
, . . . z

loop
h−1

∈ {0, 1} such that

h−1∑
k=0

z
loop
k = 1, (6a)

wh ≤ wk +M (1 − z
loop
k), k = 0, . . . ,h − 1, (6b)

wh ≥ wk −M (1 − z
loop
k), k = 0, . . . ,h − 1. (6c)

Note that (6a) requires exactly one of the loop variables to be

1. Assume z
loop
l = 1. �en wh = wl and (6b), (6c) are trivially

satis�ed for any k , l .
Aggregate dynamics: �e evolution of the states are constrained

by the aggregate dynamics (2). �at is, we have:

wk+1
= Buk , k = 0, . . . ,h − 1, (7)

where integer-valued vector variables uk are constrained such that

uk ∈ ϒ(wk), k = 0, . . . ,h − 1, (8)

which are linear constraints in variables uk and wk .

4.2 Counting LTL constraints
Given a counting LTL formula generated according to the grammar

in (1), we recursively parse this formula in order to generate the

corresponding ILP constraints. Given any formula φ in the parse

tree, we introduce h binary variables z
φ
k ∈ {0, 1} for k = 0, . . . ,h−1

such that z
φ
k = 1 if and only if σ ,k |= φ, where σ is the collective

trace of a pre�x-su�x trajectory. Using these newly introduced

binary variables, a counting LTL formula can be encoded as a

set of ILP constraints. We denote the set of all ILP constraints

corresponding to a counting LTL formula φ by ILPh (φ); and all the

binary variables within ILPh (φ) as zLT L,h .

Since counting propositions are the main di�erence between

counting LTL and standard LTL, we propose an encoding for the

counting propositions. �e rest of the encodings can be found

in bounded model checking literature but we state them here for

completeness.

cp (counting proposition): Let ϕ = cp = [a,m] ∈ AP × N. We

de�ne va = [1L(ν1) (a), . . . ,1L(νI) (a)]
T

and introduce optimization

variables z
cp
k ∈ {0, 1} for k = 0, . . . ,h − 1 such that

vTawk ≥ min(m,N + 1) −M (1 − z
cp
k),

vTawk ≤ min(m,N + 1) +Mz
cp
k .

(9)

By construction, cp holds (fails to hold) at time k when z
cp
k = 1

(z
cp
k = 0). In other words, σk (a) = vTawk ≥ m if and only if

z
cp
k = 1, noting that σk (a) is at most N.

¬ (negation): Let ϕ = ¬φ. �en

z
ϕ
k = 1 − z

φ
k , k = 0, . . . ,h − 1. (10)

∧ (conjunction): Let ϕ =
∧n
i=1

φi . �en for all k = 0, . . . ,h − 1

z
ϕ
k ≤ z

φi
k , i = 1, . . . ,n,

z
ϕ
k ≥ 1 − n +

n∑
i=1

z
φi
k .

(11)

∨ (disjunction): Let ϕ =
∨n
i=1

φi . �en for all k = 0, . . . ,h − 1

z
ϕ
k ≥ z

φi
k , i = 1, . . . ,n,

z
ϕ
k ≤

n∑
i=1

z
φi
k .

(12)

With slight abuse of notation, we also use Boolean operators on

these optimization variables. For example for ϕ =
∨n
i=1

φi , we say

zϕ =
∨n
i=1

zφi instead of stating inequalities as in (12). Finally, we

encode the temporal operators as follows:

© (next): Let ϕ = ©φ, then

z
ϕ
k = z

φ
k+1
, k = 0, . . . ,h − 2,

z
ϕ
h−1
=

h−1∨
k=0

(z
φ
k ∧ z

loop
k).

(13)

U (until): if ϕ = φ1 U φ2, then

z
ϕ
k = z

φ2

k ∨
(
z
φ1

k ∧ z
ϕ
k+1

)
, k = 0, . . . ,h − 2, (14)

z
ϕ
h−1
= z

φ2

h−1
∨
*.
,
z
φ1

h−1
∧

h−1∨
i=0

(
z
loop
i ∧ z̃

ϕ
i

)+/
-
, (15)

z̃
ϕ
k = z

φ2

k ∨
(
z
φ1

k ∧ z̃
ϕ
k+1

)
, k = 0, . . . ,h − 2, (16)

z̃
ϕ
h−1
= z

φ2

h−1
, (17)

where z̃
ϕ
k are auxiliary binary variables. As shown in [4], not

introducing auxiliary variables results in trivial satisfaction of the

until formula ϕ.

While any counting LTL formula can be represented as ILP con-

straints using the encodings above, more e�cient implementations

with less overhead are possible for specialized cases. For example,

the temporal operators ♦ (eventually) and � (always) are commonly

used in speci�cations. Likewise, the combination of these two op-

erators, �♦ and ♦�, are frequently used, and they specify in�nitely
o�en and reach-stay types of tasks, respectively. In our implemen-

tation, we provide more succinct encodings for these specialized

cases and call them templates. Template formulas can be combined

using Boolean operations, but if they are nested with other tem-

poral operators that may lead to incorrect or incomplete solutions.

�e template encodings are as follows:

(�) (always template): Let ϕ = �φ, then

z
ϕ
0
=

h−1∧
k=0

z
φ
k . (18)

(♦) (eventually template): Let ϕ = ♦φ, then

z
ϕ
0
=

h−1∨
k=0

z
φ
k . (19)

(�♦) (always-eventually template): Let ϕ = �♦φ, then

z
ϕ
0
=

h−1∨
k=0

*.
,
z
φ
k ∧

*.
,

k∨
i=1

z
loop
i

+/
-

+/
-
. (20)

ICCPS, April 2017, Pi�sburgh, PA USA Yunus Emre Sahin, Pe�er Nilsson, and Necmiye Ozay

(♦�) (eventually-always template): Let ϕ = ♦�φ, then

z
ϕ
0
=

h−1∧
k=0

*.
,
z
φ
k ∨

*.
,

k∧
i=1

¬z
loop
i

+/
-

+/
-
. (21)

In the examples section we compare the computation times for

solutions with the template encodings and the generic encodings.

4.3 Overall ILP problem and analysis
Given an instance of Problem 2 and a trajectory length h, the fol-

lowing feasibility problem can be formed:

Find u
0:h−1
, w

1:h , z
loop
0:h−1
, zLT L,h (OPT)

s.t. (6), (7), (8), ILPh (φ), z
φ
0
= 1.

Note that by construction all the optimization variables are inte-

gers and all the constraints in (OPT) are linear in the optimization

variables, therefore it is an integer linear programming problem.

Next we provide some analysis of the solution approach, starting

with a soundness result.

Proposition 2. Given a trajectory length h, if the ILP problem
(OPT) is feasible, then Problem 2 has a solution.

Proof. Constraints (6), (7), (8) guarantee that a trajectory Ω∗ =
w∗

0
w∗

1
. . .w∗l−1

(w∗l . . .w
∗
h−1

)ω generated from a feasible solution

of (OPT) is consistent with the system dynamics and initial con-

dition, while the input sequence U∗ = u∗
0
u∗

1
. . . u∗l−1

(u∗l . . . u
∗
h−1

)ω

generated from a feasible solution of (OPT) is in the allowable input

set. By the soundness of bounded model checking [4] and the cor-

rectness of the encoding for counting constraints, ILPh (φ) together

with z
φ
1
= 1 guarantees that ctrace (Ω∗) |= φ. �erefore, U∗ solves

Problem 2. �

�e following result shows that there is no loss of generality in

using pre�x-su�x trajectories, therefore the approach is complete

if computational resources allow picking a large enough trajectory

length h.

Proposition 3. If Problem 2 has a solution, then there exists a
�nite trajectory length ˜h such that (OPT) is feasible.

Proof. (Sketch) �e proof proceeds by reducing Problem 2 into

a standard LTL control synthesis problem, where the goal is to

�nd a path of a �nite transition system that satis�es a given LTL

formula or to prove no such path exists. For an action deterministic

�nite state system T ′, the control synthesis problem with LTL

speci�cation ϕ is equivalent to checking whether T ′ satis�es ¬ϕ.

If T ′ satis�es ¬φ, then no satisfying path exists. If T ′ violates ¬φ,

then there always exists a counter-example in the form of a path in

pre�x-su�x form [1]. Since this path satis�es φ, it is a solution to

the control synthesis problem.

�e reduction proceeds as follows: consider a transition sys-

tem T ′ = (S ′,→′,AP ′,L′), each state ν ′ ∈ S ′ of which is one

possible valuation of w. Since w is an integer-valued vector with∑
i ∈[I] (w)i = N , |S ′ | is �nite. �e transition relation→′ of T ′ is

de�ned based on (4). �e set AP ′ contains an atomic propositions

cp′ for each counting proposition cp = [a,m] for 0 ≤ m ≤ N + 1

(since any m > N + 1 has the same satisfaction properties with

m = N + 1), and is therefore �nite. Similarly, the LTL formula

φ ′ over AP ′ is de�ned by replacing each cp that appears in the

counting LTL formula φ with the corresponding cp′. Finally the

labeling function L′ is de�ned such that cp′ ∈ L′(ν ′) if the valua-

tion of w corresponding to ν ′ satis�es the counting proposition cp
corresponding to cp′. Problem 2 is then equivalent to existence of

a path in T ′ with initial condition ν ′
0
∈ S ′ that corresponds to w0,

that satis�es φ ′. �is problem admits a pre�x-su�x solution. �

Remark 2. We point out that in the proof, |S ′ | depends on N , so
the ˜h that is required for completeness also depends on N .

Note that the number of ILP constraints and the number of

variables in (OPT) do not depend on the number of agents N . Hence

the proposed approach easily scales to a large number of agents

as demonstrated in Section 6. Another interesting property of

Problem 2 is its invariance to integer scaling as captured in the

following proposition.

Proposition 4. An instance (φ, Σ,w0) of Problem 2 withN agents
(i.e.,

∑
i ∈[I] (w0)i = N) has a solution if and only if, for any positive

integer p, the instance (φ ′, Σ,pw0) with pN agents and a counting
LTL speci�cation φ ′ that is obtained by multiplying the second terms
of all counting propositions in φ by p, has a solution.

Proof. �is amounts to scaling both sides of the linear con-

straints in (6), (7), (8), (9), which contain state and input variables,

by p. �e feasibility of (OPT) is not a�ected by this scaling. �en,

by Proposition 3, it does not a�ect the existence of solutions of

Problem 2 either. �

As a result of Proposition 4, the size of a problem instance can be

reduced if N , the integer terms in the counting constraints, and the

elements of w0 share a common divisor d (i.e., are not co-prime). In

this case it is equivalent to solve a scaled problem with N /d agents

and scale the solution by d .

5 OTHER CONSIDERATIONS
In this section we discuss some considerations that are relevant

in the context of multi-robot systems and show that they can be

easily addressed within the proposed framework.

5.1 Static obstacle avoidance
If some part P of the workspace is blocked by obstacles or consid-

ered unsafe, the number of agents in those states should be exactly

zero, at all times. Assuming robot states include workspace location

information, and introducing a ∈ AP to be such that a ∈ L(s) if and

only if the state s is in P, static obstacle avoidance speci�cation is

captured by the counting LTL formula φobs = �(¬[a, 1]).

5.2 Collision avoidance
Assume that the distance between any two agents needs to be at

least ε at all times to avoid collisions. Indeed, counting propositions

are ideally suited to achieve this task. Let I (si) denote the set of

states that are ε-close to si in the spatial domain. Now introduce a

new atomic proposition asi for each state such that asi ∈ L(s) if and

only if s ∈ I (si). �e conjunction φca = �
(∧I

i=1
¬[asi , 2]

)
then

enforces the desired minimal distance between any two agents. �e

counting proposition cpi = ¬[asi , 2] limits the maximum number

Provably-Correct Coordination of Large Collections of Agents with Counting LTL Constraints ICCPS, April 2017, Pi�sburgh, PA USA

of agents present in a window I (si) around si to one, hence enforc-

ing cpi for each state at all times ensures a minimum separation

between any two agents.

5.3 Robustness to entering and exiting agents
Counting propositions constrain the number of agents in a certain

state by inequalities as denoted in (9). In practical situations the

number of available agents may be uncertain. To account for agents

that are momentarily unavailable for task completion, or uncon-

trolled agents that move across the work space, we want to satisfy

those inequalities with an ϵ bound in order to be robust against

such deviations. �at is, speci�cations should be satis�ed even if ϵ
number of agents fail unexpectedly, or if ϵ new agents are for some

reason introduced into the workspace.

De�nition 5.1. A collective trace σ is called ϵ-robust with re-

spect to a speci�cation φ, if σ |= φ ′ for all φ ′ obtained from φ by

modifying the counting propositions of φ as follows:

[a,m] 7→ [a,m + δ], for some δ ∈ [−ϵ, ϵ]. (23)

�is type of robustness can easily be incorporated into the opti-

mization formulation by modifying (9) as follows:

vTawk ≥ min(m,N + 1) + ϵ −M (1 − z
cp
k)

vTawk ≤ min(m,N + 1) − ϵ +Mz
cp
k .

(24)

In order to �nd the most robust solution possible, the ILP (OPT) with

(24) can be posed as an optimization problem with ϵ as a variable

that is to be maximized.

6 EXAMPLES
In this section, we demonstrate the proposed approach with some

examples. All the examples are executed on a laptop with 2.50GHz

Intel Core i-7 processor and 16GB of RAM using GUROBI [7] as the

underlying ILP solver. Our prototype implementation is available

at h�ps://github.com/sahiny/cLTL-synth.

6.1 Numerical examples
We �rst demonstrate the scalability of the approach by varying

several parameters, such as the number of agents N , the transition

system size I , the trajectory length h and the complexity of the

speci�cation. In each case, the transitions→ are generated from

an Erdős-Rényi graph with edge probability 0.25.

We start by investigating the e�ect of transition system size I on

runtime. �e number of agents N and the trajectory lengthh are set

as N = 20 and h = 20. Half of the states are selected randomly and

are labeled with S1 ∈ AP and the rest of the states are labeled with

S2 ∈ AP . �ree goal regions G1,G2 and G3 are created such that

each of these regions have
I

10
states that are randomly selected. We

randomly initialize all of our agents in S1. Finally, the speci�cation

is set to

φ � (♦�[S2,N /2]) ∧ �♦
3∧
i=1

([Gi ,N /5]).

In words, we require that there should be a point in time such that

S2 (which has no agents initially) is populated by at least half of the

agents, and that from that point on, the number of agents present

in S2 should always be greater than
N
2

. In addition, the three goal

states should be visited in�nitely o�en, without any speci�c order.

�e average computation time and average number of variables

and constraints created over ten trials for an increasing transition

system size is displayed in Table 1. �e same experiments are

also run with the template implementation and the corresponding

statistics are shown in parentheses.

Table 1: Average computation time and statistics regarding
optimization problem size for di�erent number of states.

#State 100 200 500

#variables 51k (50k) 199k (198k) 1250k (1250k)

#constraints 72k (56k) 226k (212k) 1395k (1280k)

Creating cons (sec) 19.2 (2.3) 28.5 (4.8) 116.2 (37.1)

Solving ILP (sec) 16.1 (11.4) 75.9 (85.2) 625.3 (285.1)

Secondly, we show that the proposed approach scales well with

respect to the number of agents. We �x the number of states to

I = 100 and leave the remaining problem parameters intact. �e

average computation time over ten trials can be seen from Table 2

for di�erent numbers of agents. As before, the numbers in paren-

theses are for the template implementation. As can be seen, the

number of agents has almost no e�ect on the problem. In fact it

is sometimes faster to solve the problems with more agents, since

there are more feasible solutions.

Table 2: Average computation time and statistics regarding
optimization problem size for di�erent number of agents.

#Agents 20 100 500

#variables 51k (50k) 51k (50k) 51k (50k)

#constraints 72k (56k) 72k (56k) 72k (56k)

Creating cons (sec) 20.6 (11.2) 20.8 (9.4) 20.6 (11.4)

Solving ILP (sec) 16.2 (11.4) 13.6 (10.5) 12.8 (11.2)

Finally, we investigate the e�ects of the trajectory length h. Only

increasing the trajectory length may still return trivial solutions, so

we simultaneously increase the complexity of the speci�cation. �e

number of states is �xed to I = 100 and the number of agents to

N = 20 for this example. �e regions S1 and S2 are created as before

and we create three goal regions using the procedure described

above. We consider speci�cations of the form

φ � (♦� ([S2,N /2])) ∧ (♦� ([G1,N /5]))

∧ (♦� ([G2,N /5])) ∧ (♦� ([G3,N /5])) ∧ φ∗

whereφ∗ contains di�erent number of consecutive goals in di�erent

trials. For instance, for two goals we have

φ∗ � (♦ ([G1, 3] ∧ ♦ ([G2, 3]))) .

By nesting ♦ operators as in φ∗, we force the counting propositions

cp1 = [G1, 3] and cp2 = [G2, 3] to be satis�ed in given order. As we

increase h, we also increase the number of counting propositions

to be satis�ed in a given order. For example, for three goals, φ∗ is

given as follows:

φ∗ � (♦ ([G1, 3] ∧ ♦ ([G2, 3] ∧ ♦ ([G3, 3])))) .

https://github.com/sahiny/cLTL-synth

ICCPS, April 2017, Pi�sburgh, PA USA Yunus Emre Sahin, Pe�er Nilsson, and Necmiye Ozay

�e average computation time over ten trials for di�erent values

of h and for di�erent numbers of goals is presented in Table 3. As

expected, time horizon noticeably a�ects the size of the problem.

Again both the generic encodings and template encodings are used

and their computational statistics are compared. Note that although

the speci�cation φ∗ is not among the templates given in Section

4.2 and it has some nesting, using similar ideas, it is possible to

construct a simple encoding for it.

Table 3: Average computation time and statistics regarding
optimization problem size for di�erent trajectory lengths
and di�erent number of consecutive goals.

h / #goals 20 / 1 50 / 2 100 / 3

#variables 50k (49k) 126k (123k) 252k (246k)

#constraints 72k (55k) 262k (139k) 560k (279k)

Creating cons (sec) 16.9 (1.9) 218.5 (10.5) 1537.2 (44.6)

Solving ILP (sec) 10.0 (13.8) 63.9 (25.7) 522.3 (130.3)

6.2 Abstraction-based synthesis
In this section we highlight the option of solving a counting prob-

lem when the transition system is an abstraction of underlying

continuous-state dynamics. We solve for a speci�cation similar to

those in the previous subsection and generate a transition system

for each agent by abstracting their continuous dynamics. To con-

struct the abstraction, we employ the backwards reachability-based

approach in [20, 27], with the di�erence that instead of iteratively

partitioning the state-space, we use a �xed size partition. �e

workspace is partitioned with discretization step 0.25, resulting in

a 13 × 9 grid. We assume each agent has the following dynamics:

x (t + 1) =

[
0.9 0.1

0 0.9

]
x (t) +

[
1 0

0 1

]
u (t) +

[
1 0

0 1

]
d (t), (25)

wherex ∈ [−1.125, 2.125]×[−1.125, 1.125] is the state,u ∈ [−0.4, 0.4]
2

is the control input, and d ∈ [−0.04, 0.04]
2

is the disturbance.

�e regions of interest are de�ned as follows:

G1 = [1.375, 2.125] × [−1.125,−0.375],

G2 = [1.375, 2.125] × [0.375, 1.125],

G3 = [−1.125,−0.375] × [0.375, 1.125],

O = [−0.125, 0.625] × [0.375, 1.125].

�e speci�cation considered is the following:

φ =�(¬[O, 1]) ∧ ♦ ([G1, 23] ∧ ♦([G2, 23])) ∧

♦�([G1, 5]) ∧ �♦([G2, 18]) ∧ �♦([G3, 18]).

We start with N = 23 agents all with initial conditions in the

set [−1.125,−0.375] × [−1.125,−0.375]. Trajectory length is set to

h = 50. �e proposed algorithm �nds a trajectory for the agents that

satisfy φ in approximately 30 seconds. Note that, by construction

of the abstraction, this solution trajectory is implementable by

the continuous dynamics (25) of each agent. A simulation video

implementing the synthesized plan together with concrete low-

level continuous controllers for individual agents can be viewed at

h�ps://youtu.be/4�FAB53egE.

Figure 1: A map of a small area: A, C, and E represent dif-
ferent neighborhoods, B represents a fragile bridge and D
represents inaccessible zones.

6.3 An emergency response scenario
We �nally consider an earthquake emergency response scenario

where a collection of ten
1

robots are to be deployed for various tasks.

Figure 1 shows the a�ected area, divided into di�erent regions.

Regions A, C , and E represent di�erent neighborhoods, region B
represents a possibly damaged bridge, and region D represents

inaccessible zones. We model each robot with a transition system

with 100 states, where each state corresponds to one cell on a 10×10

grid laid out on the area. �e state labels are de�ned according to

the robot’s position on this grid. Transitions are de�ned such that

from each cell, the robot can travel to four neighboring cells.

�e speci�cations are as follows. �e robots should always avoid

the inaccessible zones:

φ1 � �(¬([D, 1]).

�e bridge should not be used by any robot before there is at least

one robot in both ends (to do an inspection to verify that it is safe

to use the bridge):

φ2 � (¬([B, 1]) U ([B1, 1] ∧ [B2, 1]),

and it should never be occupied by more than one robot (as it might

collapse due to weight):

φ3 � �(¬([B, 2]).

A�er the exploration starts, eventually always at most one robot

should be present in the less a�ected neighborhood E:

φ4 � ♦�(¬([E, 2]).

In�nitely o�en (i) there should be more than �ve robots in neighbor-

hood A, (ii) there should be more than �ve robots in neighborhood

C , (iii) neighborhood A should be le� empty, and (iv) neighborhood

C should be le� empty:

φ5 � �♦(([A, 5]), φ6 � �♦(¬([A, 1]),

1
Our approach can easily handle much larger collections as demonstrated in Section 6.1.

We use ten agents in this example to make the visualization easier.

https://youtu.be/4ttFAB53egE

Provably-Correct Coordination of Large Collections of Agents with Counting LTL Constraints ICCPS, April 2017, Pi�sburgh, PA USA

t = 1 t = 6 t = 10 t = 11

t = 12 t = 20 t = 33 t = 41

Figure 2: Illustration of individual trajectories in the emergency response scenario at selected time instants. �e arrows
indicate the direction robots are about to move in; robots without an arrow remain at the same position in the following time
step. �e pre�x-su�x character of the solution is illustrated by the fact that the con�guration at t = 41 is identical (modulo
permutation) to the con�guration at t = 12. Furthermore, all counting constraints are satis�ed: at t = 20 region A is le�
empty and there are eight robots in region C. In addition there are eight robots in region A at t = 33 while the region C is
empty. �ere are also no robots on the bridge B until it is examined from both ends at t = 10 and never more than one robot
a�erwards. During the su�x (a�er t = 12) there is at most one robot in region E. Finally, the black inaccessible regions are
avoided throughout the execution.

φ7 � �♦(([C, 5]), φ8 � �♦(¬([C, 1]).

Pu�ing everything together, overall speci�cation is

φ =
8∧
i=1

φi .

We take the trajectory lengthh to be 40 and solve the correspond-

ing instance of Problem 1. �e resulting individual trajectories are

demonstrated in Fig. 2 and together satisfy φ. A video simulating

the synthesized plan can be seen at h�ps://youtu.be/EJ-v2yD-6 I.

7 CONCLUSION
In this paper we introduced a logic for specifying the correct be-

havior of a multi-agent system in which agents are equal and the

identity of individual agents is not important for the task to be com-

pleted. We proposed an optimization-based approach for synthesiz-

ing plans for the agents so that the resulting collective trajectories

satisfy the speci�cation. Due to the structure of the problem—

permutation invariance in the counting constraints and in agent

roles—the proposed approach works well for large numbers of

agents. We provided some analysis of the proposed approach and

demonstrated it with several examples. An extension of the prob-

lem in the presence of di�erent classes of agents, and considerations

regarding the robustness of the synthesized plans when agents are

added to and/or removed from the collection, were also presented.

As future work, we are looking into extending the logic to allow

specifying individual roles to certain agents, with the main di�-

culty being sustaining the advantages of permutation invariance.

One of the assumptions in this work was that the agents move

synchronously; however, many large collections of cyber-physical

systems may lack this property. As part of the future work, we

would like to extend the approach to handle asynchronous agents,

or agents that can synchronize only when they are spatially close.

Finally, we are interested in implementing the synthesized plans on

hardware by, for instance, coordinating a collection of quadrotors.

REFERENCES
[1] Christel Baier and Joost-Pieter Katoen. 1999. Principles of Model Checking. MIT

Press.

[2] Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric Klavins,

and George J Pappas. 2007. Symbolic planning and control of robot motion

[grand challenges of robotics]. IEEE Robotics & Automation Magazine 14, 1 (2007),

61–70.

https://youtu.be/EJ-v2yD-6_I

ICCPS, April 2017, Pi�sburgh, PA USA Yunus Emre Sahin, Pe�er Nilsson, and Necmiye Ozay

[3] Calin Belta and Vijay Kumar. 2004. Abstraction and control for groups of robots.

IEEE Transactions on Robotics 20, 5 (2004), 865–875.

[4] Armin Biere, Alessandro Cima�i, Edmund Clarke, and Yunshan Zhu. 1999. Sym-

bolic model checking without BDDs. In Proc. of TACAS. Springer, 193–207.

[5] Armin Biere, Keijo Heljanko, Tommi Jun�ila, Timo Latvala, and Viktor Schuppan.

2006. Linear Encodings of Bounded LTL Model Checking. Logical Methods in
Computer Science 2 (2006), 1–64.

[6] Yushan Chen, Xu Chu Ding, Alin Stefanescu, and Calin Belta. 2012. Formal

approach to the deployment of distributed robotic teams. IEEE Transactions on
Robotics 28, 1 (2012), 158–171.

[7] Gurobi Optimization, Inc. 2016. Gurobi Optimizer Reference Manual. (2016).

h�p://www.gurobi.com

[8] I. Haghighi, S. Sadraddini, and C. Belta. 2016. Robotic swarm control from

spatio-temporal speci�cations. In Proc. of IEEE CDC. 5708–5713.

[9] Geo�rey Hollinger, Sanjiv Singh, and Athanasios Kehagias. 2009. E�cient,

Guaranteed Search with Multi-Agent Teams. In Proc. of RSS. 265–272.

[10] Sertac Karaman, Ricardo G Sanfelice, and Emilio Frazzoli. 2008. Optimal control

of mixed logical dynamical systems with linear temporal logic speci�cations. In

Proc. of IEEE CDC. 2117–2122.

[11] Marius Kloetzer and Calin Belta. 2007. Temporal logic planning and control of

robotic swarms by hierarchical abstractions. IEEE Transactions on Robotics 23, 2

(2007), 320–330.

[12] Marius Kloetzer and Calin Belta. 2010. Automatic deployment of distributed

teams of robots from temporal logic motion speci�cations. IEEE Transactions on
Robotics 26, 1 (2010), 48–61.

[13] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. 2009. Temporal-

logic-based reactive mission and motion planning. IEEE Transactions on Robotics
25, 6 (2009), 1370–1381.

[14] Peter B Luh, Christian T Wilkie, Shi-Chung Chang, Kerry L Marsh, and Neal

Olderman. 2012. Modeling and optimization of building emergency evacua-

tion considering blocking e�ects on crowd movement. IEEE Transactions on
Automation Science and Engineering 9, 4 (2012), 687–700.

[15] John-Michael McNew, Eric Klavins, and Magnus Egerstedt. 2007. Solving cover-

age problems with embedded graph grammars. In Proc. of HSCC. 413–427.

[16] Daniel Mellinger and Vijay Kumar. 2011. Minimum snap trajectory generation

and control for quadrotors. In Proc. of IEEE ICRA. 2520–2525.

[17] Mehran Mesbahi and Magnus Egerstedt. 2010. Graph theoretic methods in multi-
agent networks. Princeton University Press.

[18] Keiji Nagatani, Seiga Kiribayashi, Yoshito Okada, Kazuki Otake, Kazuya Yoshida,

Satoshi Tadokoro, Takeshi Nishimura, Tomoaki Yoshida, Eiji Koyanagi, Mineo

Fukushima, and Shinji Kawatsuma. 2013. Emergency response to the nuclear

accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue

robots. Journal of Field Robotics 30, 1 (2013), 44–63.

[19] Pe�er Nilsson and Necmiye Ozay. 2016. Control Synthesis for Large Collections

of Systems with Mode-Counting Constraints. In Proc. of HSCC. 205–214.

[20] Pe�er Nilsson, Necmiye Ozay, Ufuk Topcu, and Richard M. Murray. 2012. Tempo-

ral logic control of switched a�ne systems with an application in fuel balancing.

In Proc. of ACC. 5302–5309.

[21] Giordano Pola, Antoine Girard, and Paulo Tabuada. 2008. Approximately bisim-

ilar symbolic models for nonlinear control systems. Automatica 44, 10 (2008),

2508–2516.

[22] Vasumathi Raman. 2014. Reactive switching protocols for multi-robot high-level

tasks. In Proc. of IEEE/RSJ IROS. 336–341.

[23] Vasumathi Raman, Alexandre Donzé, Mehdi Maasoumy, Richard M Murray,

Alberto Sangiovanni-Vincentelli, and Sanjit A Seshia. 2014. Model predictive

control with signal temporal logic speci�cations. In Proc. of IEEE CDC. 81–87.

[24] Indranil Saha, Ra�anachai Ramaithitima, Vijay Kumar, George J Pappas, and

Sanjit A Seshia. 2016. Implan: Scalable Incremental Motion Planning for Multi-

Robot Systems. In Proc. of ACM/IEEE ICCPS. 1–10.

[25] Herbert G Tanner, George J Pappas, and Vijay Kumar. 2004. Leader-to-formation

stability. IEEE Transactions on Robotics and Automation 20, 3 (2004), 443–455.

[26] Eric M Wol�, Ufuk Topcu, and Richard M Murray. 2014. Optimization-based

trajectory generation with linear temporal logic speci�cations. In Proc. of IEEE
ICRA. 5319–5325.

[27] Tichakorn Wongpiromsarn. 2010. Formal methods for design and veri�cation of
embedded control systems: application to an autonomous vehicle. Ph.D. Disserta-

tion. California Institute of Technology.

[28] Z. Xu and A. A. Julius. 2016. Census Signal Temporal Logic Inference for Multi-

agent Group Behavior Analysis. IEEE Transactions on Automation Science and
Engineering PP, 99 (2016), 1–14.

[29] Jingjin Yu and Steven M LaValle. 2013. Planning optimal paths for multiple

robots on graphs. In Proc. of IEEE ICRA. 3612–3617.

http://www.gurobi.com

	Abstract
	1 Introduction
	2 Preliminaries and problem statement
	2.1 Notation and definitions
	2.2 Counting LTL
	2.3 Problem statement

	3 Reformulation
	3.1 Multiple classes of agents

	4 Solution approach
	4.1 Dynamic constraints
	4.2 Counting LTL constraints
	4.3 Overall ILP problem and analysis

	5 Other considerations
	5.1 Static obstacle avoidance
	5.2 Collision avoidance
	5.3 Robustness to entering and exiting agents

	6 Examples
	6.1 Numerical examples
	6.2 Abstraction-based synthesis
	6.3 An emergency response scenario

	7 Conclusion
	References

