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Abstract: Non-asymptotic bounded-error state estimators that provide hard bounds on the
estimation error are crucial for safety-critical applications. This paper proposes a class of
optimal bounded-error affine estimators to achieve a novel property we are calling Equalized
Recovery that can be computed by leveraging ideas from the dual problem of affine finite horizon
optimal control design. In particular, by using Q-parametrization, the estimator design problem
is reduced to a convex optimization problem. An extension of this estimator to handle missing
data (e.g., due to package drops or sensor glitches) is also proposed. These ideas are illustrated
with a numerical example motivated by vehicle safety systems.
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1. INTRODUCTION

State estimation is one of the key problems in control de-
sign. The celebrated Kalman filter (Kalman (1960)) and its
various extensions for cases with missing and intermittent
observations (Sinopoli et al. (2004)) have been widely used
in control systems where the states of the system are not
available for feedback so one may need to estimate the
states from some output measurements. In safety-critical
problems, non-asymptotic estimation techniques such as
set-valued observers or `∞ filters (Milanese and Vicino
(1991); Shamma and Tu (1999)) also become important
as error bounds can be precomputed and used in control
synthesis.

Equalized performance is an intuitive property for estima-
tors to ensure that the estimation error does not increase
at each step (Blanchini and Sznaier (2012)). This is shown
to be useful in output feedback correct-by-construction
control (Mickelin et al. (2014)). In this paper, we generalize
equalized performance to allow for violation of the error
bound for a limited horizon, within which a more relaxed
error bound is satisfied. In the case of time horizons greater
than one, this new condition can be thought of as ensuring
a ‘recovery’ to some desired performance level after a
lapse. We then show that optimal affine filters satisfying
this generalized condition can be designed using convex
optimization. In particular, we leverage results from affine
finite horizon optimal control (Skaf and Boyd (2010)) and
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show how similar ideas can be employed for the dual
problem of filter design.

As a further generalization of the new error bound con-
dition, we consider the case of missing observations or
intermittent data due to package drops or sensor glitches.
In contrast to probabilistic packet drops in (Sinopoli et al.
(2004)), we consider missing observations with no as-
sumed probability distribution, but are instead described
by fixed-length language specifications, e.g., ‘every other
measurement is missing in a time horizon of T time steps.’
The system with missing observations can be seen as a
hybrid system where the observation equation switches
between normal observations and no observation. The
optimal estimator design problem in this case can be
reduced to a convex problem that allows us to analyze
how many missing observations the estimator can tolerate
within a given time horizon while meeting the error bound
requirements.

Notation: We denote by ‖ · ‖ infinity norms of vectors and
matrices. The symbol ⊗ represents the Kronecker product,
Ik represents the identity matrix of size k, 0k×m represents
the k ×m zero matrix, 1k denotes a k dimensional vector
of ones, and diag(σ) represents a diagonal matrix with the
elements of σ on the main diagonal. The subscripts are
dropped when the dimension of the matrix is clear from
the context. For matrices and vectors, the inequalities ≥
are always taken element-wise.

2. PROBLEM STATEMENT

In this work, the estimation of an affine dynamical sys-
tem’s state is discussed. To denote this system, its estima-
tor, and several other quantities in the following sections,
we present the following definitions.



2.1 The Missing Data Model

In practice, a control system’s measurements may be
unpredictably, and unmanageably disturbed (e.g., by an
unexpected flash of light that blinds a camera, or by a
gliding leaf that suddenly blocks our LIDAR) during oper-
ation. Similarly, due to communication or sensor glitches,
measurement data can be missing at sampling-time. We
assert that the following 2-mode hybrid system represents
the dynamics and measurement updates of a general affine
system when missing data can occur:

x(t+ 1) = Ax(t) +Bu(t) + f + w(t),

y(t) =

{
Cx(t) + v(t), q(t) = 1,

∅, q(t) = 0,
(1)

where A,B,C, f are known system matrices, q(t) is the
discrete state/mode in the hybrid system, u(t) ∈ Rm is
the input, w(t) ∈ Rn is the process noise and v(t) ∈ Rp is
the measurement noise. The noise terms (or uncontrolled
inputs) w(t) and v(t) are unknown but bounded, and their
bounds are known (‖w(t)‖ ≤ ηw and ‖v(t)‖ ≤ ηv, ∀t).
The discrete state/mode q(t) = 1 denotes that the mea-
surement vector is available, while q(t) = 0 signifies “miss-
ing” data, when y(t) is essentially empty.

Moreover, in line with the robust framework throughout
our paper, we consider a novel missing data model with no
assumed probability distribution for discrete state/mode
switching, i.e., the discrete state/mode switching is not
stochastic, but the missing data model is instead expressed
by fixed-length language specifications, e.g., ‘every other
observation is missing’ and ‘at most m missing data in
first M steps of time horizon with T > M time steps.’
More precisely, our missing data model is a fixed-length
language L ⊆ BT that specifies the set of allowable mode
sequences {q(t)}t0+T−1t=t0 . Fixed-length prefixes of more gen-
eral regular or omega regular language specifications can
also be considered.

The goal is to obtain good estimation performance guar-
antees despite the worst case missing data scenario. Thus,
the relatively well-established estimation approaches for
probabilistic intermittent observations, e.g., in (Sinopoli
et al. (2004)), that optimize the expected/average estima-
tion performance do not apply.

Remark 1. In the system description (1), we assume that
the noise terms w and v have an identity gain term to
keep the notation in the proceeding derivations simpler. If
a model contains non-identity gain terms on the process
or measurement noise (i.e., B̄ww(t), C̄vv(t)), this can be
straightforwardly handled by the proposed methodology.

2.2 Finite Horizon Affine Estimator

We consider in this paper a finite horizon dynamic estima-
tor design with the following update rules:

x̂(t+ 1) = Ax̂(t) +Bu(t)− ue(t) + f,
ŷ(t) = Cx̂(t),

(2)

and the following causal output injection term:

ue(t) = u0(t) +

t∑
τ=t0

F(t,τ)yξ(t), (3)

where yξ(t) ,

{
y(t)− ŷ(t) = y(t)− Cx̂(t), q(t) = 1,

0, q(t) = 0,
and t0 is the initial time of the finite horizon.

It is assumed that the initial estimate at time t0, x̂(t0), is

given with an initial estimation error, ξ(t0) , x(t0)−x̂(t0),
that satisfies ‖ξ(t0)‖ ≤M1. At each time step t ∈ [t0, t0 +
T − 1], measurements y(t) according to (1) are available,
if not missing, only for the interval [t0, t] (i.e., up to the
current time step; thus, the estimator is real-time and
causal), and the finite horizon affine estimator outputs
state estimate for the following time step x̂(t+1). Note that
this is different from the fixed-interval smoothing problem
where state estimates over an interval are obtained in a
“post mortem” manner.

2.3 Equalized Recovery

We would like to focus on designing state estimators that
have a property we are calling “Equalized Recovery.” This
property is present if, when estimation error ξ(t) , x(t)−
x̂(t) with x̂(t) being an estimate of x(t), is bounded at a
certain point in time, we can guarantee that at a certain
time in the future, the same bound will hold again.

Definition 1. (Equalized Recovery). An estimator is said
to achieve an equalized recovery level M1 with recovery
time T and intermediate level M2 ≥ M1 at time t0 if
whenever ||ξ(t0)|| ≤ M1, we must have ‖ξ(t)‖ ≤ M2 for
all t ∈ [t0, t0 + T ] and ‖ξ(t0 + T )‖ ≤M1.

As a special case, achieving equalized recovery level M
with recovery horizon 1 and intermediate level M is
equivalent to equalized performance (see Blanchini and
Sznaier (2012); Mickelin et al. (2014)).

The objective of this work is to synthesize a finite horizon
affine estimator given by (2) and (3) that achieves equal-
ized recovery as defined in Definition 1 for the system in
(1) where the mode signal satisfies a fixed-length language
specification describing the missing data pattern, which is
formally described in the following problem:

Problem 1. [Equalized Recovery Estimator Synthesis] Let
the initial estimate at time t0 be x̂(t0) and the initial

estimation error be ξ(t0) , x(t0)− x̂(t0). Given that

• the dynamics of the system is (1),
• the recovery level is M1 (i.e., with ‖ξ(t0)‖ ≤M1),
• the intermediate level is M2 ≥M1,
• the recovery time is T , and
• the mode signal q(t), t ∈ [t0, t0 + T − 1] satisfies a

missing data model L ⊆ BT ,

find an estimator of the form (2) and (3) such that ‖ξ(t)‖ ≤
M2 ∀t ∈ [t0, t0 + T ] and ‖ξ(t0 + T )‖ ≤M1.

We remark that in the case of no missing data, if the
system is detectable, there always exists a Luenberger
filter that solves Problem 1 for some large enough M1, M2

and T , related to noise bounds and `1-gain of the error
system. However, a non-asymptotic analysis and design
technique that computes an estimator, whenever possible,
for a given set of parameters {M1,M2, T} is important
as these parameters can be used as “contracts” if one
proceeds with control design where hard safety constraints



need to be enforced (Mickelin et al. (2014)). As we show in
the following, searching for finite horizon affine solutions to
Problem 1 with given parameters can be done efficiently.

3. APPROACH

To address Problem 1, we synthesize a finite horizon affine
estimator that builds upon the idea of Q-parametrization
in (Skaf and Boyd (2010)). Our key result shows that
the feasibility of finite horizon affine estimators (2),(3)
that solve Problem 1 is equivalent to the feasibility of a
convex optimization problem. Thus, feasibility and design
of this type of estimator can be performed using the
efficient tools of convex optimization. First, we present a
novel estimator design that achieves equalized recovery,
as defined in Definition 1, for the case without missing
measurements, i.e., the perfect output measurement case.
Using this result, we then propose an extension that can
deal with missing measurements that are expressed by
fixed-length language specifications.

3.1 Perfect Output Measurement Case

We assume for the moment that no data is missing and
all measurements are available for a given time horizon
T , i.e., with q(t) = 1 for all t ∈ [t0, t0 + T − 1]. For this
special case, the following theorem addresses the feasibility
and synthesis problems when designing finite horizon affine
estimators (2),(3).

Theorem 1. [Perfect Output Measurement Case] The ex-
istence of a causal finite horizon affine estimator that
solves Problem 1 (i.e. achieves equalized recovery level M1

with recovery time T and intermediate level M2) when
q(t) = 1 ∀t ∈ [t0, t0 + T − 1] (i.e., with no missing data) is
equivalent to the feasibility of the following problem:

Find Q, r
subject to Q is m-by-n block lower triangular,

∀(‖w‖ ≤ ηw, ‖v‖ ≤ ηv, ‖ξ(t0)‖ ≤M1) :
‖R0:T ξ‖ ≤M2 and ‖RT ξ‖ ≤M1,

(4)

where Rτ1:τ2 ∈ Rn(τ2−τ1+1)×n(T+1) and ξ ∈ Rn(T+1) are:

Rτ1:τ2 =
[

0n(τ2−τ1+1)×nτ1 In(τ2−τ1+1) 0n(τ2−τ1+1)×n(T−τ2)
]
,

ξ=(S + SQC̄S)w + SQv + (I + SQC̄)Jξ(t0) + Sr,

with

C̄ = [ IT ⊗ C 0pT×n ] ∈ RpT×n(T+1),

J =


In
A
...

AT−1

AT

 , S =



0 0 0 · · · 0
In 0 0 · · · 0
A In 0 · · · 0

A2 A In
. . .

...
...

...
. . . 0

AT−1 AT−2 AT−3 · · · In


.

(5)

Moreover, if (4) is feasible, then the finite horizon affine
estimator is as given in (2),(3) with

F ,


F(t0,t0) 0 · · · 0

F(t0+1,t0) F(t0+1,t0+1)

...
...

. . . 0
F(t0+T−1,t0) F(t0+T−1,t0+1) · · · F(t0+T−1,t0+T−1)

,
= (I +QC̄S)−1Q,

u0 , (u0(t0), · · · , u0(t0 + T − 1)) ∈ RmT ,
= (I +QC̄S)−1r = (I + FC̄S)r. (6)

Proof. We begin by developing an expression for the
estimation error, which according to (1) and the estimator
definition (2) is:

ξ(t+ 1) = Aξ(t) + ue(t) + w(t),
yξ(t) = Cξ(t) + v(t).

(7)

Redefinition in terms of trajectories. Using a standard
property of discrete time dynamics, we can write the
entire trajectory of ξ(t) as a matrix equation. Consider
the following definitions:

ξ = (ξ(t), · · · , ξ(t+ T )) ∈ Rn(T+1),
ue = (ue(t), · · · , ue(t+ T − 1)) ∈ RmT ,
w = (w(t), · · · , w(t+ T − 1)) ∈ RnT ,
yξ = (yξ(t), · · · , yξ(t+ T − 1)) ∈ RpT ,
v = (v(t), · · · , v(t+ T − 1)) ∈ RpT .

Then the following matrix equations can be written:

ξ = Jξ(t0) + S(ue + w),
yξ = C̄ξ + v,
ue = Fyξ + u0,

(8)

where C̄, J and S are defined in (5).

Now, the three equations of (8) can be solved to create
closed form expressions for the estimation error and input:[

ξ
ue

]
= P

[
w
v

]
+

[
ξ̃
ũe

]
, (9)

where

P =

[
Pξw Pξv
Puw Puv

]
,

Pξw = S + SF (I − C̄SF )−1C̄S, Pξv = SF (I − C̄SF )−1,
Puw = F (I − C̄SF )−1C̄S, Puv = F (I − C̄SF )−1,

and

ξ̃ = Jξ(t0) + Su0 + SF (I − C̄SF )−1(C̄Jξ(t0) + C̄Su0),
ũe = F (I − C̄SF )−1(C̄Jξ(t0) + C̄Su0) + u0.

In the following, we make use of the Q-parametrization
approach in (Skaf and Boyd (2010)) to obtain linear
constraints that lead to the desired optimization problem.

Making the closed loop expression linear. The equations
for ξ and ue are nonlinear in the design variables (F, u0).
This would normally mean that searching for design vari-
ables that satisfy constraints like ||ξ(t+T )||∞ ≤M1 would
be a nonlinear and non-convex programming problem,
but we simplify the search by taking inspiration from Q-
parameterization and introducing the nonlinear mappings
Q , F (I−C̄SF )−1 and r , (I+QC̄S)u0. This transforms
the P matrix into the following:

Pξw = S + SQC̄S, Pξv = SQ, Puw = QC̄S, Puv = Q

and

ξ̃ = (I + SQC̄)Jξ(t0) + Sr, ũe = QC̄Jξ(t0) + r.

With this change of variables the expression ξ is a linear
function of variables Q and r. Thus, when we consider
constraints on the estimation error over the entire time
horizon R0:T ξ and for the final time step RT ξ, the con-
straints will be linear in Q and r.

Deriving the Optimization Problem. Based on the re-
quirements for equalized recovery in Definition 1, we must
have ‖ξ(t)‖ ≤ M2 for all t ∈ [t0, t0 + T ] and ‖ξ(t0 +



T )‖ ≤ M1, for the worst-case noise w, v and initial state
estimation uncertainty ξ(t0). Using the aforementioned
change of variables, it is understood that all constraints
on estimation error are linear in our new design variables
(Q, r). Furthermore, the sets that Q and r belong to are
both convex (Q ∈ {Q ∈ RmT×pT | Q is m-by-n block
lower triangular} and r ∈ RmT ). Thus, it follows that the
feasibility problem in (4) is equivalent to the existence of a
causal finite horizon affine estimator that solves Problem
1, similar to the robust optimization approach in Section
III-C of (Skaf and Boyd (2010)).

Finally, the estimator gains F and u0 can be recovered
from the optimization variables Q and r using the equa-
tions (6). 2

The feasibility problem in (4) contains semi-infinite con-
straints due to the “for all” quantifier on the uncertain
terms. Nonetheless, it can be easily shown using techniques
from robust optimization (Bertsimas et al. (2011); Ben-
Tal et al. (2009)) that the feasibility problem can be
robustified such that only finitely many linear constraints
remain, as given in the following without proof for brevity.

Proposition 2. (Robustified Feasibility Problem). The fea-
sibility problem in (4) is equivalent to the following:

Find Q, r,Π1,Π2

subject to Q is m-by-n block lower triangular,
Π1 ≥ 0,Π2 ≥ 0,

Π1

[
ηw1
ηv1
M11

]
≤M21−

[
I
−I

]
R0:TSr,

Π2

[
ηw1
ηv1
M11

]
≤M11−

[
I
−I

]
RTSr,

Π1


I 0 0
−I 0 0
0 I 0
0 −I 0
0 0 I
0 0 −I

 =

[
I
−I

]
R0:TG,

Π2


I 0 0
−I 0 0
0 I 0
0 −I 0
0 0 I
0 0 −I

 =

[
I
−I

]
RTG,

(10)

where G ,
[
(I + SQC̄)S SQ (I + SQC̄)J

]
, while Π1 and

Π2 are dual matrix variables of appropriate dimensions.

So far we have considered linear feasibility problems. One
can also consider minimizing M1, M2 or T . The problem
remains linear if M2 is a variable to be minimized. For
minimizing M1 or T , one should resort to a combination
of linear programs and a line search over M1 or T .

3.2 Estimator Synthesis with Missing Data

Next, we extend the results in Theorem 1 to take into
account the possibility of missing data. In particular,
instead of probabilistic packet drops in (Sinopoli et al.
(2004)), we consider missing observations with no assumed
probability distribution, but are instead expressed by a
fixed-length language, L ⊆ BT , which we assume is given.
For instance, a missing data specification of ‘at most m

missing data over a time horizon T ’ is given by L = {σ ∈
BT | σ has at most m 0’s in the first M time steps}. This
presents a difficulty because the nonlinear transformation
that allowed us to linearize the problem in Theorem 1 was
dependent on the fact that |L| = 1. To accommodate the
many different patterns that can exist in a language we
introduce the following generalized inequality for any 2
words σ1 and σ2 in the space of words in BT :

σ1 � σ2 ⇐⇒ (∀i ∈ [1, T ])(σ1[i] = 0 =⇒ σ2[i] = 0).

Using this inequality, we derive a “worst-case” language
L∗ , {σ∗} ∈ BT where σ∗ is the least upper bound
of the set L according to �. It can be computed by
performing a bit-wise AND operation across all words in
L and can be thought of as the pattern composed only
of information that is always available to the designer
(σ∗(t) = 1 ⇐⇒ (∀σ ∈ L)(σ(t) = 1)).

Theorem 3. [Estimator Synthesis with Missing Data] If a
causal finite horizon affine estimator that solves Problem
1 (i.e. achieves equalized recovery level M1 with recov-
ery time T and intermediate level M2) with single word
language L∗ = {σ∗} is feasible, then the following opti-
mization problem has at least one feasible solution:

Find Q, r
subject to Q is m-by-n block lower triangular,

∀(‖w‖ ≤ ηw, ‖v‖ ≤ ηv, ‖ξ(t0)‖ ≤M1) :

‖R0:T ξ
σ∗
‖ ≤M2 and ‖RT ξσ

∗
‖ ≤M1,

(11)

where

ξσ
∗
=(S+SQC̄σ

∗
S)w+SQNσ∗

v+(I+SQC̄σ
∗
)Jξ(t0)+Sr,

with C̄σ
∗

= [diag(σ∗)⊗ C 0pT×n] and Nσ∗
= diag(σ∗) ⊗

I. The solution defines a feedback method that solves
Problem 1 for the original language L.

Proof. The proof follows nearly identical reasoning to the
proof in Theorem 1, with the primary difference being that
the C̄ matrix is replaced with C̄σ

∗
, and Nσ∗

is introduced
to set the measurement noise to zero, when some data are
missing. The sufficiency of L∗ follows from the fact that,
by construction, the solution (F ∗, u∗0) extracted from (11)
sets F ∗(t,τ) = 0,∀t ∈ [τ, t0 + T − 1], whenever σ∗(τ) = 0,

and thus, whenever σ(τ) = 0 for any σ ∈ L. 2

Note that the optimization may not be feasible for some
combinations of parameters (M1,M2, T,L). This can be
due to (i) infeasibility of the problem (e.g., a language
constraint of L = {00 · · · 0} corresponds to the system
running in an open loop setting and thus it may be
impossible to recover for unstable systems) or (ii) the
conservative nature of the “worst-case” language L∗.

3.3 Implementation of the Estimator

Assuming that the optimization is feasible, there are two
different ways to implement this estimator. First, if the
missing data pattern periodically repeats itself (every T
time-step), then, the same gain matrices F as in (3) can
be applied with period T since the estimator guarantees
that the estimation error bound returns to the equalized
recovery level M1 at the end of the period.

Second, these estimators can also be used in conjunction
with a filter that guarantees equalized performance. Recall
that such a filter ensures a uniform bound M on the



estimation error at all times when there is no missing
data. If we consider languages L where each word starts
with a q(t) = 0, then one can switch from the equalized
performance filter to equalized recovery filter whenever
a missing measurement occurs and revert back to the
equalized performance filter after the recovery time T .
One can also investigate for a given language L, the
minimum time T required for recovery using the proposed
optimization problems. Such T , in general, can be longer
than the longest word in L. Such analysis is helpful in
understanding what type of missing data patterns can be
accommodated or how much time is required for recovery,
which in turn is useful for designing controllers in a
compositional manner.

4. EXAMPLES

In this section we demonstrate the utility of the proposed
estimators. We present motivating examples that show the
benefits of the proposed synthesis method when compared
to previous methods as well as show what the novel
method can achieve on an adaptive cruise control system.

4.1 Conservativeness in Earlier Estimator Designs

It is shown in Mickelin et al. (2014) that if the gain L of
the Luenberger observer:

x̂(t+ 1) = Ax̂(t) +Bû(t) + L(y(t)− ŷ(t)),
ŷ(t) = Cx̂(t)

(12)

satisfies

||A− LC||+ ||L|| ηv
M

+ ||Bw||
ηw
M
≤ 1, (13)

the observer achieves equalized performance level M .

However, the condition (13) can be infeasible, when a
Luenberger observer that achieves equalized performance
is feasible, as shown below. This implies that the above
condition is only a sufficient condition for the existence of
observers that achieve equalized performance.

Consider a discrete time system as follows:

x(t+ 1) =

[
0 1 0
0 0 1
−0.5 −3.5 −0.25

]
x+

[
1
0
0

]
(u(t) + w(t)),

y(t) =

[
0 1 0
0 0 1

]
x(t)

with the following bounds in effect: ‖ξ(t)‖ ≤ M and
‖w(t)‖ ≤ 0.6M= ηw (with ηv = 0).

Here, the choice of L∗ that minimizes the left hand side of
(13) and the lack of measurement noise implies:

‖(A− L∗C)‖+ ‖L∗‖ ηv
M

+
ηw
M

= 0.5 + 0 + 0.6 = 1.1,

which means that (13) cannot be satisfied, even as we know
that L∗ creates the following estimation error update:

ξ(t+ 1) =

[
0 0 0
0 0 0
−0.5 0 0

]
ξ(t) +

[
1
0
0

]
w(t) =

[
w(t)

0
−0.5ξ1(t)

]
and clearly this vector’s norm should not exceed M . In
this situation, our proposed synthesis method correctly
identifies the feasibility of an estimator because it does
not rely on an over-approximation and correctly identifies
the minimum estimation error ||ξ(t+ 1)|| = 0.6M .

Table 1. Constants used in the Automatic Cruise
Control (ACC) Example.

m 1370 kg Ts 0.5 s
k̄0 7.58 N ηw 0.1
k̄1 9.9407 Ns/m ηv 0.05

4.2 Adaptive Cruise Control

An adaptive cruise controller (ACC) is a driver assistance
system that aims to maintain a safe headway (the dis-
tance between an ego vehicle and the lead vehicle) in the
existence of a lead vehicle and, if possible, drive at a set
speed during operation. Consider an ACC system where
the acceleration of the lead car is considered to be an
uncontrolled disturbance and the controller applies force
inputs to the ego vehicle. This can be written in the affine,
discrete-time form:{

x(t+ 1) = Adx(t) +Bdu(t) + fd + Edw(t)

y(t) = Cx(t) + v(t)
,

where the state x(t) = [ve(t), h(t), vL(t)]T consists of the
speed ve of the ego vehicle, headway h, and speed vL of
the lead vehicle. The system matrices (Ad, Bd, fd, Ed) are:

Ad =

 e−κTs 0 0
e−κTs − 1

κ
1 Ts

0 0 1

, Bd =
1

k̄21

 (1−e−κTs)k̄1
m(1−e−κTs)− k̄1Ts

0

,

C=

[
1 0 0
0 1 0

]
, Ed=

 0
T 2
s

2
Ts

, fd=


− k̄0
k̄1

(1− e−κT )

− k̄0
k̄21

(
m(1−e−κT )−k̄1T

)
0

,
where the constant m is the mass of the vehicle, the
constants k̄0 and k̄1 are coefficients related to friction and
drag (with κ , k̄1/m), and Ts is the sampling time. The
values of these parameters are given in Table 1.

For this problem, a reasonable assumption on the lead car
(or another driver on the road) is that they limit their
acceleration to a certain range for their own comfort or
safety among other things. Another reasonable assumption
is that our sensors have documented or known quanti-
ties such as sensitivity and discretization error (typically
detailed in a component’s data sheet). Assume that the
maximum magnitude of acceleration that the lead car uses
is 0.1 m/s2 (ηw = 0.1) and that the maximum sensor error
(consider a speedometer rated to have an upper bound of
0.01 m/s of error during operation and a radar rated with
50 cm of error) is 0.05 (ηv = 0.05).

We start with demonstrating the proposed filter for the
no missing data case. We let the recovery level M1 be
1, and find the minimal intermediate level to be M2 =
1.05 with recovery time T = 6 (or 3 seconds). Note
that this indicates the system does not admit a filter
that achieves equalized performance of M = 1 (indeed
it can be shown that it does not admit a full-order
filter that achieves equalized performance of any level).
Figure 1 shows the trajectories of the estimation error for
random initializations and disturbances. As seen there, the
estimator guarantees the prescribed bounds.

Next, consider a missing data pattern within the language
L1 = {111111, 101111, 110111, 111011, 111101}, with re-



Fig. 1. A filter is synthesized that guarantees equalized recovery of
the ACC system’s estimate when equalized performance cannot
be guaranteed.

covery time T = 6 (or 3 seconds). For this example,
L∗ = {100001}. Taking equalized recovery level of M1 = 1,
the minimal intermediate level is found to be M2 = 2.9864
by solving (11). Assuming that the missing data pattern
takes an arbitrary word from within L1 at every 3 seconds,
the synthesized estimator can be used periodically. A few
estimation error trajectories with the resulting estimator
are depicted in Figure 2.

Finally, we consider the use of a hybrid filter in the
ACC setting. This filter switches between an equalized
performance filter during normal operation to an equalized
recovery filter when missing data occurs. While a full
state estimator cannot achieve equalized performance for
the ACC system, a reduced order observer can [Mickelin
and Ozay (2018)] and we use it as the baseline for the
final example of this synthesis method. When estimation
is restricted to the not directly measured state vL, an
equalized performance level of M = 0.4102 is achieved.

Assuming that the occurrence of a missing data can be
detected and that the maximum duration of the missing
data pattern is known to be 1.5 seconds, we synthesize one
mode of the hybrid filter to achieve equalized performance
and another mode which achieves equalized recovery. The
minimum time required for recovery, T , is unknown, and
so a set of fixed-length languages is considered that are pa-
rameterized by T , L2(T ) = {q ∈ BT | q(t0 + 1) = 0, q(τ) =
1 ∀τ ∈ {t0, t0 + 4, t0 + 5, ..., t0 + T − 1}}. 1 The synthesis
methods derived in this paper are used to identify that
the minimum time for recovery was 8 discrete time steps
(or 4 seconds) and that the minimum intermediate level
of the recovery filter is M2 = 0.5249. This reduced order
hybrid estimator is applied with random initializations and
disturbances and resulting estimates are shown in Figure
3. In all cases, a missing data pattern from L2(8) begins
at time step 10 (or 5 seconds) and our guarantees hold.

5. CONCLUSIONS

In this work, we present a method for synthesizing filters
for affine systems that are robust to missing data. We
define the notion of equalized recovery that generalizes
equalized performance. An optimization-based necessary
1 Note that the use of a reduced order observer changes the in-
formation available to an estimator. For reduced order observers,
the estimate x̂(t + 1) at time t + 1 depends on y(t + 1) and the
past measurements, whereas for the full order filter in (2), x̂(t + 1)
depends on y(t) and earlier measurements. This requires slightly
different information (with one step look-ahead on the mode) to be
available to the estimator in order to switch between the equalized
performance and recovery filters. Such look-ahead is not required
when this hybrid scheme is used with full-order observers in the
presence of missing data.

Fig. 2. A filter for the ACC system that achieves equalized recovery
is synthesized to be robust against missing data within the
language L1 and applied periodically.

Fig. 3. A reduced order filter for ACC is synthesized to achieve
equalized performance level M1 = 0.4102. When a missing
data sequence within L2 occurs, the recovery filter kicks-in and
reduces the estimation error enough to then switch back to the
equalized performance filter.

and sufficient condition is provided to synthesize finite
horizon affine filters that satisfy the equalized recovery
condition for given parameters using Q-parameterization.

Our future work includes closing the loop with correct-by-
construction control synthesis that guarantees safety when
implemented together with filters satisfying equalized re-
covery condition. We are also interested in extending the
framework to handle outliers or corrupted measurements
with the main difficulty being separating such measure-
ments from uncorrupted ones.
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