
Controller Synthesis for Unknown-Mode Linear Systems with an Epistemic
variant of LTL

Kwesi Rutledge Yuhang Mei Necmiye Ozay

Abstract— Linear temporal logic (LTL) with the knowledge
operator, denoted as KLTL, is a variant of LTL that incor-
porates what an agent knows or learns at run-time into its
specification. Therefore it is an appropriate logical formalism
to specify tasks for systems with unknown components that are
learned or estimated at run-time. In this paper, we consider
a linear system whose system matrices are unknown but come
from an a priori known finite set. We introduce a form of KLTL
that can be interpreted over the trajectories of such systems.
Finally, we show how controllers that guarantee satisfaction
of specifications given in fragments of this form of KLTL
can be synthesized using optimization techniques. Our results
are demonstrated in simulation and on hardware in a drone
scenario where the task of the drone is conditioned on its health
status, which is unknown a priori and discovered at run-time.

I. INTRODUCTION

The ability to adapt one’s goals when they learn something
new about the world is important for human survival. As an
example, Sully Sullenberger and his copilot Jeffrey Skiles
experienced complete engine failure on their passenger air-
plane shortly after takeoff. Without power, they were unable
to reach their destination or the airfield that they departed
from and so they changed their goal to be safely guiding their
aircraft into the Hudson River [1]. Similarly, a motorcyclist
that notices one of their brakes has become stuck needs to
quickly determine how to pull over instead of reaching their
final destination. If they do not quickly decide, then a vehicle
behind them can accidentally collide with them or their brake
pads can become overheated and fail. Enabling robots or
other cyber-physical systems (CPSs) to have knowledge- or
learning-based goals is thus critical as these types of goals
can help guarantee safety when actuators or other parts of a
system can fail.

Controller synthesis as a topic in formal methods aims to
design tools that can guaranteeably drive robots to achieve
tasks or goals [2]. Controller synthesis has been used to
define robot policies that correctly achieve obstacle avoid-
ance [3], [4], surveillance [5], bipedal walking [6], and much
more. Each of these successes has relied on a correct model
of the system being known a priori to make their guarantees.
This paper seeks to make guarantees when the exact model
is not known a priori, but a set of potential models is.

This work was supported in part by NSF Grant CNS # 1931982 and
ONR grant N00014-21-1-2431 (CLEVR-AI). KR is with the Massachusetts
Institute of Technology, Cambridge, MA, email: kwesir@mit.edu.
YM and NO are with the University of Michigan, Ann Arbor, MI, emails:
{yuhangm,necmiye}@umich.edu.

Fig. 1. The controller synthesis approach defined in this paper finds
adaptive controllers for unknown linear systems using only a definition of
the system class and a learning task (written in KLTL). In the above task,
the drone learns whether or not its dynamics are faulty (faulty drone shown
in red, normal drone is not colored) and uses that information to sorts itself
into two different regions of the workspace.

A. Related Work

A typical approach when there is parametric uncertainty
in the model is to use robust control where the controller
guarantees correctness against all possible parameters in the
uncertainty set [7]. Similar approaches are developed to
robustly satisfy rich temporal logic properties [8]. However,
this can be conservative, especially in scenarios where it
is possible to learn the unknown parameters at run-time.
Adaptive control is proposed to take advantage of such online
estimated quantities. With the idea of narrowing the set of
possible models in mind, adaptive controllers use an online
model estimator to narrow down the set of potential models
by incorporating an online system identification module [9].
Recent results in adaptive control aim to handle safety [10]
or temporal logic constraints [11] for different classes of
systems. Among approaches that combine temporal logics
and adaptation, [11], [5] use discrete state spaces that can
be obtained, for instance, using state abstraction, however,
these methods suffer from the curse of dimensionality and
thus are known to scale poorly when compared to methods
that avoid discretization [12]. A discretization-free method
for fault-tolerance has been proposed in [13] where open-
loop trajectories, which are tracked online with closed-loop
controllers, are designed [4], [14]. However, [13] makes
assumptions on fault detectability, which might be nontrivial
nor can always be enforced since detectability is indeed a
function of closed-loop trajectories.

Following up on our work in [12], in this paper we
propose a discretization-free method for designing adaptive
controllers that incorporate information that is learned online
to select appropriate controller gains. Our controllers incor-
porate a mode-estimation module, which not only enables
adaptation of the control gains as in [12], hence not as
conservative as robust controllers, but also allows us to
reason about what is “known” at a given time by the
system. We capture specifications that depend on online
estimated quantities using a form of epistemic logic KLTL
that can express hyperproperties, such as how to react to new
knowledge gained, which cannot be expressed by traditional
temporal logics such as LTL. We show how controller
synthesis problems for fragments of KLTL can be reduced to
bilinear optimization problems. Finally, we demonstrate our
results both in simulation and with hardware experiments
with a drone whose task depends on the knowledge of its
fault conditions.

B. Mathematical Preliminaries

Throughout this work, we will use the symbols R, R+ and
N to represent the set of real, non-negative real, and natural
numbers, respectively. All other sets will be referred to with
calligraphic symbols (e.g., X). We will frequently refer to a
signal, or sequence, x : N → S at specific ranges of times.
The symbol xt ∈ S represents the signal x at time t. The
symbol xi:j represents the sequence of values that the signal
takes from time i to time j.

Lemma 1 (Polytope Containment [15]). Consider the fol-
lowing two polytopes X = {x ∈ Rn | HXx ≤ hX } and
Y = {y ∈ Rn | HYy ≤ hY} where HX ∈ Rqx×n and
HY ∈ Rqy×n. Polytope Y contains X (i.e. X ⊆ Y) if and
only if there exists a matrix Λ ∈ Rqx×qy

+ such that:

ΛHX = HY (1a)
ΛhX ≤ hY . (1b)

II. BACKGROUND

In this section, we review some of the relevant work on
linear systems and adaptive control. First, we introduce a
linear system which can be used to model many discrete-time
processes. Then, we discuss a set-membership estimator for
this system and how it has been used in previous work [12].

A. Linear System with Unknown Mode

In this paper, we consider a system of the form:

xt+1 = A(θ)xt +B(θ)ut + wt, wt ∈ W(θ) (2)

where θ ∈ Θ is the mode of the system taking values in
a finite set Θ of models (i.e. θ ∈ Θ), xt ∈ X ⊆ Rn is
the state of the system taking values in the state space X ,
ut ∈ U ⊆ Rm is the input at time t that must satisfy input
constraints represented by polytope U , wt ∈ Wθ ⊂ Rn is
the unmeasured disturbance to the system that lies in the
polytope Wθ. The system starts with a fixed, yet unknown,
mode θ. It is assumed that the set Θ (including the matrices

A(θ), B(θ) and polytopes W(θ) for each mode) and the
polytope U are known.

In this paper, we will assume that the initial state of the
system is from a polytope X0 ⊆ X . To simplify some of our
exposition, this paper uses a set X0 that is a singleton but the
results in this paper hold even without this simplification.

This system produces trajectories that we can exactly
represent with a convex set:

Definition 1. The reachable behavior set of mode θ at time
t is

R(θ, t) =(x0:t, u0:t−1)

∣∣∣∣∣∣
x0 ∈ X0, u0:t−1 ∈ U t,
∀k ∈ [0, t− 1],
xk+1 −A(θ)xk −B(θ)uk ∈ W(θ)


(3)

As a slight abuse of notation, we introduce the reachable
behavior set for a set of modes Θ′ ⊆ Θ, R(Θ′, t) =
∩θ∈Θ′R(θ, t). Additionally, the reachable behavior set for
a sequence of values m ∈ (2Θ)T is

R(m) ≜{
(x0:t, u0:t−1)

∣∣∣∣ ∀τ ∈ [1, T − 1] :
(x0:τ , u0:τ−1) ∈ R(mτ , τ)

}
.

(4)

The reachable behavior set is the set of all state-input
trajectories that can be produced by the mode θ. The set
is a polytope as is proven in Lemma 3 of [12].

B. Set Membership Estimation

For such a system, we use the following estimator to
identify the set of modes µ(x0:t, u0:t−1) ⊆ Θ that is
consistent with the observed data (x0:t, u0:t−1):

µ(x0:t, u0:t−1) ≜ {θ ∈ Θ | (x0:t, u0:t−1) ∈ R(θ, t)} .

We will occasionally simplify the notation used to refer to
the estimator output as µt ≜ µ(x0:t, u0:t−1). This makes
it clearer that µ is a signal as well. The set of state-input
trajectories that produce the same estimator output is the
consistency set.

Definition 2 (Consistency Set). Consider the sequence of
estimates m ∈ (2Θ)t+1. The consistency set C(m) is the set
of all state-input trajectories (x0:t, u0:t−1) that lead to the
estimate m. That is:

C(m) = {(x0:t, u0:t−1) | m = µ0:t}.

Crucially, consistency sets are generally not convex.

C. Adaptive Controller Synthesis for Reachability Task

The set membership estimator discussed above is em-
ployed in an adaptive, switched linear controller. The adap-
tive controller’s structure γ was proposed in [12] to control
the system (2). In this paper, the controller will be written
using the following symbols:

γ(x0:t, u0:t−1) = γ|m∗(x0:t, u0:t−1) (5)

where
• m∗ = µ0:t,

• γ|m∗(x0:t, u0:t−1) =
∑t−1

τ=0 K
(m∗)
τ ŵτ + k(m

∗), and
• ŵτ is defined according to the following rule:
ŵτ ≜ ŵ(x0:t, u0:t−1) = xτ+1 −A(θ′)xτ −B(θ′)uτ (6)

for a fixed θ′ ∈ µt and τ < t. Note that this controller
is composed of a set of linear, disturbance feedback func-
tions with memory, parametrized by (K(m∗)

τ , k
(m∗)
τ), that it

switches between based on the output m∗ of µ.
At each time τ , µτ is one of a finite number of values

(i.e., µτ ∈ 2Θ \ ∅). Thus, the sequence µ0:T also belongs to
a finite set ((2Θ)T+1). With this, we can define the closed-
loop versions of consistency sets and reachable behavior sets
that are related as follows:

R∗ =
⋃

m∈(2Θ)T+1

C(m, γ|m) =
⋃

m∈(2Θ)T+1

R(m, γ|m) (7)

where

R∗ ≜
[
x0:T−1

u0:T−2

] ∣∣∣∣∣∣∣∣∣∣
x0 ∈ X0, u0 = γ(x0)
∃θ ∈ Θ : ∀τ ∈ [1, T − 2] :
xτ −A(θ)xτ−1 +B(θ)uτ−1 ∈ W(θ)

uτ = γ(x0:τ , u0:τ−1)
xT−1 −A(θ)xT−2 +B(θ)uT−2 ∈ W(θ)

 ,

C(m′, γ|m) ≜{[
x0:t

u0:t−1

]
∈ C(m′)

∣∣∣∣ ∀τ ∈ [0, t] :
uτ = γ|m(x0:τ , u0:τ−1)

}
,

and R(m′, γ|m) is defined similarly. The ability to decom-
pose the set of all possible trajectories of a system using
either a partition made up of consistency sets or a set cover
made up of reachable behavior sets will be used to guarantee
properties of all trajectories of a system. The set cover of
reachable behavior sets, specifically, is easier to analyze than
the set of all possible trajectories because each reachable
behavior set is a polytope.

III. PROBLEM STATEMENT

This section first introduces a form of Linear Temporal
Logic with the Knowledge operator (KLTL) designed for ap-
plication to discrete-time dynamical systems like (2). Then,
we introduce our controller synthesis problem in terms of
a discrete-time linear system’s satisfaction of a given KLTL
formula.

A. KLTL

Temporal logics like LTL specify the desired behaviors
of software and cyber-physical systems when the state of
the world is completely measured. When the state of the
world is partially observed, these temporal logics can be
used in conservative ways where enough state uncertainty
can lead to infeasibility of the formula. On the other end
of the spectrum, temporal logics like KLTL embrace the
existence of partial state observability. KLTL, specifically,
defines a knowledge operator which encodes whether or not
a formula’s satisfaction can be inferred or learned from the
current data.

KLTL was initially introduced for discrete systems like
Transition Systems [16], but is understood to be a form of
Dynamic Epistemic Logic [17] which has existed for much
longer. This paper is the first that we are aware of which
seeks to apply KLTL to linear dynamical systems. For these
systems, the standard grammar and semantics of KLTL must
be slightly modified and we discuss their definitions here.

Definition 3 (KLTL Grammar). The grammar of KLTL is as
follows:

φ ::= p | ¬φ | φ ∧ φ | ⃝ φ | φUφ | Kφ (8)

in which p ∈ AP is an atomic proposition, while ⃝ and U are
the “next” and “until” operators from linear temporal logic.
Formulas of the type Kφ are read as “the system knows that
the formula φ holds”. We define the temporal modalities ♢
(eventually) and □ (always) as usual.

To develop semantics for this KLTL system, we introduce
the concept of the labelling function and the set of trajectory-
mode pairs.

Definition 4 (Labelling Function). A labelling function for a
set of atomic propositions AP for the system (2) is a function
that describes which atomic propositions are satisfied at a
given state and with a given mode, (i.e. L : X ×Θ → 2AP).

Assumption 1. We assume that each atomic proposition p
is associated with a polytopic set Sp ⊆ X or a discrete set
Θp ⊆ Θ such that either:

• x ∈ Sp ⇐⇒ p ∈ L(x, θ), or
• θ ∈ Θp ⇐⇒ p ∈ L(x, θ).

A proposition that has an associated polytopic set rep-
resentation in the state space will be called a state-based
proposition and a proposition that has an associated discrete
set Θp will be called a model-based proposition.

Let the set of all feasible trajectory-mode pairs (x, θ) that
(2) can produced over time horizon T (i.e. x = x0:T) with
a given controller γ be:

T (Θ, γ) ≜(x, θ)

∣∣∣∣∣∣∣∣∣∣
θ ∈ Θ, x0 ∈ X0, u0 = γ(x0)
∀τ ∈ [1, T − 1] :
xτ −A(θ)xτ−1 −B(θ)uτ−1 ∈ W(θ)

uτ = γ(x0:τ , u0:τ−1)
xT −A(θ)xT−1 −B(θ)uT−1 ∈ W(θ)


With this labelling function and the set T (Θ, γ) in mind,

we now define the KLTL semantics for systems with un-
known mode.

Definition 5 (KLTL Semantics for Unknown-Mode Linear
Systems). For any pair of a state trajectory x and unknown
parameter θ, interpret the KLTL operators as follows:

• (x, θ, i) |= p if p ∈ L(xi, θ)
• (x, θ, i) |= ¬p if (x, θ, i) ̸|= p
• (x, θ, i) |= φ1 ∧ φ2 if (x, θ, i) |= φ1 and (x, θ, i) |= φ2

• (x, θ, i) |= ⃝φ if (x, θ, i+ 1) |= φ
• (x, θ, i) |= φ1Uφ2 if ∃τ ≥ 0 such that (x, θ, j) |= φ2

and ∀0 ≤ k < τ , (x, θ, k) |= φ1,

• (x, θ, i) |= Kφ if for all (x′, θ′) ∈ T (Θ, γ) s.t. (x, θ) ∼i

(x′, θ′), we have (x′, θ′, i) |= φ.
In our case, we define the similarity relationship ∼i as
(x, θ) ∼i (x

′, θ′) if and only if x0:i = x′
0:i.

The semantics of (x, θ, i) |= Kφ state that “the system
knows φ” is satisfied if for any similar trajectory-mode
pairs of the closed-loop system, (x′, θ′), the formula φ
is satisfied. To simplify the exposition, we introduce the
following shorthand (x, θ) |= φ ⇐⇒ (x, θ, 0) |= φ.

B. Formal Problem Statement

The problem class that is addressed in this paper can now
be written.

Problem 1. Consider an unknown-mode linear system Σ and
a KLTL formula φ. Find a controller γ : X ×(X ×U)∗ → U
that guarantees all closed-loop trajectory-mode pairs of the
system satisfy the formula φ.

Importantly, we do not develop a single algorithm which
can satisfy an arbitrary KLTL formula for linear systems.
Instead, we present a number of formula templates in the
following sections and provide recipes for how to guarantee
that these useful templates are satisfied. Those interested in
more complicated formulas will need to use the intuition
developed here to design adaptive controllers for their own
KLTL formulas and we demonstrate how this can be done
with more complicated formulas later on.

IV. APPROACH

In this section, we will discuss how to design adaptive
controllers that satisfy several template KLTL formulas. The
template formulas involve most of the operators introduced in
Definition 5, but frequently contain atomic propositions and
not complex compositions of formulas. The types of atomic
propositions that we consider in this paper are categorized as
either state-based or model-based, but combinations of these
atomic propositions can be used to express a broad variety
of goals:

• (x, θ) |= p
• (x, θ) |= ⃝τφ
• (x, θ) |= φ1Uφ2

• (x, θ) |= Kφ

For the sake of illustrating our sketch of a solution to
Problem 1, we discuss what constraints need to be satisfied
in order for the system (2) with controller γ to satisfy such
formulas. Similar formulas (e.g., ¬φ, φ1 ∧ φ2, ♢φ) can all
be interpreted from our definitions of these initial operators.

A. Satisfying Atomic Propositions

First, we will consider the constraints that must be satisfied
for a controller that solves Problem 1 where φ = p. In order
to do this, we must verify that every trajectory-mode pair of
the system satisfies the conditions outlined in Definition 5.
The set T (Θ, γ) of all trajectory-mode pairs for system (2)
with controller γ can be represented by the union of a finite
number of convex sets as follows.

Lemma 2. The set of all feasible, closed-loop trajectory-
mode pairs (x0:T , θ) that a system (2) can produce for a
given controller γ over time horizon T is equivalent to the
following union of polytopes:

T (Θ, γ) =
⋃

m∈(2Θ)T+1

⋃
θ∈mT

R[0:T]R(m, γ|m)× {θ} (9)

where R[0:T] is a matrix that selects the state from time
0 to the end of the trajectory (x0:T−1) of the vector[
x⊤
0:T−1 u⊤

0:T−2

]⊤
.

Proof: This lemma holds given (7) and the fact that xT

can be exactly defined as belonging to a polytopic projection
of R(m, γ|m).

Now, we can present constraints that guarantee a controller
satisfies the formula φ = p when obeyed.

Proposition 1. Consider an uncertain linear system (2)
and a state-based atomic proposition p. The system under
controller γ satisfies the formula φ = p if for all m ∈
(2Θ)T+1

R0R(m, γ|m) ⊆ Sp (10)

where R0 is a matrix that selects the state at time 0 (x0) of
the vector

[
x⊤
0:T u⊤

0:T−1

]⊤
.

Proof: Consider the relationship (7). If each of the
reachable sets satisfies (10), then the full set R∗ satisfies the
set containment as well. Thus, all trajectories of the system
satisfy the single state-based formula.

The constraint (10) is a polytope containment constraint
and can be written as shown in Lemma 1. The constraints
in Lemma 1 are linear if the polytope matrices (e.g., HX
and hY) are constant, but in our work the polytope ma-
trices are linear functions of the decision variables (e.g.
(K

(m∗)
τ , k

(m∗)
τ)) as discussed in [12]. Thus, we know these

polytope containment constraints are bilinear. So, for state-
based atomic proposition p, finding a controller that satisfies
the bilinear constraint (10) guarantees that the proposition p
is satisfied.

Proposition 2. Consider an uncertain linear system (2)
and a model-based atomic proposition p. The system under
controller γ satisfies the formula φ = p if and only if
Θp = Θ.

Proof: The formula is only satisfied if θ ∈ Θp for all
(x, θ) ∈ R∗. By definition, every mode θ ∈ Θ is represented
in R∗, so the formula is only satisfied if Θp also contains
all modes (i.e. Θp = Θ).

Thus, only one model-based atomic proposition can be
satisfied in this way. This makes sense as the mode is not
influenced by the controller and can take any value in Θ.

B. Satisfying Formulas with the Repeated Next Operator

If Problem 1 is solved for a formula (⃝φ), then all
trajectories of system (2) satisfy formula φ at time t = 1.
Such trajectories satisfy the formula at the “next” time after

t = 0. So, when the next operator is repeated more than
once:

⃝τ = ⃝⃝ · · ·⃝
τ times

then the formula φ should be satisfied at time step t = τ in
order to satisfy ⃝τφ.

This is equivalent to simply applying a linear transform
to the set R∗ and thus can be easily incorporated into
optimization-based approaches.

Proposition 3. Consider an uncertain linear system (2) and
a state-based proposition p. The system under controller γ
satisfies the formula φ = ⃝τp if for all m ∈ (2Θ)T+1

R0 ·R[τ :]R(m, γ|m) ⊆ Sp (11)

where R[τ :] is a matrix that selects the state from time
τ to the end of the trajectory (xτ :T−1) of the vector[
x⊤
0:T−1 u⊤

0:T−2

]⊤
.

Again, (11) is a polytope containment constraint. Thus, we
know it can be transformed into a set of bilinear constraints
using Lemma 1.

C. Satisfying Formulas with the Until Operator

If Problem 1 is solved for a formula (φ1Uφ2), then all
trajectories of system (2) satisfy formula φ1 for all times up
until some time τ ≥ 0 where φ2 must be satisfied.

When the formulas φ1 and φ2 are both state-based
atomic propositions, this is equivalent to a sequence of
many polytope containment constraints which can be easily
incorporated into optimization-based approaches.

Proposition 4. Consider an uncertain linear system (2) and
two state-based atomic propositions p1 and p2. The system
under controller γ satisfies the formula p1Up2 if there exists
a τ ≥ 0 such that for all m ∈ (2Θ)T+1

RiR(m, γ|m) ⊆ Sp1
∀i < τ (12)

and
RτR(m, γ|m) ⊆ Sp2

. (13)

Proof: Consider the semantics of the until operator
defined in Definition 5. With the until semantics in mind
as well as Proposition 1, it follows that the existence of a τ
such that (12) and (13) proves that p1Up2.

For the sake of space, we refrain from discussing other
conditions under which formulas containing the until oper-
ator are satisfied (i.e., for other combinations of state- and
model-based propositions).

D. Satisfying Formulas with the Knowledge Operator

The following results describe what constraints the closed-
loop sets R(m, γ|m) should satisfy to guarantee that
learning-based formulas are satisfied. We say that a formula
φ which includes the K operator is learning-based and will
show how useful these formulas can be.

The first formula template that we analyze are for the
formula φ = Kp which behaves predictably given our results
for the formula φ′ = p.

Proposition 5. Consider an uncertain linear system (2) and
a model-based proposition p. The system under controller γ
satisfies the formula φ = Kp if and only if Θp = Θ.

This result can then be extended for a formula template
that defines how a system should “react” to new information.

1) Adaptation to New Knowledge: Consider the following
template formula:

φ = ⃝τ1(Kp1 =⇒ ⃝τ2p2).

The formula is satisfied if, on all trajectories where the
controller knows that the true mode of the system is in Θp

at time τ1, the trajectory eventually reaches a region Xp2
at

time τ1 + τ2.
This more complicated formula uses the K operator as a

precondition in an implies statement. Thus, this statement is
only applied to trajectories that satisfy Kp1 at time τ1 and
no other trajectories. We can extract this set of trajectories
using the following lemma:

Lemma 3. Consider an uncertain linear system (2) and
model-based atomic proposition p with Θp ⊆ Θ. For such a
system and for formula φ = ⃝τKp, the following sets are
equivalent:

{(x, θ) | (x, θ) |= φ} =
⋃

m ∈ (2Θ)T+1

s.t. mτ ⊆ Θp

C(m, γ|m)×mT .

(14)

Proof: First, consider a trajectory mode pair (x, θ) such
that (x, θ) |= φ. By the definition, this trajectory-mode pair
satisfies φ = ⃝τKp if and only if µ(x0:τ , u0:τ−1) ⊆ Θp,
where ut is the output of the controller (5). This output of
the estimator is feasible if and only if there exists m =
µ0:T ∈ (2Θ)T+1 such that (x, θ) ∈ C(m, γ|m)×mT . Thus,
the left hand side is equivalent to the right hand side.

Proposition 6. Consider an uncertain linear system (2), a
model-based atomic proposition p1 and a state-based atomic
proposition p2. The system under controller γ satisfies the
formula φ = ⃝τ1(Kp1 =⇒ ⃝τ2p2) if for all m ∈
(2Θ)T+1 such that mτ1 ⊆ Θp1

:

Rτ1+τjR(m, γ|m) ⊆ Sp2
. (15)

Proof: The formula is satisfied if all trajectory-mode
pairs (x, θ) of the system that satisfy ⃝τ1Kp1 also satisfy
⃝τ1+τ2p2. The set of trajectory-mode pairs (x, θ) that satisfy
⃝τ1Kp1 is given in Lemma 3. Furthermore, using the
properties of consistency sets:⋃

m ∈ (2Θ)T+1

s.t. mτ1 ⊆ Θp1

C(m, γ|m) ⊆
⋃

m ∈ (2Θ)T+1

s.t. mτ1 ⊆ Θp1

R(m, γ|m).

Therefore, if (15) is satisfied for R(m, γ|m) then it also
holds for C(m, γ|m). Then, applying the results from Propo-
sition 3, we can verify that all such trajectory-mode pairs
satisfy the final formula ⃝τ1+τ2p2.

V. SATISFYING MORE COMPLEX FORMULAS

The templates given in the last section offer a blueprint
for how to guarantee that linear systems satisfy arbitrarily
complex formulas. In this section, the templates are used
to design controllers that satisfy two complex formulas of
practical interest. The first formula is the “learn, then adapt”
formula which adapts the goal of the controller depending
on what is learned at run-time. The second formula is a
formula which guarantees model information is hidden by
the controller and from any external adversary. The design
problem for each of these formulas is shown to be equivalent
to a bilinear optimization problem which can be solved using
off-the-shelf optimization toolboxes such as YALMIP [18].

A. Learn, Then Adapt

The “learn, then adapt” class of formulas has the following
form:

φL =

|Θ|∧
i=1

(
♢K{θi} =⇒ ♢X (i)

T

)
(16)

where we slightly abuse the grammar of KLTL by using
the sets Θp and Sp in the place of propositions (e.g., p). For
example, in the above formula {θi} is meant to represent the
atomic proposition that is satisfied only when the trajectory
was generated by mode i.

This formula can be relevant in tasks where the controller
might perform a health check and if a fault is detected due
to internal or external issues, an alternative task is attempted
instead of the original task. Similarly, this formula is also
relevant in situations where the task is conditioned on the a
priori unknown discrete state of the system (e.g., the type of
cargo being carried). The next result shows how to synthesize
controllers that guarantee satisfaction of “learn-then adapt”
formulas.

Proposition 7. Assume that the system’s (2) mode is guar-
anteed to be known in T or fewer steps (i.e., C(m) = ∅
when |mT−1| > 1). If the following optimization problem is
feasible

Find
{
K(m),k(m)

}
m∈(2Θ)T

s.t. ∀m ∈ (2Θ)T+1 :

∃τ ∈ [1, T − 1] s.t. mτ = {i} =⇒ (17a)

GT (i,m)R(m, γ|m) +B(i)(k(m))⊕W(i) ⊆ X (i)
T

(17b)
∀t ∈ [0, T − 1] : (17c)

Gu(i,m, t)R(m, γ|m) + (k(m0:t)) ⊆ U (17d)

∀m,m′ ∈ (2Θ)T+1 :

m0:t = m′
0:t =⇒

K(m0:t) = K(m′
0:t), k(m0:t) = k(m

′
0:t). (17e)

where
• GT (θ,m) =

[
A(θ) +B(θ)K(m)R̂

(θ)
x B(θ)K(m)R̂

(θ)
u

]
• R̂

(θ)
x and R̂

(θ)
u are defined to reconstruct the distur-

bances according to the disturbance estimator from [19]

(i.e., ŵ0:T−2 = R̂
(θ)
x x+ R̂

(θ)
u u where ŵ is defined as in

(6))
• Gu(θ,m, t) = Rt

[
K(m)R̂

(θ)
x K(m)R̂

(θ)
u

]
then there exists an adaptive controller which solves Problem
1 for φ = φL. The matrix K(m) is a block matrix where the
(i, j)-th m× n block is defined as follows:

K
(m)
[i],[j] =

{
0m×n i ≤ j

K
(m0:i)
j otherwise.

(18)

Proof: Assume that optimization (17) is feasible.
Now, consider an arbitrary trajectory (x0:T , u0:T−1) cre-

ated by the system (2) in mode θ ∈ Θ and the controller
γ defined by feasible variables of (17). The trajectory
(x0:T , u0:T−1) is an element of the set C(m, γ|m) for some
m ∈ (2Θ)T+1.

By the assumptions of Proposition 7, it is not possible for
mτ = Θ for all τ ∈ [1, T − 1]. In other words, |mT−1| = 1.
Let’s suppose that mT−1 = {θ1} without loss of generality.

By definition of R, RTR(m, γ|m) =
GT (θ,m)R(m, γ|m) + B(θ)(k(m)) ⊕ W(θ) where
m = m0:T−1 . This equality allows us to simplify
the constraints (17a) and (17b) to RTR(m, γ|m) ⊆ X (i)

T

for this particular m. This condition is now in the form
from Proposition 6 and thus we can guarantee that this
trajectory-mode pair satisfies ⃝τ1(Kp1 =⇒ ⃝τ2p2) for
some τ ∈ [1, T − 1]. Trajectory-mode pair (x0:T , u0:T−1)
satisfying that formula is a sufficient condition for the pair
satisfying φL.

It follows that for any trajectory of the closed-loop system,
the mode is learned before time T and then the system
reaches its mode-dependent goal. Thus, is a sufficient con-
dition for satisfaction of φL is provided.

Note that for any sequence m ∈ (2Θ)T+1 that does not
have a τ where mτ = {θi} for some i, the formula φL

does not require anything. It is also possible to satisfy the
formula φL if one can hide information as discussed in the
next section but the sufficient conditions in Proposition 7 do
not cover this case.

As discussed in some of the previous sections, this opti-
mization contains bilinear constraints. Specifically, the bilin-
earity comes from all constraints where a set containment
constraint is created with an inbody that is a parameterized
set, (e.g. R(m, γ|m)) and a circumbody that is another
polytopic set. The parameterized set R(m, γ|m) is defined
by matrices that are a linear combination of the control gains,
which leads to a multiplication of the control gains with dual
variables (i.e., Λ).

B. Accomplish Goal While Hiding Information

The “controller-hidden information” formula template is
also a specification that can be written in terms of KLTL
and has practical application. It is formally written as:

φH = ¬

(∨
θi∈Θ′

K{θi}

)
UXT (19)

where the same abuse of notation from φL is used here.

This formula is useful in situations where the controller
would like to keep some model information hidden (i.e.,
the models within Θ′) to external observers until a task is
achieved. For example, an autonomous vehicle may wish to
hide the state of its internal damage to outside observers
while completing a trip. The next result shows how to syn-
thesize controllers that guarantee satisfaction of “controller-
hidden information” formulas.

Proposition 8. If the following optimization problem is
feasible

Find {K(m),k(m)}m∈(2Θ)T

s.t. ∀m ∈ (2Θ)T

∀τ ∈ [1, T − 1] mτ ̸= {θi} =⇒
GT (i,m)R(m, γ|m) +B(i)(k(m))⊕W(i) ⊆ XT

(20a)
∃τ ∈ [1, T − 1] s.t. mτ = {θi} =⇒
R(m, γ|m) = ∅ (20b)

∀t ∈ [0, T − 1] :

Gu(i,m, t)R(m, γ|m) + (k(m)) ⊆ U (20c)

∀m,m′ ∈ (2Θ)T :

m0:t = m′
0:t =⇒

K(m0:t) = K(m′
0:t), k(m0:t) = k(m

′
0:t). (20d)

where GT (θ,m), R̂
(θ)
x , R̂

(θ)
x , Gu(θ,m, t) and K(m) are

defined as in Proposition 7, then there exists an adaptive
controller that solves Problem 1 for φ = φH with Θ′ = {θi}.

Proof: Assume that optimization (20) is feasible. Now,
consider an arbitrary trajectory (x0:T , u0:T−1) created by the
system (2) in mode θ ∈ Θ and the controller γ defined by
feasible variables of (20). The trajectory (x0:T , u0:T−1) is an
element of the set C(m, γ|m) for some m̄ ∈ (2Θ)T+1. The
specific sequence m is constrained by (20b). The constraint
would be infeasible if a trajectory existed that produced m
where the true model is in the hidden models Θ′. Given that
the constraint was feasible, the sequence m guarantees that
the hidden model remains hidden until at least time T . At
time T , the trajectory is guaranteed to reach the target region
XT as guaranteed by (20a). Finally, we can conclude that any
trajectory under the controller defined by (20) is guaranteed
to hide the modes from Θ′ until time T at which point the
state-based atomic proposition XT will be satisfied. φH is
guaranteed to be satisfied.

VI. RESULTS

In this section, we demonstrate controllers synthesized
with formulas from Section V on a drone system. The opti-
mization problems are solved using a 2017 Dell XPS laptop
with 2.8 GHz Processor and 16 GB RAM.The performance
of the synthesized controllers are shown both in simulation
and on a Crazyflie 2.1 quadcopter.

A. The Drone System
We model the drone as a two-dimensional single integrator

(i.e. we assume that we control the drone’s velocity).

Fig. 2. Ten trajectories of the simulated drone system under the adaptive
controller that is the solution to (17) (Section V-A). The solution satisfies
task ϕL, guaranteeing that any trajectories under normal (purple) or cor-
rupted (cyan) dynamics are steered into the correct regions (X (1)

T in red,
or X (2)

T in magenta, respectively).

Consider the system as a two mode instance (i.e. |Θ| = 2)
of (2), where the state is a two-dimensional vector xt =
[p

(x)
t p

(y)
t]⊤ representing the drone’s position in the x- and

y-axes of the plane. The initial state set of the system is
X0 = {[0 0]⊤}. The matrices defining the system, the set of
disturbances W , and the and admissible control inputs will
be slightly different for each formula.

The velocity controller for the drone is emulated in hard-
ware using a position controller which receives the point
(p(x) + ux∆t, p(y) + uy∆t) at each time step.

B. Learn, Then Adapt

Let the drone system be represented by two tu-
ples (A,B1,W1) = (I,R0,W) and (A,B2,W2) =
(I,Rπ/16,W). The set of allowable inputs is U = {u ∈
R2 | ∥u∥∞ ≤ 0.5}. Note that the two systems are nearly
identical except for the input matrix B which is either
a counterclockwise rotation by π

16 radians (Rπ/16) or no
rotation (R0). This indicates that either velocity commands
are corrupted (i.e. rotated by π

16 radians) or not. Corruption
of the velocity command can be the result of damage to the
drone, software errors, and much more.

The first task for this system is φL (16), where
• X (1)

T = [1.2, 1.8]× [1.0, 1.4] and
• X (2)

T = [0.5, 1.1]× [1.0, 1.4].
In other words, if the drone learns that its control commands
are corrupted then it should reach region X (2)

T . If the drone
learns that its control commands are not corrupted, then it
should reach region X (1)

T .
The optimization in Proposition 7 is used to guarantee

that the drone’s trajectories satisfy φL with T = 5. The
optimization is solved in 0.38 seconds (with a constraint
setup time of 56.34 seconds). The controller successfully
satisfies the task both in simulations (see Figure 2), but also
in real world experiments (see Figure 1).

C. Accomplish Goal While Hiding Information

For illustrating this task, let us again consider the drone
system with the following two modes: (A1, B1,W1) and
(A2, B2,W2), where W1 = W2 = [0.8, 1.2]× [−0.1, 0.1]

Fig. 3. Ten simulated trajectories of the drone (left) and ten experimental
trajectories of the Crazyflie drone (right) when its controlled by the adaptive
controller that is the solution to (20) (Section V-B). The solution satisfies
task ϕH , guaranteeing that any trajectories flowing according to mode 1
(purple) or mode 2 (cyan) will reach the target region (red) while not
revealing the mode of the system to outside observers.

A1 = A2 = B1 = I and B2 =

[
−1 0
0 1

]
.

As before, the states are x and y position of the drone and the
control inputs are velocities in these directions. The velocity
inputs are limited to the set U = {u ∈ R2 | ∥u∥ ≤ 2.0} The
task is to hide the true mode of the system, i.e., the sign of
the actuator in x-direction, from any observer with access to
the external behavior (x0:t, u0:t−1) while reaching a target
region of the state space XT = [1.5, 2.5]2. This formally can
be stated with the “controller-hidden information” formula
φH where Θ′ = {θ1, θ2}.

Note that the only difference in the two modes is one entry
of the gain matrix, B, of each system. This difference and
the definition of the task indicate that the adaptive controller
must determine how to satisfy the reachability task using one
input while also acting conservatively to remain undetectable
due to other input. Our algorithm successfully does this after
solving the optimization in Proposition 8 in 0.673 seconds
with YALMIP (with a constraint setup time of 6.24 seconds).
As shown in Figure 3, the controller successfully satisfies the
task both in simulation and in hardware experiments.

VII. CONCLUSION AND FUTURE WORK

In this paper, we developed optimization-based sufficient
conditions for designing adaptive controllers for unknown
linear systems that guarantee the system’s closed-loop behav-
ior satisfies certain classes of KLTL formula. KLTL’s gram-
mar and semantics for unknown linear systems are presented.
With these semantics in mind, constraints are defined which
enforce that an adaptive, disturbance-feedback controller that
uses the consistency estimator satisfies simple and more
complex formula templates. Specifically, the constraints on
adaptive controllers (and the optimization problems that
find such controllers) are presented for the complex “learn,
then adapt” and ”controller-hidden information” formulas.
Instances of these two formulas are then created for a real-
world drone system and our method is applied to design
controllers that lead to behaviors that satisfy each formula.

In future work, we will consider an expanded form of the
KLTL semantics for multi-agent systems. In such multi-agent
systems, the knowledge operator is agent-dependent and thus

the ability to hide or share information is a much more com-
plicated and important task. The information asymmetry in
such multi-agent settings makes hiding information feasible
more often than in the setting presented in this paper.

REFERENCES

[1] William Langewiesche. Fly by wire: the geese, the glide, the miracle
on the hudson. Farrar, Straus and Giroux, 2009.

[2] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. Formal methods
for discrete-time dynamical systems, volume 15. Springer, 2017.

[3] Yuanqi Mao, Behcet Acikmese, Pierre-Loic Garoche, and Alexandre
Chapoutot. Successive convexification for optimal control with signal
temporal logic specifications. In 25th ACM International Conference
on Hybrid Systems: Computation and Control, HSCC ’22, 2022.

[4] Chuchu Fan, Zengyi Qin, Umang Mathur, Qiang Ning, Sayan Mitra,
and Mahesh Viswanathan. Controller synthesis for linear system with
reach-avoid specifications. IEEE Transactions on Automatic Control,
67(4):1713–1727, 2021.

[5] Suda Bharadwaj, Rayna Dimitrova, and Ufuk Topcu. Synthesis of
surveillance strategies via belief abstraction. In 2018 IEEE Conference
on Decision and Control (CDC), pages 4159–4166. IEEE, 2018.

[6] Aaron D Ames, Paulo Tabuada, Austin Jones, Wen-Loong Ma,
Matthias Rungger, Bastian Schürmann, Shishir Kolathaya, and
Jessy W Grizzle. First steps toward formal controller synthesis for
bipedal robots with experimental implementation. Nonlinear Analysis:
Hybrid Systems, 25:155–173, 2017.

[7] Juergen E. Ackermann. Parameter space design of robust control
systems. IEEE Transactions on Automatic Control, 25(6):1058–1072,
1980.

[8] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M Mur-
ray, and Sanjit A Seshia. Reactive synthesis from signal temporal
logic specifications. In 18th ACM International Conference on Hybrid
Systems: Computation and Control, pages 239–248, 2015.

[9] Karl J. Åström and Björn Wittenmark. Adaptive control. 1995.
[10] Brett T Lopez, Jean-Jacques E Slotine, and Jonathan P How. Ro-

bust adaptive control barrier functions: An adaptive and data-driven
approach to safety. IEEE Control Systems Letters, 5(3):1031–1036,
2020.

[11] Sadra Sadraddini and Calin Belta. Formal methods for adaptive control
of dynamical systems. In 2017 IEEE Conference on Decision and
Control (CDC), pages 1782–1787, 2017.

[12] Kwesi Rutledge and Necmiye Ozay. Correct-by-construction explo-
ration and exploitation for unknown linear systems using bilinear
optimization. In 25th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC ’22, 2022.

[13] Liren Yang and Necmiye Ozay. Fault-tolerant output-feedback path
planning with temporal logic constraints. In 2018 IEEE Conference
on Decision and Control (CDC), pages 4032–4039. IEEE, 2018.

[14] Pian Yu and Dimos V Dimarogonas. Hierarchical control for uncertain
discrete-time nonlinear systems under signal temporal logic specifica-
tions. In 2021 IEEE Conference on Decision and Control (CDC),
pages 1450–1455. IEEE, 2021.

[15] Olvi Mangasarian. Set containment characterization. Journal of Global
Optimization, 24(4):473–480, 2002.

[16] Rodica Bozianu, Cătălin Dima, and Emmanuel Filiot. Safraless
synthesis for epistemic temporal specifications. In International
Conference on Computer Aided Verification, pages 441–456. Springer,
2014.

[17] John-Jules Ch Meyer and Wiebe Van Der Hoek. Epistemic logic for
AI and computer science. Number 41. Cambridge University Press,
2004.

[18] Johan Löfberg. Yalmip : A toolbox for modeling and optimization in
matlab. In 2004 IEEE International Symposium on Computer Aided
Control System Design, Taipei, Taiwan, 2004.

[19] Andrew Wintenberg and Necmiye Ozay. Implicit invariant sets for
high-dimensional switched affine systems. In 2020 IEEE Conference
on Decision and Control (CDC), pages 3291–3297. IEEE, 2020.

