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Abstract— Falls during sit-to-stand are a common cause of
injury. The ability to perform this movement with ease is
itself correlated with a lower likelihood of falling. However,
a rigorous mathematical understanding of stability during
sit-to-stand does not currently exist, particularly in different
environments and under different movement control strategies.
Having the means to isolate the different factors contributing to
instability during sit-to-stand could have great clinical utility,
guiding the treatment of fall-prone individuals. In this work,
we show that the region of stable human movement during
sit-to-stand can be formulated as the backward reachable set
of a controlled invariant target, even under state-dependent
input constraints representing variability in the environment.
This region represents the ‘best-case’ boundaries of stable
sit-to-stand motion. We call this the stabilizable region and
show that it can be easily computed using existing backward
reachability tools. Using a dataset of humans performing sit-
to-stand under perturbations, we also demonstrate that the
controlled invariance and backward reachability approach is
better able to differentiate between a true loss of stability versus
a change in control strategy, as compared with other methods.

I. INTRODUCTION

Falls that occur during daily activities are a leading cause
of injury and death in the geriatric population [1], and can
cause harm across the lifespan [2], [3]. Within hospital
settings, up to one million patient falls occur annually [4].
Mitigating or preventing falls would therefore have a mea-
surable benefit to public health, including the reduction of
healthcare costs [5]. However, the underlying mechanisms of
falling are not well-understood. They are particularly under-
studied in the case of non-ambulatory activities such as sit-
stand transitions, which include sit-to-stand and stand-to-sit
movements. Sit-to-stand is performed as frequently as 60
times per day [6], and requires a larger range of motion than
walking, coupled with sufficient muscle power and appro-
priate limb coordination [7]. Falls occur frequently during
sit-stand transitions, particularly in the elderly population
and those who have experienced strokes [8]. A number of
reasons can be ascribed to these falls, such as limb collapse,
weakness, a failed control strategy, or environmental factors
such as a slippery floor [9], [10]. However, it is difficult to
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isolate each of these factors experimentally. Understanding
how each factor contributes to instability could guide treat-
ment; for some patients, a focus on strength training may be
necessary, while others may require coaching in new control
strategies.

Not only do falls occur frequently during sit-to-stand,
but sit-to-stand performance is itself correlated with the
likelihood of falling during other activities [11]. A mathe-
matically rigorous understanding of the factors contributing
to stability during sit-stand motions would therefore be of
value and could have great clinical utility. Progress could be
made in areas such as fall prediction and prevention [12],
design of rehabilitation protocols [13], tracking progression
of degenerative movement disorders [14], and improving the
safety of assistive devices such as prostheses [15], [16]. In
this human context, we consider stable movements to be
those that are not prone to falling. It is unclear whether
classical, Lyapunov-like notions of stability about an equilib-
rium or nominal trajectory are able to fully encompass such
movements.

Several methods have been proposed to assess the stability
of human movements. Early work considered the projection
of the body center of mass (CoM) position onto the plane
parallel to the base of support (BoS), defined by the location
of the feet on the ground [17]. However researchers observed
that this definition is too restrictive, as it is possible for
humans to stablize when the CoM position is outside of the
BoS, for example when walking. To detect stable configura-
tions outside of the BoS, researchers proposed considering
CoM velocity [18]. Using an actuated nonlinear inverted
pendulum model and state-dependent input constraints on
the torque at the ankle, they computed a stable region
of the CoM position-velocity phase plane. Maximum and
minimum velocities were computed for each CoM position
such that the pendulum could still be restored to upright
standing. Bounds were obtained by simulation, with initial
conditions selected via a computationally expensive iteration
over the entire state space [18]. Constraints were enforced
by assuming a supervisory controller, and only the portion
of the phase plane corresponding to forward moving/anterior
velocity was computed.

Building on this work, Hof et al. derived bounds on the
stable region using a linearized model [19]. This method, the
extrapolated center of mass, or XCoM, has become one of
the most popular approaches in the biomechanics literature.
However, XCoM can only be used with a linearized inverted
pendulum model, and does not incorporate general state-
dependent torque constraints. More recent similar work has



generalized the framing of this problem to multilink models
[20]. The upper and lower boundaries of the stable regions
are estimated by solving two highly constrained nonlinear
optimization problems for every point in a gridded statespace
via sequential quadratic programming. This approach is more
general, but it provides only locally optimal solutions.

Much research in controls focuses on stability during
walking, using constructs that depend on periodicity, foot
placement, or require large amounts of data [21]. Recently,
researchers have characterized the boundaries of stable walk-
ing by finding the set of initial conditions from which
falls can be avoided while specified goals can be reached
[22], [23]. To compute similar regions in continuous time
for nonperiodic behaviors, it is possible to use tools for
computing the backward reachable set, a concept which we
treat more thoroughly later in the text. In brief, given a
continuous time dynamical system and a goal region in the
state space, the backward reachable set is the set of all states
from which it is possible to reach the goal region, within a
certain time horizon.

The approach in [24] uses experimental data to construct
an individualized ‘stability basin’, or backward reachable set
when a parametrized control strategy is fixed and learned
from experimental sit-to-stand data. The stability basins can
be used to classify sit-to-stand performance such that sit-to-
stand trajectories resulting in a step or fall backward tend to
exit the basins while successful trials do not. This method
provides proof of concept for using backward reachability
tools. It is a novel approach for studying the effect control
strategies may have on stability during a specific movement.
However the basins exclude some biomechanically stable
configurations. Furthermore, state-dependent constraints on
the input are not considered in this application, and large
amounts of experimental data are required.

Notably, none of the aforementioned methods offer a
guarantee that the computation converges to the region
consisting of all states from which it is possible to reach
a properly defined target set. Such guarantees are powerful,
because they provide a rigorous way to differentiate between
a situation where a fall is inevitable, and a situation where
a movement strategy exists that maintains some form of
stability. Currently, no method exists that can compute such
regions for sit-stand transitions over a range of constraints,
environmental factors, physiological factors, and control
strategies. There is thus a need for a method that would
allow us to study how each of these factors affect human
stability in a systematic manner, something that is currently
not possible.

In this paper, we propose such a method, by formally
characterizing the stabilizable region of human movement
to be the backward reachable set of a controlled invariant
target set. We consider a target set that is typically used in
biomechanics literature and show that this set is controlled
invariant. Controlled invariance is a nice property for a target
set to have since it means there exists a control strategy that
ensures every trajectory starting from the set will stay in
it indefinitely. It captures the desired static behavior under

proper balancing after the sit-stand motion is finished. The
backward reachable set, on the other hand, consists of all the
states that can be driven into the controlled invariant goal
set in finite time with some controlled strategy. Therefore,
it captures the sit-stand phase. Notably, in this specific
setting, the backward reachable set itself can be shown to
be controlled invariant. This hence provides a similar safety
guarantee as the viability kernel does in [22].

Controlled invariance and backward reachability allow
us to develop a general formulation that is not model- or
task- dependent, and can be used for nonlinear, hybrid,
multidimensional, and aperiodic systems. It also provides a
way to clearly assert whether a failure is due to a specific bad
control strategy or just fundamentally inevitable. Under this
framework, we further include parametrized state-dependent
input constraints. This enables exploration of how changes
in the environment, such as a slippery floor, may affect
stability. For the case of a sit-stand model, we show that
we are able to easily compute stabilizable regions over a
range of environment and model parameters. Under nominal
non-slippery conditions, our stabilizable region corresponds
to the same regions of the state space as [18] and [20], as
desired. Lastly, we perform a preliminary validation with a
dataset of able-bodied adults performing sit-to-stand using
their natural control strategy [24].

II. PRELIMINARIES
Consider the continuous time, possibly nonlinear system

ẋ = f(x, u) (1)

where the system state is x ∈ X , and u ∈ U ⊂ Rm is the
input. With a slight abuse of notation, we will also use u :
[0,∞) → U or simply u(·) to represent an input signal. We
will assume f and u(·) are sufficiently regular to guarantee
the existence and uniqueness of solutions within X (which
is typically taken as a subset of Rn). Let U be the set of
all input signals, we use φ(t;x0, u) to denote the system’s
solution at time t from initial condition x0 under input signal
u(·) ∈ U.

A controlled invariant set for system (1) is a subset of the
state space where there exists an appropriate control input
u(·) ∈ U , such that the system state can remain within that
set for all time. We use the following formal definition.

Definition 1. Ω ⊂ X is a controlled invariant set if for every
initial state x0 ∈ Ω, there exists an input signal u(·) ∈ U

such that φ(t;x0, u) ∈ Ω for all t ∈ [0,∞).

Now suppose we have a target set S ⊂ X . The set of all
x ∈ X for which there exists a control input such that S can
be reached within some finite time horizon is the backward
reachable set of S.

Definition 2. Let S ⊂ X and T ∈ R+. Then GT (S), the
maximal backward reachable set of S at time T , is

GT (S) := {x ∈ X | ∃u(·) ∈ U s.t. φ(T ;x, u) ∈ S}. (2)

The backward reachable set GT (S) defined in equation (2)
is maximal in the sense we allow the full freedom to choose



the control input u(·). In many applications, a control law is
fixed, e.g., u(t) = Kx(t), and one can define a set G

T
(S)

that consists of all the backward reachable states of S under
this specific control law. In that case, we have G

T
(S) ⊆

GT (S) but G
T
(S) is not necessarily maximal due to the

restriction on u(·).
Definition 2 does not require that target S be controlled

invariant. However, notice that if it is, then the maximal
backward reachable is controlled invariant by construction.

Fact 1. The maximal backward reachable set of a controlled
invariant set is itself controlled invariant (see, e.g., [25]).

Proposition 1. Assume a system as defined in (1). Let S ⊂ X
be controlled invariant. Then Gt1(S) ⊂ Gt2(S) for all t1,
t2 ∈ R+ with t1 < t2.

Proof: Let x ∈ Gt1(S). Then there exists a controller
u1(·), s.t. x̂ = φ(t1;x, u1) ∈ S. Because S is invariant, there
must also exist a controller u0(·) that forces the system to
remain in S for all time, when starting from initial condition
x̂. Define a controller u2(·), such that u2(t) = u1(t) when
t ∈ [0, t1] and u2(t) = u0(t − t1) when t ∈ (t1, t2]. Then
φ(t2;x, u2) ∈ S, therefore x ∈ Gt2(S).

We can also define the maximal backward reachable tube
of a set S ⊂ X over a time horizon [0, T ] as G[0,T ](S) =
∪t∈[0,T ]Gt(S).

Corollary 1. If the target set S is invariant, then G[0,T ](S) =
GT (S).

A nice consequence of this corollary is that to compute
G[0,T ](S), it is not necessary to compute the entire backward
reachable tube, but rather only the backward reachable set at
time T . There exist several tools that can compute controlled
invariant sets or backward reachable sets. In particular, a few
methods [26], [27] can asymptotically achieve maximality
for generic nonlinear systems, at the cost of scalability;
whereas other methods are more efficient but either rely
on extra assumptions on the dynamics [28], [29], [30], or
only give conservative under-approximations that are not
necessarily maximal [31], [32], [33]. In our application we
use Hamilton Jacobi reachability [27], which is well suited
for low dimensional, nonlinear systems. We describe how we
apply this method to our system in section IV-C.

III. PROBLEM STATEMENT
In [18], [19] the stable region of human movement is

defined with respect to the body center of mass (CoM)
position and velocity projected onto the x−axis (fore-aft
direction in the sagittal plane, as shown in Figure 1). Given
an initial CoM velocity, a CoM position is considered stable
if it is still possible for the CoM to come to a full stop,
with the x-coordinate of the CoM (CoMx) inside the base
of support (BoS). Recall that the BoS is the location of foot
contact with the ground.

Let us call the set of configurations such that CoMx is in
the BoS at zero velocity the target set. We wish to:

1) Show that this target set is controlled invariant under
the appropriate constraints on the dynamics.

a

hf

l

𝜃
𝜏

lf

m

mfFgx

Fgy

CoP

Fig. 1: Two-link model. Fgx and Fgy are the ground reaction
forces, m and mf are the masses of the longer link and of
the foot, hf and lf are the hight and lenght of the foot, a
and CoP are the location of the ankle (fixed) and center of
pressure (not fixed).

2) Compute the backward reachable tube of the target
set, including constraints. We call this the stabilizable
region for sit-to-stand motion.

3) Demonstrate that the stabilizable region, which is also
controlled invariant, can be used to analyze the stability
of human movement.

IV. METHODS
A. Model and Constraints

Although our formulation is model-agnostic, the inverted
pendulum is frequently used as a low dimensional model
of human motion and is a good starting point [17]. With
generalized coordinates, the state variables of this model are
angle and angular velocity, (θ, θ̇) with model parameters
gravitation constant g, mass m, length l, and ‘angular’
friction constant b. The input is a torque at the ankle, τ ,
as shown in Figure 1. In first order state space form, we
denote the state space X ⊂ R2, with x1 = θ, x2 = θ̇ and
input τ in input space U ⊂ R:[

ẋ1

ẋ2

]
=

[
x2

−( gl ) cos (x1)− ( b
ml2 )x2 + ( 1

ml2 )τ

]
. (3)

We assume that there are bounds on the torque, representing
the strength of the muscles that produce the ankle torque:

τlb ≤ τ ≤ τub. (C1)

For the underactuated two- link model, we include a link
representing the foot of length lf and mass mf . To ensure
the foot stays flat on the ground, we define the following
constraints, similar to [18] and [34]:

Fgy ≥ 0 (C2)
CoP ∈ BoS, (C3)
|Fgx| < µFgy. (C4)



Fgx and Fgy are the ground reaction force in the x and
y directions, shown in Figure 1. The coefficient of static
friction is µ, CoP is the Center of Pressure, and BoS refers
to the Basin of Support, or foot. In the simple planar case,
this corresponds to a line segment on the x-axis of length
lf .

Together, these constraints ensure that the foot remains flat
on the ground [20]. Letting cθ = cos (θ) and sθ = sin (θ),
The equation for Fgx in terms of the state variables is

Fgx = ml(−θ̈sθ − θ̇2cθ). (4)

The equation for Fgy is

Fgy = mfg +ml(θ̈cθ − θ̇2sθ) +mg. (5)

Given the definitions of Fgx and Fgy , if we replace θ̈ with
its expression in terms of states from the righthand side
of Eq. (3), it is possible to transform constraints (C2)-
(C4) into state-dependent constraints on the ankle torque,
τ . Derivations of these constraints, along with the equations
of motion, are provided in [18].

B. Controlled Invariance of the Target Set

The target set is described with respect to cartesian coor-
dinates in our problem formulation. It is, however, compu-
tationally more efficient to compute the controlled invariant
set in the lower dimensional polar coordinate representation.
We use the dynamics and constraints defined in section IV-
A. The angle θmin corresponds to the angle at which the
center of mass of the body is over the heel, and θmax for the
center of mass over the toe. Figure 1 is approximately in the
θmin configuration; it is easy to see that θmin = cos−1 (al )

and θmax = cos−1 (
lf−a

l ). To enforce 0 velocity in the
x direction, we restrict angular velocity to be 0. In polar
coordinates, our target set Ωθ is

Ωθ = {x ∈ X | x1 ∈ (θmin, θmax), x2 = 0}. (6)

Proposition 2. The set Ωθ is controlled invariant. It remains
so under constraints (C1)-(C4) given sufficiently large torque
bounds.

Proof: To prove the invariance of Ωθ, it suffices to show
that for any initial condition x0 ∈ Ωθ, a controller exists that
causes the system state to remain in Ωθ for all time.

Choose an arbitrary x0 ∈ Ωθ, where x0 = [θ̂; 0]. Within
Ωθ, the dynamics are

τ = mgl2θ̈ +mgl cos θ. (7)

To remain in the set, acceleration must be 0. Otherwise the
system velocity will become nonzero and the system state
will exit Ωθ. Observe that by letting

τ = mgl cos θ, (8)

θ̈ = 0. This implies that the velocity will remain constant
at 0, and that the position will remain at θ̂. Thus Ωθ is
controlled invariant in the absence of constraints on τ . Note
that (8) is a simple case of an inverse dynamics controller

[35, Chapter 8]. It remains to show that the proposed
controller does not violate the constraints C1-C4.

Constraint 1: Recall that the angle θmin corresponds to
a CoM position above the heel, and θmax above the toe.
Because θ = π

2 when the CoM position is directly above the
ankle, 0 < θmin < π

2 and π
2 < θmax < π. This means that

cos θmin > 0 and cos θmax < 0. Thus maxθ cos θ = θmin

and minθ cos θ = θmax. Since parameters m, g, l > 0, it is
possible to set bounds on the inverse dynamics controller
derived previously: mgl cos θmax < τ < mgl cos θmin. As
long as τlb ≤ mgl cos θmax and τub ≥ mgl cos θmin, Ωθ

remains controlled invariant under constraint (C1).
Constraint 2: From equation (5) we see that when CoM

velocity and acceleration are 0, the vertical ground reaction
force, Fgy = (m+mf )g, a positive quantity. As the velocity
of the CoM is 0 within Ωθ, and controller (8) enforces θ̈ = 0,
C2 is satisfied.

Constraint 3: The set Ωθ is defined such that the x
coordinate of the CoM (CoMx) is within the BoS. When the
acceleration of the CoM is 0, the CoP location is equivalent
to CoMx [20]. It follows that since θ̈ = 0 with controller (8),
CoP = CoMx ∈ BoS. Thus this controller satisfies constraint
(C3).

Constraint 4: When θ̇ = 0 and θ̈ = 0, there is no ground
reaction force in the x-direction, so Fgx = 0. Under these
same conditions, Fgy = (m+mf )g. As µ is always positive,
θ̇ = 0 within Ωθ, and controller (8) enforces that θ̈ = 0,
constraint (C4) is always satisfied.

Given that our target set is invariant, in what follows we
explain how we compute the backward reachable set of the
target set. By Corollary 1, this gives us the reachable tube
representing the stabilizable region.

C. Computing the Backward Reachable Set

We use the Hamilton-Jacobi-Bellman (HJB) toolbox to
compute the backward reachable set of Ωθ. This toolbox
computes backward reachable sets by solving an HJB PDE
[36]. The user provides the toolbox with a target set, an
optimal control function, and safety constraints. The solution
of the PDE is a function V (t, x), of time and state. At time
t, the zero-sublevel of V (t, x) is equivalent to the backward
reachable set:

Gt = {x | V (t, x) ≤ 0}. (9)

For ease of computation, we relax the definition of our
target set Ωθ and allow a small range of angular velocity
(θ̇min, θ̇max). This can also be interpreted as accounting for
postural sway. Our relaxed target set Ωr is

Ωr = {x ∈ X | x1 ∈ (θmin, θmax), x2 ∈ (θ̇min, θ̇max)}.
(10)

This set is no longer controlled invariant. At the extreme
corners of the set, for example x1 = θmax, x2 = θ̇max,
remaining in Ωr would require an instantaneous change in
the direction of the velocity. Inside Ωr but close to this
corner, impossibly high torques would be required to remain
within the set. As Ωr is no longer invariant, the resulting BRS



is also not necessarily invariant. It contains the set of states
from which we can reach Ωr, but there is no guarantee that it
is possible to remain in Ωr. However, we note the following
fact.

Fact 2. Let GT (Ωθ) be the controlled invariant backward
reachable set that we originally sought to compute, and
GT (Ωr) be the set that we actually compute. Since the
original invariant set Ωθ ⊆ Ωr, we have GT (Ωθ) ⊆ GT (Ωr)
for all T .

We must also provide the optimal control input for a given
state. This input is given by the argument of

H(t, x,∇V ) = min
u∈U

∇V · f(x, u), (11)

where H(t, x,∇V ) is called the Hamiltonian, and function
f denotes the appropriate system dynamics. Typically, the
optimal control is chosen from a set U ⊂ Rn. However,
our problem includes state-dependent input constraints of the
form ui ≤ hi(x) or ui ≥ hi(x), where hi : X → R is a
function of the states.

Let U(x) denote the set of control values that are allowable
for a given state. Then the argument of the equation (11) with
the input-affine dynamics from (3) is given by

τ∗ = arg min
τ∈U(x̂)

∂V (t, x̂)

∂x̂2

1

ml2
τ, (12)

where the quantity ∂V (t,x̂)
∂x̂2

is computed by the HJB solver.
Since τ ∈ R, only two state-dependent input constraints can
be ‘active’ at x̂, representing upper and lower bounds. We
denote these constraints h−

a (x̂) and h+
a (x̂). Thus τ∗ = h+

a (x̂)

if ∂V (t,x̂)
∂x̂2

< 0 and τ∗ = h−
a (x̂) otherwise.

Finally, the state-dependent input constraints described in
the previous sections delimit the safe subset of the state space
where a valid input u exists. We provide the toolbox with
the boundaries of this set. For details of how to handle state-
dependent input constraints in HJB framework, see [37].

V. RESULTS

A. Stabilizable Regions for Varying Parameters

To compare directly with the results of [18], we use the
same model parameters, with m = 80 kg and l = 1.78m.
The ankle torque bounds are −142N ·m for plantarflexion
(foot rotation away from anterior leg) and 43.3N ·m for
dorsiflexion (foot rotation toward anterior leg), which are
mean bounds reported for males in muscle strength studies
of healthy populations [38]. The velocity tolerances for the
target set (10) are (−0.1 rad/sec, 0.1 rad/sec). Additional
parameters such as foot length were approximated as per-
centages of height based on anthropometric data, as in [18].

We compute the backwards reachable tube of the target
set over a time horizon of 1.5 seconds as this is sufficient
for the computation to converge. The resulting stabilizable
region computed under nominal (high friction) conditions
can be seen in Figure 2, in the lightest gray color. We plot
our results in terms of x-position and velocity of the CoM, to
directly compare with [18], [19]. We use the same convention
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Fig. 2: Stabilizable region of the two-link inverted pendulum
model under varying friction conditions are shown in shades
of gray. The target set representing the CoM position over
the foot at low velocity is in green. The boundaries of the
XCoM method, which cannot account for friction, are shown
as well via dashed lines. The stick figures indicate the CoM
position and the direction of the CoM velocity within relevant
regions of the figure.

of positive velocity corresponding to anterior motion in the
direction from the heel to the toe. We find that the upper and
lower boundaries of our stabilizable region approximately
match the boundaries in [18]. For example, at 2.4 foot
lengths behind the heel, the upper bound on the velocity is
approximately 1.1 m/s (scaled by body height), as computed
in [18]. Notably, our stabilizable regions include the portion
of the state space corresponding to velocities in the posterior
direction. This would be of relevance during motions such
as single leg balance, and was not included in [18], likely
due to computational issues.

The effect of varying the friction constraint parameter µ
is shown in Figure 2. As µ decreases, we expect the region
to decrease in size; the figure supports this observation.
Similarly, decreasing the size of the BoS or reducing the
absolute torque bounds also results in a smaller stabilizable
region (not shown).

For reference, we also include the bounds computed using
the popular XCoM method [19], shown as dotted lines in
Figure 2. Because the XCoM bounds are computed using
a linear model, they provide a good local estimate around
the target set. However the XCoM method cannot capture
variations in parameters such as friction or biological torque
bounds, which represent factors such as different environ-
ments and loss of strength due to aging or disease.

B. Preliminary Validation with Experimental Data

To perform a preliminary exploration of the stabilizable
region with human subject data, we use the dataset described
in [24] and compare our results with the stability basin
method introduced in the same paper. This dataset includes



movement trajectories of 11 subjects performing sit-to-stand.
External perturbations are applied during certain trials to
induce ‘failures’ where the subject must take a step or sit
back down. Perturbations are applied either forwards or
backwards via a cable pull in the anterior-posterior direction.
We specifically consider perturbed sit-to-stand trajectories
performed using a natural strategy, where no specific in-
structions were provided to participants regarding execution
of the movement. Because the boundaries of the stabilizable
region depend on model parameters, we compute personal-
ized regions for each participant using their height and mass.
Parameters such as foot length, ankle location, and torque
bounds are not provided, so we compute approximations
using anthropomorphic data as described in the previous
section.

Subjects were not told to try to avoid taking a step or
sitting back down. Thus this dataset provides examples of
‘failed’ trajectories, where it is unclear whether the subject
could have used an alternative control strategy to avoid
failure. Because our formulation maximally includes all pos-
sible control strategies, it may provide a way to differentiate
between these cases. In a case where an alternative strategy
exists, we would expect the perturbed trajectory to exit the
stabilizable region after the perturbation is applied. When
the perturbation actually causes an unrecoverable failure,
the trajectory should exit the set during the perturbation.
Examples of both these types of trajectories are plotted in
Figure 3.

Of the perturbed trials in the dataset, 71 resulted in the
subject taking a step forwards or backwards, or sitting back
on the chair. Of these, 29 resulted in the subject having to sit
back in the chair. It is reasonable to assume that such sit-back
failures are more likely to occur when no control strategy
exists to overcome the applied perturbation. Focusing on
these specific trials, we find that the end of the perturbation
occurs outside or on the boundary of the stabilizable region
in 26/29 trials. In comparison, the perturbed portion of the
trajectory exits the stability basin 12/29 times for the same
subset of trials. Of the 42 trials, in which the subject to took a
step, 22 exit the stabilizable region during perturbation while
9 exit the stability basin. Results are summarized in Table I.

VI. DISCUSSION AND FUTURE WORK

The results with respect to sit-back failures indicate that
the stabilizable region may be better able to characterize true
failures than the stability basin method. This is likely because
the torque bounds used to compute the stability basins are
learned from nominal, forward moving sit-to-stand trajec-
tories, and do not account for the differing biomechanics
of motion in the opposite direction. In particular, at the
moment a subject falls back to their heels, they cannot apply
a stabilizing ankle torque. Thus the stability basin method
assumes that a fairly large torque can be applied when it
cannot. For perturbed trajectories resulting in a step failure,
it is harder to make assumptions about the subject’s control
strategy. However, the lower number of trajectories exiting

0 0.5 1 1.5 2 2.5

-0.5

0

0.5

1

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

an
kl

e

to
e

he
el

Fig. 3: An unperturbed sit-to-stand trial in blue plotted along
side two perturbed trials. The stabilizable region is in gray.
The moment when the step was taken is indicated by the
black ‘x.’Perturbation was applied continuously between the
red diamond markers. One perturbed trajectory exits the
stabilizable region during the perturbation, while the other
exits the set after. This illustrates a possible true failure case
vs a situation where an alternative control strategy might
have allowed the participant to maintain balance.

Pert. End
Method Out In

Sit-back SR 26/29 (90%) 3/29 (10%)
SB 12/29 (41%) 17/29 (59%)

Step SR 22/42 (52%) 20/42 (48%)
SB 9/42 (21%) 33/42 (79%)

TABLE I: Comparison of our stabilizable region method
(SR) and the stability basin method from [24](SB). We look
at trials that resulted in the subject sitting back on the chair
(Sit-back) and trials where the subject to a step forward or
backward (Step). For each outcome, we look at whether the
perturbed portion of the trajectories exit the stability bounds
computed by each method during the perturbation (Out) or
after the perturbation is complete (In).

the bounds during perturbation may indicate that a stepping
strategy is often employed even when not strictly necessary.
These results are illustrative, as the experiment in [24] was
not designed to produce a range of unambiguous sit-to-stand
failures. Future work should include experiments that are
designed with this goal in mind.

The current model can only reflect two modes of human
reaction to perturbation: adjusting foot contact with the
ground and using ankle torque to stabilize [39]. The addition
of another link would allow the exploration of strategies
involving the hip. It will also be of interest to apply our
method to the analysis of systems that includes the dynamics
of assistive devices, such as an ankle exoskeleton. Unlike
prior work, we are able to include such variations in system



dynamics. Our method can also be extended to include
physiological state variables related to muscle activation
dynamics.

Lastly, endowing the stabilizable region with a metric
that can quantify stability is a compelling research direction.
Currently available metrics have been shown to have limited
experimental validity [21]. Several aspects of HJB reacha-
bility may be useful here, particularly the implicit function
representation of the reachable sets.
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