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Abstract— We consider the problem of segmentation of auto-
regressive models with exogenous inputs (ARX models). This
problem, where the goal is to determine the parameters
of a sequence of ARX models that can explain a given
input/output data within some noise bound, has attracted
considerable attention in recent years. Most of the recently
proposed approaches are based on convex relaxations. Although
efficient, these approaches do not necessarily lead to optimal
solutions. In the present paper, by exploiting some early
results in dynamic programming, we show that an optimal
solution can indeed be obtained in polynomial-time. One salient
feature of the proposed approach is that exploration of the
model complexity/quality of the fit trade-off space comes with
negligible additional computational cost. We discuss several
other properties of the proposed approach and compare it with
existing approaches on numerical examples, which show that
the proposed approach is consistently faster.

I. INTRODUCTION AND MOTIVATION

The problem of segmentation of ARX models has attracted
considerable attention in recent years. There are several
applications of this problem in anomaly and change detection
both in dynamical systems [9], [7], [10] and in computer
vision [8]. This problem has been shown to be equivalent
to switched system identification with minimum number of
switches [9], [10]. Segmentation problems are usually combi-
natorial, however, by recasting the problem into a sparsifica-
tion form, it is possible to leverage ideas from compressed
sensing literature to efficiently solve this problem [9], [7],
[10]. Moreover, as shown in [9], [10], for ARX models with
`∞-norm bounded noise, a greedy algorithm gives an exact
solution. For the case of `2-norm bounded noise, in addition
to earlier `1-norm relaxation proposed in [9], [10], various
other relaxation techniques have been proposed recently [7],
[11]. Although these relaxations lead to convex optimization
problems, it is not difficult to construct examples where the
solution of the relaxed problem is far from the solution of
the original problem. Also, one usually needs to adjust a
regularization parameter to trade-off between the complexity
of the model (i.e., the number of segments) and the quality
of the fit.

In this paper, we propose a polynomial-time yet exact
algorithm for segmentation of ARX models by exploiting
ideas from early days of dynamic programming [2]. Similar
ideas have been adopted in the econometrics [1] and signal
processing literatures [3], [4] for certain change detection
problems. Our main contribution is to adapt these ideas
to the ARX model segmentation problem and bring this
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powerful tool to the attention of the community working on
this problem. In particular, we pose the problem in a fairly
general form and present conditions under which this general
form can be solved using dynamic programing. It turns
out that different variants of the ARX model segmentation
problem considered by the controls community satisfy these
conditions, therefore amenable to exact solutions. Compared
to the existing techniques for ARX model segmentation, the
proposed algorithm not only has stronger optimality guar-
antees but also shown to be computationally more efficient
both in theory and in practice as demonstrated by various
numerical examples. Another salient feature of the algorithm
is that exploration of the whole complexity-quality of the fit
trade-off space does not change the complexity significantly
and can still be done in polynomial-time.

Notation: ‖x‖0 denotes the `0-quasinorm (`0-norm, for
short) that is equal to number of non-zero entries of the
vector x.

II. PROBLEM SETUP

In this paper, we consider time-varying affine autoregres-
sive exogenous models of the form:

yt =

na∑
i=1

aityt−i +

nc∑
i=1

citut−i + kt + ηt (1)

where u, y and η denote the input, output and noise, respec-
tively, and where t ∈ [to, N ], with to = max(na, nc). The
parameters pt

.
= [a1t , . . . , a

na
t , c1t , . . . , c

nc
t , kt]

′ are unknown.
When the parameter vector is constant (i.e., pt = p∗ for
all t), we recover the time-invariant ARX models [5]. For
notational simplicity, let the regressor vectors be defined as
rt

.
= [yt−1, . . . , yt−na , ut−1, . . . , ut−nc , 1]′ for t ∈ [to, N ].

Then, the model (1) can be written as

yt = p′trt + ηt. (2)

Given input/output data over a time horizon, the goal of
segmentation of ARX models is to find a “simple” model
of the form (1), where simplicity is usually measured by the
number of changes in the parameter vector, that provides
a “good” representation of data. This problem has been
formalized in several different ways in the literature.

Let f : RN−to+1 → R be the fitting error function, a
non-negative function that measures the quality of the fit1.
Given input/output data {ut, yt}Nt=0 over an interval [0, N ],
we consider following variants of the segmentation problem.

1Note that N varies depending on the amount of available data. That is,
f is a function with indefinite arity.



Problem 1: Minimum number of switches with bounded
fitting error:

minpto:N
‖[||pto+1 − pto ||, . . . , ||pN − pN−1||]′‖0

s.t f(yto − p′torto , . . . , yN − p′NrN ) ≤ ε1.
(3)

Problem 2: Minimum fitting error with bounded number
of switches:

minpto:N
f(yto − p′torto , . . . , yN − p′NrN )

s.t ‖[||pto+1 − pto ||, . . . , ||pN − pN−1||]′‖0 ≤ ε2.
(4)

Problem 3: Unconstrained regularized segmentation:

minpto:N
f(yto − p′torto , . . . , yN − p′NrN )+
λ‖[||pto+1 − pto ||, . . . , ||pN − pN−1||]′‖0.

(5)
These problems are tightly related. That is, when the

minimum of f is a nonincreasing function of the number
of changes in the parameter vector, for each fixed value of
one of the variables ε1, ε2, λ, one can find a value for the
other two variables so that an optimizer of one problem is
also an optimizer of the other problems.

III. DYNAMIC PROGRAMMING FORMULATION

In this section, we present a polynomial-time algorithm
that solves all the three problems in section II. The main
insight is that although the number of possible segmentations
is exponential in the horizon N , there are polynomially many
segments. In fact the number of segments is quadratic in N .

Let us define the following subproblem for t1 ≤ t2:

e([t1, t2])
.
= min

p
f(yt1 − p′rt1 , . . . , yt2 − p′rt2), (6)

that is, e([t1, t2]) is the fitting error when the data
{ut, yt}t2t=t1 is modeled by a time-invariant ARX model.

Before we proceed, we make the following assumptions:
A1. The value e([t1, t2]) in (6) can be computed efficiently

(i.e., in polynomial-time).
A2. The fitting error function f has the following form:

f(ηto , ηt1 , . . . , ηN ) =

N∑
t=to

f̄(ηt), (7)

for some non-negative function f̄ : R→ R≥0.
For a given data sequence {ut, yt}Tt=0 with T ≥ t0 and

an integer m > 1, the minimum fitting error with m − 1
changes in the parameter vector is given by:

E(m,T ) = minpto:T
f(yto − p′torto , . . . , yT − p′T rT )

s.t ‖[||pto+1 − pto ||, . . . , ||pT − pT−1||]′‖0 ≤ m.
(8)

Theorem 1: Under assumption A2, the optimal value of
Problem 2 is E(bε2c, N) and can be recursively computed
as follows:

E(0, T ) = e([to, T ]) for all T ∈ [to, N ], (9)

and for m = 1, . . . , bε2c and for T = max(m+1, t0), . . . , N ,

E(m,T ) = min
m≤j≤T−1

[E(m− 1, j) + e([j + 1, T ])] . (10)

Proof: The optimal value being E(bε2c, N) is clear
from the definition of E(m,T ) and the fact that `0-norm
only takes integer values. The recursion in (10) follows
from assumption A2 and the principle of optimality. That
is, if p̄to:T is an optimizer achieving E(m,T ), then for
t′ = max{t ∈ [to + 1, T ] | p̄t 6= p̄t−1}, p̄to:t′ must be
an optimizer achieving E(m−1, t′). Otherwise, there would
exist p̃to:t′ with ‖[||p̃to+1 − p̃to ||, . . . , ||p̃t′ − p̃t′−1||]′‖0 ≤
m− 1 such that

∑t′

t=to
f̄(yt − p̃′trt) ≤

∑t′

t=to
f̄(yt − p̄′trt),

which contradicts to the optimality of p̄to:T .
Note that the optimizers can be obtained by keeping

track of the optimizing indices in j∗ in equation (10) and
corresponding optimizer of e([j∗ + 1, T ]) in (6).

Theorem 2: Under assumptions A1 and A2, Problems 1,2
and 3 can be solved in polynomial time.

Proof: Assume e([t1, t2]) is computed and stored for
to ≤ t1 ≤ t2 ≤ N . This requires computing e([t1, t2])
O(N2) times. Then, running the recursion in Theorem 1
until m = m∗ requires a total of O(m∗N2) additions and
O(m∗N2) comparisons for finding the minima. Therefore,
under assumption A1, Problem 2 can be solved in polynomial
time.

Problem 1 and 3 can be solved with the same recursion.
For Problem 1, consider starting with m = 0 and increment-
ing m until E(m,N) ≤ ε1. Similarly for Problem 3, consider
keeping track of E(m,N) + λm value as m is incremented
until N.2 Therefore, these problems can also be solved in
polynomial time.

One salient feature of the recursion in equation (10) is
that once E(m,N) for all m upto N − 1 is computed, it is
possible to explore all the model complexity-quality of the fit
trade-off space by comparing E(m,N) values for different
m (or similarly by considering different λ values) in linear
time, where the model complexity is measured by the number
of segments and the quality of the fit is measured by the total
fitting error.

A few remarks on assumptions A1 and A2 are in order.
Assumption A1 holds true whenever the fitting error function
f is convex in its arguments. Since composition of a convex
function with an affine function preserves convexity, the
optimization problem (6) is a convex programming problem
in the unknown parameter p when f is convex. For instance,
one common measure of the quality of the fit is via the
norm of the error and norms are convex functions allowing
problem (6) to be solved efficiently. On the other hand,
assumption A2 is slightly stronger than what is required and
it can be relaxed. Dynamic programming can be used for any
error function f ′ whose composition with a monotone non-
decreasing function is in the form (7) (e.g., multiplicative
errors with log, `2-norm with square, etc.).

IV. EXAMPLES

In this section, we demonstrate the effectiveness of the
proposed approach on some numerical examples from [7],

2Early termination is possible when E(m,N) drops below a certain
value.
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Fig. 1. Data for Example 1.
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Fig. 2. Segmentation results, estimated parameter values (solid), and true
parameter values (dashed) for Example 1 when solved using Problem 2 with
ε2 = 2.

some of which are taken from the System Identification
Toolbox [6]. The fitting error function is chosen to be
f(ηto , ηt1 , . . . , ηN ) =

∑N
t=to

η2t , corresponding to squared
`2-norm.

Example 1: Consider the model:

yt = −a1tyt−1 + b1tut−1 + b2tut−2 + ηt.

We use the same data provided by [6]. That is, the input u ∈
{−1, 1} is chosen uniformly at random and additive noise η
is zero mean with variance 0.1. The parameter a1t = −0.9
for all t. For t < 20, b1t = 0, b2t = 1; and for t ≥ 20, b1t = 1,
b2t = 0. The data and the segmentation results are shown in
Figs. 1 and 2 respectively.

Example 2: Consider the time series generated by the
following model (without input):

yt = −a1tyt−1 − a2tyt−2 + ηt.

Let the additive noise η be zero mean Gaussian with unit
variance. At time t = 100, the value parameter a1t changes
from -1.5 to -1.3, while a2t is identically 0.7 for all times.
The data and the segmentation results are shown in Fig. 3.
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Fig. 3. Data and segmentation results (i.e., the changes in the estimated
parameter a1) for Example 2 when solved using Problem 2 with ε2 = 2.
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Fig. 4. Data and segmentation results (i.e., the changes in one of the
estimated regressor parameter) for Example 3 when solved using Problem
2 with ε2 = 2.

Example 3: The seismic signal data distributed by MAT-
LAB in quake.mat is used in this example. A second order
time-varying autoregressive model is used for fitting the data
as in [7], with the same preprocessing step. The data and the
segmentation results are shown in Fig. 4.

Table I summarizes the results in terms of computation
time and compares them to the convex programming ap-
proach in [7]. The computations were done on a 3GHz
Macbook Pro with 8GB memory. First column shows the
computation time when Problem 2 is solved and the second
column shows the computation time when E(m,N) is
computed for m = 1, . . . , N . Note that by exploring the
values of E(m,N) for all m, it is possible to see the whole
quality of the fit (E(m,N)), model complexity (number
of changes m) trade-off space. For comparison with [7],
the implementation provided by the authors of [7] is used.
In all cases, the proposed dynamic programming algorithm
is significantly faster than the method proposed in [7].
Moreover, the solution found by the dynamic programming
algorithm is guaranteed to be optimal.



Ex. DP
(known # of switches)

DP
(full exploration) Method of [7]

1 0.08s 0.1s 2.18s
2 0.75s 1.24s 2.98s
3 0.20s 0.40s 10.45s

TABLE I
COMPARISON OF COMPUTATION TIMES OF PROPOSED DYNAMIC

PROGRAMMING (DP) BASED APPROACH AND THE APPROACH IN [7].

V. DISCUSSION

Dynamic programming based approach provides an exact
and efficient solution to ARX segmentation problem. In
particular, it compares favorably to the previously proposed
relaxation based approaches [7], [11] when the quality of the
fit is measured by `2-norm. Note that we have not compared
the running time to [11] explicitly but the semidefinite
programming based relaxation proposed in [11] is known to
be computationally much more demanding than the `1-norm
based relaxation approach in [7]. Therefore it can neither be
more efficient nor more accurate than the dynamic program-
ming approach proposed here. On the other hand, Piga and
Toth [11] present a general method for `0-norm minimization
that has applications beyond ARX segmentation, whereas
for the proposed dynamic programming based approach the
applications beyond ARX segmentation is not clear.

The `1-norm based relaxation approach can be easily
extended to segmentation of multidimensional (e.g., spatio-
temporal) models where the process dynamics depend on
more than one indeterminate as shown in [10]. Such models
can be used as discrete approximations of PDEs. The `1-
norm based relaxation approach can also be used as an
intermediate step in switched system identification when the
goal is to find a system with minimum number of modes [9],
[10]. Such extensions of the dynamic programming approach
presented here are not trivial. It is also worth mentioning
that by changing the summation to a maximum operator in
the recursion equation (10), dynamic programming approach
can handle the case where the quality of the fit is measured
by `∞-norm. However this leads to an algorithm that is
computationally less efficient than the greedy exact algorithm
proposed for `∞-norm bounded noise in [9], [10].

VI. CONCLUSIONS

In this paper, we show that even though the problem of
segmentation of ARX models is generally non-convex, it
admits an efficient and exact solution.
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