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Abstract

Checking validity of a model is a crucial step in the process of system identification. This is

especially true when dealing with switched affine systems since, in this case, the problem of system

identification from noisy data is known to be generically NP-Hard and can only be solved in practice

by using heuristics and relaxations. Therefore, before the identified models can be used for instance

for controller design, they should be systematically validated against additional experimental data.

In this paper we address the problem of model (in)validation for multi-input multi-output switched

affine systems in output error form with unknown switches. As a first step, we prove that necessary

and sufficient invalidation certificates can be obtained by solving a sequence of convex optimization

problems. In principle, these problems involve increasingly large matrices. However, as we show in the

paper by exploiting recent results from semi-algebraic geometry, the proposed algorithm is guaranteed

to stop after a finite number of steps that can be be explicitly computed from the a-priori information.

In addition, this algorithm exploits the sparse structure of the underlying optimization problem to

substantially reduce the computational burden. The effectiveness of the proposed method is illustrated

using both academic examples and a non-trivial problem arising in computer vision: activity monitoring.

I. INTRODUCTION AND MOTIVATION

Hybrid systems, dynamical systems where continuous and discrete states interact, are ubiq-

uitous and can be found in many different contexts. Examples are as diverse as manufacturing

processes, biological systems, communication networks, automobiles and chemical processes.

This work was supported in part by NSF grants CNS–1329422, ECCS–1201973, ECCS–0731224, CMMI–0838906 and ECCS-

0901433; AFOSR grant FA9550-09-1-0253; and DHS grant 2008-ST-061-ED0001. N. Ozay is with the EECS Department,

University of Michigan, Ann Arbor, MI, 48109. M. Sznaier is with the ECE Department, Northeastern University, Boston, MA,

02115. Constantino Lagoa is with the EE Department, Penn State University, University Park, PA 16802.

March 22, 2014 DRAFT



2

Switched affine systems form a specific class of hybrid systems where continuous states evolve

according to a set of affine dynamics and the discrete state (i.e., the mode of the system) dictates

which dynamics within this set is followed at a given time. As such, switched affine system

models can also be used to approximate nonlinear dynamics. Therefore, during the past decade,

a considerable research effort has been devoted to the problem of set membership identification

of such models from experimental data; e.g., see the tutorial paper [23] for a summary of the

main issues in this area and [11] for recent developments in the field. Due to the mixture of

continuous and discrete state variables and the presence of noise, the identification problem

is generically NP-Hard. Hence, the majority of existing identification algorithms are based

on heuristics or relaxations ([10], [2], [21], [19], [8], [7], [1], [15], [22])1. Therefore, before

using such models, it is imperative that they are validated against additional experimental data.

Note that this validation can never be achieved using a finite data record, since there is always

the possibility that the model will be invalidated by data not yet seen. Thus, from a practical

standpoint, the problem of interest is model invalidation, rather than validation: establish whether

a given set of a-priori assumptions (model, noise and uncertainty levels) is consistent with the

observed experimental data. Models that do not pass an (in)validation step are rejected, while

those that do are accepted as correct, with the proviso that they could be invalidated by future

data. In this context, it is desirable to obtain tight (ideally necessary and sufficient) invalidation

certificates, to guarantee that valid models are not rejected. Further, these certificates can be used

to sharpen existing bounds on model uncertainty, leading to less conservative controller designs.

Model (in)validation of Linear Time Invariant (LTI) systems has been extensively studied in

the past two decades and both time and frequency domain results are available in the literature

(see for instance [25], [4], [27] and references therein). A related line of research is model

(in)validation of Linear Parameter Varying (LPV) systems ([30], [3]) where it is assumed that

parameter values are measurable during the experiment and used as part of a posteriori data

during the (in)validation step. Finally, (in)validation of continuous-time nonlinear models was

1Note that some of these identification methods are for switched ARX models and some for switched output-error models.

Invalidation is an important problem for both classes of models but the focus of the current paper is output-error models as

invalidation problem for switched ARX models is relatively easier as discussed later in the paper. Also note that the proposed

invalidation method is agnostic to how the output-error model is obtained and can be used regardless of whether it is derived

from first principles or is the result of applying any identification technique to experimental data.
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addressed in [26] using sum of squares methods and barrier functions. However, to the best of

our knowledge, similar results for discrete-time switched affine systems with unknown switches

are not available in the literature,2 with the main difficulty here being the combination of noisy

measurements and an unknown mode signal.

The main result of this paper is a necessary and sufficient condition for a multi-input multi-

output switched affine model to be (in)validated by the experimental data. More precisely, given

a set of affine output-error models and experimental input/output data, certificates are provided

for the existence or nonexistence of a switching sequence such that the resulting output of

the switched model interpolates the given experimental data within a given noise bound. In

order to develop such certificates, we start by showing that determining whether a given model

is consistent with the observed experimental data can be accomplished without estimating the

(unknown) switching sequence. Rather, this problem can be reduced to checking whether a

suitably defined semialgebraic set is empty or not. Then, by using a combination of recent

results on moments-based sparse polynomial optimization and duality we show that emptiness

of this set is equivalent to strict positivity of the solution of a related, infinite dimensional

convex optimization problem. In principle, this would require the solving of a sequence of

convex programs of increasing complexity. However, as shown in the paper, the process stops

in a finite number of steps bounded above by a constant that depends only on the number of

data points and the orders of the models involved. While this bound on the number of steps

is usually very large, this result is one of the very few available guaranteeing that emptiness

of a certain class of semi algebraic sets can be established by solving a convex optimization

problem with fixed size. Moreover, if while solving intermediate problems of smaller size either

a strictly positive solution is found or the rank of certain matrices formed using the solution to

the dual problem ceases to increase (the so-called flat extension property), then the process can

be stopped. The former case provides an invalidation certificate, while the latter shows that the

model and data observed so far are consistent. A salient feature of the proposed approach is

its ability to exploit the inherently sparse structure of the optimization problem to substantially

reduce its computational complexity. Finally, we further extend these results to invalidation of

2While this paper was under review, the invalidation problem was also considered in [5] where a mixed integer programming

approach is used to impose constraints on switching
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models with parametric uncertainty and provide algorithms for computing uncertainty bounds

based on additional experimental data.

In the last part of the paper, these results are illustrated both with academic examples and a non-

trivial problem arising in computer vision: activity monitoring. Typically, a visual surveillance

system captures high volume video streams from multiple sources. However, interesting (e.g.

abnormal) activities are infrequent, typically appearing in just a few frames. Thus, in order

to avoid errors due to human operator overload, it is important to automatically flag these

frames for further inspection, while discarding the portions of the data guaranteed not to contain

“contextually abnormal” events. As we show in Section VI-C, this problem can be recast into

a piecewise–affine model invalidation form and solved using the framework developed in this

paper.

A preliminary version of this work has appeared in a conference paper [20], parts of which

were included in the book chapter [9] (see also [18]). The current paper, in addition to containing

more in-depth discussions on the methodology, extends the earlier versions in three aspects: (i)

we provide a global upper bound for convergence of the semidefinite programming hierarchy

for the invalidation task, (ii) we extend the results to the case where the a-priori model contains

parametric uncertainty and provided a reformulation to compute parameter bounds, and (iii) we

include more examples.

II. PRELIMINARIES

For ease of reference, in this section we summarize the notation used in the paper and recall

some results on sparse polynomial optimization that play a key role in establishing the main

results of this paper.

A. Notation and Definitions

The set of real numbers is denoted by R. By x and M, we denote a vector in Rn and a matrix

in Rn×m, respectively. The jth entry of a vector x is denoted by x(j). ‖x‖∞
.
= supi |x(i)| is the

∞-norm of a vector. ||M||max is the entrywise infinity norm of the matrix M. M � N indicates

that the matrix M−N is positive semidefinite. < M,N >
.
= trace(MTN), is the inner product

of two matrices M and N. R[x1, . . . , xn] denotes the ring of polynomials in n variables over

R. When n is clear from context, R[x] is used for short. The mean value of the function p(x)
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w.r.t the Borel measure µ on the random variable x is denoted by Eµ[p(x)]. Given a set I , |I|

denotes its cardinality. Finally, Nn is the set of positive integers up to n, i.e. Nn
.
= {1, . . . , n}.

Definition 1. A polynomial p ∈ R[x] is said to be a sum of squares polynomial (SoS), if it can

be written as p =
∑m

j=1 u
2
j for some u1, . . . , um ∈ R[x].

Definition 2. A set K ⊂ Rn is said to be semialgebraic if it is defined by a finite number of

polynomial equations and inequalities.

B. The problem of moments and polynomial optimization.

In this paper, we reduce the (in)validation problem to a polynomial optimization over a

semialgebraic set, that is, a problem of the form:

p∗K := min
x∈K

p(x) (P1)

where K ⊂ Rn is a compact semialgebraic set defined by c polynomial inequalities of the form

gk(x) ≥ 0, k = 1, . . . , c. In the sequel, we briefly summarize some results relating polynomial

optimization to the problem of moments that is used to recast problem (P1) (and hence model

invalidation) into a (possibly infinite-dimensional) convex optimization form (see [12], [13], [16]

for more details).

1) The problem of moments: Let K be a compact subset of Rn. Given a multisequence of

scalars {mα}, indexed by a multi-index α ∈ Nn, the K-moment problem is to determine whether

there exist a Borel measure µ supported on K that has {mα} as its αth moments. That is:

mα = Eµ(xα)
.
=

∫
K

xαµ(dx) (1)

where xα = xα1
1 x

α2
2 · · ·xαnn (for a historical review and details of the problem, see [6], [28] and

references therein). As shown in [12], [6], the existence of such a measure can be character-

ized by positive semidefiniteness of some infinite matrices, the so-called moment M(mα) and

localization matrices L(gkmα) where gk(x) ≥ 0 are the polynomials defining K.

Next, we briefly discuss how to build truncated versions of M and L of a given sequence

m
.
= {mα} that contains all the moments up to order 2N . Although the order of the subsequence

is immaterial, for the sake of clarity of presentation, we arrange the moments according to a

graded reverse lexicographic order (grevlex) of the corresponding monomials so that we have
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0 = α(1) < . . . < α(SN ), where SN
.
=

 N + n

n

 is the number of moments in Rn up to

order N . The truncated version of M is defined as follows:

MN(m)(i, j) = mα(i)+α(j) for all i, j ≤ SN . (2)

Let gk(x) =
∑

β gk,βxβ be one of the defining polynomials of K with coefficients gk,β and

degree dk, then the corresponding truncated localization matrix is defined as:

LN(gkm)(i, j) =
∑
β

gk,β mβ+α(i)+α(j) for all i, j ≤ S
N−

⌊
dk
2

⌋ (3)

2) Moments-based polynomial optimization: In this section, we recall some results from [12]

that establish a connection between polynomial optimization and the problem of moments. In

general, problem (P1) is non-convex, hence hard to solve. Instead, we consider a related problem:

p̃∗K := min
µ∈P(K)

∫
p(x)µ(dx) := min

µ∈P(K)
Eµ [p(x)] (P2)

where P(K) is the space of Borel measures on K with µ(K) = 1. Although (P2) is an

infinite dimensional problem, it is, in contrast to (P1), convex. The next result, taken from

[12], establishes the relation between the two problems:

Theorem 1. Problems (P1) and (P2) are equivalent; that is:

• p̃∗K = p∗K .

• If x∗ is a global minimizer of (P1), then the Dirac measure µ∗ = δx∗ with a point support

at x∗ is a global minimizer of (P2).

• For every optimal solution µ∗ of (P2), p(x) = p∗K , except in a set of µ∗-measure zero.

One direct consequence of this theorem is that the problem of finding p∗K in problem (P1)

can be reduced to a sequence of Linear Matrix Inequalities (LMI) optimization problems in the

moments of the unknown Borel measure by using (2) and (3) to define the constraint set. To

this effect, define
p∗N = minm

∑
α pαmα

s.t. MN(m) � 0,

LN(gkm) � 0, k = 1, . . . , c,

(4)

where pα is the coefficient of the monomial xα in the polynomial p(x), i.e. p(x) =
∑

α pαxα.

Then, according to Theorem 4.2 in [12], we have:
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Theorem 2. As N goes to infinity, p∗N in (4) approaches to p∗K from below.

3) Exploiting the sparse structure: The next property will play a key role in reducing the

computational complexity of problem (P1) by exploiting its structure.

Definition 3. Consider problem (P1) where the constraint set K ∈ Rn is defined by c polynomials

gk. Let {Ii}c
′
i=0 be a collection of subsets of variables in X .

= {x1, . . . , xn}, satisfying
⋃c′

i=0 Ii =

X . Suppose each gk contains variables only in Ii for some i. Also, assume the objective function

p can be partitioned as p(x) = p1(x) + . . .+ pl(x) where each pk contains variables only in Ii

for some i. Then, the running intersection property is satisfied in Problem (P1) if the collection

{Ii}c
′
i=0 satisfies

Ii+1 ∩
i⋃

j=0

Ij ⊆ Ir for some r ≤ i. (5)

Similar to the convergence result stated in Theorem 2, for a polynomial optimization problem

that satisfies the running intersection property, it is possible to construct a hierarchy of semidef-

inite programs of smaller size. Assume that (P1) satisfies the running intersection property with

the family of subsets {Ii}c
′
i=0 and partition of the objective function {pj}lj=1. Let

p∗N = minm

∑l
j=1

∑
α(j) pj,α(j)mα(j)

s.t. MN(mIi) � 0, i = 0, . . . , c′,

LN(gkmIi(k)) � 0, k = 1, . . . , c,

(6)

where pj,α(j) is the coefficient of the α(j)th monomial in the polynomial pj , MN(mIi) denote

the moment matrix and LN(gkmIi(k)) the localizing matrix for the subset of variables in Ii(k).

Next result is adapted from [13].

Theorem 3 (Sparse Polynomial Optimization). As N goes to infinity, p∗N in (6) approaches to

p∗K from below.

For the case of generic polynomials and constraints, solving problem (P1) using the method of

moments for a given order N requires considering moments and localization matrices containing

O(n2N) variables. On the other hand, if the running intersection property holds, using Theorem 3

it is possible to define c+c′+1 smaller sized matrices each containing variables only in some Ii
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(i.e. number of variables is O(c′κ2N), where κ .
= max0≤i≤c′ |Ii|). In many practical applications,

including the one considered in this paper, κ � n. Hence, exploiting the sparse structure

substantially reduces the number of variables in the optimization (and hence the computational

complexity), while still providing convergent relaxations.

III. (IN)VALIDATING MIMO SWITCHED OUTPUT ERROR MODELS

We now provide a formal definition of the (in)validation problem addressed in this paper and

show that it is equivalent to finding if a suitable polynomial optimization problem has zero as

its optimum. Computationally tractable (in)validation certificates are then obtained by exploiting

results from polynomial optimization and semi algebraic geometry.

A. Problem Statement

The systems considered in this paper are the so-called multi-input, multi-output (MIMO)

switched affine systems which have an output error model structure of the form:

yt =
∑na

k=1 Ak(σt)yt−k +
∑nc

k=1 Ck(σt)ut−k + f(σt)

ỹt = yt + ηt
(7)

where ut ∈ Rnu is the input, ỹt ∈ Rny is the measured output corrupted by the noise ηt ∈ Rny ,

and σt ∈ Ns is the discrete mode signal indicating which of the s submodels is active at time

t. No dwell-time assumptions are made, hence the mode signal σt can switch arbitrarily fast

among the s submodels Gi, each of which is associated with the set of its coefficient matrices

{A1(i), . . . ,Ana(i),C1(i), . . . ,Cnc(i), f(i)}.

In this context, the model (in)validation problem addressed in this paper can be formally stated

as:

Problem 1. Given a nominal hybrid model of the form (7) with s submodels G1, . . . , Gs, an a

priori bound ε on the `∞ norm of the noise, and experimental data {ut, ỹt}Tt=0, determine whether

or not there exists a switching sequence σ = {σt}Tt=0 such that the corresponding trajectory of

(7), corrupted by admissible noise η can explain the observed data, or, equivalently whether or

not the consistency set

T = {(η, σ) | ||ηt||∞ ≤ ε, σt ∈ Ns subject to (7) ∀t ∈ [0, T ]}
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Fig. 1. Problem Setup. The coefficient matrices of the submodels Gi and a bound on the noise are known a priori. The

experimental data consists of input/output measurements, u and ỹ. The mode signal σt and noise sequence η are unknown.

is nonempty.

Remark 1. It should be emphasized that the equations (7) are coupled through the noise terms.

Indeed, if the ith sub model is active at time t, (7) is equivalent to

A1(i)(ỹt−1 − ηt−1) + . . .+ Ana(i)(ỹt−na − ηt−na)

−(ỹt − ηt) + C1(i)ut−1 + . . .+ Cnc(i)ut−nc + f(i) = 0
(8)

which consists of ny linear equations in na+1 unknown noise vectors ηt−na:t. Therefore, Problem

1 cannot be solved by just looking at feasibility of s sets of equations (each corresponding to

one subsystem) one–at–a–time. Rather, to proceed along these lines, one will be forced to look

at all possible combinations of subsystems over the relevant time horizon. On the other hand,

for switched autoregressive models with exogenous inputs (ARX), where the noise terms are

decoupled, a similar invalidation problem reduces to checking the feasibility of a set of linear

inequalities and is relatively easier to solve.

B. A Convex Certificate for (In)validating MIMO Switched Output Error Models

In this section, we present the main result of the paper, convex necessary and sufficient

invalidation certificates in the form of strict positivity of the solution to a finite-dimensional

convex optimization problem. Towards this goal, we start by defining a second consistency

set T ′, independent of the switching signal σt, whose non-emptiness is equivalent to the non-

emptiness of the original consistency set T . Note that if the ith submodel is active at time t
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(i.e., σt = i), the following should hold:

[h
(1)
t,i (ηt−na:t) = 0] ∧ . . . ∧ [h

(ny)
t,i (ηt−na:t) = 0] (9)

where ∧ denotes the logical AND operation and h
(j)
t,i (ηt−na:t) = 0 denotes the equation corre-

sponding to the jth row of the system of equations (8). Algebraically, the expression above can

be written as:

gt,i(ηt−na:t)
.
=

ny∑
j=1

[
h
(j)
t,i (ηt−na:t)

]2
= 0. (10)

Since the mode signal σt is unmeasurable, the actual subsystem Gi that is active at any given time

t is not known. However, in order for the set of submodels given as part of a priori information

not to be invalidated by the experimental data, Eq. (10) should hold true for some i ∈ {1, . . . , s}

and some admissible value of the noise ηt−na:t. This condition can be expressed as

[gt,1(ηt−na:t) = 0] ∨ . . . ∨ [gt,s(ηt−na:t) = 0] (11)

where ∨ denotes the logical OR operation, or algebraically3

pt(ηt−na:t)
.
=

s∏
i=1

gt,i(ηt−na:t) = 0. (12)

Hence, consistency between the a priori and a posteriori information on a switched affine system

is equivalent to the existence of an admissible solution ηt−na:t to the set of polynomial equalities

(12), leading to the following result. The proof is omitted since it is an immediate consequence

of the definitions of the polynomials above and the bounds on the measurement noise.

Lemma 1. Let

T ′ .=
{
η | ft,j(η(j)t ) ≥ 0 ∀t ∈ [0, T ], j ∈ Nny and pt(ηt−na:t) = 0 ∀t ∈ [na, T ]

}
,

where

ft,j(η
(j)
t )

.
= ε2 −

[
η
(j)
t

]2
(13)

Then, T is empty if and only if T ′ is empty.

The result above shows that the problem of model (in)validation is equivalent to checking

whether a set defined by polynomial inequalities is empty or not. Hence, one could use the

3This idea is similar to the hybrid decoupling constraint proposed in [17].
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Positivstellensatz and derive sum of squares certificates for the emptiness of T ′, as proposed in

[24] for general polynomial inequalities. However, such an approach does not take into account

the structure of the problem at hand and can lead to very complex semidefinite optimization

problems. A closer look at the polynomials used in the definition of T ′ reveals an underlying

sparse structure that can be exploited to substantially reduce the computational complexity

entailed in checking its emptiness.

We now elaborate one this. Consider the following optimization problem

o∗ = minη

∑T
t=na

pt(ηt−na:t)

s.t. ft,j(η
(j)
t ) ≥ 0 ∀t ∈ [0, T ], j ∈ Nny .

(14)

We now argue that

o∗ ≥ 0 and o∗ = 0⇔ T ′ 6= ∅.

The inequality o∗ ≥ 0 is a consequence of the fact that the objective function in (14) is a

sum of squares polynomial.4 Moreover, given the definition of the set T ′ and the optimization

problem (14), o∗ is equal to zero if and only if then there exists a noise sequence that satisfies

the polynomial constraints defining the set T ′ or, in other words, if and only if T ′ is nonempty.

Equivalently, o∗ > 0 if and only if T ′ = ∅.
The main advantage in reformulating the (in)validation problem as an optimization problem

such as (14) is the fact that one can now exploit the results on sparse polynomial optimization

reviewed in Section II-B3. More precisely, the following result holds.

Lemma 2. Problem (14) satisfies the running intersection property.

Proof. Consider the the collection {Ii}T−nai=0 of subsets of the variables η0:T where Ii = {ηi:i+na}

for all i. Note that
⋃T−na
i=0 Ii = {η0:T}. Now consider the polynomials ft,j(η

(j)
t ) and p(η0:T )

.
=∑T

t=na
pt(ηt−na:t) defining, respectively, the constraints and the objective function of the problem

(14). For t ≤ na, each ft,j contains variables only from I0; and for t > na, each ft,j contains

variables only from It−na . Similarly, each pt contains variables only from It−na . Moreover,

Ii+1 ∩
i⋃

j=0

Ij = {η(i+1):(i+na+1)} ∩ {η0:(i+na)} = {η(i+1):(i+na)} ⊂ Ii,

4Since it is formed by multiplication and addition of SoS polynomials in (10), and the cone of SoS polynomials is closed

under these operations.
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for all i, satisfing (5) with r = i. Therefore, the running intersection property in Definition 3

holds.

The result above, together with a moments approach to polynomial optimization, can be

used to formulate a sequence of convex optimization problems whose solution converges to o∗

and sparse structure is exploited to reduce computational complexity. Specifically, define the

following convex optimization problem

d∗N = minm

∑T
t=na

lt(mt−na:t)

s.t. MN(mt−na:t) � 0 ∀t ∈ [na, T ]

LN(ft,jmt−na:t) � 0 ∀t ∈ [na + 1, T ], j ∈ Nny

LN(ft,jm0:na) � 0 ∀t ∈ [0, na], j ∈ Nny

(15)

where each lt is the linear functional of moments defined as lt(mt−na:t)
.
= E

{
pt(ηt−na:t)

}
,

and where MN and LN are the moments and localization matrices associated with a truncated

moments sequence containing terms up to order 2N with N ≥ s. Note that, in the problem above,

we do not use a “global” moment matrix MN(mt−na:T ). Instead, we use smaller MN(mt−na:t),

leading to a substantial reduction in the number of variables used; see Remark 3.

Again, the fact that the objective function of (14) is a sum of squares polynomial implies

that d∗N ≥ 0 for all N . Moreover, application of Theorem 2 implies that d∗N ↑ o∗ as N → ∞.

Therefore, one has the following necessary and sufficient conditions for model (in)validation.

Theorem 4. The following statements are equivalent:

(i) The consistency set T ′ is empty.

(ii) There exists some finite No such that d∗No > 0.

(iii) The solution r∗ to the following optimization problem is strictly greater than zero5:

r∗ = minm

∑T
t=na

lt(mt−na:t)

s.t. Ms(mt−na:t) � 0 ∀t ∈ [na, T ]

rank [Ms(mt−na:t)] = 1 ∀t ∈ [na, T ]

ft,j(mt−na:t) ≥ 0 ∀t ∈ [na + 1, T ], j ∈ Nny

ft,j(m0:na) ≥ 0 ∀t ∈ [0, na], j ∈ Nny

(16)

5With slight abuse of notation, in (16) ft,j is used to denote the linear functional of moments defined by ft,j(mt−na:t)
.
=

E
{
ft,j(ηt−na:t

)
}

.
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where each of the T − na + 1 moments sequences mt−na:t, t ∈ [na, T ], contains moments

up to order 2s (i.e. two times number of submodels).

Proof. (i)⇔(ii) Recall that T ′ = ∅ ⇐⇒ o∗ > 0. Since d∗N ↑ o∗ as N → ∞, if o∗ > 0, there

exist No such that d∗No > 0. On the other hand, if d∗No > 0 then o∗ > 0 since d∗No < o∗. Hence,

T ′ is empty.

(i)⇔(iii) To prove this equivalence, we show that r∗ in (16) is equal to o∗ in (14). Assume η∗

is an optimizer of (14), then the moments of the Borel measure µ∗ with point support at η∗ is

feasible for (16) with the same objective value which implies r∗ ≤ o∗. On the other hand, if m∗

is a minimizer of (16), the rank condition implies that there is a corresponding measure µ∗ with

point support, say at η∗. Since this value of η∗ is a feasible point of (14), o∗ ≤ r∗. Therefore,

r∗ = o∗ from which we conclude that r∗ > 0 is equivalent to (i).

The theorem above states that if the consistency set is empty, then there exists a finite relaxation

order No such that d∗No > 0. Remarkably, as shown below, a general upper bound on the relaxation

order can be explicitly computed from the a-priori information.

Theorem 5. Assume that the consistency set T ′ is empty. Then d∗N > 0 for all

N ≥ sT−na+1 + 1
.
= No (17)

Proof. See Appendix A.

Remark 2. The bound above is significant from a theoretical standpoint, since it is one of the

very few results of this type available in the literature for constrained polynomial optimization

problems involving real rather than discrete-valued variables. On the other hand, from a practical

standpoint, this bound is usually conservative, leading to optimization problems that may be too

large. In some cases, the consistency of the experimental data record with the model and a priori

assumptions can be certificated at smaller relaxation orders by resorting to a variation of the

so-called flat extension property for sparse polynomial optimization stated in [13]. In particular,

if for some N < No,p̃N ≤ 0 and the solution m∗ of (15) satisfies rank
[
MN(m∗0:na)

]
= 1;

rank
[
MN(m∗t−na:t−1)

]
= 1 and rank

[
MN(m∗t−na:t)

]
= rank

[
MN−2(m

∗
t−na:t)

]
∀t ∈ [na, T ],

then this certifies that o∗ = d∗N = 0; hence T ′ is not empty.
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Remark 3. It is important to highlight the complexity reduction achieved by employing the

running intersection property established in Lemma 2 while forming the optimization problem

(15). The conventional moment relaxation of order N in [12] would require O((Tny + ny)
2N)

optimization variables with a moment matrix of the size

 N + Tny + ny

Tny + ny

. On the other hand,

(15) involves only O((nany + ny)
2N) variables with T − na + 1 moment matrices of the size N + nany + ny

nany + ny

 where, in general, the length of the experimental data T is substantially

larger than the order of the regressor na (i.e. na � T ).

IV. NUMERICAL CONSIDERATIONS

As mentioned in the previous section, the relaxation bound provided in Theorem 5 can be

very conservative, and it is often possible to assert whether the data collected and the a priori

conditions are consistent or not by using a value of N much lower than N0. Hence, in practice,

one solves a sequence of problems with increasing N until either consistency with the model

is established or one obtains a value of d∗N strictly greater than zero and the model is deemed

invalid. To do this, for each N , it is necessary to determine if either d∗N = 0 or d∗N > 0.

This leads to a potential numerical difficulty. All numerical solvers have finite precision and,

in practice, they will almost always give a numerical solution to problem (15) that is non-zero.

To address this problem, we propose to use the dual of (15) to obtain a more numerically robust

certificate of strict positiveness of d∗N . We now elaborate on this.

The constraints in problem (15) are Linear Matrix Inequality (LMI) constraints and, hence, it

can be represented in the standard dual form of semidefinite programs; i.e., it can be reformulated

as
d∗N = infm bTm + co

s.t.
∑

α∈IAαmα � C
(18)

where I is the set of the multi-indexes of all moments that occur in (15) except the zeroth moment

m0 = 1 which is used to form the constant terms C and co. Consider now the corresponding

primal problem which is of the form

p∗N = maxX < C,X > +co

s.t. < Aα,X >= bα ∀α ∈ I

X � 0

(19)
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where, without loss of generality, X can be chosen to have the same block-diagonal structure

of Aαs and C. Results on duality show that p∗N ≤ d∗N and, hence, p∗N > 0 is a certificate for

model invalidation. Moreover, if (19) is a feasible problem, then p∗N = d∗N and

T ′ = ∅ ⇔ p∗N∗ for some N∗ ≤ N0.

Returning to numerical considerations, let d̃N and p̃N be the solutions to problems (15) and

(19) respectively, obtained using any numerical solver. Then,

p̃N ≤ p∗N = d∗N ≤ d̃N

and, hence, one can always use p̃N > 0 as a certificate for emptiness of the set T ′. In other

words, strict positivity of p̃N is an invalidation certificate.

V. HANDLING PARAMETRIC UNCERTAINTY

In this section, we discuss model invalidation in the presence of parametric uncertainty. To

this effect, we consider the following model:

yt =
∑na

k=1[Ak(σt) + ∆Ak(σt)]yt−k +
∑nc

k=1[Ck(σt) + ∆Ck(σt)]ut−k

ỹt = yt + ηt
(20)

where ∆X (for X ∈ {Ai,Cj} with i ∈ [1, na], j ∈ [1, nc]) represent bounded parametric

uncertainty (i.e. ||∆X ||max ≤ γ ∀X). Also, let ∆ denote the the set of all uncertain parameters,

i.e., all entries in ∆X for all X . Following along lines similar to those in Section III-A, a

consistency set T (η,∆, σ) and its semialgebraic equivalent T ′(η,∆) can be defined. All the

results of Sections III-B and IV (including the running intersection property) extend to the case

with parametric uncertainty in a straight forward way. This only requires additional variables,

due to ∆X’s, in the optimization problems.

Next, we propose a modification of the optimization problem that allows to use input/output

data from invalidation experiments to obtain bounds on the uncertain parameters. Let us denote

an entry of an uncertainty matrices ∆X by δl for l ∈ N|∆|. For any bound γ > 0 on the

uncertainty, we define the polynomials q1(δl)
.
= γ − δl and q2(δl)

.
= δl + γ. Now, consider the

March 22, 2014 DRAFT



16
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G
(δ)
σt

- h+ - ỹ
6
η

Fig. 2. Problem setup with parametric uncertainty. The coefficient matrices of the submodels Gi is subject to parametric

uncertainty δ. The parametric form of G(δ)
i and a bound on the noise and uncertanty are known a priori. The experimental

data consists of input/output measurements, u and ỹ. The mode signal σt, the noise sequence η, and the actual value of the

uncertain parameters δ are unknown.

following polynomial optimization problem:

γ∗ = arg minγ,∆,η γ

s.t. pt(ηt−na:t,∆) = 0 ∀t ∈ [na, T ],

q1(δl) ≥ 0, q2(δl) ≥ 0 ∀l ∈ N|∆|,

ft,j(η
(j)
t ) ≥ 0 ∀t ∈ [0, T ] ∀j ∈ Nny .

(21)

The solution of (21), γ∗, is such that the for all uncertainties with ||∆X ||max < γ∗, the model

is invalidated. Moreover, for any bound γ′ larger than γ∗, one can find an uncertainty with

||∆X ||max ≤ γ′ and noise sequence that would not invalidate the model.

Note that (21) is a polynomial optimization problem satisfying the running intersection prop-

erty. Hence, we can resort to moments-based relaxations for sparse polynomial optimization to

construct a series of convex programs to find the uncertainty bound γ∗. In particular, it is possible

to find a lower bound for γ∗ by solving the semidefinite program:

γ̃N = arg minm E(γ)

s.t. MN(m, It) � 0 ∀t ∈ [0, T − na + 1]

LN(ptm, It−na) � 0 ∀t ∈ [na, T ]

LN(ptm, It−na) � 0 ∀t ∈ [na, T ]

LN(ft,jm, Iβ(t)−na) � 0 ∀t ∈ [0, T ],∀j ∈ Nny

LN(q1m, It) � 0 ∀t ∈ [0, T − na + 1]

LN(q2m, It) � 0 ∀t ∈ [0, T − na + 1]

(22)
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where It = {γ,∆X ,ηk : ∀X, ∀k ∈ [t, t + na]} is a partial variable set with β(t) = na for

t ≤ na and β(t) = t for t > na. Note that the solution, γ̃N , of (22) gives a lower bound for γ∗

(i.e. γ̃N ≤ γ∗). Hence the model is invalidated for all uncertainties with ||∆X ||max ≤ γ̃N ∀X .

Moreover, it is possible to obtain an arbitrarily good approximation of γ∗ by increasing the

relaxation order N as stated in the next theorem.

Theorem 6. As the relaxation order N increases in (22), γ̃N converges to γ∗. That is as N →∞,

γ̃N ↑ γ∗.

VI. ILLUSTRATIVE EXAMPLES

In this section we illustrate the effectiveness of the proposed method both using academic

examples and a computer vision application. In all cases, we used the moments relaxation

corresponding to N = s and the resulting SDP problem was solved using SparsePOP [31]

and SEDUMI [29].

A. Academic Examples

We consider the following submodels:

yt = 0.2yt−1 + 0.3yt−2 + 2ut−1 (G1)

yt = −1.5yt−1 − 0.5yt−2 + 1.2ut−1 (G2)

yt = 1.7yt−1 − 0.7yt−2 + 0.6ut−1 (G3)

and the measurement equation:

ỹt = yt + ηt. (23)

We ran different sets of simulations involving different sources of model mismatch. In all cases,

we collected input/output data {ut, ỹt} for t ∈ [0, 96] and tried to (in)validate the a priori model.

In all experiments, when we used data inconsistent with the a priori information, the numerical

solution of the optimization problem (19), p̃∗s, turned out to be positive. Hence, we correctly

invalidated the model in each of such cases. On the other hand, whenever the a priori information

was consistent with a posteriori data, we had p̃∗s < 0.
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Example 1. (Submodel mismatch) For the first set of experiments, we generated input/output

data using different subsets of {G1, G2, G3} with a random switching sequence σt with a uniform

distribution and with uniform random noise ||ηt|| ≤ 0.5. The noise used in the experiments

was within the a priori noise bound. We used both correct and incorrect a priori submodel

sets. Hence, the model should be invalid when a submodel that is not contained in the a

priori submodel set is used in the actual experiment. The results are summarized in Table

I.

A priori Actual p̃s Result

G1, G2, G3 G1, G2 −1.1484× 10−8 not invalidated

G1, G2 G1, G2, G3 0.9134 invalidated
TABLE I

INVALIDATION RESULTS FOR EXAMPLE 1.

Example 2. (Noise bound mismatch) For this example, we generated input/output data using

different subsets of {G1, G2, G3} with a random switching sequence σt with a uniform distribution

and with uniform random noise ||ηt|| ≤ ε. The a priori submodel set and the actual submodel

set used in the experiment were the same. The source of invalidation was the actual noise level

exceeding the a priori bound. The results of this set of experiments are summarized in Table II.

Submodels A priori ε Actual ε p̃s Result

G1, G2, G3 0.8 1 0.0040 invalidated

G1, G2, G3 1.2 1 −2.8520× 10−7 not invalidated

TABLE II

INVALIDATION RESULTS FOR EXAMPLE 2.

Example 3. (Submodel perturbation) For this set of experiments, we generated input/output

data by perturbing the coefficients of a priori submodels {G1, G2, G3}, and again using a

random switching sequence σt with a uniform distribution and uniformly sampled random noise

||ηt|| ≤ 0.5. We denote the submodel whose coefficient values are perturbed by e percent of their

original values as Gi +Ee%. This case is more challenging than the one considered in Example
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1 since the dynamics are similar. Nevertheless, we could invalidate in each of our trials. The

results for this example are summarized in Table III.

A priori Actual p̃s Result

G1, G2, G3 G1 + E1%, G2 + E1%, G3 + E1% 0.5714 invalidated

G1, G2 G1 + E5%, G2 + E5% 0.8454 invalidated

G1, G2 G1 + E2%, G2 + E2% 0.2242 invalidated

G1, G2 G1 + E2% 5.2776× 10−4 invalidated
TABLE III

INVALIDATION RESULTS FOR EXAMPLE 3.

To give a sense of computational complexity and to demonstrate the advantages of exploiting

the problem structure, we also report the time required to solve the problem on a 2.2GHz Intel

Core Duo Laptop with 2GB of memory running Windows. Table IV summarizes mean computation

times when the number of submodels used as part of the a priori information increases. Table V

summarizes how the mean computation time scales with increasing time horizon over which data

is collected when the a priori information contains three submodels. Computation times were

averaged over six runs with random noise and input values. Note that it is not possible to solve

any of these problems without exploiting the sparse problem structure on the same platform due

to insufficient memory. Although even when exploiting the structure, we hit the memory bound for

three submodels and T = 600 data points, on-going research indicates that memory efficiency

could be further improved by employing first order optimization techniques that, as opposed to

interior point methods, do not require storing the Hessian.

s 2 3 4 5

time (sec) 10.5 41.5 147 602

TABLE IV

MEAN COMPUTATION TIME AS THE NUMBER OF SYSTEMS s INCREASES.

B. Uncertainty Estimation

Consider the following two models with parametric model uncertainty in their input channels:

yt = 0.2yt−1 + 0.24yt−2 + (2 + δ1)ut−1, (G(δ)
1 )
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T 96 150 300 600

time (sec) 41.5 62 158 N/A

TABLE V

MEAN COMPUTATION TIME AS THE NUMBER OF INPUT/OUTPUT DATA POINTS, T , INCREASES (N/A STANDS FOR OUT OF

MEMORY ERROR).

yt = −1.4yt−1 − 0.53yt−2 + (1 + δ2)ut−1, (G(δ)
2 )

and the measurement equation same as before:

ỹt = yt + ηt. (24)

The input/output data was generated from this model with mode signal σt = 1 for t ∈ [0, 24] ∪

[49, 72] and σt = 2 for t ∈ [25, 48] ∪ [73, 96], and noise, η, was independently uniformly

randomly sampled from the interval [−0.5, 0.5], (i.e., ε = 0.5). We ran the experiment with

different values of δ1 and δ2 (unknown to the algorithm), and estimated the lower bound on

uncertainty as described in Section V. Table VI summarizes the results. Note that in this case,

the optimal uncertainty bound γ∗ is not known since it corresponds to the “best-case” noise

sequence estimate that would lead to the least amount of uncertainty required to have the model

interpolate the data within the given noise level. Whereas, in our experiments we use an arbitrary

noise sequence consistent with the a priori information. The estimated γN values (where a second

order relaxation, N = 2, is used in the experiments) are lower bounds for γ∗ and the size of the

true uncertainty is an upper bound, that is γN ≤ γ∗ ≤ max(|δ1|, |δ2|). As can be seen from the

results, the gap between the lower and upper bounds is relatively tight.

δ1 δ2 max(|δ1|, |δ2|) γ2

1 1 1 0.9304

−1.8 2 2 1.9422

5 −5 5 4.9584

TABLE VI

ESTIMATING THE SIZE OF UNCERTAINTY USING MODEL INVALIDATION. δ1 AND δ2 ARE THE TRUE VALUES OF THE

UNCERTAINTY. γ2 IS THE ESTIMATED LOWER BOUND ON THE MINIMUM UNCERTAINTY SIZE, γ∗ .
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C. A Practical Example: Activity Monitoring

We now present an application of the approach developed in this paper to a non-trivial problem

arising in computer vision: activity monitoring. The objective here is to decide if a person’s

behavior being captured by a camera is “normal” or “not normal.” In other words, one wants to

determine if the behavior observed is a combination of known normal “elementary behaviors”

or not. To apply the results in this paper, each of the elementary behaviors is modeled as the

response of an ARX system.Then, the problem of classifying a behavior as normal/not normal

is equivalent to model validation/invalidation of a hybrid system whose submodels are those

corresponding to elementary behaviors.

In this example, two elementary behaviors were considered: i) walk and ii) wait. The model for

“walk” was identified from the behavior of the center of mass of the person in the video whose

sample frames are shown in Fig. 3. Linear programming was used to obtain the autoregressive

model with the least `∞ norm of the process noise resulting in the following modelxt
yt

 =

 0.4747 0.0628

−0.3424 1.2250

xt−1
yt−1

+

0.5230 −0.1144

0.3574 −0.2513

xt−2
yt−2

 (A1)

where (xt, yt) is the normalized coordinate of the center of the person in the tth frame. The

model used for “wait” was simplyxt
yt

 =

1 0

0 1

xt−1
yt−1

 . (A2)

The image coordinate system was normalized so that the measurements satisfy (x, y) ∈ [0, 1]×

[0, 1] with a measurement noise bounded by ||ηt|| ≤ 0.04. This noise level together with the

submodels (A1) and (A2) for “normal” activities constitute the a priori information.

To test the proposed approach, four video sequences were used. In all of them the position

of the center of mass of the person in the video was determined using the silhouettes obtained

by background subtraction. The resulting trajectories of the center of mass were then used for

model (in)validation. In the first sequence, the person walks, waits and walks again; i.e., the

overall activity is normal. In the second sequence, the person runs and our method found a

certificate for invalidity by determining that p̃s > 0. In the third sequence, the person walks and

then starts jumping. In the last sequence, the person passes in front of the camera by jumping.
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frame4 frame15 frame26 frame38 frame49

Fig. 3. Training sequence used in identification of the submodel (A1) for walking.

In these last two sequences, the proposed algorithm determined that the model was invalid and,

hence, the activity was flagged as ”not normal.”

Sample frames from the sequences are shown in Fig. 4 and the results are summarized in

Table VII. The primal optimal objective values, p̃s, are also reported in Table VII. Since, in this

example, image coordinates are scaled to [0, 1]× [0, 1], the values p̃s obtained have a magnitude

much smaller than the ones in previous examples. However, note that the positive range of p̃s

is just a matter of scaling. It is the sign of p̃s that is important. The positivity of p̃s (as well as

the existence of any primal feasible point with positive objective value) is a certificate for the

invalidity of the model.

A priori Actual p̃s Result

walk, wait walk, wait −2.3303× 10−8 not invalidated

walk, wait run 2.3707× 10−5 invalidated

walk, wait walk, jump 5.0293× 10−7 invalidated

walk, wait jump 1.5998× 10−6 invalidated
TABLE VII

INVALIDATION RESULTS FOR ACTIVITY MONITORING.

VII. CONCLUSIONS

This paper addressed the problem of model (in)validation of uncertain switched affine systems

in a set membership framework. Given a priori information consisting of a nominal model, worst-

case, deterministic bounds on the measurement noise and model uncertainty, we developed nec-

essary and sufficient certificates for consistency of this information with observed experimental

data. As shown in the paper, these certificates can be obtained by solving a convex optimization

problem whose size can be bounded from the a-priori data and does not require estimating
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frame5 frame20 frame30 frame45 frame63

frame2 frame7 frame14 frame19 frame24

frame4 frame16 frame28 frame40 frame55

frame4 frame15 frame27 frame40 frame55

Fig. 4. First row: Walk, wait, walk sequence (not invalidated). Second row: Running sequence (invalidated). Third row: Walk,

jump sequence (invalidated). Fourth row: Jumping sequence (invalidated).

the (unknown) switching sequence. We also provided a computationally attractive alternative,

based on solving a sequence of convex optimization problems of increasing size until either

a positive solution is found or the so-called flat extension property holds. By using duality,

the proposed approach exploits the inherently sparse structure of the optimization problem to

substantially reduce its computational complexity. The effectiveness of the proposed method was

illustrated using both academic examples and a non-trivial practical problem arising in video-

analytics: detecting contextually abnormal activity. An interesting fact borne out by our extensive

experiments is that in cases where the experimental data invalidates the a priori assumptions,

the relaxation obtained using moments of order s (the number of subsystems) already provides

an invalidation certificate, suggesting the existence of tighter bounds than those provided by

Theorem 5. Research is currently under way seeking to prove this fact.
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APPENDIX

A. Proof of Theorem 5

For notational simplicity denote qt,i(η)
.
= gt,i(ηt−na:t) in (10), and rk(η)

.
= ft,j(η

(j)
t ) in (13),

with index k ∈ Nnr where nr
.
= (T + 1)ny. Then, problem (14) can be rewritten as

o∗ = minη q(η) =
∑T

t=na

∏s
i=1 qt,i(η)

s.t. rk(η) ≥ 0 ∀k ∈ Nnr ,
(25)

where the polynomials qt,i are convex, quadratic and a sum of squares, and rk are concave and

also quadratic. In order to prove the theorem, we need to introduce the following preliminary

result showing that if the he moment based relaxation of Problem (25) of order N = sT−na+1 +

1 has optimum zero then a related optimization problem also has optimal value 0. To this

effect, define the multi-index i
.
= [ina , ina+1, .., iT ] ∈ NT−na+1

s and the associated quadratic SoS

polynomials qi(η)
.
= qna,ina (η) + qna+1,ina+1(η) + · · ·+ qT,iT (η). Finally, let qbig(η)

.
=
∏

i qi(η).

Lemma 3. Consider the following optimization problem:

o∗big = minη qbig(η)

s.t. rk(η) ≥ 0 ∀k ∈ Nnr ,
(26)
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Let d∗N and d∗big,N denote the the optimum of the moment based relaxations of order N =

sT−na+1 + 1 of Problems (25) and (26), respectively. Then d∗N = 0⇒ d∗big,N = 0.

Proof. By construction qbig(η) = 0 if and only if q(η) = 0, and qbig can be represented as

qbig(η) =
T∑

t=na

qaux,t(η)
s∏
i=1

qt,i(η)

for some SoS polynomials qaux,t(η). To see this recall that qbig is given by

qbig(η)
.
=

∏
[ina ,...,iT ]∈{1,2,...,s}T−na+1

(
qna,ina (η) + qna+1,ina+1(η) + · · ·+ qT,iT (η)

)
.

and, hence, one can express it as

qbig(η) =
∏

[ina ,...,iT−1]∈{1,2,...,s}T−na

∏
iT∈{1,2,...,s}

(
qna,ina (η) + qna+1,ina+1(η) + · · ·+ qT,iT (η)

)
.

Next consider the inner product. In this case, one has

∏
iT∈{1,2,...,s}

(
qna,ina (η) + qna+1,ina+1(η) + · · ·+ qT,iT (η)

)
= hina ,...,iT−1

(η)
(
qna,ina (η) + qna+1,ina+1(η) + · · ·+ qT−1,iT−1(η)

)
+

s∏
iT=1

qT,iT (η).

Replacing this leads to

qbig(η) =
∏

iT∈{1,2,...,s}

[
hina ,...,iT−1

(η)
(
qna,ina (η) + qna+1,ina+1(η) + · · ·+ qT−1,iT−1(η)

)
+

s∏
iT=1

qT,iT (η)

]

= h̃T (η)

 ∏
iT∈{1,2,...,s}

(
qna,ina (η) + qna+1,ina+1(η) + · · ·+ qT−1,iT−1(η)

)+qaux,T (η)
s∏

iT=1

qT,iT (η)

where

h̃T (η) =
∏

iT∈{1,2,...,s}

hina ,...,iT−1
(η).

Note that all polynomials in the expressions above are obtained by multiplying and summing

SoS polynomials. Hence, all of them, and in particular, qaux,T , are SoS polynomials. Now, repeat

the reasoning for the part in between brackets to obtain the term corresponding to t = T − 1.

Repeating the reasoning until one obtains the term corresponding to t = na results in the required

result.
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Since d∗N = 0, there exists a moment matrix MN such that

EMN
(q(η)) =

T∑
t=na

EMN

(
s∏
i=1

qt,i(η)

)
= 0

where, by a slight abuse of notation we used E to denote computing the expected value of q(η)

using the moment sequence in MN . Since the polynomials qt,i(η) are SoS, Lemma 3.7 in [14]

implies that

EMN

(
s∏
i=1

qt,i(η)

)
= 0 for all t = na, na + 1, . . . , T.

Next, recall (Lemma 5.7 in [16]) that the null space of a truncated moments matrix of order N,

albeit not a polynomial ideal, has “truncated ideal like” properties when dealing with polynomials

whose product has degree up to N − 1. Hence the equality above implies

EMN

(
qaux,t(η)

s∏
i=1

qt,i(η)

)
= 0 for all t = na, na + 1, . . . , T

which, in turn, implies that EMN
(qbig(η)) = 0 from where it follows that d∗big,N = 0.

Proof of Theorem 5: The fact that o∗ = 0 ⇒ d∗N = 0 is a consequence of the fact that the

objective function is a sum of squares. To prove the converse, assume by contradiction that

d∗N = 0 but o∗ > 0. Hence, from Lemma 3 we have that d∗big,N = 0 and o∗big > 0, which in turn

implies that, for all i, γi > 0, where

γi
.
= minη qi(η) s.t. rk(η) ≥ 0 ∀k ∈ Nnr , (27)

Since this is a convex quadratic problem, from Lemma 3.10 in [16] we have that

qi(η) = γi + s0,i(η) +
nr∑
k=1

λk,irk(η)

where s0,i is a quadratic SoS polynomial and where λk,i ≥ 0 are scalars. Recursively substituting

this expression in the definition of qbig leads to an expansion of the form:

qbig(η) =
∏

i∈NT−na+1
s

qi(η) = [γi1 + s0,i1(η) +
∑nr

k=1 λk,i1rk(η)]
∏

i∈NT−na+1
s \{i1} qi(η)

= γi1

∏
i∈NT−na+1

s \{i1} qi(η) + u0,1(η) +
∑nr

k=1 uk,1rk(η)

= γi1γi2

∏
i∈NT−na+1

s \{i1,i2} qi(η) + u0,2(η) +
∑nr

k=1 uk,2rk(η)
...

= γ + s0(η) +
∑nr

k=1 sk(η)rk(η)
(28)
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where γ .
=
∏

i∈NT−na+1
s

γi > 0, and where s0 and sk are sum of squares polynomials of degree

up to 2N and 2(N − 1) respectively. This expansion together with Theorem 4.2 in [12] imply

that d∗big,N ≥ γ > 0, contradicting the hypothesis.
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