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Abstract— This work is motivated by the problem of synthe-
sizing mode sequences for continuous-time polynomial switched
systems in order to guarantee that the trajectories of the
system satisfy certain high-level specifications expressed in
linear temporal logic. We use augmented finite transition
systems as abstract models of continuous switched systems.
Augmented finite transition systems are equipped with liveness
properties that can be used to enforce progress in accordance
with the underlying dynamics. We then introduce abstraction
and refinement relations that induce a preorder on this class
of finite transition systems. By construction, the resulting pre-
order respects the feasibility (i.e., realizability) of the synthesis
problem. Hence, existence of a discrete switching strategy for
one of these abstract finite transition systems guarantees the
existence of a mode sequence for the continuous system such
that all of its trajectories satisfy the specification. We also
present an algorithm, which can be implemented using sum-of-
squares based relaxations, to compute such high fidelity abstract
models in a computationally tractable way. Finally, these ideas
are illustrated on an example.

I. INTRODUCTION

Synthesizing switching protocols that determine the se-
quence in which the modes of a switched system are acti-
vated to satisfy certain high-level specifications has attracted
a considerable attention in the last decade [2], [16], [29], [6],
[20]. The problem of switching protocol synthesis arises in
many different contexts. For instance, different modes of a
switched system may correspond to the evolution of the sys-
tem under different, pre-designed feedback controllers [13],
[19], so-called motion primitives in robot motion planning
[9] or bipedal locomotion [22], or different configurations of
a system. Each of these modes may meet certain criteria but
not necessarily the complete, mission-level specification the
system needs to satisfy. The purpose of the switching proto-
col is to identify a switching sequence such that the resulting
switched system satisfies the mission-level specification.

We consider linear temporal logic (LTL) as a specifica-
tion language. Abstraction-based hierarchical approaches are
common in temporal logic planing [28], [8], [12], [15], [27].
The main workflow of these approaches is, (i) lifting the
control synthesis problem to discrete level by constructing
a finite transition system that abstracts the behavior of the
underlying continuous system, (ii) solving the discrete LTL
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synthesis problem to construct a strategy, (iii) implementing
this strategy at the continuous level. Clearly, a prerequisite
for the success of such an approach is the ability to construct
high fidelity discrete abstractions in the first step. The main
objective of this paper is to provide computationally tractable
algorithms to compute abstractions for polynomial switched
systems. Moreover, we define a refinement relation that can
be used to incrementally compute better (in a sense to be
made clear later in the paper) abstractions.

As opposed to abstraction-based frameworks that allow a
rich (e.g., unconstrained) control input [28], [17], steering
the system is fairly challenging in switched systems due
to the limited control authority (i.e., only control input is
the mode of the switched system). This difficulty usually
manifests itself as non-determinism in the abstract finite tran-
sition system unless additional assumptions like incremental
stability of the switched system are made [6]. In this paper,
we do not make any stability assumptions on the dynamics
and we compute non-deterministic finite transition systems,
for which discrete synthesis problem can be cast as a two-
player LTL game [20]. To improve the descriptive power
of the abstractions, we propose to augment the finite transi-
tion systems with additional liveness conditions that encode
transience properties of the underlying dynamics and that
enforce progress accordingly. The discrete synthesis problem
for these augmented transition systems can also be recast
as a two-player game. Ideas similar to augmented transition
systems have been considered for verification [14], [4], but
they have not been extensively utilized before for hybrid
controller synthesis with [32] being an exception where
progress properties are implicitly enforced by the synthesis
algorithm for discrete-time piecewise affine systems.

Another salient feature of the proposed method is the
ability to handle polynomial dynamics. Existing abstraction
techniques often limit the dynamics of the systems consid-
ered, for instance, to fully-actuated [17], linear [2], [15],
piecewise affine [32] or multi-affine [12], for which efficient
algorithms for constructing the discrete transition systems
have been developed. As for abstracting systems with poly-
nomial dynamics, one can either resort to exact polynomial
algebra [30] with prohibitive computational complexity, or
use linearization and error-bounds to locally approximate
the nonlinear dynamics [10] with some loss of accuracy. In
this paper, we propose to use sum-of-squares (SOS) based
convex relaxations to perform the abstraction and show with
an example that these relaxations achieve a good trade-off
between computational complexity and quality of the abstract
model.



II. PRELIMINARIES

A. Notation

In this section, the notation used in the paper is summa-
rized. We denote by R, the real numbers. Rn denotes the n
dimensional Euclidean space. R+ (Z+) is the nonnegative
reals (integers). For a given set X , 2X is its power set, and
|X| is its cardinality. For two sets, X1, X2, X1 \X2 stands
for the set difference. Let X ⊆ Rn. The dimension, closure
and boundary of X are denoted by dim(X), cl(X), and ∂X ,
respectively. For a point x in a convex polytope X ⊆ Rn,
the tangent cone and the normal cone of X at x are defined
as in [26] and denoted respectively by TX(x) and NX(x).
Finally, C1 stands for continuously differentiable functions.

B. Linear temporal logic

LTL has two kinds of operators: logical connectives and
temporal modal operators. The logic connectives are those
used in propositional logic: negation (¬), disjunction ( ∨ ),
conjunction ( ∧ ) and material implication (→). The tempo-
ral modal operators include next (©), always (2), eventually
(3) and until ( U ). An LTL formula over a finite set AP of
atomic propositions can be defined inductively as follows:

1) any atomic proposition π ∈ AP is an LTL formula; and
2) given LTL formulas ϕ and ψ, ¬ϕ, ϕ ∨ ψ, ©ϕ and

ϕ U ψ are also LTL formulas.
Other operators can be defined as follows: (i) ϕ ∧ ψ ,
¬(¬ϕ ∨ ¬ψ), (ii) ϕ→ ψ , ¬ϕ ∨ ψ, (iii) 3ϕ , True U ϕ,
and (iv) 2ϕ , ¬3¬ϕ.

Semantics of LTL: An LTL formula is interpreted over
ω-words, i.e., infinite sequences in 2AP , where each element
of the sequence is called a letter. Given such a word w =
w(0)w(1)w(2) . . . and an LTL formula ϕ, we say that ϕ
holds at position i ≥ 0 of w, written (w, i) |= ϕ, if and only
if (iff) ϕ holds for the rest of the word w starting at position
i. The semantics of LTL is defined inductively as follows: (i)
For an atomic proposition p ∈ AP , (w, i) |= p iff p ∈ w(i);
(ii) (w, i) |= ¬ϕ iff (w, i) 6|= ϕ; (iii) (w, i) |= ϕ ∨ ψ iff
(w, i) |= ϕ or (w, i) |= ψ; (iv) (w, i) |=©ϕ iff (w, i+ 1) |=
ϕ; and (v) (w, i) |= ϕ U ψ iff there exists j ≥ i such that
(w, j) |= ψ and ∀k ∈ [i, j), (w, k) |= ϕ.

Based on this definition, ©ϕ holds at position i of w iff
ϕ holds at position i+ 1, 2ϕ holds at position i iff ϕ holds
at every position in w starting at position i, and 3ϕ holds at
position i iff ϕ holds at some position j ≥ i in w. The word
w is said to satisfy a formula ϕ, denoted by w |= ϕ, iff it
satisfies the formula at the initial position, i.e., (w, 0) |= ϕ.

LTL without next step: When interpreting a continuous
time signal, the notion of next time step does not exist.
Hence we consider the fragment of LTL without the next
operator to specify properties about continuous time signals,
which we denote by LTL\©. Given a word w, any word
w′ obtained by replacing any non-empty finite sequence of
identical letters by another non-empty finite sequence of the
same letter is said to be stutter equivalent to the word w.
A word w satisfies an LTL\© formula ϕ if and only if any
word that is stutter equivalent to w also satisfies ϕ. Hence

it suffices to consider the words with no repeating letters
(maybe except a constantly repeating final letter), which are
called stutter-free words, to reason about LTL\© [3].

III. PROBLEM SETUP

In this section, we introduce the main components of the
problem, namely augmented finite transition systems and
continuous-time switched systems. We also give an overview
of the solution methodology for switching protocol synthesis
problem.

A. Finite transition systems

A finite transition system is a tuple T = (Q,Q0,A,→T
,Π, L) where Q is the finite set of states, Q0 ⊆ Q is the
set of initial states, A is the finite set of actions (i.e., control
inputs),→T ⊆ Q×A×Q is a transition relation, Π is the set
of atomic propositions and L : Q→ 2Π is a labeling function
respectively. We assume, without loss of generality, that all
actions are enabled at every state, that is, for all q1 ∈ Q and
for all a ∈ A, there exists at least one q2 ∈ Q such that
(q1, a, q2) ∈→T .

An execution ρ of a finite transition system
T = (Q,Q0,A,→T ,Π, L) is a sequence of pairs
ρ = (q0, a0)(q1, a1)(q2, a2) · · · , where q0 ∈ Q0 and
(qi, ai, qi+1) ∈→T for all i ≥ 0. The word produced
by an execution ρ is wρ = wρ(0)wρ(1)wρ(2) · · · , where
wρ(i) = (L(qi), ai) for all i ≥ 01. An execution ρ is said to
satisfy an LTL formula ϕ over 2Π×A, written ρ � ϕ, if and
only if the word it produces satisfies ϕ. If all executions
of T satisfy ϕ, we say that the finite transition system T
satisfies ϕ and write T � ϕ.

An augmented finite transition system is a tuple Taug =
(Q,Q0,A,→T ,Π, L,G) (also denoted by Taug = (T ,G),
for short), where T = (Q,Q0,A,→T ,Π, L) is a finite
transition system and G : A → 22Q is a progress group map.
The progress group map G maps each action a ∈ A to a set of
subsets of Q such that the system cannot remain indefinitely
within the set of states G ∈ G(a) by using only the action a.
A set G ∈ G(a) is called a progress group under action a.
Executions and words of augmented finite transition systems
are defined similar to those of finite transition systems.
Given an execution ρ = (q0, a0)(q1, a1)(q2, a2) · · · of an
augmented transition system, we also define extended word
weρ = weρ(0)weρ(1)weρ(2) · · · , where weρ(i) = (L(qi), ai, qi)
for all i ≥ 0. The progress group map G imposes that
executions of Taug satisfy the following LTL formula:

ϕg
.=
∧
a∈A

∧
G∈G(a)

¬32((∨q∈Gq) ∧ a) (1)

interpreted over extended words2. Put differently, under the
action a, the system states should always eventually progress
outside of the set G ∈ G(a). This is an additional information

1To be precise, each letter w(i) of a word w should be in 2Π×A.
However, since the actions in A are mutually exclusive, we define the letters
in 2Π ×A for simplicity.

2With a similar notational abuse as in footnote 1, the letters we(i) of
extended words are defined in 2Π ×A×Q for simplicity.



about the executions of the finite transition system that can
not be encoded simply by the transition relation. Therefore,
augmented finite transition systems have more descriptive
power than usual finite transition systems.

Finite transition systems considered in this paper are
non-deterministic, that is, from a given state with a given
action, there are multiple states the system can transition to.
Control synthesis for such systems can be seen as finding a
winning strategy for a game between the controller and an
“adversary” [11], [5]. In the game, the controller chooses the
actions, hence limits the possible next states to a certain set
encoded by the transition relation, to satisfy a specification
ϕ; and the adversary resolves the non-determinism and de-
termines the next state from this set in order to falsify ϕ. For-
mally, a control strategy for a (augmented) transition system
T is a partial function s : (q0, a0, · · · , qi−1, ai−1, qi) 7→ ai
that maps the execution history to the next action. An s-
controlled execution of a transition system T is an execution
of T , where for each i ≥ 0, the action ai is chosen according
to the control strategy s.

Problem 1: [Discrete Synthesis] Given a finite transition
system T and an LTL formula ϕ over 2Π×A, synthesize
a control strategy s that generates only correct executions
in the sense that all s-controlled executions satisfy the
specification ϕ.

The specification ϕ is said to be realizable on T if
and only if there exists a control strategy s so that the
specification is satisfied for all controlled executions (i.e.,
discrete synthesis problem has a solution). Such a strategy s
is called a winning strategy for the pair (T , ϕ).

A way to recast Problem 1 as a two-player game is
discussed in [20]. For an augmented finite transition system
Taug = (T ,G), the discrete synthesis problem with a spec-
ification ϕ can be reduced to a discrete synthesis problem
for T with the specification ϕaug

.= ϕg → ϕ, where ϕg
is defined as in Eq. (1). Hence it is possible to adopt the
method in [20] to solve the discrete synthesis problem for
augmented finite transition systems with this reduction. It
is worth remarking that if the original specification ϕ is
in the GR(1) fragment of LTL, an expressive class of LTL
formulas for which computationally efficient algorithms for
solving the discrete synthesis problem are available [5], the
augmented specification ϕaug is also in the GR(1) fragment.
Hence, in this case, the complexity class of solving the
discrete synthesis problem for finite transition systems and
augmented finite transition systems are the same.

B. Continuous-time polynomial switched systems

A continuous-time polynomial switched system is a tuple
S = (X,X0,A, {fa}a∈A,Π, h), where X ⊆ Rn is a
compact convex domain (i.e., state space), X0 ⊆ X is a set
of initial states, A .= {1, . . . , s} is a finite index set counting
the modes of the system, {fa}a∈A is a family of vector
fields (in particular, for each mode a ∈ A, fa : Rn → Rn
is a polynomial vector field), Π .= {πinit, πout, π1, . . . , πnp}
is a set of atomic propositions, and h : Rn → 2Π is an
observation map. The observation map is assumed to satisfy

(i) for all i ∈ {1, . . . , np}, πi ∈ h(ξ) if and only if ξ ∈ Xi,
where each Xi ⊆ X is a convex polytope; (ii) πinit ∈ h(ξ) if
and only if ξ ∈ X0; (iii) for all ξ ∈ Rn \X , h(ξ) = {πout}.
In other words, h associates each ξ ∈ Rn with the set of
atomic propositions that hold at ξ.

The evolution of the system S is governed by:

ẋ(t) = fσ(t)(x(t)), (2)

where x(t) ∈ X ⊆ Rn is the state and σ(t) ∈ A is the
mode of the system at time t. We assume switching signal
σ : R+ → A is piecewise constant with finite number of
discontinuities on every bounded interval. Given an initial
condition x(0) ∈ X0 and a switching signal σ, they together
define a unique state trajectory x : I → X that satisfies
(2) for all t ∈ I , where I = R+ if x(t) ∈ X for all
t, or I = [0, tf ] where tf is the minimum t such that
x(t) ∈ ∂X and fσ(t)(x(t)) /∈ TX(x). We need to define the
word generated by a given solution (x, σ) of the system S ,
over which satisfiability of a given LTL\© formula by (x, σ)
is interpreted. Roughly speaking, the word produced by a
solution (x, σ) is defined by finding a sequence of maximal
intervals Ik ⊆ R+ on which (h(x(t)), σ(t)) is constant for
all t ∈ Ik and representing each such interval with a letter
w(k) = (h(x(t)), σ(t)) for some t ∈ Ik if Ik is bounded,
and repeating the letter w(k) infinitely if (h(x(t)), σ(t)) is
constant for all t > inf Ik, or if the trajectory is of finite
length (i.e., I = [0, tf ]).

The problem of switching protocol synthesis from a tem-
poral logic specification can be formally stated as follows.

Problem 2: [Continuous Switching Synthesis] Given a
switched system S = (X,X0,A, {fa}a∈A,Π, h), and an
LTL\© formula ϕ over 2Π×A, find a state-feedback mode
signal σ such that the solutions, (x, σ), of S satisfy ϕ for
all x(0) ∈ X0.

C. Problem statement

Continuous switching synthesis problem can be solved
through a hierarchical approach consisting of four steps: (i)
establish finite transition systems which abstract the contin-
uous system S; (ii) formulate a discrete synthesis problem
based on this finite abstraction; (iii) synthesize a switching
protocol by solving the discrete synthesis problem; and (iv)
if a switching protocol can be found in step (iii), implement
it on the continuous level.

This approach relies on principled and efficient ways
of computing representative discrete transition systems that
abstract the behavior of the continuous system S in the first
step, which is the focus of the current paper. In particular,
we will use augmented finite transition systems as abstract
models and propose a way to compute such models. For
details of steps (ii)-(iv), we refer the reader to [20].

IV. ABSTRACTION AND REFINEMENT RELATIONS

In this section we define certain relations among aug-
mented transition systems and switched systems. These rela-
tions lead to an order that respects the achievable behaviors
of the systems. We start by introducing state-space partitions



and transience property, two notions relevant in associating a
switched system with an augmented finite transition system.

1) Proposition preserving partitions: Given a switched
system S and a partition P = {Pi}Ni=1 of its domain X ,
the partition P is said to be proposition preserving if all
states from a given cell Pi have the same label, that is,
for all i ∈ {1, . . . , N} and for all ξ1, ξ2 ∈ X , if both
ξ1, ξ2 ∈ Pi, then h(ξ1) = h(ξ2). A proposition preserving
partition induces a surjective function α, called a partitioning
function, from Rn to an arbitrary set of cardinality N + 1 as
follows. Let {1, . . . , N + 1} be the range of α, then:

α(ξ) =
{

i if ξ ∈ Pi for some i
N + 1 otherwise. (3)

By definition α is proposition preserving in the sense that
for all ξ1, ξ2 ∈ Rn, α(ξ1) = α(ξ2) ⇒ h(ξ1) = h(ξ2). The
partitioning function α will be used in associating the states
of switched system with those of the finite transition system.

2) Transience: An important concept related
to progress in discrete transitions is transience in
the continuous dynamics. Given a switched system
S = (X,X0,A, {fa}a∈A,Π, h), we say that a set Y ⊆ X
is transient on mode a ∈ A if and only if for any trajectory
starting from some state ξ0 ∈ Y , there exists a finite time
τ such that the solution of ẋ(t) = fa(x(t)) leaves Y at
time τ (i.e., there exists τ < ∞ such that x(τ) /∈ Y ). An
equivalent characterization of transience is given in terms
of positively invariant sets.

Proposition 1: Given S, a set Y ⊆ X is transient on mode
a ∈ A if and only if Y does not contain a positively invariant
set for subsystem a.

Proof: (=⇒) This direction is trivial. For (⇐=), assume
Y is not transient on mode a and it does not contain a
positively invariant set for subsystem a. Since Y is not
transient, there exists ξ0 ∈ Y such that the complete state
trajectory x of subsystem a of S on R+ starting from ξ0
is contained in Y . However, this means the trajectory (or,
more precisely, the set {ξ|x(t) = ξ for some t} ⊆ Y ) is
a positively invariant set that is contained in Y which is a
contradiction.

We next define the type of finite-state approximations
(abstractions) of switched systems considered in this paper.

Definition 1: An augmented finite transition system T =
(Q,Q0,A,→T ,Π, L,G) is said to be an over-approximation
for the switched system S = (X,X0,A, {fa}a∈A,Π, h),
denoted by T �

O.A.
S, if there exists a proposition preserving

partitioning function α : Rn → Q such that the following
statements hold.

(i) Given q ∈ Q, L(q) = h(ξ) for some ξ ∈ α−1(q).
(ii) For all q ∈ Q0, πinit ∈ L(q). There exists a unique

qout ∈ Q such that πout ∈ L(qout) and for some ξ ∈
Rn \X , we have α(ξ) = qout.

(iii) Given states q, q′ ∈ Q, q 6= qout, there is a transi-
tion (q, a, q′) ∈→T , if there exist ξ0 ∈ α−1(q) and
τ > 0 such that the corresponding trajectory x of the
subsystem fa starting from ξ0, i.e., x : [0, τ ] → Rn

with x(0) = ξ0 and ẋ(t) = fa(x(t)), for all t ∈ (0, τ)
satisfies

x(τ) ∈ α−1(q′) x(t) ∈ α−1(q)∪α−1(q′), t ∈ [0, τ ].

For all a ∈ A, (qout, a, qout) ∈→T .
(iv) The progress group map G is such that given an action

a ∈ A, for all G ∈ G(a), the set
⋃
q∈G α

−1(q) is
transient on mode a of S.

In the above definition, statements (i) and (ii) say that if a
state q of the finite transition system T is associated with a
state ξ of the switched system S via the abstraction map, the
propositions corresponding to their labels and observations,
respectively, should be the same. Statement (iii) intuitively
means there is a transition (q, a, q′) ∈→T in the finite
transition system if there is a corresponding trajectory of sub-
system a of the switched system implementing that transition
without visiting extra cells. Finally, statement (iv) encodes
the transience properties of the continuous switched system,
and it means if the map G imposes a progress property on
a set of states of T on a given action a, the corresponding
states of S should form a transient set on mode a. Encoding
such properties is important when designing controllers for
liveness specifications since this can help eliminating words
generated by repeating spurious cycles (or self-transitions)
indefinitely in the discrete transition system. Given an over-
approximation T of a switched system S, we also call T an
abstract model for S.

The next definition gives a relation between two aug-
mented finite transition systems.

Definition 2: Given two augmented finite transition sys-
tems T̂ = (Q̂, Q̂0,A,→T̂ ,Π, L̂, Ĝ) and T = (Q,Q0,A,→T
,Π, L,G), T is said to be a refinement of T̂ (or, T̂ is an
abstract model of T ), denoted by T̂ �

A.S.
T , if there exists a

function β : Q→ Q̂ such that the following conditions hold.

(i) For all q ∈ Q, L(q) = L̂(β(q)).
(ii) For all q ∈ Q0, β(q) ∈ Q̂0.

(iii) For all (q1, a, q2) ∈→T , (β(q1), a, β(q2)) ∈→T̂ .
(iv) For all a ∈ A, for all Ĝ ∈ Ĝ(a), there exists G ∈ G(a)

such that for all q̂ ∈ Ĝ, we have β−1(q̂) ⊆ G.
If we ignore the progress group maps and consider usual

finite transition systems, statements (i)-(ii)-(iii) in Def. 2,
say that the function β is an abstraction function, that is the
states of T̂ can be seen as aggregations of disjoint sets of
equally labeled states in T (see [7], [3]). For every transition
in the refinement T , there is a corresponding transition in
the abstract model T̂ , but we allow T̂ to have additional
transitions (i.e., more non-determinism). On the other hand,
statement (iv) means that for each progress group Ĝ of the
abstract model T̂ , there is a corresponding progress group G
of the refinement T , that contains all the states in Q related
(via β−1) to those in Ĝ.

Definition 3: Given a switched system S =
(X,X0,A, {fa}a∈A,Π, h) and an augmented transition
system T = (Q,Q0,A,→T ,Π, L,G) such that T �

O.A.
S ,

a transition system T ′ = (Q′, Q′0,A,→T ′ ,Π, L′,G′) is



called an abstract model of S refined with respect to T if
T �

A.S.
T ′ �

O.A
S.

We call T ′ a refinement of T , for short, whenever S is
clear from context.

We summarize some important properties of the relations
introduced in this section with two proposition.

Proposition 2: Given T̂ �
A.S.
T , the set of all words that

can be generated by T is a subset of those that can be
generated by T̂ . Moreover, given an LTL formula ϕ over
2Π×A, if it is realizable on T̂ , then it is realizable on T .

Proof: First we show that for any execution
ρ = (q0, a0)(q1, a1)(q2, a2) · · · of the refinement T ,
there exists an execution of T̂ of the form ρ̂ =
(β(q0), a0)(β(q1), a1)(β(q2), a2) · · · . This follows from
conditions (ii)-(iii) in Def. 2 and condition (iv), which
says G restricts the infinite executions of T at least as
much as Ĝ restricts the infinite executions of T̂ . Finally
noting that ρ and ρ̂ generate the same words according
to condition (i) of Def. 2 proves the first part. For the
second part, let ŝ : (q̂0, a0, · · · , q̂i−1, ai−1, q̂i) 7→ ai
be winning strategy for the pair (T̂ , ϕ), then the strat-
egy s for T defined as s(q0, a0, · · · , qi−1, ai−1, qi) =
ŝ(β(q0), a0, · · · , β(qi−1), ai−1, β(qi)) is a winning strategy
for (T , ϕ). This follows by noting that the words generated
by the s-controlled executions of T is a subset of the words
generated by ŝ-controlled executions of T̂ by conditions (i)-
(ii)-(iii) of Def. 2.

Proposition 3: Given T �
O.A.

S, the set of all words that

can be generated by S is a subset of stutter-free versions
of words that can be generated by T . Moreover, given an
LTL\© specification ϕ over 2Π×A, if there exists a discrete
strategy that realizes ϕ on T , then3 there exists a switching
protocol that realizes ϕ on S.

Proof: Let (x, σ) be a solution to S and the word
generated by (x, σ) be w = w(1)w(2) · · · . By definition,
w is a stutter-free word. Now let α be the partitioning
function in Def. 1 and let ρ = ρ(1)ρ(2) · · · , where ρ(i) =
(qi, ai), and ρ is the exact sequence of values taken by
the pairs (α(x(t)), σ(t)) on a sequence of countably many
non-overlapping intervals {Ii} covering the domain of the
solution, over which the value of (α(x(t)), σ(t)) is constant
(if the solution is defined on a finite interval, [0, tf ], there
are finitely many such intervals but ρ can be completed to
an infinite sequence by repeating ρ(i) = (qout, σ(tf ))). By
Def. 1, ρ is an execution of T . Let w′ = w′(1)w′(2) · · ·
be the word generated by ρ, i.e., w′(i) = (L(qi), ai) for
all i. On each of the interval Ii, we have (h(x(t)), σ(t)) =
(L ◦ α(x(t)), σ(t)) = w′(i) for all t ∈ Ii. Therefore, w is
a stutter-free version of w′, which proves the first part. The
second part proceeds along the lines of proof of Prop. 2 and
follows from Theorem 1 in [21].

Definitions 2 and 3 together establish a preorder between
the over-approximations of a switched system S. It follows

3Under mild conditions, related to continuous implementations being non-
Zeno (see [21] for details).

from Prop. 2 that this preorder respects the realizability of
the switching synthesis problem. Therefore, given two over-
approximation T̂ and T of S, if T̂ is a refined abstract model
of S with respect to T , then we can deduce that T̂ is a better
abstraction in the sense that given any LTL (LTL\©) formula
ϕ, whenever we can find a strategy for realizing ϕ on T , we
can also find a strategy realizing ϕ on T̂ .

V. COMPUTATION OF ABSTRACTIONS

In this section, we present an explicit algorithm for com-
puting over-approximations, argue the correctness of this
algorithm and discuss how similar ideas can be used to
compute refinements.

Given a switched system S and a proposition preserving
partition P , an over-approximation of S in the sense of Def.
1 can be computed using Alg. 1. The two key subroutines
in this algorithm are isBlocked and isTransient. For the
correctness of the algorithm we require the following.

R.1) isBlocked(P1,P2, f): Given two convex polytopes
P1,P2 ∈ Rn and a vector field f : Rn → Rn,
return True if a certificate for the non-existence of a
continuous trajectory segment (that does not go through
a third set) from P1 to P2 under the flow of f is found,
and return False otherwise.

R.2) isTransient(P, f): Given a set P ∈ Rn and a vector
field f : Rn → Rn, return True if a certificate for
transience of P under the flow of f is found, and return
False otherwise.

Algorithm 1 Abstraction Procedure
Input: switched system S = (X,X0,A, {fa}a∈A,Π, h), propo-

sition preserving partition P = {Pi}Ni=1

Output: augmented finite transition system T = (Q,Q0,A,→T
,Π, L,G) such that T �

O.A
S

1: Let α be as defined in Eq. (3)
2: Set Q = {1, . . . , N + 1}, Q0 = {i : Pi ⊆ X0}, L = h ◦ α−1

3: Initialize →T= (Q \ {N + 1})×A×Q
4: for a ∈ A do
5: G(a) = ∅
6: →T=→T ∪{(N + 1, a,N + 1)}
7: for i ∈ {1, . . . , N} do
8: for j = {1, . . . , N + 1} \ {i} do
9: if isBlocked(α−1(i), α−1(j), fa) then

10: →T=→T \{(i, a, j)}
11: if isTransient(α−1(i), fa) then
12: G(a) = G(a) ∪ {{i}}
13: return T = (Q,Q0,A,→T ,Π, L,G)

Correctness of the abstraction procedure is established
next.

Proposition 4: The abstraction procedure is sound. That
is, if the requirements R.1 and R.2 are satisfied, given a
switched system S, and a proposition preserving partition P
of its domain, the abstraction procedure (Alg. 1) returns an
augmented finite transition system T such that T �

O.A.
S .

Proof: We can analyze the algorithm line by line to
show that the transition system T returned by Alg. 1 satisfies
all conditions of Def. 1. On line 1, an abstraction function



as in Eq. (3) is computed. On line 2, states and labeling
function are defined so as to match the conditions (i) and
(ii) in Def. 1. The transition relation →T is initialized to
((Q \ {N + 1}) × A × Q) ∪ ({N + 1} × A × {N + 1}),
which trivially satisfies condition (iii) in Def. 1. Similarly,
the progress group map G is initialized to sets of empty
sets, which trivially satisfies condition (iv) in Def. 1. Then,
by requirements R.1 and R.2, isBlocked conservatively
removes transitions from→T only if their non-existence can
be verified; and isTransient conservatively adds progress
groups only if their existence can be verified; hence, adhering
to conditions (iii) and (iv), respectively.

In what follows, we show that certificates mentioned
in requirements R.1 and R.2 can be computed by solv-
ing appropriate polynomial programming problems. Hence,
computation of these certificates is amenable to SOS-based
convex relaxations [23].

Let F be the common boundary of the sets P1 and P2

(i.e., F = cl(P1) ∩ cl(P2)). If the sets P1 and P2 are not
neighbors (i.e., F = ∅), isBlocked returns True since there
cannot be a continuous trajectory in between these two sets
that remains in their union. If the sets are neighbors, then
isBlocked searches for a certificate that guarantees none
of the continuous trajectories of S starting in P1 leaves
P1 through the face F under the flow of f . The following
condition gives such a certificate:

n(ξ)T f(ξ) < 0; ∀ξ ∈ F and ∀n(ξ) ∈ NP1(ξ), (4)

which essentially checks the angle f(ξ) makes with the
normal cone NP1(ξ) of P1 at all ξ ∈ F 4.

As for finding a certificate for transience (i.e., imple-
menting isTransient), we use an idea similar to barrier
certificates [24].

Proposition 5: A set Y is transient on a mode a of a
switched system S, if there exists a C1 function B : Rn → R
such that

Ḃ(ξ) =
∂B(ξ)
∂ξ

fa(ξ) ≤ −ε, ∀ξ ∈ Y (5)

for some ε > 0.
Proof: Assume there exists a C1 function B : Rn → R

satisfying (5), and, by contradiction, assume there exists an
ξ0 ∈ Y such that the state trajectory x of subsystem a of (2)
on R+ starting from ξ0 is contained in Y . Since x is con-
tained in Y , we have inft∈R+ B(x(t)) ≥ minξ∈cl(Y )B(ξ) >
−∞ (existence of a finite lower bound follows from com-
pactness of cl(Y ) ⊆ X together with continuity of B).
However, since B is strictly decreasing over the trajectories
in Y , we have limt→∞B(x(t)) = −∞, which, together with
the fact that limt→∞B(x(t)) ≥ inft∈R+ B(x(t)), leads to a
contradiction.

Remark 1: If a switching protocol synthesis problem is
unrealizable for an over-approximation T of a system S, by
Props. 2-3 and Def. 3, it might be possible to find a protocol

4Another (less conservative) way to obtain a certificate is to check if
f(ξ) /∈ TP2 (ξ) for all ξ ∈ F (i.e., whether any trajectory enters P2

through F ). However for simplicity we use (4).

for S using a refined finite transition system. A refinement
procedure based on refining the proposition preserving parti-
tion P can be devised, for instance by splitting certain cells
in the partition, applying the isBlocked and isTransient
subroutines to the cells that are affected by splitting and
by inheriting the transience property from parent cells to
children cells. Two key points for the refinement procedure
to be effective are the choice of the cell to split and how
to split that cell, which are beyond the scope of the current
paper, and subjects of future research.

Remark 2: The definitions of abstractions and transience
can be readily extended to the case where each subsystem
in (2) is subject to disturbances. Moreover, when disturbance
affects the dynamics polynomially, it is possible to use SOS-
based convex optimization to compute certificates. We skip
the details due to page limitation but illustrate this extension
with an example in Sec. VI-B.2.

VI. IMPLEMENTATION AND EXAMPLES

In this section, we first provide implementation details and
then illustrate the approach with a numerical example.

A. Implementation details

We used Multi-Parametric Toolbox (MPT) [18] for poly-
tope manipulations and SOSTOOLS [25] for solving relaxed
versions of polynomial problems (4) and (5). MPT is used
to partition the state-space into convex polytopes that are
proposition preserving.

In principle, given two convex polytopes P1,P2 ∈ Rn, the
condition (4) can be converted to a finite dimensional opti-
mization form by using the fact that normal cones of convex
polytopes are finitely parametrized, however computation
can be involved when different dimensional faces meet on
F . We made a simplifying assumption when implementing
isBlocked and considered the two sets P1,P2 to be neigh-
bors only if dim(F ) = n − 1. Under this simplification5, a
certificate of being blocked can be obtained if the solution
γ∗ of the following optimization problem is negative:

γ∗ = max
ξ∈F

nT f(ξ) (6)

where n is the normal vector of supporting hyperplane of
P1 that contains F . We computed an upper-bound γ̄ of γ∗

using sum-of-squares relaxations [23]. If γ̄ < 0, this gives a
certificate for being blocked.

In order to find transience certificates, we restricted B in
Proposition 5 to be a polynomial of bounded degree and
resorted to standard SOS methods [25] to search for B. For
completeness, we present below the associated SOS program.
Pn,d be the set of real polynomials and Σn,d be the set of
real SOS polynomials in n variables and of degree less than
or equal to d. As B is a polynomial, so is B̃(ξ) .= ∂B(ξ)

∂ξ .
Given a convex polytope P that has a representation Hξ ≤ k

5Note that almost all trajectories pass through n − 1 dimensional faces
and the effect of this simplification on resulting trajectories is negligible for
all practical purposes.



for some H ∈ Rm×n and k ∈ Rm, consider the following
SOS program:

find B̃ ∈ Pn,d−df , si ∈ Σn,d−1 ∀i ∈ {1, . . . ,m}
s. t. [s1(ξ), . . . , sm(ξ)](Hξ − k)− B̃(ξ)f(ξ)− ε ∈ Σn,d

(7)
where df is the degree of f , d ≥ df is a fixed relaxation
order, and ε is a fixed arbitrary positive number. Feasibility
of Problem (7) implies feasibility of Eq. (5), therefore is a
certificate of transience of the set P under the flow of f .
Problem (7) can be reduced to a semidefinite program, and
its feasibility can be checked e.g., using SOSTOOLS [25].

B. Numerical example

We consider the polynomial dynamical system

ẋ1 = −x2 − 1.5x1 − 0.5x3
1 + u1

ẋ2 = x1 + u2
(8)

where x1 × x2 ∈ X = [−2, 2] × [−1.5, 3]. Four dif-
ferent state feedback controllers, Ki, i ∈ {1, 2, 3, 4}
and [u1, u2] = Ki(x1, x2), are designed for this system,
two stabilizing it around desired equilibrium points, and
two other to provide some fast dynamics within the re-
gion of interest X shown in Fig. 1. In particular, fol-
lowing controllers are used: K1(x1, x2) = [0,−x2

2 +
2], K2(x1, x2) = [0,−x2], K3(x1, x2) = [2, 10], and
K4(x1, x2) = [−1.5,−10]. Therefore, the switched sys-

tem has four modes: f1 =
[
−x2 − 1.5x1 − 0.5x3

1

x1 − x2
2 + 2

]
, f2 =[

−x2 − 1.5x1 − 0.5x3
1

x1 − x2

]
, f3 =

[
−x2 − 1.5x1 − 0.5x3

1 + 2
x1 + 10

]
,

f4 =
[
−x2 − 1.5x1 − 0.5x3

1 − 1.5
x1 − 10

]
.

1) Comparison of abstractions: In this section we com-
pare the proposed SOS-based abstraction procedure (Alg. 1)
with the linearization-based hybridization procedure inspired
by the one in [10].

Given the family of vector fields {fa}4a=1, the domain
X , propositions Π = {π1, π2, π3} together with an ob-
servation map h associating them to regions A1, A2, A3

shown in Fig. 1(a), and a proposition preserving partition
as in Fig. 1(b), we used the proposed SOS-based abstrac-
tion algorithm to compute an over-approximation T =
(Q,Q0,A,→T ,Π, L,G) of S = (X,X0,A, {fa}a∈A,Π, h).
As a comparison, we adapted the abstraction procedure from
[10] to linearize the system within each cell of the propo-
sition preserving partition for each mode and computed the
uncertainty bounds and transitions accordingly. We denote
the finite transition system obtained by linearization-based
abstraction with T lin = (Q,Q0,A,→T lin ,Π, L,G). Note
that T lin is also an over-approximation of S. The resulting
transition relation →T was a proper subset of →T lin (i.e.,
→T (→T lin ) with | →T | = 802 and | →T lin | = 905.
Hence, T is a better approximation of S in the sense that
T lin �

A.S.
T �

O.A.
S (see Defs. 2-3, with the function β

chosen to be identity). It is worth emphasizing that the less
transitions there are, the easier it is to control the system due
to decreased non-determinism within the modes. Though, it

should be noted that this improvement comes with some
added computational complexity (solving a set of semi-
definite programs for the proposed SOS-based abstraction
vs. some matrix/vector arithmetic for the linearization-based
approach). However since abstractions are computed offline,
it might be desirable to use SOS-based abstractions to obtain
higher fidelity approximations with the same number of
discrete states.
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Fig. 1. (a) Domain X and regions A1 (red), A2 (blue), A3 (black)
associated with the propositions. (b) A proposition preserving partition.

2) Control protocol synthesis: In this section, we use
the proposed method to solve a continuous switching pro-
tocol synthesis problem. We consider the system S =
(X,X0,A, {fa}a∈A,Π, h) from Sec. VI-B.1 subject to ad-
ditive disturbance δ = (δ1, δ2) with ||δ||∞ ≤ 0.005. That is
the family {f̃a}4a=1 of vector fields is given by f̃a = fa + δ
for a ∈ A. Given the family {f̃a}4a=1, the domain X ,
propositions Π = {π1, π2, π3} together with an observation
map h associating them to regions A1, A2, A3 shown in
Fig. 1(a), the goal was to synthesize a switching protocol
to guarantee that the trajectories of the system satisfy:

ϕ = 2(¬πout) ∧2(¬π3) ∧23(π1) ∧23(π2). (9)

We used the proposition preserving partition in Fig. 1(b)
and computed an augmented finite transition system Tδ =
(Q,Q0,A,→Tδ ,Π, L,G) using the proposed method. Com-
pared to T in Sec. VI-B.1, Tδ had 6 additional transitions.
TuLiP toolbox [31] was employed to solve the discrete syn-
thesis problem. The problem was realizable and we obtained
a control strategy that was represented by an automaton with
24 states. The discrete strategy was then implemented on
the continuous system. Fig. 2 shows a sample continuous
trajectory which repeatedly visits A1 and A2 and avoids A3

as expected.

VII. CONCLUSIONS

In this paper we considered the problem of synthesizing
switching protocols for polynomial switched systems so that
the closed-loop trajectories of the system satisfy a high level
specification expressed in linear temporal logic. The main
contributions of this paper lie in (i) introducing augmented
finite transition systems as abstract models for polynomial
switched systems, and (ii) proposing a computationally
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Fig. 2. A simulation of the continuous trajectory with the synthesized
switching protocol for the specification in (9). Lower curve shows x1 and
upper curve shows x2, where the portions of the trajectory in regions A1

and A2 are highlighted with red and blue segments respectively.

tractable method for computing such abstract models. Sum-
of-squares based relaxations were used for computing the
transition relations and transience properties. These relax-
ations were shown, with an example, to achieve a good trade-
off between computational complexity and quality of the
abstract model obtained. Proposed abstraction method can
easily be integrated with methods as in [21] to accommodate
specifications that require reacting to possibly adversarial
external events in runtime.

We also defined a refinement relation between augmented
finite transition systems that can be used for incrementally
computing finite transition systems abstracting a switched
system, with potentially higher fidelity. Future work will
focus on abstraction refinement based incremental synthesis
of switching protocols by leveraging counter-example guided
automatic refinement ideas in hybrid system verification [1],
[7].
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